Filippov, Andrey A; Sergueev, Kirill V; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T; Mueller, Allen J; Fernandez-Prada, Carmen M; Nikolich, Mikeljon P
2011-01-01
Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.
Filippov, Andrey A.; Sergueev, Kirill V.; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T.; Mueller, Allen J.; Fernandez-Prada, Carmen M.; Nikolich, Mikeljon P.
2011-01-01
Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis. PMID:21980477
Orndorff, Paul E
2016-11-01
Bacteriophages (phage) that infect pathogenic bacteria often attach to surface receptors that are coincidentally required for virulence. Receptor loss or modification through mutation renders mutants both attenuated and phage resistant. Such attenuated mutants frequently have no apparent laboratory growth defects, but in the host, they fail to exhibit properties needed to produce disease such as mucosal colonization or survival within professional phagocytic cells. The connection between attenuation and phage resistance has been exploited in experimental demonstrations of phage therapy. In such experiments, phage resistant mutants that arise naturally during therapy are inconsequential because of their attenuated status. A more contemporary approach to exploiting this connection involves identifying small effector molecules, identified in high-throughput screens, that inhibit one or more of the steps needed to produce a functioning phage receptor. Since such biosynthetic steps are unique to bacteria, inhibitors can be utilized therapeutically, in lieu of antibiotics. Also, since the inhibitor is specific to a particular bacterium or group of bacteria, no off-target resistance is generated in the host's commensal bacterial population. This brief review covers examples of how mutations that confer phage resistance produce attenuation, and how this coincidental relationship can be exploited in the search for the next generation of therapeutic agents for bacterial diseases.
Iriarte, Fanny B; Obradović, Aleksa; Wernsing, Mine H; Jackson, Lee E; Balogh, Botond; Hong, Jason A; Momol, M Timur; Jones, Jeffrey B; Vallad, Gary E
2012-10-01
Soil-based root applications and attenuated bacterial strains were evaluated as means to enhance bacteriophage persistence on plants for bacterial disease control. In addition, the systemic nature of phage applied to tomato roots was also evaluated. Several experiments were conducted applying either single phages or phage mixtures specific for Ralstonia solanacearum , Xanthomonas perforans or X. euvesicatoria to soil surrounding tomato plants and measuring the persistence and translocation of the phages over time. In general, all phages persisted in the roots of treated plants and were detected in stems and leaves; although phage level varied and persistence in stems and leaves was at a much lower level compared with persistence in roots. Bacterial wilt control was typically best if the phage or phage mixtures were applied to the soil surrounding tomatoes at the time of inoculation, less effective if applied 3 days before inoculation, and ineffective if applied 3 days after inoculation. The use of an attenuated X. perforans strain was also evaluated to improve the persistence of phage populations on tomato leaf surfaces. In greenhouse and field experiments, foliar applications of an attenuated mutant X. perforans 91-118:∆ OPGH strain prior to phage applications significantly improved phage persistence on tomato foliage compared with untreated tomato foliage. Both the soil-based bacteriophage delivery and the use of attenuated bacterial strains improved bacteriophage persistence on respective root and foliar tissues, with evidence of translocation with soil-based bacteriophage applications. Both strategies could lead to improved control of bacterial pathogens on plants.
Friman, Ville-Petri; Buckling, Angus
2014-01-01
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085
Virus and bacteria transport in a sandy aquifer, Cape Cod, MA
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.; Harvey, Ronald W.
1995-01-01
Transport of the bacteriophage PRD-1, bacteria, and latex microspheres was studied in a sandy aquifer under natural-gradient conditions. The field injection was carried out at the U.S. Geological Survey's Toxic Substances Hydrology research site on Cape Cod. The three colloids and a salt tracer (Br−) moved along the same path. There was significant attenuation of the phage, with PRD-1 peak concentrations less than 0.001 percent of Br− peaks 6 m from the source; but the low detection limit (one per ml) enabled tracking movement of the PRD-1 plume for 12 m downgradient over the 25-day experiment. Attenuation of phage was apparently due to retention on soil particles (adsorption). Attenuation of bacteria and microspheres was less, with peak concentrations 6 m from the source on the order of 10 and 0.4 percent of Br−, respectively. Injection of a high-pH pulse of water 20 days into the experiment resulted in significant remobilization of retained phage, demonstrating that attached phage remained viable, and that PRD-1 attachment to and detachment from the sandy soil particles was highly pH dependent. Phage behavior in this experiment, i.e. attenuation at pH 5.7 and rapid resuspension at pH 6–8, was consistent with that observed previously in laboratory column studies. Results illustrate that biocolloids travel in a fairly narrow plume in sandy (relatively homogeneous) media, with virus concentrations dropping below detection limit several meters away from the source; bacteria concentrations above detection limits can persist over longer distances.
Smeal, Steven W; Schmitt, Margaret A; Pereira, Ronnie Rodrigues; Prasad, Ashok; Fisk, John D
2017-01-01
Bacteriophage M13 is a true parasite of bacteria, able to co-opt the infected cell and control the production of progeny across many cellular generations. Here, our genetically-structured simulation of M13 is applied to quantitatively dissect the interplay between the host cellular environment and the controlling interactions governing the phage life cycle during the initial establishment of infection and across multiple cell generations. Multiple simulations suggest that phage-encoded feedback interactions constrain the utilization of host DNA polymerase, RNA polymerase and ribosomes. The simulation reveals the importance of p5 translational attenuation in controlling the production of phage double-stranded DNA and suggests an underappreciated role for p5 translational self-attenuation in resource allocation. The control elements active in a single generation are sufficient to reproduce the experimentally-observed multigenerational curing of the phage infection. Understanding the subtleties of regulation will be important for maximally exploiting M13 particles as scaffolds for nanoscale devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-01-01
Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). Methods A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin. PMID:16185358
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay.
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-09-26
We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4-7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin.
Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics.
Dini, C; Bolla, P A; de Urraza, P J
2016-07-01
To assay the combination of phage and probiotics against EHEC in vitro on infected Hep-2 cells. Phage and probiotics treatments on EHEC O157:H7-infected Hep-2 cells were assayed individually or combined. The effect of freeze-drying on phage and probiotic antimicrobial activity was also studied. While treatment with phage alone increased cell detachment caused by EHEC infection, the treatments with MM alone or in combination with phage proved to effectively diminish cell damage caused by EHEC infection. Combined treatment showed a decrease in apoptotic cell count of 57·3% and a reduction in EHEC adhesion to cell monolayer of 1·2 log CFU. The simultaneous use of phage and probiotics showed no antagonistic effect, and freeze-drying did not affect their antipathogenic activity. The combination of phage and probiotics has great potential for reducing the number of pathogens adhered to epithelial cells during EHEC O157:H7 infection and attenuating the cytotoxic effect derived from it. Further in vivo assays are needed for assessing the actual effectiveness of the treatment. This study presents a freeze-dried formulation of phage and probiotics capable of controlling EHEC infections and reducing epithelial cell damage in vitro. © 2016 The Society for Applied Microbiology.
Regulation of Bacteriophage T5 Development by ColI Factors
Moyer, R. W.; Fu, A. S.; Szabo, C.
1972-01-01
The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb+ cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb+ cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis. Images PMID:4554465
EFFECT OF SODIUM CHLORIDE ON STAPHYLOCOCCUS-PHAGE RELATIONSHIPS
West, B.; Kelly, Florene C.; Shields, Doris A.
1963-01-01
West, B. (University of Oklahoma Medical Center, Oklahoma City), Florene C. Kelly, and Doris A. Shields. Effect of sodium chloride on staphylococcus-phage relationships. J. Bacteriol. 86:773–780. 1963.—Phage patterns of 21 phage-propagating strains of staphylococci on medium with high NaCl content appeared to be an expression of the staphylococcal cells, as well as of the salt tolerance of the phages. Serological group A phages, previously found to be NaCl-tolerant in the free state, were capable of lysing susceptible staphylococci on 3, 7.5, and 10% NaCl Trypticase Soy Agar. None of the other phages tested was active when the medium contained 7.5 and 10% NaCl. Increasing the NaCl content of the medium rarely resulted in nonspecific reactions; rather the effect was, generally, a narrowing of the phage spectrum of the cells, with persistence in the phage pattern of the phage, or phages, which were propagated on the cells being tested. Although NaCl tolerance of the phages was the chief limiting factor of phage activity in the presence of 7.5 and 10% NaCl, reactions on salt medium also depended on the degree of susceptibility of cells to phage on routine typing medium and to certain other unexplained factors. In some instances, under the influence of increased NaCl, significant lysis at 1000 RTD was replaced by thinning of growth (inhibition), with or without the presence of plaques. Conversely, certain phage-cell combinations, which gave inhibition at 1000 RTD on standard medium produced some degree of lysis when the NaCl concentration was increased. Studies of phage 81 and its propagating strain showed that replication of phage occurred in 10% NaCl medium, although adsorption diminished as salt concentration was increased, and the time required to reach maximal lytic activity was delayed. PMID:14066474
Transport of Escherichia coli and F-RNA bacteriophages in a 5 m column of saturated pea gravel
NASA Astrophysics Data System (ADS)
Sinton, Lester W.; Mackenzie, Margaret L.; Karki, Naveena; Braithwaite, Robin R.; Hall, Carollyn H.; Flintoft, Mark J.
2010-09-01
The relative transport and attenuation of bacteria, bacteriophages, and bromide was determined in a 5 m long × 0.3 m diameter column of saturated pea gravel. The velocity ( V), longitudinal dispersivity ( αx) and total removal rate ( λ) were calculated from the breakthrough curves at 1 m, 3 m, and 5 m, at a flow rate of 32 L h - 1 . Inactivation ( μ) rates were determined in survival chambers. Two pure culture experiments with Escherichia coli J6-2 and F-RNA phage MS2 produced an overall V ranking of E. coli J6-2 > MS2 > bromide, consistent with velocity enhancement, whereby larger particles progressively move into faster, central streamlines of saturated pores. Removal rates were near zero for MS2, but were higher for E. coli J6-2. In two sewage experiments, E. coli and F-RNA phage Vs were similar (but > bromide). This was attributed to phage adsorption to colloids similar in size to E. coli cells. Sewage phage removal rates were higher than for the pure MS2 cultures. The application of filtration theory suggested that, whereas free phage were unaffected by settling, this was the primary removal mechanism for the colloid-associated phage. However, cultured and sewage E. coli removal rates were similar, suggesting the dominance of free E. coli cells in the sewage. When MS2 was attached to kaolin particles, it was transported faster than free MS2, but at similar rates to sewage phage. The μ values indicated little contribution of inactivation to removal of either cultured or sewage microorganisms. The results showed the importance of association with colloids in determining the relative transport of bacteria and viruses in gravels.
Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection
Carmody, Lisa A.; Gill, Jason J.; Summer, Elizabeth J.; Sajjan, Uma S.; Gonzalez, Carlos F.; Young, Ryland F.; LiPuma, John J.
2009-01-01
The therapeutic potential of bacteriophage (phage) in a mouse model of acute B. cenocepacia pulmonary infection was assessed. Phage were administered by either intranasal (i.n.) inhalation or intraperitoneal (i.p.) injection. Bacterial density, macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNFα) levels were significantly reduced in lungs of mice treated with i.p. phage. No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with i.n. phage, i.p. UV-inactivated phage, or i.p. λ phage controls. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNFα levels compared to mock-infected / mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic administration of phage was more effective than inhalational administration, suggesting that circulating phage have better access to bacteria in lung compared to topical phage. PMID:20001604
Costantini, Antonella; Doria, Francesca; Saiz, Juan-Carlos; Garcia-Moruno, Emilia
2017-04-04
Nowadays, only few phages infecting Oenococcus oeni, the principal lactic acid bacteria (LAB) species responsible for malolactic fermentation (MLF) in wine, have been characterized. In the present study, to better understanding the factors affecting the lytic activity of Oenococcus phages, fifteen O. oeni bacteriophages have been studied in detail, both with molecular and microbiological methods. No correlations were found between genome sizes, type of integrase genes, or morphology and the lytic activity of the 15 tested phages. Interestingly, though phage attack in a wine at the end of alcoholic fermentation seems not to be a problem, it can indeed represent a risk factor for MLF when the alcohol content is low, feature that may be a key point for choosing the appropriate time for malolactic starter inoculation. Additionally, it was observed that some phages genomes bear 2 or 3 types of integrase genes, which point to horizontal gene transfer between O. oeni bacteriophages. Copyright © 2017. Published by Elsevier B.V.
Madsen, Lone; Bertelsen, Sif K; Dalsgaard, Inger; Middelboe, Mathias
2013-08-01
Attention has been drawn to phage therapy as an alternative approach for controlling pathogenic bacteria such as Flavobacterium psychrophilum in salmonid aquaculture, which can give rise to high mortalities, especially in rainbow trout fry. Recently, phages have been isolated with a broad host range and a strong lytic potential against pathogenic F. psychrophilum under experimental conditions. However, little is known about the fate of phages at environmental conditions. Here, we quantified the dispersal and fate of F. psychrophilum phages and hosts in rainbow trout fry after intraperitoneal injection. Both phages and bacteria were isolated from the fish organs for up to 10 days after injection, and coinjection with both bacteria and phages resulted in a longer persistence of the phage in the fish organs, than when the fish had been injected with the phages only. The occurrence of both phage and bacterium was most prevalent in the kidney and spleen, with only minor occurrence in the brain. The experiment showed that injected phages were rapidly spread in the internal organs of the fish, also in the absence of bacteria. Parallel examination of the regulation of bacteriophage infectivity in controlled laboratory experiments at various environmental conditions showed that pH had only minor effects on long-term (3 months) phage infectivity within a pH range of 4.5 to 7.5, whereas phage infectivity was immediately lost at pH 3. In the absence of host cells, phage infectivity decreased by a factor of 10,000 over 55 days in untreated pond water, while the sterilization and removal of particles caused a 100-fold increase in phage survival relative to the control. In addition, F. psychrophilum-specific phages maintained their infectivity for ∼2 months in glycerol at -80°C, whereas infectivity decreased by a factor 10 when kept in a buffer at 20°C. Only a very small degradation in infectivity was seen when bacteriophages were added and dried on fish feed pellets. Together, these results indicate that application of bacteriophages represents a promising approach for the control of F. psychrophilum infections in trout and suggest fish feed as a potential delivery method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielmann, Regula; Habann, Matthias; Eugster, Marcel R.
Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wallmore » teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.« less
Basics of Antibody Phage Display Technology.
Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H
2018-06-09
Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Adi; Sorek, Rotem
Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. In this paper, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. Finally, the commonalities between defense mechanismsmore » suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.« less
Comparative Persistence of Subgroups of F-Specific RNA Phages in River Water
Yang, Yongheng
2013-01-01
F-specific (F+) RNA phages are widely used as indicators for the presence of fecal contamination and/or enteric viruses in water, and identifying subgroups of F+ RNA phages provides an approach for microbial source tracking. Different survival characteristics of the F+ RNA phage subgroups result in a misinterpretation of their original proportion in water, thus giving misleading information when they are used for microbial source tracking. This study investigated the comparative persistence of subgroups of F+ RNA phages in river water under different conditions. Results suggested that temperature and pH are the major factors affecting the persistence of F+ RNA phages in river water, and organic substances promote phage survival. The comparative persistence patterns of subgroups of F+ RNA phages varied and may bias extrapolation of their initial proportions in surface water. Thus, the characteristics of water should be taken into consideration and the results should be carefully interpreted when F+ RNA phages are used for microbial source tracking. PMID:23686274
2013-01-01
Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049
Ma, Yuling; Lu, Chengping; Fan, Hongjie
2008-04-01
A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
Capra, M L; Quiberoni, A; Reinheimer, J
2006-02-01
To investigate the influence of several environmental factors on the viability and cell-adsorption for two Lactobacillus casei/paracasei bacteriophages (PL-1 and J-1). Both phages showed a remarkably high specificity of species, sharing similar host spectra. Two phages and four sensitive strains were used to conform five phage/strain systems. Each showed a particular behaviour (burst size: ranging from 32 to 160 PFU/infective centre; burst time: 120-240 min and latent time: 5-90 min). For both phages, the viability was not significantly affected from pH 4 to 11 (room temperature) and from pH 5 to 10 (37 degrees C). Adsorption rates were not influenced by calcium ions, but decreased after the thermal inactivation of cells. Adsorption rates were high between 0 and 50 degrees C with maximum values at 30 degrees C and pH 6. System PL-1/Lact. paracasei A showed noticeable differences in comparison with the others, being times required to reach 90% of adsorption of 4 h and lower than 45 min, respectively. The data obtained in this work demonstrated that environmental parameters can influence the viability and cell adsorption rates of Lact. casei/paracasei phages. The extent of this influence was phage dependent. This work contributes to the enlargement of the currently scarce knowledge of phages of probiotic bacteria.
Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao
2010-01-01
To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.
Khan Mirzaei, Mohammadali; Nilsson, Anders S.
2015-01-01
Phage therapy, treating bacterial infections with bacteriophages, could be a future alternative to antibiotic treatment of bacterial infections. There are, however, several problems to be solved, mainly associated to the biology of phages, the interaction between phages and their bacterial hosts, but also to the vast variation of pathogenic bacteria which implies that large numbers of different phages are going to be needed. All of these phages must under present regulation of medical products undergo extensive clinical testing before they can be applied. It will consequently be of great economic importance that effective and versatile phages are selected and collected into phage libraries, i.e., the selection must be carried out in a way that it results in highly virulent phages with broad host ranges. We have isolated phages using the Escherichia coli reference (ECOR) collection and compared two methods, spot testing and efficiency of plating (EOP), which are frequently used to identify phages suitable for phage therapy. The analyses of the differences between the two methods show that spot tests often overestimate both the overall virulence and the host range and that the results are not correlated to the results of EOP assays. The conclusion is that single dilution spot tests cannot be used for identification and selection of phages to a phage library and should be replaced by EOP assays. The difference between the two methods can be caused by many factors. We have analysed if the differences and lack of correlation could be caused by lysis from without, bacteriocins in the phage lysate, or by the presence of prophages harbouring genes coding for phage resistance systems in the genomes of the bacteria in the ECOR collection. PMID:25761060
Bacteriophages and dairy fermentations
Marcó, Mariángeles Briggiler; Moineau, Sylvain; Quiberoni, Andrea
2012-01-01
This review highlights the main strategies available to control phage infection during large-scale milk fermentation by lactic acid bacteria. The topics that are emphasized include the factors influencing bacterial activities, the sources of phage contamination, the methods available to detect and quantify phages, as well as practical solutions to limit phage dispersion through an adapted factory design, the control of air flow, the use of adequate sanitizers, the restricted used of recycled products, and the selection and growth of bacterial cultures. PMID:23275866
2011-09-28
presented according to [51]. Kdo, 2- keto -3-deoxy-octulosonic acid; Ko, D-glycero-D-talo-oct-2-ulosonic acid; Hep, heptulose (ketoheptose); Glc, glucose...pestis. J Bacteriol 98: 1404–1406. 54. Jawetz E, Meyer KF (1943) Avirulent strains of Pasteurella pestis. J Infect Dis 73: 124– 143 . 55. Burrows TW
ORF phage display to identify cellular proteins with different functions.
Li, Wei
2012-09-01
Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.
Hambsch, B; Bösl, M; Eberhagen, I; Müller, U
2012-01-01
This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.
Characterizing Phage Genomes for Therapeutic Applications
Philipson, Casandra W.; Voegtly, Logan J.; Lueder, Matthew R.; Long, Kyle A.; Rice, Gregory K.; Frey, Kenneth G.; Biswas, Biswajit; Cer, Regina Z.; Hamilton, Theron; Bishop-Lilly, Kimberly A.
2018-01-01
Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates. PMID:29642590
Capture and detection of T7 bacteriophages on a nanostructured interface.
Han, Jin-Hee; Wang, Min S; Das, Jayanti; Sudheendra, L; Vonasek, Erica; Nitin, Nitin; Kennedy, Ian M
2014-04-09
A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible.
Capture and Detection of T7 Bacteriophages on a Nanostructured Interface
2015-01-01
A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible. PMID:24650205
Control of Pierce's Disease by Phage
Das, Mayukh; Bhowmick, Tushar Suvra; Ahern, Stephen J.; Young, Ry; Gonzalez, Carlos F.
2015-01-01
Pierce’s Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella. PMID:26107261
Goerke, Christiane; Köller, Johanna; Wolz, Christiane
2006-01-01
In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683
Marine phages as excellent tracers for reactive colloidal transport in porous media
NASA Astrophysics Data System (ADS)
Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.
2016-04-01
Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and availability.
High stability of Stx2 phage in food and under food-processing conditions.
Rode, Tone Mari; Axelsson, Lars; Granum, Per Einar; Heir, Even; Holck, Askild; L'abée-Lund, Trine M
2011-08-01
Bacteriophages (phages) carrying Shiga toxin genes constitute a major virulence attribute in enterohemorrhagic Escherichia coli (EHEC). Several EHEC outbreaks have been linked to food. The survival of such strains in different foods has received much attention, while the fate of the mobile Shiga toxin-converting phages (Stx phages) has been less studied. We have investigated the stability of an Stx phage in several food products and examined how storage, food processing, and disinfection influence the infectivity of phage particles. The study involved a recombinant Stx phage (Δstx::cat) of an E. coli O103:H25 strain from a Norwegian outbreak in 2006. Temperature, matrix, and time were factors of major importance for the stability of phage particles. Phages stored at cooling temperatures (4°C) showed a dramatic reduction in stability compared to those stored at room temperature. The importance of the matrix was evident at higher temperatures (60°C). Phages in ground beef were below the detection level when heated to 60°C for more than 10 min, while phages in broth exposed to the same heating conditions showed a 5-log-higher stability. The phages tolerated desiccation poorly but were infective for a substantial period of time in solutions. Under moist conditions, they also had a high ability to tolerate exposure to several disinfectants. In a dry-fermented sausage model, phages were shown to infect E. coli in situ. The results show that Stx phage particles can maintain their infectivity in foods and under food-processing conditions.
High Stability of Stx2 Phage in Food and under Food-Processing Conditions ▿
Rode, Tone Mari; Axelsson, Lars; Granum, Per Einar; Heir, Even; Holck, Askild; L'Abée-Lund, Trine M.
2011-01-01
Bacteriophages (phages) carrying Shiga toxin genes constitute a major virulence attribute in enterohemorrhagic Escherichia coli (EHEC). Several EHEC outbreaks have been linked to food. The survival of such strains in different foods has received much attention, while the fate of the mobile Shiga toxin-converting phages (Stx phages) has been less studied. We have investigated the stability of an Stx phage in several food products and examined how storage, food processing, and disinfection influence the infectivity of phage particles. The study involved a recombinant Stx phage (Δstx::cat) of an E. coli O103:H25 strain from a Norwegian outbreak in 2006. Temperature, matrix, and time were factors of major importance for the stability of phage particles. Phages stored at cooling temperatures (4°C) showed a dramatic reduction in stability compared to those stored at room temperature. The importance of the matrix was evident at higher temperatures (60°C). Phages in ground beef were below the detection level when heated to 60°C for more than 10 min, while phages in broth exposed to the same heating conditions showed a 5-log-higher stability. The phages tolerated desiccation poorly but were infective for a substantial period of time in solutions. Under moist conditions, they also had a high ability to tolerate exposure to several disinfectants. In a dry-fermented sausage model, phages were shown to infect E. coli in situ. The results show that Stx phage particles can maintain their infectivity in foods and under food-processing conditions. PMID:21685156
Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment
Imamovic, Lejla; Muniesa, Maite
2012-01-01
Background The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains. PMID:22393404
Nguyen, Huong Minh
2014-01-01
ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287
Modification of Escherichia coli–bacteriophage interactions by surfactants and antibiotics in vitro
Scanlan, Pauline D.; Bischofberger, Anna M.
2017-01-01
Abstract Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in nature alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that natural and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common surfactant in cleaning and hygiene products) and four antibiotics (present at variable concentrations in natural and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as surfactants and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in nature. PMID:27737900
The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin
Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying
2015-01-01
The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871
The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.
Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying
2015-09-01
The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium-phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey-predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy.
Kabanova, Anastasia; Shneider, Mikhail; Bugaeva, Eugenia; Ha, Vo Thi Ngoc; Miroshnikov, Kirill; Korzhenkov, Aleksei; Kulikov, Eugene; Toschakov, Stepan; Ignatov, Alexander; Miroshnikov, Konstantin
2018-06-01
Bacteriophage vB_PpaP_PP74 (PP74) is a novel virulent phage that infects members of the species Pectobacterium parmentieri, a newly established species of soft-rot-causing bacteria in the family Pectobacteriaceae, derived from potato-specific Pectobacterium wasabiae. vB_PpaP_PP74 was identified as a member of the family Podoviridae by transmission electron microscopy. The phage has a 39,790-bp dsDNA genome containing 50 open reading frames (ORFs). Because of the absence of genes encoding toxins or lysogeny factors, PP74 may be considered a candidate phage for pathogen biocontrol applications. The genome layout is similar to genomes of T7-like phages within the subfamily Autographivirinae, and therefore, functions can be attributed to most of ORFs. However, the closest nucleotide sequence homologs of phage PP74 are unclassified Escherichia phages. Based on phylogenetic analysis, vB_PpaP_PP74 is a sensu lato T7-like phage, but it forms a distant subgenus group together with homologous enterobacterial phages.
An Insight into Phage Diversity at Environmental Habitats using Comparative Metagenomics Approach.
Parmar, Krupa; Dafale, Nishant; Pal, Rajesh; Tikariha, Hitesh; Purohit, Hemant
2018-02-01
Bacteriophages play significant role in driving microbial diversity; however, little is known about the diversity of phages in different ecosystems. A dynamic predator-prey mechanism called "kill the winner" suggests the elimination of most active bacterial populations through phages. Thus, interaction between phage and host has an effect on the composition of microbial communities in ecosystems. In this study, secondary phage metagenome data from aquatic habitats: wastewater treatment plant (WWTP), fresh, marine, and hot water spring habitat were analyzed using MG-RAST and STAMP tools to explore the diversity of the viruses. Differential relative abundance of phage families-Siphoviridae (34%) and Myoviridae (26%) in WWTP, Myoviridae (30%) and Podoviridae (23%) in fresh water, and Myoviridae (41%) and Podoviridae (8%) in marine-was found to be a discriminating factor among four habitats while Rudiviridae (9%), Globuloviridae (8%), and Lipothrixviridae (1%) were exclusively observed in hot water spring. Subsequently, at genera level, Bpp-1-like virus, Chlorovirus, and T4-like virus were found abundant in WWTP, fresh, and marine habitat, respectively. PCA analysis revealed completely disparate composition of phage in hot water spring from other three ecosystems. Similar analysis of relative abundance of functional features corroborated observations from taxa analysis. Functional features corresponding to phage packaging machinery, replication, integration and excision, and gene transfer discriminated among four habitats. The comparative metagenomics approach exhibited genetically distinct phage communities among four habitats. Results revealed that selective distribution of phage communities would help in understanding the role of phages in food chains, nutrient cycling, and microbial ecology. Study of specific phages would also help in controlling environmental pathogens including MDR bacterial populations using phage therapy approach by selective mining and isolation of phages against specific pathogens persisting in a given environment.
Specialized Transducing Phages Derived from Salmonella Phage P22
Hoppe, Ingrid; Roth, John
1974-01-01
Salmonella phage P22 has been used in the construction of three sorts of specialized transducing phage: P22 proAB, P22 proABlac and P22 argF. The bacterial genes carried are derived from E. coli K12. Since E. coli and Salmonella chromosomes recombine very poorly, E. coli genes cannot be transduced into Salmonella recipients by P22's generalized transduction mechanism. Therefore, stable inheritance of E. coli material provides a means of detecting specialized transduction. Formation of these phages was possible because the P22 prophage recognizes an attachment site in the E. coli F' prolac episome. Salmonella strains carrying the F' prolac episome can be lysogenized by P22 so as to leave the prophage inserted into the E. coli material of the F' factor. Improper prophage excision can then lead to formation of P22 specialized phages carrying E. coli genetic material. PMID:4599252
The proportional lack of archaeal pathogens: Do viruses/phages hold the key?
Gill, Erin E; Brinkman, Fiona S L
2011-01-01
Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control. PMID:21328413
Attaching quantum dots to HER2 specific phage antibodies
NASA Astrophysics Data System (ADS)
Chu, Viet Ha; Nghiem, Thi Ha Lien; Huyen La, Thi; Dieu Thuy Ung, Thi; Huan Le, Quang; Thuan Tong, Kim; Liem Nguyen, Quang; Nhung Tran, Hong
2010-06-01
This work presents the results of the attachment of Qdot 655 ITKTM amino (PEG) quantum dots (QDs) (Invitrogen) and CdTe QDs (provided by Institute of Materials Science, VAST) to HER2 (Human Epidermal growth factor Receptor 2) specific phage antibodies (Abs) (provided by Institute of Biotechnology, VAST) in solution. The QDs were attached to the phage display specific HER2 Abs to form a complex QD-Ab. The QDs and complex QD-Ab were characterized by UV-VIS spectroscopy, transmission electron microscopy (TEM) and fluorescence microscopy. The fluorescence images show the QDs conjugated to the phage. Due to the QDs attaching to the surface, the phage dimensions were amplified, so its shape could be observed by optical microscopy. The complex QD-Ab was stable and lasted for a month. The results illustrate the value of the HER2 phage-QD complex as a cancer detection platform.
Inactivation of MS2 bacteriophage by streamer corona discharge in water.
Lee, Changha; Kim, Jaeeun; Yoon, Jeyong
2011-02-01
Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dinsmore, P K; Klaenhammer, T R
1997-05-01
A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.
Review: elimination of bacteriophages in whey and whey products
Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg
2013-01-01
As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations. PMID:23882262
Characterization of Five Podoviridae Phages Infecting Citrobacter freundii
Hamdi, Sana; Rousseau, Geneviève M.; Labrie, Simon J.; Kourda, Rim S.; Tremblay, Denise M.; Moineau, Sylvain; Slama, Karim B.
2016-01-01
Citrobacter freundii causes opportunistic infections in humans and animals, which are becoming difficult to treat due to increased antibiotic resistance. The aim of this study was to explore phages as potential antimicrobial agents against this opportunistic pathogen. We isolated and characterized five new virulent phages, SH1, SH2, SH3, SH4, and SH5 from sewage samples in Tunisia. Morphological and genomic analyses revealed that the five C. freundii phages belong to the Caudovirales order, Podoviridae family, and Autographivirinae subfamily. Their linear double-stranded DNA genomes range from 39,158 to 39,832 bp and are terminally redundant with direct repeats between 183 and 242 bp. The five genomes share the same organization as coliphage T7. Based on genomic comparisons and on the phylogeny of the DNA polymerases, we assigned the five phages to the T7virus genus but separated them into two different groups. Phages SH1 and SH2 are very similar to previously characterized phages phiYeO3-12 and phiSG-JL2, infecting, respectively, Yersinia enterocolitica and Salmonella enterica, as well as sharing more than 80% identity with most genes of coliphage T7. Phages SH3, SH4, and SH5 are very similar to phages K1F and Dev2, infecting, respectively, Escherichia coli and Cronobacter turicensis. Several structural proteins of phages SH1, SH3, and SH4 were detected by mass spectrometry. The five phages were also stable from pH 5 to 10. No genes coding for known virulence factors or integrases were found, suggesting that the five isolated phages could be good candidates for therapeutic applications to prevent or treat C. freundii infections. In addition, this study increases our knowledge about the evolutionary relationships within the T7virus genus. PMID:27446058
Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity
Willner, Dana; Furlan, Mike; Schmieder, Robert; Grasis, Juris A.; Pride, David T.; Relman, David A.; Angly, Florent E.; McDole, Tracey; Mariella, Ray P.; Rohwer, Forest; Haynes, Matthew
2011-01-01
The human oropharynx is a reservoir for many potential pathogens, including streptococcal species that cause endocarditis. Although oropharyngeal microbes have been well described, viral communities are essentially uncharacterized. We conducted a metagenomic study to determine the composition of oropharyngeal DNA viral communities (both phage and eukaryotic viruses) in healthy individuals and to evaluate oropharyngeal swabs as a rapid method for viral detection. Viral DNA was extracted from 19 pooled oropharyngeal swabs and sequenced. Viral communities consisted almost exclusively of phage, and complete genomes of several phage were recovered, including Escherichia coli phage T3, Propionibacterium acnes phage PA6, and Streptococcus mitis phage SM1. Phage relative abundances changed dramatically depending on whether samples were chloroform treated or filtered to remove microbial contamination. pblA and pblB genes of phage SM1 were detected in the metagenomes. pblA and pblB mediate the attachment of S. mitis to platelets and play a significant role in S. mitis virulence in the endocardium, but have never previously been detected in the oral cavity. These genes were also identified in salivary metagenomes from three individuals at three time points and in individual saliva samples by PCR. Additionally, we demonstrate that phage SM1 can be induced by commonly ingested substances. Our results indicate that the oral cavity is a reservoir for pblA and pblB genes and for phage SM1 itself. Further studies will determine the association between pblA and pblB genes in the oral cavity and the risk of endocarditis. PMID:20547834
EPA worst case water microcosms for testing phage biocontrol of Salmonella.
McLaughlin, Michael R; Brooks, John P
2008-01-01
A microplate method was developed as a tool to test phages for their ability to control Salmonella in aqueous environments. The method used EPA (U.S. Environmental Protection Agency) worst case water (WCW) in 96-well plates. The WCW provided a consistent and relatively simple defined turbid aqueous matrix, high in total organic carbon (TOC) and total dissolved salts (TDS), to simulate swine lagoon effluent, without the inconvenience of malodor and confounding effects from other biological factors. The WCW was originally defined to simulate high turbidity and organic matter in water for testing point-of-use filtration devices. Use of WCW to simulate lagoon effluent for phage testing is a new and innovative application of this matrix. Control of physical and chemical parameters (TOC, TDS, turbidity, temperature, and pH) allowed precise evaluation of microbiological parameters (Salmonella and phages). In a typical application, wells containing WCW were loaded with Salmonella enterica susp. enterica serovar Typhimurium (ATCC14028) and treated with phages alone and in cocktail combinations. Mean Salmonella inactivation rates (k, where the lower the value, the greater the inactivation) of phage treatments ranged from -0.32 to -1.60 versus -0.004 for Salmonella controls. Mean log(10) reductions (the lower the value, the greater the reduction) of Salmonella phage treatments were -1.60 for phage PR04-1, -2.14 for phage PR37-96, and -2.14 for both phages in a sequential cocktail, versus -0.08 for Salmonella controls. The WCW microcosm system was an effective tool for evaluating the biocontrol potential of Salmonella phages.
Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W
2005-12-06
Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.
Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.
2015-01-01
ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors. PMID:26311868
Phages in the global fruit and vegetable industry.
Żaczek, M; Weber-Dąbrowska, B; Górski, A
2015-03-01
From recent articles, we have learned that phages can constitute a promising alternative in the food industry to eliminate bacterial pathogens from seedlings in greenhouse and field environments, as well as from fresh-cut food products. The fruit and vegetable industry requires quite a different approach than the meat or dairy industry. Several factors can inhibit efficacy of phage treatment such as plant watering or washing ready-to-eat products (water may dilute therapeutic doses), UV irradiation or extensive spreading of phytopathogens by wind, insects or even humans. Spontaneously occurring anomalous weather conditions in different parts of the world also may have an enormous impact on phage persistence in cultivations and on yields. Despite that, some phage preparations are commercially available and, without doubt, are much safer than chemical treatments. Along with increasing worldwide fruit and vegetable consumption, plant diseases and human foodborne illnesses are becoming a serious economic problem, resulting in a focus on optimization of phage treatment. © 2014 The Society for Applied Microbiology.
Biological responses to M13 bacteriophage modified titanium surfaces in vitro.
Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo
2017-08-01
Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium surface, involving inflammatory response, osteogenic activity and biomineralization ability. It provides more understanding of the phage-based materials and contributes to their future application in tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6.
Ceyssens, Pieter-Jan; Mesyanzhinov, Vadim; Sykilinda, Nina; Briers, Yves; Roucourt, Bart; Lavigne, Rob; Robben, Johan; Domashin, Artem; Miroshnikov, Konstantin; Volckaert, Guido; Hertveldt, Kirsten
2008-02-01
Pseudomonas aeruginosa phage YuA (Siphoviridae) was isolated from a pond near Moscow, Russia. It has an elongated head, encapsulating a circularly permuted genome of 58,663 bp, and a flexible, noncontractile tail, which is terminally and subterminally decorated with short fibers. The YuA genome is neither Mu- nor lambda-like and encodes 78 gene products that cluster in three major regions involved in (i) DNA metabolism and replication, (ii) host interaction, and (iii) phage particle formation and host lysis. At the protein level, YuA displays significant homology with phages M6, phiJL001, 73, B3, DMS3, and D3112. Eighteen YuA proteins were identified as part of the phage particle by mass spectrometry analysis. Five different bacterial promoters were experimentally identified using a promoter trap assay, three of which have a sigma54-specific binding site and regulate transcription in the genome region involved in phage particle formation and host lysis. The dependency of these promoters on the host sigma54 factor was confirmed by analysis of an rpoN mutant strain of P. aeruginosa PAO1. At the DNA level, YuA is 91% identical to the recently (July 2007) annotated phage M6 of the Lindberg typing set. Despite this level of DNA homology throughout the genome, both phages combined have 15 unique genes that do not occur in the other phage. The genome organization of both phages differs substantially from those of the other known Pseudomonas-infecting Siphoviridae, delineating them as a distinct genus within this family.
Nguyen, Huong Minh; Kang, Changwon
2014-02-01
Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have discovered that phage T7, besides employing its known lysis proteins, additionally uses its transcription terminator Tϕ to guarantee the optimal lysis of the E. coli host. Tϕ, positioned in the middle of the T7 genome, must be inactivated at least partially to allow for transcription-driven translocation of T7 DNA into hosts and expression of Tϕ downstream but promoter-lacking genes. What role is played by Tϕ before inactivation? Without Tϕ, not only was lysis time delayed but also the number of progenies was reduced in this study. Furthermore, T7 can overcome Tϕ deletion by further deleting some genes, highlighting that a phage has multiple strategies for optimizing lysis.
Koskella, Britt; Parr, Nicole
2015-08-19
Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host-parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.
Koskella, Britt; Parr, Nicole
2015-01-01
Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics. PMID:26150663
Lin, Abraham; Jimenez, Jose; Derr, Julien; Vera, Pedro; Manapat, Michael L; Esvelt, Kevin M; Villanueva, Laura; Liu, David R; Chen, Irene A
2011-01-01
Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.
Lin, Abraham; Jimenez, Jose; Derr, Julien; Vera, Pedro; Manapat, Michael L.; Esvelt, Kevin M.; Villanueva, Laura; Liu, David R.; Chen, Irene A.
2011-01-01
Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes. PMID:21637841
Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1.
Solís-Sánchez, Alejandro; Hernández-Chiñas, Ulises; Navarro-Ocaña, Armando; De la Mora, Javier; Xicohtencatl-Cortes, Juan; Eslava-Campos, Carlos
2016-03-22
Epidemics and pandemics of cholera, a diarrheal disease, are attributed to Vibrio cholera serogroups O1 and O139. In recent years, specific lytic phages of V. cholera have been proposed to be important factors in the cyclic occurrence of cholera in endemic areas. However, the role and potential participation of lytic phages during long interepidemic periods of cholera in non-endemic regions have not yet been described. The purpose of this study was to isolate and characterize specific lytic phages of V. cholera O1 strains. Sixteen phages were isolated from wastewater samples collected at the Endhó Dam in Hidalgo State, Mexico, concentrated with PEG/NaCl, and purified by density gradient. The lytic activity of the purified phages was tested using different V. cholerae O1 and O139 strains. Phage morphology was visualized by transmission electron microscopy (TEM), and phage genome sequencing was performed using the Genome Analyzer IIx System. Genome assembly and bioinformatics analysis were performed using a set of high-throughput programs. Phage structural proteins were analyzed by mass spectrometry. Sixteen phages with lytic and lysogenic activity were isolated; only phage ØVC8 showed specific lytic activity against V. cholerae O1 strains. TEM images of ØVC8 revealed a phage with a short tail and an isometric head. The ØVC8 genome comprises linear double-stranded DNA of 39,422 bp with 50.8 % G + C. Of the 48 annotated ORFs, 16 exhibit homology with sequences of known function and several conserved domains. Bioinformatics analysis showed multiple conserved domains, including an Ig domain, suggesting that ØVC8 might adhere to different mucus substrates such as the human intestinal epithelium. The results suggest that ØVC8 genome utilize the "single-stranded cohesive ends" packaging strategy of the lambda-like group. The two structural proteins sequenced and analyzed are proteins of known function. ØVC8 is a lytic phage with specific activity against V. cholerae O1 strains and is grouped as a member of the VP2-like phage subfamily. The encoding of an Ig domain by ØVC8 makes this phage a good candidate for use in phage therapy and an alternative tool for monitoring V. cholerae populations.
Summer, Elizabeth J.; Gill, Jason J.; Upton, Chris; Gonzalez, Carlos F.; Young, Ry
2007-01-01
Summary Most bacteria of the genus Burkholderia are soil- and rhizosphere- associated, noted for their metabolic plasticity in the utilization of a wide range of organic compounds as carbon sources. Many Burkholderia species are also opportunistic human and plant pathogens and the distinction between environmental, plant, and human pathogens is not always clear. Burkholderia phages are not uncommon and multiple cryptic prophages are identifiable in the sequenced Burkholderia genomes. Phages have played a crucial role in the transmission of virulence factors among many important pathogens, however, the data does not yet support a significant correlation between phages and pathogenicity in the Burkholderia. This may be due to the role of Burkholderia as a “versaphile” such that selection is occurring in several niches, including roles as a pathogen and in the context of environmental survival. PMID:17719265
Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria.
Ghai, Rohit; Mehrshad, Maliheh; Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco
2017-01-01
Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.
Bacteriophage ecology in environmental biotechnology processes.
Shapiro, Orr H; Kushmaro, Ariel
2011-06-01
Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Genomes of the T4-related bacteriophages as windows on microbial genome evolution.
Petrov, Vasiliy M; Ratnayaka, Swarnamala; Nolan, James M; Miller, Eric S; Karam, Jim D
2010-10-28
The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity and the diversity generally observed within all groups of interrelated dsDNA microbial genomes in nature.
Genomes of the T4-related bacteriophages as windows on microbial genome evolution
2010-01-01
The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity and the diversity generally observed within all groups of interrelated dsDNA microbial genomes in nature. PMID:21029436
Bastías, Roberto; Higuera, Gastón; Sierralta, Walter; Espejo, Romilio T
2010-04-01
A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non-Pseudomonas phage related to the PhiKMV-like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage-sensitive and -resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.
Searles, L L; Wessler, S R; Calvo, J M
1983-01-25
Three mutations, each causing constitutive expression of the Salmonella typhimurium leu operon, were cloned into phage vector lambda gt4 on EcoRI DNA fragments carrying all of that operon except for part of the promoter-distal last gene. Sequence analysis of DNA from these phage demonstrated that each contains a single base change in the leu attenuator. Transcription of mutant DNA in vitro resulted in transcription beyond the usual site of termination. The level of beta-IPM dehydrogenase, the leuB enzyme, was elevated 40-fold in a strain carrying one of these mutations, and starvation of this strain for leucine had little effect on the amount of activity expressed. Using a strain with a wild-type promoter-leader region of the leu operon, the rates of synthesis and degradation of leu leader RNA and readthrough RNA (leu mRNA) were measured by DNA-RNA hybridizations with specific DNA probes. The rate of synthesis of the leu leader was about the same in cells grown with excess or with limiting leucine. On the other hand, the rate of synthesis of leu mRNA was 12-fold higher for cells grown in limiting leucine as opposed to excess leucine. The rate of degradation of these RNA species was the same under both conditions of growth. Thus, the variation in expression of the leu operon observed for cells grown in minimal medium is, for the most part, not caused by control over the frequency of initiation or by the differential stability of these RNA species. Rather, the variation is a direct result of the frequency of transcription termination at an attenuator site. These results taken together suggest that transcription attenuation is the major mechanism by which leucine regulates expression of the leu operon of S. typhimurium for cells growing in a minimal medium.
Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion
Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich
2004-01-01
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570
Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M
2001-05-15
Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.
Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie
2016-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235
Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective
Bryan, Daniel; El-Shibiny, Ayman; Hobbs, Zack; Porter, Jillian; Kutter, Elizabeth M.
2016-01-01
Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 h after that infection. An unexpected new mode of response has been identified. “Hibernation” mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially present cell) are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a “scavenger” response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 h after infection. The scavenger response seems able to produce no more than an average of one phage per originally available cell, and few if any further progeny are produced by cells in this mode even if fresh nutrients are made available later. PMID:27660625
Yamamoto, Tatsuya; Obana, Nozomu; Yee, Lii Mien; Asai, Kei; Nomura, Nobuhiko
2014-01-01
Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σOrf199-200), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA+ strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor. PMID:24272782
Yu, Min; Tan, De-Yong; Qian, Wei; Lai, Jian-Hua; Sun, Gui-Lin
2004-05-01
U251 cell is a sensitive cell line to serum, which stops at G0 phase of cell cycle in no-serum medium, and recovers growth when the serum is added into no-serum medium. The cell can express corresponding proteins in different phase of cell cycle. Therefore it is very signification for the study of cell cycle regulation mechanism that explores these proteins. In this paper, the mouse antibody phage display library was added into the bottle in which the serum starvation U251 cells had been cultured, and the special antibody phages were absorbed. Then the absorbed antibody phages were amplified by adding E. coli TG1 and helper phage M13K07. Amplified antibody phages were added into bottle in which the serum cultured cell after serum starvation (follow named as serum recovered cells) were incubated, so that the cell absorbed the no-special antibody phages for the serum starvation cell and the special antibody phages were in supernatant. The remaining no-special antibody phages in the supernatant were discarded by repeating above program 3-4 times. The pure special antibody phages were gotten, and amplified by adding the host cell E. coli TG1 and helper phage M13K07. Then the host bacterium infected special antibody phage was spread on the plate medium with ampicillin, and the monoclonal antibody phages were gotten. Using same as above program, the monoclonal antibody phages absorbed specially for serum recovered U251 cells were obtained when the serum recovered cells instead of serum starvation cells and serum starvation cells instead of serum recovered cells. In this study, ninety-six positive monoclonal antibody phages that absorbed specially the serum starvation cells and eighty-two positive monoclonal antibody phages that absorbed specially the serum recovered cells were obtained. By using cell immunochemistry assay, two special signification antibodies were obtained. one (No.11) was the strong response in serum starvation cells, the other (No.2) was the strong response in serum recovered cells. The antibody No.2 had the distinctive response to the serum recovered cells in different incubation time (15min, 30min, 1h, 2h, 4h, 8h, 12h and 48h) after serum starvation. The results showed that No.2 antibody would be useful to research the factors of cell cycle regulation and apply to tumor diagnosis.
Genomic Characterization of Sixteen Yersinia enterocolitica-Infecting Podoviruses of Pig Origin
Salem, Mabruka
2018-01-01
Yersinia enterocolitica causes enteric infections in humans and animals. Human infections are often caused by contaminated pork meat. Y. enterocolitica colonizes pig tonsils and pigs secrete both the human pathogen and its specific bacteriophages into the stools. In this work, sixteen Y. enterocolitica—infecting lytic bacteriophages isolated from pig stools originating from several pig farms were characterized. All phages belong to the Podoviridae family and their genomes range between 38,391–40,451 bp in size. The overall genome organization of all the phages resembled that of T7-like phages, having 3–6 host RNA polymerase (RNAP)-specific promoters at the beginning of the genomes and 11–13 phage RNAP-specific promoters as well as 3–5 rho-independent terminators, scattered throughout the genomes. Using a ligation-based approach, the physical termini of the genomes containing direct terminal repeats of 190–224 bp were established. No genes associated with lysogeny nor any toxin, virulence factor or antibiotic resistance genes were present in the genomes. Even though the phages had been isolated from different pig farms the nucleotide sequences of their genomes were 90–97% identical suggesting that the phages were undergoing microevolution within and between the farms. Lipopolysaccharide was found to be the surface receptor of all but one of the phages. The phages are classified as new species within the T7virus genus of Autographivirinae subfamily. PMID:29614052
Kyrillos, Alexandra; Arora, Gaurav; Murray, Bradley; Rosenwald, Anne G
2016-06-01
The bacterium Helicobacter pylori is associated with ulcers and the development of gastric cancer. Several genes, including cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), are associated with increased gastric cancer risk. Some strains of H. pylori also contain sequences related to bacteriophage phiHP33; however, the significance of these phage-related sequences remains unknown. We assessed the extent to which phiHP33-related sequences are present in 335 H. pylori strains using homology searches then mapped shared genes between phiHP33 and H. pylori strains onto an existing phylogeny. One hundred and twenty-one H. pylori strains contain phage orthologous sequences, and the presence of the phage-related sequences correlates with the presence of CagA and VacA. Mapping of the phage orthologs onto a phylogeny of H. pylori is consistent with the hypothesis that these genes were acquired by horizontal gene transfer. phiHP33 phage orthologous sequences might be of significance in understanding virulence of different H. pylori strains. © 2015 John Wiley & Sons Ltd.
de Mik, G.; de Groot, I.
1977-01-01
The mechanisms of inactivation of aerosolized bacteriophage phiX174 in atmospheres containing ozone, cyclohexene, or ozonized cyclohexene were studied by using 32P-labelled phage. The inactivation of the aerosolized phage in clear air or in air containing cyclohexene is due to damage of the protein coat since the deoxyribonucleic acid (DNA) extracted from the inactivated phage retains its biological activity. Inactivation of the phage in air containing ozonized cyclohexene is due both to protein and DNA damage. Sucrose gradient analysis shows that aerosolized inactivated phiX174 releases unbroken DNA. In contrast, the DNA from phage phiX174 inactivated by ozonized cyclohexene is broken. The inactivation of aerosolized phage phiX174-DNA was studied in the same atmospheres using 32P-labelled DNA. phiX174-DNA aerosolized in clear air or air containing cyclohexene at 75% r.h. is inactivated by a factor of 2 in 30 min. The inactivated DNA is broken. Ozone as well as ozonized cyclohexene inactivates KNA very fast causing breaks in the molecule. This is in contrast with the intact bacteriophage in which ozone does not produce breaks in the DNA. PMID:265342
Cancer immunotherapy by a recombinant phage vaccine displaying EGFR mimotope: an in vivo study.
Asadi-Ghalehni, Majid; Ghaemmaghami, Mohamad; Klimka, Alexander; Javanmardi, Masoud; Navari, Mohsen; Rasaee, Mohammad Javad
2015-06-01
To date, several small molecule inhibitors and monoclonal-antibodies (like ICR-62) have been used to treat tumors over-expressing epidermal growth factor receptor (EGFR). However, the limitations associated with these conventional applications accentuate the necessity of alternative approaches. Mimotopes as compelling molecular tools could rationally be employed to circumvent these drawbacks. In the present study, an M13 phage displaying ICR-62 binding peptide mimotope is exploited as a vaccine candidate. It exhibited high affinity towards ICR62 and polyclonal anti-P-BSA antibodies. Following the mice immunization, phage-based mimotope vaccine induced humoral immunity. Elicited anti-EGFR mimotope antibodies were detected using ELISA method. Moreover, the phage vaccine was tested on the Lewis lung carcinoma mice model to investigate the prophylactic and therapeutic effects. The tumor volume was measured and recorded in different animal groups to evaluate the anti-tumor effects of the vaccine. Our data indicate that the reported phage-based mimotope could potentially elicit specific antibodies resulting in low titers of EGFR-specific antibodies and reduced tumor growth. However, in vivo experiments of prophylactic or therapeutic vaccination showed no specific advantage. Furthermore, phage-mimotope vaccine might be a promising approach in the field of cancer immunotherapy.
Kang, Hyun-Wol; Kim, Jae-Won; Jung, Tae-Sung
2013-01-01
Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination. PMID:23335772
Killing cancer cells by targeted drug-carrying phage nanomedicines
Bar, Hagit; Yacoby, Iftach; Benhar, Itai
2008-01-01
Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer
Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R
2015-01-01
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935
Iron-Virus Interactions in the Oceans
NASA Astrophysics Data System (ADS)
Bonnain, C. C.; Buck, K. N.; Breitbart, M.
2016-02-01
Iron is an essential nutrient in the oceans, with the sub-nanomolar concentrations found in open ocean surface waters often insufficient for supporting biological activity. More than 99.9% of dissolved iron is bound to organic ligands, yet identifying the sources of these ligands in seawater remains a major challenge. A significant portion of iron-binding ligands fall into the colloidal fraction, which is operationally defined as the fraction collected between a 0.02 µm and a 0.45 µm filter. Among the organic ligands in this fraction persists an extremely abundant biological candidate: viruses. On average there are 107 viruses per milliliter of seawater, most of which are phages (viruses that infect bacteria). The impact of viruses on ocean biogeochemistry is often evoked purely through the act of lysing hosts and very few studies have considered the geochemical potential of the viral particles themselves. Recent work in non-marine model systems has revealed the presence of iron atoms within the structure of diverse phages infecting Escherichia coli. Combined with the small size and sheer abundance of phages in the oceans, the inclusion of iron in phage structures would translate into a major factor for cycling of this important trace metal. In addition, iron is so critical for growth that bacteria have evolved multiple uptake systems for assimilating iron, such as siderophores. Certain outer membrane proteins serve a dual function in siderophore uptake and as a phage receptor, suggesting that some of the strategies utilized for iron acquisition make bacteria vulnerable to phage infection. Given the constant arms race between bacteria and phages to develop resistance and counter-resistance, respectively, it is not surprising that phage would have evolved to utilize critical regions of surface-exposed proteins which are indispensable for bacterial growth as receptors. The research presented here explores the potential of marine phages to serve as iron-binding ligands and discusses the implications for both trace metal biogeochemistry and marine phage-host interactions.
Radford, Devon R; Ahmadi, Hanie; Leon-Velarde, Carlos G; Balamurugan, Sampathkumar
2016-10-01
The efficient production of a high concentration of bacteriophage in large volumes has been a limiting factor in the exploration of the true potential of these organisms for biotechnology, agriculture and medicine. Traditional methods focus on generating small volumes of highly concentrated samples as the end product of extensive mechanical and osmotic processing. To function at an industrial scale mandates extensive investment in infrastructure and input materials not feasible for many smaller facilities. To address this, we developed a novel, scalable, generic method for producing significantly higher titer psychrophilic phage (P < 2.0 × 10(-6)), 2- to 4-fold faster than traditional methods. We generate renewable high yields from single source cultures by propagating phage under refrigeration conditions in which Listeria, Yersinia and their phages grow in equilibrium. Diverse Yersinia and Listeria phages tested yielded averages of 3.49 × 10(8) to 3.36 × 10(12) PFU/ml/day compared to averages of 1.28 × 10(5) to 1.30 × 10(10) PFU/ml/day by traditional methods. Host growth and death kinetics made this method ineffective for extended propagation of mesophilic phages. Crown Copyright © 2016. Published by Elsevier Masson SAS. All rights reserved.
Brüssow, Harald
2007-08-01
Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.
Younger, Ellen; Fernando, Booshini D; Khaleel, Thanafez; Stark, W Marshall; Smith, Margaret C M
2018-01-01
Abstract To establish a prophage state, the genomic DNA of temperate bacteriophages normally becomes integrated into the genome of their host bacterium by integrase-mediated, site-specific DNA recombination. Serine integrases catalyse a single crossover between an attachment site in the host (attB) and a phage attachment site (attP) on the circularized phage genome to generate the integrated prophage DNA flanked by recombinant attachment sites, attL and attR. Exiting the prophage state and entry into the lytic growth cycle requires an additional phage-encoded protein, the recombination directionality factor or RDF, to mediate recombination between attL and attR and excision of the phage genome. The RDF is known to bind integrase and switch its activity from integration (attP x attB) to excision (attL x attR) but its precise mechanism is unclear. Here, we identify amino acid residues in the RDF, gp3, encoded by the Streptomyces phage ϕC31 and within the ϕC31 integrase itself that affect the gp3:Int interaction. We show that residue substitutions in integrase that reduce gp3 binding adversely affect both excision and integration reactions. The mutant integrase phenotypes are consistent with a model in which the RDF binds to a hinge region at the base of the coiled-coil motif in ϕC31 integrase. PMID:29228292
Ito, Yuji
2017-01-01
As an alternative to hybridoma technology, the antibody phage library system can also be used for antibody selection. This method enables the isolation of antigen-specific binders through an in vitro selection process known as biopanning. While it has several advantages, such as an avoidance of animal immunization, the phage cloning and screening steps of biopanning are time-consuming and problematic. Here, we introduce a novel biopanning method combined with high-throughput sequencing (HTS) using a next-generation sequencer (NGS) to save time and effort in antibody selection, and to increase the diversity of acquired antibody sequences. Biopannings against a target antigen were performed using a human single chain Fv (scFv) antibody phage library. VH genes in pooled phages at each round of biopanning were analyzed by HTS on a NGS. The obtained data were trimmed, merged, and translated into amino acid sequences. The frequencies (%) of the respective VH sequences at each biopanning step were calculated, and the amplification factor (change of frequency through biopanning) was obtained to estimate the potential for antigen binding. A phylogenetic tree was drawn using the top 50 VH sequences with high amplification factors. Representative VH sequences forming the cluster were then picked up and used to reconstruct scFv genes harboring these VHs. Their derived scFv-Fc fusion proteins showed clear antigen binding activity. These results indicate that a combination of biopanning and HTS enables the rapid and comprehensive identification of specific binders from antibody phage libraries.
Hoc protein regulates the biological effects of T4 phage in mammals.
Dabrowska, Krystyna; Zembala, Maria; Boratynski, Janusz; Switala-Jelen, Kinga; Wietrzyk, Joanna; Opolski, Adam; Szczaurska, Katarzyna; Kujawa, Marek; Godlewska, Joanna; Gorski, Andrzej
2007-06-01
We previously investigated the biological, non-antibacterial effects of bacteriophage T4 in mammals (binding to cancer cells in vitro and attenuating tumour growth and metastases in vivo); we selected the phage mutant HAP1 that was significantly more effective than T4. In this study we describe a non-sense mutation in the hoc gene that differentiates bacteriophage HAP1 and its parental strain T4. We found no substantial effects of the mutation on the mutant morphology, and its effects on electrophoretic mobility and hydrodynamic size were moderate. Only the high ionic strength of the environment resulted in a size difference of about 10 nm between T4 and HAP1. We compared the antimetastatic activity of the T2 phage, which does not express protein Hoc, with those of T4 and HAP1 (B16 melanoma lung colonies). We found that HAP1 and T2 decreased metastases with equal effect, more strongly than did T4. We also investigated concentrations of T4 and HAP1 in the murine blood, tumour (B16), spleen, liver, or muscle. We found that HAP1 was rapidly cleared from the organism, most probably by the liver. Although HAP1 was previously defined to bind cancer cells more effectively (than T4), its rapid elimination precluded its higher concentration in tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xingmin; Goehler, Andre; Heller, Knut J.
2006-06-20
The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquidmore » medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10{sup 9} phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages.« less
Amarillas, Luis; Rubí-Rangel, Lucia; Chaidez, Cristobal; González-Robles, Arturo; Lightbourn-Rojas, Luis; León-Félix, Josefina
2017-01-01
Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the control of foodborne pathogens. However, further oral toxicity testing is needed to ensure the safety of phage use. PMID:28785246
Amarillas, Luis; Rubí-Rangel, Lucia; Chaidez, Cristobal; González-Robles, Arturo; Lightbourn-Rojas, Luis; León-Félix, Josefina
2017-01-01
Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac -type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the control of foodborne pathogens. However, further oral toxicity testing is needed to ensure the safety of phage use.
Mandali, Sridhar; Gupta, Kushol; Dawson, Anthony R; Van Duyne, Gregory D; Johnson, Reid C
2017-06-01
The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes , but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine. IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis. Copyright © 2017 American Society for Microbiology.
Eroshenko, G A; Smirnova, N I
2002-01-01
Infection of V. cholerae 01 (classical and eltor biovars) cells with the temperate cholera phage 139 derived from V. cholerae serogroup 0139 followed by integration of the phage genome into the bacterial chromosome significantly increased the production of cholera toxin, the main virulence factor. The level of toxin biosynthesis in the lysogenic V. cholerae classical strain increased 3-fold and that in V. eltor thirty times in comparison with the parental strains. Increased production of cholera toxin was not associated with an increase in the number of copies of genes involved in its biosynthesis but seemed to be due to changes in toxinogenesis regulation.
Phage adsorption to Lactobacillus plantarum: influence of physiological and environmental factors.
Marcó, M Briggiler; Reinheimer, J A; Quiberoni, A
2010-04-15
Bacteriophage infection of lactic acid bacteria (LAB) constitutes one of the major problems in the dairy industry, causing economic losses and a constant risk of low quality and/or unsafe foods. The first step in the phage biology is the adsorption on the host cell surface. In a previous study, a remarkable thermal, chemical and photocatalytic resistance was demonstrated by four phages of Lactobacillus plantarum (ATCC 8014-B1, ATCC 8014-B2, FAGK1 and FAGK2). In the present work, these phages were used to characterize the adsorption process on L. plantarum ATCC 8014. Clearly, the characterization of this process could increase the possibilities of design useful strategies in order to prevent phage infections. The influence of Ca(2+), temperature, pH and physiological cell state on phage adsorption was investigated. Burst sizes of phages ATCC 8014-B1 and ATCC 8014-B2 were 60 and 83 PFU/infective centre, respectively. The four phages exhibited a high infectivity even at pH 4 and pH 11. Calcium or magnesium ions were not indispensable for cell lysis and plaque formation, and more than 99% of phage particles were adsorbed either in the presence or absence of Ca(2+), after 15 min at 37 degrees C. Phage adsorption was only partially affected at 50 degrees C, while reached its maximum between 30 and 42 degrees C. The highest adsorption values (99.9%) were observed from pH 5 to 7, after 30 min at 37 degrees C. Adsorption rates decreased after the thermal inactivation of cells, though, when 20 microg/ml of chloramphenicol was used, adsorption values were similar on treated and untreated cells. All these results showed that the adsorption process was only partially affected by a few conditions: thermally killed host cells, an incubation temperature of 50 degrees C and pH values of 9 and 10. Nevertheless, and unfortunately, those conditions are not commonly applied during fermented food manufacturing, thus restricting highly the application of strategies currently available to reduce phage infections in industrial environments. This work also contributes to increase the currently knowledge on the biological aspects of L. plantarum bacteriophages. (c) 2010 Elsevier B.V. All rights reserved.
Synthesis of tumor necrosis factor α for use as a mirror-image phage display target.
Petersen, Mark E; Jacobsen, Michael T; Kay, Michael S
2016-06-21
Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.
Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin
2017-11-01
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains
Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.
Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel F; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.
DeBardeleben, Hilary K.; Lysenko, Elena S.; Dalia, Ankur B.
2014-01-01
The pathogenesis of the disease caused by Streptococcus pneumoniae begins with colonization of the upper respiratory tract. Temperate phages have been identified in the genomes of up to 70% of clinical isolates. How these phages affect the bacterial host during colonization is unknown. Here, we examined a clinical isolate that carries a novel prophage element, designated Spn1, which was detected in both integrated and episomal forms. Surprisingly, both lytic and lysogenic Spn1 genes were expressed under routine growth conditions. Using a mouse model of asymptomatic colonization, we demonstrate that the Spn1− strain outcompeted the Spn1+ strain >70-fold. To determine if Spn1 causes a fitness defect through a trans-acting factor, we constructed an Spn1+ mutant that does not become an episome or express phage genes. This mutant competed equally with the Spn1− strain, indicating that expression of phage genes or phage lytic activity is required to confer this fitness defect. In vitro, we demonstrate that the presence of Spn1 correlated with a defect in LytA-mediated autolysis. Furthermore, the Spn1+ strain displayed increased chain length and resistance to lysis by penicillin compared to the Spn− strain, indicating that Spn1 alters the cell wall physiology of its host strain. We posit that these changes in cell wall physiology allow for tolerance of phage gene products and are responsible for the relative defect of the Spn1+ strain during colonization. This study provides new insight into how bacteria and prophages interact and affect bacterial fitness in vivo. PMID:24816604
Faruque, Shah M.; Zhu, Jun; Asadulghani; Kamruzzaman, M.; Mekalanos, John J.
2003-01-01
The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXΦ. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous phage (designated VPIΦ) and to encode functions necessary for the production of infectious VPIΦ particles. We examined 46 V. cholerae strains having diverse origins and carrying different genetic variants of the TCP island for the production of the VPIΦ and CTXΦ in different culture conditions, including induction of prophages with mitomycin C and UV irradiation. Although 9 of 10 V. cholerae O139 strains and 12 of 15 toxigenic El Tor strains tested produced extracellular CTXΦ, none of the 46 TCP-positive strains produced detectable VPIΦ in repeated assays, which detected as few as 10 particles of a control CTX phage per ml. These results contradict the previous report regarding VPIΦ-mediated horizontal transfer of the TCP genes and suggest that the TCP island is unable to support the production of phage particles. Further studies are necessary to understand the mechanism of horizontal transfer of the TCP island. PMID:12761075
Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli.
Shapiro, Jason W; Williams, Elizabeth S C P; Turner, Paul E
2016-01-01
Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria.
Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli
Williams, Elizabeth S.C.P.; Turner, Paul E.
2016-01-01
Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria. PMID:27257543
Pincus, Nathan B; Reckhow, Jensen D; Saleem, Danial; Jammeh, Momodou L; Datta, Sandip K; Myles, Ian A
2015-01-01
The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a "post-antibiotic era", the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use.
Lamboy, Jorge A.; Arter, Jessica A.; Knopp, Kristeene A.; Der, Denise; Overstreet, Cathie M.; Palermo, Edmund; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A.
2011-01-01
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO2, and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient “phage wrapping” strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking non-specific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials, and solve a major problem in phage display – non-specific binding by the phage to high pI target proteins. PMID:19856910
Lamboy, Jorge A; Arter, Jessica A; Knopp, Kristeene A; Der, Denise; Overstreet, Cathie M; Palermo, Edmund F; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory N; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A
2009-11-18
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO(2), and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient "phage wrapping" strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking nonspecific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials and solve a major problem in phage display-nonspecific binding by the phage to high pI target proteins.
Phage display discovery of novel molecular targets in glioblastoma-initiating cells.
Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N
2014-08-01
Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies.
Phage display discovery of novel molecular targets in glioblastoma-initiating cells
Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N
2014-01-01
Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies. PMID:24832468
Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su
2009-06-01
Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.
Abedon, Stephen T; Katsaounis, Tena I
2018-01-01
Basic mathematical descriptions are useful in phage ecology, applied phage ecology such as in the course of phage therapy, and also toward keeping track of expected phage-bacterial interactions as seen during laboratory manipulation of phages. The most basic mathematical descriptor of phages is their titer, that is, their concentration within stocks, experimental vessels, or other environments. Various phenomena can serve to modify phage titers, and indeed phage titers can vary as a function of how they are measured. An important aspect of how changes in titers can occur results from phage interactions with bacteria. These changes tend to vary in degree as a function of bacterial densities within environments, and particularly densities of those bacteria that are susceptible to or at least adsorbable by a given phage type. Using simple mathematical models one can describe phage-bacterial interactions that give rise particularly to phage adsorption events. With elaboration one can consider changes in both phage and bacterial densities as a function of both time and these interactions. In addition, phages along with their impact on bacteria can be considered as spatially constrained processes. In this chapter we consider the simpler of these concepts, providing in particular detailed verbal explanations toward facile mathematical insight. The primary goal is to stimulate a more informed use and manipulation of phages and phage populations within the laboratory as well as toward more effective phage application outside of the laboratory, such as during phage therapy. More generally, numerous issues and approaches to the quantification of phages are considered along with the quantification of individual, ecological, and applied properties of phages.
Uchiyama, Jumpei; Suzuki, Masato; Nishifuji, Koji; Kato, Shin-Ichiro; Miyata, Reina; Nasukawa, Tadahiro; Yamaguchi, Kotoe; Takemura-Uchiyama, Iyo; Ujihara, Takako; Shimakura, Hidekatsu; Murakami, Hironobu; Okamoto, Noriaki; Sakaguchi, Yoshihiko; Shibayama, Keigo; Sakaguchi, Masahiro; Matsuzaki, Shigenobu
2016-08-01
Pseudomonas aeruginosa causes serious intractable infections in humans and animals. Bacteriophage (phage) therapy has been applied to treat P. aeruginosa infections, and phages belonging to the PB1-like virus genus in the Myoviridae family have been used as therapeutic phages. To achieve safer and more effective phage therapy, the use of preadapted phages is proposed. To understand in detail such phage preadaptation, the short-term antagonistic evolution of bacteria and phages should be studied. In this study, the short-term antagonistic evolution of bacteria and PB1-like phage was examined by studying phage-resistant clones of P. aeruginosa strain PAO1 and mutant PB1-like phages that had recovered their infectivity. First, phage KPP22 was isolated and characterized; it was classified as belonging to the PB1-like virus genus in the Myoviridae family. Subsequently, three KPP22-resistant PAO1 clones and three KPP22 mutant phages capable of infecting these clones were isolated in three sets of in vitro experiments. It was shown that the bacterial resistance to phage KPP22 was caused by significant decreases in phage adsorption and that the improved infectivity of KPP22 mutant phages was caused by significant increases in phage adsorption. The KPP22-resistant PAO1 clones and the KPP22 mutant phages were then analyzed genetically. All three KPP22-resistant PAO1 clones, which were deficient for the O5 antigen, had a common nonsense mutation in the wzy gene. All the KPP22 mutant phage genomes showed the same four missense mutations in the open reading frames orf060, orf065, and orf086 The information obtained in this study should be useful for further development of safe and efficient phage therapy. Pseudomonas aeruginosa causes serious intractable infections in humans and animals; bacteriophage (phage) therapy has been utilized to treat P. aeruginosa infections, and phages that belong to the PB1-like virus genus in the family Myoviridae have been used as therapeutic phages. The preadapted phage is trained in advance through the antagonistic evolution of bacteria and phage and is proposed to be used to achieve safer and more effective phage therapy. In this study, to understand the phage preadaptation, the in vitro short-term antagonistic evolution was studied using P. aeruginosa strain PAO1 and the newly isolated PB1-like phage KPP22. Phage KPP22 was characterized, and the molecular framework regarding the phage preadaptation of KPP22 was elucidated. The importance of study of antagonistic evolution of bacteria and phage in phage therapy is discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution.
Cairns, Johannes; Becks, Lutz; Jalasvuori, Matti; Hiltunen, Teppo
2017-01-19
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa
Saucedo-Mora, Miguel A.; Castañeda-Tamez, Paulina; Cazares, Adrián; Pérez-Velázquez, Judith; Hense, Burkhard A.; Cazares, Daniel; Figueroa, Wendy; Carballo, Marco; Guarneros, Gabriel; Pérez-Eretza, Berenice; Cruz, Nelby; Nishiyama, Yoshito; Maeda, Toshinari; Belmont-Díaz, Javier A.; Wood, Thomas K.; García-Contreras, Rodolfo
2017-01-01
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS. PMID:28912771
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution
2017-01-01
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria–phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920385
[Isolation and characterization of siphovirus phages infecting bovine Streptococcus agalactiae].
Bai, Qinqin; Yang, Yongchun; Lu, Chengping
2016-02-04
To isolate and identify Streptococcus agalactiae phages and screen candidate phages to control infection caused by bovine S. agalactiae. We used two methods for isolation of S. agalactiae phages, namely (1) isolation of phages from milk and environmental samples, and (2) isolation of phages via induction of lysogens with Mitomycin C. Double-layer agar culture method was used to purify phages. Then the newly obtained phages, with S. agalactiae phage JX01 isolated from mastitis milk, were comparatively analyzed in the following aspects: morphology of phages by transmission electron microscopy, host range of phages to 55 S. agalactiae strains and other Streptococcus strains, phages DNA using EcoR I, Xba I, Pst I and Sal I, the optical multiplicity of infection, absorption curve and one step growth curve, and the stability of phages at different storage conditions. The comparative analysis of the 3 novel phages LYGO9, HZ04 and pA11 (induced from S. agalctiae bovine clinical isolate HAJL2011070601) with JX01 showed that the 4 phages were classified as the member of Siphovirdae family. EcoR I, Sal I, Xba I and Pst I separately digested the 4 phages DNA provided 4, 3, 3 and 2 profiles, respectively. This suggested that they were different strains. All the 4 phages specifically infected bovine S. agalactiae isolates. LYGO9, pA11, JX01 and HZ04 could lyse 12, 13, 20 and 23 of 42 tested bovine S. agalctiae isolates, respectively. This clearly indicated that these 4 phages are closely related. The 3 new phages which specifically lyse bovine S. agalactiae isolates are siphovirus phages. Phage LYGO9 was shown having a short latent period and a larger burst size.
Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina
2018-04-05
Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.
Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina
2018-01-01
Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199
Charges drive selection of specific antibodies by phage display.
Persson, Helena; Persson, Jonas; Danielsson, Lena; Ohlin, Mats
2010-02-28
Phage display technology has emerged as a leading approach to select proteins with improved properties for many different types of applications. The selection typically selects not only for improved binding properties but also for other factors such as efficiency of protein production and folding in Escherichia coli, the host in which the proteins and the phage are produced. Furthermore, the selection methodology is likely to influence the character of retrieved variants. We have now defined the extent whereby the charge of the displayed proteins influence the selection process, resulting in an increased average positive charge among selected proteins in comparison to the proteins that are harbored in the library before selection. Implications of and possible routes to minimize this effect are discussed. 2009 Elsevier B.V. All rights reserved.
Sayre, M H; Geiduschek, E P
1988-09-01
The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.
Biomimetic graphene sensors: functionalizing graphene with peptides
NASA Astrophysics Data System (ADS)
Ishigami, Masa; Nyon Kim, Sang; Naik, Rajesh; Tatulian, Suren A.; Katoch, Jyoti
2012-02-01
Non-covalent biomimetic functionalization of graphene using peptides is one of more promising methods for producing novel sensors with high sensitivity and selectivity. Here we combine atomic force microscopy, Raman spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate peptide binding to graphene and graphite. We choose to study a dodecamer peptide identified with phage display to possess affinities for graphite and we find that the peptide forms a complex mesh-like structure upon adsorption on graphene. Moreover, optical spectroscopy reveals that the peptide binds non-covalently to graphene and possesses an optical signature of an ?-helical conformation on graphene.
Characterization of Two Virulent Phages of Lactobacillus plantarum
Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea
2012-01-01
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172
Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.
2017-01-01
The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581
Advance in phage display technology for bioanalysis.
Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong
2016-06-01
Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineered phages for electronics.
Cui, Yue
2016-11-15
Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Infective and inactivated filamentous phage as carriers for immunogenic peptides.
Samoylova, Tatiana I; Norris, Mandy D; Samoylov, Alexandre M; Cochran, Anna M; Wolfe, Karen G; Petrenko, Valery A; Cox, Nancy R
2012-07-01
The focus of this study is on development of vaccines using filamentous phage as a delivery vector for immunogenic peptides. The use of phage as a carrier for immunogenic peptides provides significant benefits such as high immunogenicity, low production costs, and high stability of phage preparations. However, introduction of live recombinant phage into the environment might represent a potential ecological problem. This, for example, may occur when vaccines are used in oral or nasal formulations in field conditions for wild and feral animals. To address this issue, comparative studies of antigenic properties of live and inactivated (non-viable) phage were accomplished. Inactivated phage, if released, will not propagate and will degrade as any other protein. In these experiments, a model phage clone that was previously selected from a phage display library and shown to stimulate production of anti-sperm antibodies with contraceptive properties was used. Multiple methods of phage inactivation were tested, including drying, freezing, autoclaving, heating, and UV irradiation. Under studied conditions, heating at 76°C for 3h, UV irradiation, and autoclaving resulted in complete phage inactivation. Phage samples treated by heat and UV were characterized by spectrophotometry and electron microscopy. To test antigenicity, live and inactivated phage preparations were injected into mice and antibody responses assayed by ELISA. It was found that phage killed by heat causes little to no immune responses, probably due to destruction of phage particles. In contrast, UV-inactivated phage stimulated production of IgG serum antibodies at the levels comparable to live phage. Thus, vaccines formulated to include UV-inactivated filamentous phage might represent environmentally safe alternatives to live phage vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.
Krüger, A; Burgán, J; Friedrich, A W; Rossen, J W A; Lucchesi, P M A
2018-06-01
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145. Copyright © 2018 Elsevier B.V. All rights reserved.
Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1
Gödeke, Julia; Paul, Kristina; Lassak, Jürgen; Thormann, Kai M
2011-01-01
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. PMID:20962878
Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi
2017-06-27
Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics. This study is the first report on the complete genome sequences of temperate phages that infect deep-sea roseobacters, belonging to the Mu-like head phage group. The Mu-like head phage group might represent a small but ubiquitous fraction of marine viral diversity.
Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.
Duerkop, Breck A; Huo, Wenwen; Bhardwaj, Pooja; Palmer, Kelli L; Hooper, Lora V
2016-08-30
The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections. We have identified a cell wall protein hypervariable region that specifies phage tropism in E. faecalis Using a gnotobiotic mouse model of in vivo phage predation, we show that E. faecalis acquires phage resistance through mutations in this cell wall protein. Our findings define the molecular basis for lytic phage resistance in E. faecalis They also suggest opportunities for engineering E. faecalis phages that circumvent the problem of bacterial phage resistance. Copyright © 2016 Duerkop et al.
Wu, You-Qiang; Qu, Hongchang; Sfyroera, Georgia; Tzekou, Apostolia; Kay, Brian K.; Nilsson, Bo; Ekdahl, Kristina Nilsson; Ricklin, Daniel; Lambris, John D.
2011-01-01
Exposure of nonself surfaces such as those of biomaterials or transplanted cells and organs to host blood frequently triggers innate immune responses, thereby affecting both their functionality and tolerability. Activation of the alternative pathway of complement plays a decisive role in this unfavorable reaction. Whereas previous studies demonstrated that immobilization of physiological regulators of complement activation (RCA) can attenuate this foreign body-induced activation, simple and efficient approaches for coating artificial surfaces with intact RCA are still missing. The conjugation of small molecular entities that capture RCA with high affinity is an intriguing alternative, as this creates a surface with autoregulatory activity upon exposure to blood. We therefore screened two variable cysteine-constrained phage-displayed peptide libraries for factor H-binding peptides. We discovered three peptide classes that differed with respect to their main target binding areas. Peptides binding to the broad middle region of factor H (domains 5–18) were of particular interest, as they do not interfere with either regulatory or binding activities. One peptide in this group (5C6) was further characterized and showed high factor H-capturing activity while retaining its functional integrity. Most importantly, when 5C6 was coated to a model polystyrene surface and exposed to human lepirudin-anticoagulated plasma, the bound peptide captured factor H and substantially inhibited complement activation by the alternative pathway. Our study therefore provides a promising and novel approach to produce therapeutic materials with enhanced biocompatibility. PMID:21339361
Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael
2016-09-01
Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of elucidating the host cell receptors required for infection. Our research further expands the repertoire of phages available for consideration as potential antimicrobial agents or as diagnostic tools for this important bacterial pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.
2016-01-01
ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of elucidating the host cell receptors required for infection. Our research further expands the repertoire of phages available for consideration as potential antimicrobial agents or as diagnostic tools for this important bacterial pathogen. PMID:27342557
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei
Rousseau, Geneviève M.; Capra, María L.; Quiberoni, Andrea; Tremblay, Denise M.; Labrie, Simon J.
2015-01-01
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105
Gillis, Annika; Mahillon, Jacques
2014-01-01
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767
The Use of a Selenium-Peptide to Specifically Inactivate Yersinia pestis
2005-10-01
Control 2 (F1 Antibody+Anti-F1 Antibody) 2ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab 1ug/ mlF1 Ab+1011 Phage+Anti-F1 Antibody .5ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab...25ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .125ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .0625ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .03125ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab...0156ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .0078ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .0039ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab .00195ug/ mlF1 Ab+1011 Phage+Anti-F1 Ab
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Petrenko, Valery A
2018-06-07
The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.
Villequey, Camille; Kong, Xu-Dong; Heinis, Christian
2017-11-01
Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Forsman, Päivi; Alatossava, Tapani
1991-01-01
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513
Biological UV dosimeters in simulated space irradiation conditions
NASA Astrophysics Data System (ADS)
Rontó, G.; Bérces, A.; Fekete, A.; Kovács, G.; Lammer, H.
For the measurement of the harmful biological effect of solar UV radiation bacteriophage T7 and polycrystalline uracil dosimeters were used. For terrestrial dosimetric purposes bacteriophage T7 has been applied in solution, while uracil in the form of thin layers. For space irradiation dosimetry the uracil, phage T7-DNA and bacteriophage T7 thin layer samples were prepared in vacuum tightly closed sandwich forms covered either by calciumfluoride or quartz windows. The experimental conditions tested correspond to the conditions planned in the EXPOSE facility: the samples were surrounded by nitrogen atmosphere at various humidities, their vacuum stability was tested in the vacuum chamber of the Institute of Space Research,, Graz. All kinds of the thin film samples have been stored in an atmosphere containing Nitrogen and Hidrogen, in quality control no change in the structure of them has been found. To attenuate the high extraterrestrial irradiance neutral filters of 0.5 and 1.0 optical densities have been tested. Irradiation of the samples has been performed with various UV sources: solar simulator, low pressure Mercury lamp, Deuterium lamp. Dose-effect functions have been determined using for the evaluation spectrophotometry in the characteristic UV range, HPLC of photoproducts, PCR of two different primer sequences of phage T7-DNA. Photoproduct formation kinetics was followed by the saturation level of uracil thin layer. Attenuation ability of the neutral filters was controlled with low pressure Mercury lamp by the exposure necessary for saturation of uracil dosimeters. A three and tenfold increase in the exposure was found respectively, while the influence of spectral composition of the irradiation source was tested using Deuterium lamp supplied with Ca F2 and quartz filters respectively. A doubling of the irradiance was necessary for the saturation of uracil with quartz filter.
Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.
2016-01-01
ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135
Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships.
Pope, Welkin H; Mavrich, Travis N; Garlena, Rebecca A; Guerrero-Bustamante, Carlos A; Jacobs-Sera, Deborah; Montgomery, Matthew T; Russell, Daniel A; Warner, Marcie H; Hatfull, Graham F
2017-08-15
The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are "singletons" with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. IMPORTANCE Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis , although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but further isolation and genomic comparison of phages targeted at related groups of hosts promise to reveal pathways of bacteriophage evolution. Copyright © 2017 Pope et al.
Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute; Kot, Witold; Hansen, Lars H; Lametsch, René; Neve, Horst; Franz, Charles M A P; Vogensen, Finn K
2017-03-01
Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos - or pac -type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos - or pac -type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos - or pac -type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis , extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. Copyright © 2017 Szymczak et al.
Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol
2012-01-01
Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964
Therapeutic and prophylactic applications of bacteriophage components in modern medicine.
Adhya, Sankar; Merril, Carl R; Biswas, Biswajit
2014-01-01
As the interactions of phage with mammalian innate and adaptive immune systems are better delineated and with our ability to recognize and eliminate toxins and other potentially harmful phage gene products, the potential of phage therapies is now being realized. Early efforts to use phage therapeutically were hampered by inadequate phage purification and limited knowledge of phage-bacterial and phage-human relations. However, although use of phage as an antibacterial therapy in countries that require controlled clinical studies has been hampered by the high costs of patient trials, their use as vaccines and the use of phage components such as lysolytic enzymes or lysozymes has progressed to the point of commercial applications. Recent studies concerning the intimate associations between mammalian hosts and bacterial and phage microbiomes should hasten this progress.
Current insights into phage biodiversity and biogeography.
Thurber, Rebecca Vega
2009-10-01
Phages exert tremendous ecological and evolutionary forces directly on their bacterial hosts. Phage induced cell lysis also indirectly contributes to organic and inorganic nutrient recycling. Phage abundance, diversity, and distribution are therefore important parameters in ecosystem function. The assumption that phage consortia are ubiquitous and homogenous across habitats (everything is everywhere) is currently being re-evaluated. New studies on phage biogeography have found that some phages are globally distributed while others are unique and perhaps endemic to specific environments. Furthermore, advances in technology have allowed scientists to conduct experiments aimed at analyzing phage consortia over temporal scales, and surprisingly have found reoccurring patterns. This review discusses currents in the field of phage ecology with particular focus on efforts to characterize phage diversity and biogeography across various spatial and temporal scales.
FURTHER OBSERVATIONS ON THE MECHANISM OF PHAGE ACTION
Krueger, A. P.; Scribner, E. J.; Brown, B. B.
1946-01-01
1. The reaction between an antistaphlycoccal phage and the homologous bacterium has been studied, applying the following experimental technics not used in earlier work reported from this laboratory: (a) Both the activity assay and the plaque count were utilized for determining [phage]. (b) Sampling was done at short intervals; i.e., every 0.1 hour. (c) Extracellular phage was separated from the cell-bound fraction by a filtration procedure permitting passage of < 95 per cent of free phage. 2. Using these technics, the reaction was followed: (a) with pH maintained at 6.10 and temperature at 28°C. to slow the process; (b) with pH maintained at 7.2 and temperature at 36°C. 3. In addition separate experiments were performed on the sorption of phage by bacteria at 30°, 23°, and 0°C. 4. At pH 6.10 and 28°C. the phage-bacterium reaction proceeds in the following sequence: (a) There is an initial phase of rapid logarithmic sorption of phage to susceptible cells, during which the total phage activity and the plaque numbers in the mixtures remain constant. (b) When 90 per cent of the phage has been bound, there is a sudden very rapid increase in phage activity not paralleled by an increase in plaques; i.e., phage is formed intracellularly, but is retained within cellular confines. (c) After a further drop in the extracellular phage fraction there occurs a pronounced increase in the total phage plaque count not accompanied by any increase in total activity. This indicates a redistribution of phage formed intracellularly. At the same time there is a rise in the extracellular phage curves (both activity and plaque). (d) With the concentrations of phage and bacteria used in the experiment carried out at pH 6.1 and 28°C. there are two further increments in [phage]act. before massive lysis begins. (e) During terminal lysis there are sharp rises in the curves for [total phage]plaq., [extracellular phage]act., and [extracellular phage]plaq.. (f) Immediately after the completion of lysis there is a considerable disparity between measurements of total phage and extracellular phage, probably occasioned by the association of phage molecules with cellular debris, the latter being of sufficient size to be removed by the super-cel filters. 5. At pH 7.2 and 36°C. the steps in the phage production curve as determined by activity assay and plaque count are much less prominent than those observed at pH 6.1 and 28°C. However, the plateaus described by Ellis and Delbrück (10) for B. coli and coli phage can be detected also in the present case if frequent samples are taken. 6. The sorption experiments show a significant rise in the rate of phage uptake with increase in temperature, again supporting the view that the reaction involves more than a purely physical adsorption. 7. Delbrück's objections to: (a) the use of the activity assay for determining [total phage] in mixtures of phage and susceptible cells, and (b), to the demonstration of phage precursor in "activated" bacteria have been analyzed. 8. The activity assay has been demonstrated to be an accurate procedure for determining either phage free in solution or phage bound to living susceptible cells, under the conditions of the experiments reported here and in earlier work. 9. The titration values obtained in the experiments designed to exhibit intracellular phage precursor are not the result of artifacts as Delbrück has inferred. The data can be interpreted in terms of the precursor theory, although other explanations are not ruled out. PMID:19873475
Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias
2014-05-01
Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.
In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.
Weiss, Marietta; Denou, Emmanuel; Bruttin, Anne; Serra-Moreno, Ruth; Dillmann, Marie-Lise; Brüssow, Harald
2009-10-10
The gut transit of T4 phages was studied in axenic mice mono-colonized with the non-pathogenic Escherichia coli strain K-12. Thirty minutes, 1 and 2 h after phage feeding, T4 phage had reached the jejunum, ileum and cecum, respectively. Phage was found in the lumen and was also associated with the mucosa. One day later no phage was detected in the feces. Compared to germ-free control animals, oral T4 phage led to a 300-fold higher fecal phage titer in mice mono-colonized with E. coli strain WG-5. The in vivo T4 phage replication was transient and reached peak fecal titers about 8 h after oral phage application followed by a rapid titer decrease over two days. Similar data were obtained in mice colonized with E. coli strain Nissle. In contrast, orally applied T7 phage experienced a massive and sustained in vivo replication in mice mono-colonized with E. coli strain WG-5 irrespective whether phage or E. coli host was applied first. T7 phage replication occurred mainly in the large intestine. High titers of T7 phage and high E. coli cell counts coexisted in the feces. The observation of only 20% T7 phage-resistant fecal E. coli colonies suggests a refuge model where phage-sensitive E. coli cells are physically or physiologically protected from phage infection in the gut. The difference between T7 and T4 with respect to gut replication might partly reflect their distinct in vitro capacity to replicate on slowly growing cells.
Whey powders are a rich source and excellent storage matrix for dairy bacteriophages.
Wagner, Natalia; Brinks, Erik; Samtlebe, Meike; Hinrichs, Jörg; Atamer, Zeynep; Kot, Witold; Franz, Charles M A P; Neve, Horst; Heller, Knut J
2017-01-16
Thirteen whey powders and 5 whey powder formulations were screened for the presence of dairy bacteriophages using a representative set of 8 acid-producing Lactococcus lactis and 5 Streptococcus thermophilus, and 8 flavour-producing Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides strains. Lytic L. lactis phages were detected in all samples, while S. thermophilus and Leuconostoc phages were present in 50% or 40% of the samples, respectively. Maximal phage titers were 6×10 7 plaque-forming units (pfu)/g of whey powder for L. lactis phages, 1×10 7 pfu/g for Leuconostoc phages and 1×10 5 pfu/g for S. thermophilus phages. In total, 55 phages were isolated and characterized. Thirty one of the 33 lactococcal phages tested belonged to the wide-spread 936 phage group. In the course of this study, a PCR detection method for Leuconostoc phages (Ali et al., 2013) was adapted to new phage isolates. Furthermore, a remarkably high stability of phages in whey powder samples was documented during a long-term storage period of 4 years. Copyright © 2016 Elsevier B.V. All rights reserved.
In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.
Bull, J J; Otto, G; Molineux, I J
2012-02-01
Two classes of phages yield profoundly different levels of recovery in mice experimentally infected with an Escherichia coli O18:K1:H7 strain. Phages requiring the K1 capsule for infection (K1-dep) rescue virtually all infected mice, whereas phages not requiring the capsule (K1-ind) rescue modest numbers (∼30%). To rescue infected mice, K1-ind phages require at least a 10(6)-fold-higher inoculum than K1-dep phages. Yet their in vivo growth dynamics are only modestly inferior to those of K1-dep phages, and competition between the two phage types in the same mouse reveals only a slight growth advantage for the K1-dep phage. The in vivo growth rate seems unlikely to be the primary determinant of phage therapy success. An alternative explanation is that the success of K1-dep phages is due substantially to their proteomic composition. They encode an enzyme that degrades the K1 capsule, which has been shown in other work to be sufficient to cure infection in the complete absence of phages.
Filamentous Phage: Structure and Biology.
Rakonjac, Jasna; Russel, Marjorie; Khanum, Sofia; Brooke, Sam J; Rajič, Marina
2017-01-01
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
Characterisation of a novel enterobacteria phage, CAjan, isolated from rat faeces.
Carstens, Alexander B; Kot, Witold; Lametsch, Rene; Neve, Horst; Hansen, Lars H
2016-08-01
In this study, we describe the isolation and characterisation of the novel enterobacteria phage CAjan. This phage belongs to the order Caudovirales and the family Siphoviridae. The phage possesses a linear, double-stranded DNA genome consisting of 59,670 bp with a G+C content of 44.7 % and 91 predicted open reading frames (ORFs). Putative functions were assigned to 39 of the ORFs (37.4 %). The phage structural genes were furthermore functionally characterised by LC MS/MS. CAjan, together with Escherichia phage Seurat and Escherichia phage slur01, represent a novel and genetically distinct clade of Siphoviridae phages that could be considered to constitute a new phage genus. Despite limited sequence similarity, the phages in this group share a number of other common features, including genome structure and the presence of queuosine biosynthesis genes.
Bacteriophage Ecology in a Commercial Cucumber Fermentation
Pérez-Díaz, I. M.; Hayes, J. S.; Breidt, F.
2012-01-01
To reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ecology in the fermentations. This study investigated the phage ecology in a commercial cucumber fermentation. Brine samples taken from a fermentation tank over a 90-day period were plated onto deMan-Rogosa-Sharpe agar plates. A total of 576 lactic acid bacterial isolates were randomly selected to serve as potential hosts for phage isolation. Filtered brine served as a phage source. Fifty-seven independent phage isolates were obtained, indicating that 10% of the bacterial isolates were sensitive to phage attack. Phage hosts include Lactobacillus brevis (67% of all hosts), Lactobacillus plantarum (21%), Weissella paramesenteroides, Weissella cibaria, and Pediococcus ethanolidurans. Nearly 50% of phages were isolated on day 14, and the majority of them attacked L. brevis. Some phages had a broad host range and were capable of infecting multiple hosts in two genera. Other phages were species specific or strain specific. About 30% of phage isolates produced turbid pinpoint plaques or only caused reduced cell growth on the bacterial lawns. Six phages with distinct host ranges were characterized. The data from this study showed that abundant and diverse phages were present in the commercial cucumber fermentation, which could cause significant mortality to the lactic acid bacteria population. Therefore, a phage control strategy may be needed in low-salt cucumber fermentations. PMID:23023756
Boling, Maxon E.; Allison, David P.; Setlow, Jane K.
1973-01-01
The phages HP1c1 and S2 and a defective phage of Haemophilus influenzae have been compared. The morphology of the phages and the mol wt of their DNAs are similar, although the defective phage appears to have a different tail plate region. Electron microscope observation indicates that the defective phage does not attach to the cell surface, and its DNA appears to lack cohesive ends. The homology of the DNAs of the phages has been measured by hydridization. DNA from the defective phage shows little or no homology with the other phage DNAs. HP1c1 and S2 DNAs show a high level of homology. Each of these phages can form plaques on lawns of the lysogen of the other phage but at reduced plating efficiencies, suggesting that the two phages have related but not identical immunity systems. Images PMID:4540713
Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries
Noppe, Wim; Plieva, Fatima; Galaev, Igor Yu; Pottel, Hans; Deckmyn, Hans; Mattiasson, Bo
2009-01-01
Background Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library. Results Both phages and E. coli cells pass non-hindered through the interconnected pores of macroporous gel, so called cryogel. After coupling a ligand to a monolithic cryogel column, the phage library was applied on the column and non-bound phages were washed out. The selection of strong phage-binders was achieved already after the first panning cycle due to the efficient separation of phage-binders from phage-non-binders in chromatographic mode rather than in batch mode as in traditional biopanning procedures. E. coli cells were applied on the column for infection with the specifically bound phages. Conclusion Chromato-panning allows combining several steps of the panning procedure resulting in 4–8 fold decrease of total time needed for phage selection. PMID:19292898
Witte, A; Baranyi, U; Klein, R; Sulzner, M; Luo, C; Wanner, G; Krüger, D H; Lubitz, W
1997-02-01
A novel archaeal bacteriophage, phi Ch1, was isolated from a haloalkalophilic archaeon Natronobacterium magadii upon spontaneous lysis. The phage-cured strain N. magadii(L13) was used to demonstrate infectivity of phage phi Ch1. The turbid-plaque morphology and the fact that N. magadii cells isolated from plaques were able to produce phage indicated that phi Ch1 is a temperate phage. The phage morphology resembles other members of Myoviridae-infecting Halobacterium species. In solution below 2M NaCl, the phage lost its morphological stability and infectivity. One- and two-dimensional SDS-PAGE of phage particles revealed at least four major and five minor proteins with molecular masses ranging from 15 to 80 kDa and acidic isoelectric points. Southern blot analysis of chromosomal DNA of a lysogenic N. magadii strain showed that phi Ch1 exists as a chromosomally integrated prophage. The phage particles contain both double-stranded, linear DNA (approx. 55 kbp) as well as several RNA species (80-700 nucleotides). Hybridization of labelled RNA fragments to total DNA from N. magadii and phi Ch1 showed that the virion-associated RNA is host encoded. Part of the phage DNA population is modified and restriction analysis revealed evidence for adenine methylation. Phage phi Ch1 is the first virus described for the genus natronobacterium, and the first phage containing DNA and RNA in mature phage particles.
Somers, Klaartje; Stinissen, Piet; Somers, Veerle
2011-06-01
Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On The Influence Of Vector Design On Antibody Phage Display
Soltes, Glenn; Hust, Michael; Ng, Kitty K.Y.; Bansal, Aasthaa; Field, Johnathan; Stewart, Donald I.H.; Dübel, Stefan; Cha, Sanghoon; Wiersma, Erik J
2007-01-01
Phage display technology is an established technology particularly useful for the generation of monoclonal antibodies (mAbs). The isolation of phagemid-encoded mAb fragments depends on several features of a phage preparation. The aims of this study were to optimize phage display vectors, and to ascertain if different virion features can be optimized independently of each other. Comparisons were made between phagemid virions assembled by g3p-deficient helper phage, Hyperphage, Ex-phage or Phaberge, or corresponding g3p-sufficient helper phage, M13K07. All g3p-deficient helper phage provided a similar level of antibody display, significantly higher than that of M13K07. Hyperphage packaged virions at least 100-fold more efficiently than did Ex-phage or Phaberge. Phaberge's packaging efficiency improved by using a SupE strain. Different phagemids were also compared. Removal of a 56 base pair fragment from the promoter region resulted in increased display level and increased virion production. This critical fragment encodes a lacZ'-like peptide and is also present in other commonly used phagemids. Increasing display level did not show statistical correlation with phage production, phage infectivity or bacterial growth rate. However, phage production was positively correlated to phage infectivity. In summary, this study demonstrates simultaneously optimization of multiple and independent features of importance for phage selection. PMID:16996161
On the influence of vector design on antibody phage display.
Soltes, Glenn; Hust, Michael; Ng, Kitty K Y; Bansal, Aasthaa; Field, Johnathan; Stewart, Donald I H; Dübel, Stefan; Cha, Sanghoon; Wiersma, Erik J
2007-01-20
Phage display technology is an established technology particularly useful for the generation of monoclonal antibodies (mAbs). The isolation of phagemid-encoded mAb fragments depends on several features of a phage preparation. The aims of this study were to optimize phage display vectors, and to ascertain if different virion features can be optimized independently of each other. Comparisons were made between phagemid virions assembled by g3p-deficient helper phage, Hyperphage, Ex-phage or Phaberge, or corresponding g3p-sufficient helper phage, M13K07. All g3p-deficient helper phage provided a similar level of antibody display, significantly higher than that of M13K07. Hyperphage packaged virions at least 100-fold more efficiently than did Ex-phage or Phaberge. Phaberge's packaging efficiency improved by using a SupE strain. Different phagemids were also compared. Removal of a 56 base pair fragment from the promoter region resulted in increased display level and increased virion production. This critical fragment encodes a lacZ'-like peptide and is also present in other commonly used phagemids. Increasing display level did not show statistical correlation with phage production, phage infectivity or bacterial growth rate. However, phage production was positively correlated to phage infectivity. In summary, this study demonstrates simultaneously optimization of multiple and independent features of importance for phage selection.
Beres, Stephen B; Sylva, Gail L; Barbian, Kent D; Lei, Benfang; Hoff, Jessica S; Mammarella, Nicole D; Liu, Meng-Yao; Smoot, James C; Porcella, Stephen F; Parkins, Larye D; Campbell, David S; Smith, Todd M; McCormick, John K; Leung, Donald Y M; Schlievert, Patrick M; Musser, James M
2002-07-23
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-11-14
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-01-01
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840
Bacteriophages encode factors required for protection in a symbiotic mutualism.
Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A
2009-08-21
Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.
Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe
2015-02-01
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.
Colavecchio, Anna; Goodridge, Lawrence D
2017-06-01
The era of genomics has allowed for characterization of phages for use as antimicrobials to treat animal infections with a level of precision never before realized. As more research in phage therapy has been conducted, several advantages of phage therapy have been realized, including the ubiquitous nature, specificity, prevalence in the biosphere, and low inherent toxicity of phages, which makes them a safe and sustainable technology for control of animal diseases. These unique qualities of phages have led to several opportunities with respect to emerging trends in infectious disease treatment. However, the opportunities are tempered by several challenges to the successful implementation of phage therapy, such as the fact that an individual phage can only infect one or a few bacterial strains, meaning that large numbers of different phages will likely be needed to treat infections caused by multiple species of bacteria. In addition, phages are only effective if enough of them can reach the site of bacterial colonization, but clearance by the immune system upon introduction to the animal is a reality that must be overcome. Finally, bacterial resistance to the phages may develop, resulting in treatment failure. Even a successful phage infection and lysis of its host has consequences, because large amounts of endotoxin are released upon lysis of Gram-negative bacteria, which can lead to local and systemic complications. Overcoming these challenges will require careful design and development of phage cocktails, including comprehensive characterization of phage host range and assessment of immunological risks associated with phage treatment.
Twelve previously unknown phage genera are ubiquitous in global oceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh B
Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in unknowns dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four wellknown viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria.more » Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage host systems for experimental hypothesis testing.« less
Somatostatin displayed on filamentous phage as a receptor-specific agonist
Rousch, Mat; Lutgerink, Jan T; Coote, James; de Bruïne, Adriaan; Arends, Jan-Willem; Hoogenboom, Hennie R
1998-01-01
In search of methods to identify bio-active ligands specific for G protein-coupled receptors with seven transmembrane spanning regions, we have developed a filamentous phage-based selection and functional screening method. First, methods for panning peptide phage on cells were established, using the hormone somatostatin as a model. Somatostatin was displayed on the surface of filamentous phage by cloning into phage(mid) vectors and fusion to either pIII or pVIII viral coat proteins. Peptide displaying phage bound to a polyclonal anti-somatostatin serum, and, more importantly, to several somatostatin receptor subtypes (Sst) expressed on transfected CHO-K1 cells, in a pattern which was dependent on the used display method. Binding was competed with somatostatin, with an IC50 in the nanomolar range. The phage were specifically enriched by panning on cells, establishing conditions for cell selections of phage libraries. Binding of somatostatin displaying phage to sst2 on a reporter cell line, in which binding of natural ligand reduces secretion of alkaline phosphatase (via a cyclic AMP responsive element sensitive promoter), proved that the phage particles act as receptor-specific agonists. Less than 100 phage particles per cell were required for this activity, which is approximately 1000 fold less than soluble somatostatin, suggesting that phage binding interferes with normal receptor desensitization and/or recycling. The combination of biopanning of phage libraries on cells with functional screening of phage particles for receptor triggering activity, may be used to select novel, bio-active ligands from phage libraries of random peptides, antibody fragments, or libraries based on the natural receptor ligand. PMID:9776337
Estrella, Luis A.; Quinones, Javier; Henry, Matthew; Hannah, Ryan M.; Pope, Robert K.; Hamilton, Theron; Teneza-mora, Nimfa; Hall, Eric; Biswajit, Biswas
2016-01-01
ABSTRACT Skin and soft tissue infections (SSTI) caused by methicillin resistant Staphylococcus aureus (MRSA) are difficult to treat. Bacteriophage (phage) represent a potential alternate treatment for antibiotic resistant bacterial infections. In this study, 7 novel phage with broad lytic activity for S. aureus were isolated and identified. Screening of a diverse collection of 170 clinical isolates by efficiency of plating (EOP) assays shows that the novel phage are virulent and effectively prevent growth of 70–91% of MRSA and methicillin sensitive S. aureus (MSSA) isolates. Phage K, which was previously identified as having lytic activity on S. aureus was tested on the S. aureus collection and shown to prevent growth of 82% of the isolates. These novel phage group were examined by electron microscopy, the results of which indicate that the phage belong to the Myoviridae family of viruses. The novel phage group requires β-N-acetyl glucosamine (GlcNac) moieties on cell wall teichoic acids for infection. The phage were distinct from, but closely related to, phage K as characterized by restriction endonuclease analysis. Furthermore, growth rate analysis via OmniLog® microplate assay indicates that a combination of phage K, with phage SA0420ᶲ1, SA0456ᶲ1 or SA0482ᶲ1 have a synergistic phage-mediated lytic effect on MRSA and suppress formation of phage resistance. These results indicate that a broad spectrum lytic phage mixture can suppress the emergence of resistant bacterial populations and hence have great potential for combating S. aureus wound infections. PMID:27738555
Twelve previously unknown phage genera are ubiquitous in global oceans.
Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B
2013-07-30
Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallin, Shawna, E-mail: semccallin@yahoo.com; Alam Sarker, Shafiqul, E-mail: sasarker@icddrb.org; Barretto, Caroline, E-mail: Caroline.Barretto@rdls.nestle.com
Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb,more » including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial.« less
Engineering dihydropteroate synthase (DHPS) for efficient expression on M13 phage.
Brockmann, Eeva-Christine; Lamminmäki, Urpo; Saviranta, Petri
2005-06-20
Phage display is a commonly used selection technique in protein engineering, but not all proteins can be expressed on phage. Here, we describe the expression of a cytoplasmic homodimeric enzyme dihydropteroate synthetase (DHPS) on M13 phage, established by protein engineering of DHPS. The strategy included replacement of cysteine residues and screening for periplasmic expression followed by random mutagenesis and phage display selection with a conformation-specific anti-DHPS antibody. Cysteine replacement alone resulted in a 12-fold improvement in phage display of DHPS, but after random mutagenesis and three rounds of phage display selection, phage display efficiency of the library had improved 280-fold. Most of the selected clones had a common Asp96Asn mutation that was largely responsible for the efficient phage display of DHPS. Asp96Asn affected synergistically with the cysteine replacing mutations that were needed to remove the denaturing effect of potential wrong disulfide bridging in phage display. Asp96Asn alone resulted in a 1.8-fold improvement in phage display efficiency, but in combination with the cysteine replacing mutations, a total of 130-fold improvement in phage display efficiency of DHPS was achieved.
A simple and rapid method to isolate purer M13 phage by isoelectric precipitation.
Dong, Dexian; Sutaria, Sanjana; Hwangbo, Je Yeol; Chen, P
2013-09-01
M13 virus (phage) has been extensively used in phage display technology and nanomaterial templating. Our research aimed to use M13 phage to template sulfur nanoparticles for making lithium ion batteries. Traditional methods for harvesting M13 phage from Escherichia coli employ polyethylene glycol (PEG)-based precipitation, and the yield is usually measured by plaque counting. With this method, PEG residue is present in the M13 phage pellet and is difficult to eliminate. To resolve this issue, a method based on isoelectric precipitation was introduced and tested. The isoelectric method resulted in the production of purer phage with a higher yield, compared to the traditional PEG-based method. There is no significant variation in infectivity of the phage prepared using isoelectric precipitation, and the dynamic light scattering data indirectly prove that the phage structure is not damaged by pH adjustment. To maximize phage production, a dry-weight yield curve of M13 phage for various culture times was produced. The yield curve is proportional to the growth curve of E. coli. On a 200-mL culture scale, 0.2 g L(-1) M13 phage (dry-weight) was produced by the isoelectric precipitation method.
NASA Astrophysics Data System (ADS)
Moebus, K.
1983-12-01
The results of phage-host cross-reaction tests reported by Moebus & Nattkemper (1981) were re-examined using serially diluted bacteriophage suspensions to elicit the actual type of reaction between the bacteria and phage lysates tested. More than 1450 phage-host systems were studied at 25 °C incubation temperature. Among the nearly 300 phage strains used, 29 were identified as temperate ones. In about 65 % of the phage-host systems bacteriophage propagation was indicated by plaque formation. The remaining systems were characterized by the “inhibition” reaction of bacteria to phage lysates indicated by homogenously reduced bacterial growth within the test area without production of progeny phages. Since crude phage lysates had to be used, it remains obscure whether agents other than infective phage particles (defective ones or bacteriocins) caused this reaction. Among 269 systems of the inhibition type which were also tested at 5° and 15 °C, 54 were observed to propagate phages at one of or both the lower temperatures. Plaques produced at 15 °C with several phage-host systems were found to yield only few progeny phages which generally could not be propagated to produce high-titer phage stocks. With one system temperature-sensitive phage mutants were isolated. The probability of inhibition reactions occurring was found to be higher with phage-host systems isolated east of the Azores than with systems derived from the western Atlantic. With systems from the last mentioned area the proportion of inhibition versus lytic responses of bacteria to phages was observed to increase with the distance between the stations where both parts of the systems were derived. The latter findings are discussed in view of the assumption that bacterial and bacteriophage populations undergo genetic changes while being transported from west to east.
King, Rodney A.; Madsen, Peter L.; Weisberg, Robert A.
2000-01-01
Lysogens of phage HK022 are resistant to infection by phage λ. Lambda resistance is caused by the action of the HK022 Nun protein, which prematurely terminates early λ transcripts. We report here that transcription of the nun gene initiates at a constitutive prophage promoter, PNun, located just upstream of the protein coding sequence. The 5′ end of the transcript was determined by primer extension analysis of RNA isolated from HK022 lysogens or RNA made in vitro by transcribing a template containing the promoter with purified Escherichia coli RNA polymerase. Inactivation of PNun by mutation greatly reduced Nun activity and Nun antigen in an HK022 lysogen. However, a low level of residual activity was detected, suggesting that a secondary promoter also contributes to nun expression. We found one possible secondary promoter, PNun′, just upstream of PNun. Neither promoter is likely to increase the expression of other phage genes in a lysogen because their transcripts should be terminated downstream of nun. We estimate that HK022 lysogens in stationary phase contain several hundred molecules of Nun per cell and that cells in exponential phase probably contain fewer. PMID:10629193
Ammous-Boukhris, Nihel; Mosbah, Amor; Sahli, Emna; Ayadi, Wajdi; Hadhri-Guiga, Boutheina; Chérif, Ameur; Gargouri, Ali; Mokdad-Gargouri, Raja
2016-11-01
Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 "QPTKDSSPPLRV" and NO4 "STTSPPAVPHNN" peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity. Copyright © 2016 Elsevier Inc. All rights reserved.
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-01-01
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics.
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-06-14
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy . The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.
Grau-Leal, Ferran; Quirós, Pablo; Martínez-Castillo, Alexandre; Muniesa, Maite
2015-11-01
Stx bacteriophages are involved in the pathogenicity of Stx-producing Escherichia coli. Induction of the Stx phage lytic cycle increases Stx expression and releases Stx phages that reach extracellular environments. Stx phage family comprises different phages that harbour any stx subtype. Stx2 is closely related with severe disease and therefore previous studies focused on free Stx2 phages in extraintestinal environments. To provide similar information regarding Stx1 phages, we evaluate free Stx1 phages in 357 samples of human and animal wastewater, faeces, river water, soil, sludge and food. Our method, based on quantification of stx1 in the DNA from the viral fraction, was validated using electron microscopy counting of phages and infectivity. The overall prevalence of Stx1 phages was very low: 7.6% of positive samples and values below 3 × 10(3) GC (gene copies) ml(-1) . These results contrast starkly with the abundance of Stx2 phages in the samples (68.4%). This environmental scarcity of free Stx1 phages is attributed to their lower rates of induction and the fact that Stx1 does not require phage induction to be expressed because it possesses an independent promoter. The implications of the low prevalence of free Stx1 phages for the emergence of new pathogenic strains in the environment are discussed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine.
Cao, Binrui; Yang, Mingying; Mao, Chuanbin
2016-06-21
Filamentous bacteriophage (phage) is a genetically modifiable supramacromolecule. It can be pictured as a semiflexible nanofiber (∼900 nm long and ∼8 nm wide) made of a DNA core and a protein shell with the former genetically encoding the latter. Although phage bioengineering and phage display techniques were developed before the 1990s, these techniques have not been widely used for chemistry, materials, and biomedical research from the perspective of supramolecular chemistry until recently. Powered by our expertise in displaying a foreign peptide on its surface through engineering phage DNA, we have employed phage to identify target-specific peptides, construct novel organic-inorganic nanohybrids, develop biomaterials for disease treatment, and generate bioanalytical methods for disease diagnosis. Compared with conventional biomimetic chemistry, phage-based supramolecular chemistry represents a new frontier in chemistry, materials science, and medicine. In this Account, we introduce our recent successful efforts in phage-based supramolecular chemistry, by integrating the unique nanofiber-like phage structure and powerful peptide display techniques into the fields of chemistry, materials science, and medicine: (1) successfully synthesized and assembled silica, hydroxyapatite, and gold nanoparticles using phage templates to form novel functional materials; (2) chemically introduced azo units onto the phage to form photoresponsive functional azo-phage nanofibers via a diazotization reaction between aromatic amino groups and the tyrosine residues genetically displayed on phage surfaces; (3) assembled phage into 2D films for studying the effects of both biochemical (the peptide sequences displayed on the phages) and biophysical (the topographies of the phage films) cues on the proliferation and differentiation of mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) and identified peptides and topographies that can induce their osteogenic differentiation; (4) discovered that phage could induce angiogenesis and osteogenesis for MSC-based vascularized bone regeneration; (5) identified novel breast cancer cell-targeting and MSC-targeting peptides and used them to significantly improve the efficiency of targeted cancer therapy and MSC-based gene delivery, respectively; (6) employed engineered phage as a probe to achieve ultrasensitive detection of biomarkers from serum of human patients for disease diagnosis; and (7) constructed centimeter-scale 3D multilayered phage assemblies with the potential application as scaffolds for bone regeneration and functional device fabrication. Our findings demonstrated that phage is indeed a very powerful supramacromolecule suitable for not only developing novel nanostructures and biomaterials but also advancing important fields in biomedicine, including molecular targeting, cancer diagnosis and treatment, drug and gene delivery, stem cell fate direction, and tissue regeneration. Our successes in exploiting phage in chemistry, materials, and medicine suggest that phage itself is nontoxic at the cell level and can be safely used for detecting biomarkers in vitro. Moreover, although we have demonstrated successful in vivo tissue regeneration induced by phage, we believe future studies are needed to evaluate the in vivo biodistribution and potential risks of the phage-based biomaterials.
Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine
Cao, Binrui; Yang, Mingying; Mao, Chuanbin
2016-01-01
CONSPECTUS Filamentous bacteriophage (phage) is a genetically modifiable supramacromolecule. It can be pictured as a semiflexible nanofiber (~900 nm long and ~8 nm wide) made of a DNA core and a protein shell with the former genetically encoding the latter. Although phage bioengineering and phage display techniques were developed before the 1990s, these techniques have not been widely used for chemistry, materials, and biomedical research from the perspective of supramolecular chemistry until recently. Powered by our expertise in displaying a foreign peptide on its surface through engineering phage DNA, we have employed phage to identify target-specific peptides, construct novel organic–inorganic nanohybrids, develop biomaterials for disease treatment, and generate bioanalytical methods for disease diagnosis. Compared with conventional biomimetic chemistry, phage-based supramolecular chemistry represents a new frontier in chemistry, materials science, and medicine. In this Account, we introduce our recent successful efforts in phage-based supramolecular chemistry, by integrating the unique nanofiber-like phage structure and powerful peptide display techniques into the fields of chemistry, materials science, and medicine: (1) successfully synthesized and assembled silica, hydroxyapatite, and gold nanoparticles using phage templates to form novel functional materials; (2) chemically introduced azo units onto the phage to form photoresponsive functional azo-phage nanofibers via a diazotization reaction between aromatic amino groups and the tyrosine residues genetically displayed on phage surfaces; (3) assembled phage into 2D films for studying the effects of both biochemical (the peptide sequences displayed on the phages) and biophysical (the topographies of the phage films) cues on the proliferation and differentiation of mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) and identified peptides and topographies that can induce their osteogenic differentiation; (4) discovered that phage could induce angiogenesis and osteogenesis for MSC-based vascularized bone regeneration; (5) identified novel breast cancer cell-targeting and MSC-targeting peptides and used them to significantly improve the efficiency of targeted cancer therapy and MSC-based gene delivery, respectively; (6) employed engineered phage as a probe to achieve ultrasensitive detection of biomarkers from serum of human patients for disease diagnosis; and (7) constructed centimeter-scale 3D multilayered phage assemblies with the potential application as scaffolds for bone regeneration and functional device fabrication. Our findings demonstrated that phage is indeed a very powerful supramacromolecule suitable for not only developing novel nanostructures and biomaterials but also advancing important fields in biomedicine, including molecular targeting, cancer diagnosis and treatment, drug and gene delivery, stem cell fate direction, and tissue regeneration. Our successes in exploiting phage in chemistry, materials, and medicine suggest that phage itself is nontoxic at the cell level and can be safely used for detecting biomarkers in vitro. Moreover, although we have demonstrated successful in vivo tissue regeneration induced by phage, we believe future studies are needed to evaluate the in vivo biodistribution and potential risks of the phage-based biomaterials. PMID:27153341
Halliday, Jo EB; Chase-Topping, Margo E; Pearce, Michael C; McKendrick, Iain J; Allison, Lesley; Fenlon, Dave; Low, Chris; Mellor, Dominic J; Gunn, George J; Woolhouse, Mark EJ
2006-01-01
Background E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity. Methods A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically. Results The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157. Conclusion PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT. PMID:17140453
Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; Breitbart, Mya; Edwards, Robert A.
2015-01-01
Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. We propose adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution. PMID:26005436
Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; ...
2015-05-08
Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set ofmore » publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.« less
Phage survival: the biodegradability of M13 phage display library in vitro.
Tóthová, L'ubomíra; Bábíčková, Janka; Celec, Peter
2012-01-01
Administration of bacteriophages is used for phage therapy modulation of gut microbiome or for in vivo phage display. The aim of the study was to analyze the survival of M13 phage in different body fluids and tissues in vitro. The survival of M13 phage was measured in vitro in human blood, saliva, urine, artificial gastric juice (AGJ), and mouse homogenates of stomach, jejunum, and colon after defined time points (5, 15, or 45 Min). The plates were inspected after overnight incubation and the plaques were counted. No phage was recovered after 5 Min of incubation with AGJ. In urine, the phage survival was decreased by 44% after 5 Min of incubation (P = 0.004). In saliva, the recovered titer was decreased by 33% and 88% (P < 0.05) after 15 and 45 Min, respectively. Phage coincubation with jejunum homogenate led to significant decrease of phage titer by 72% (P < 0.01) after 15 Min and by 99% (P < 0.001) after 45 Min. Decreased survival of M13 phage depending on time of incubation was proved under several in vitro conditions, with low pH in the AGJ having the most detrimental effect on phage survival. Phage pharmacokinetics described in vitro might have applications for the use of bacteriophages in vivo. © 2012 International Union of Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia
Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set ofmore » publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.« less
A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.
Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K
2013-01-01
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.
2012-01-01
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180
Gill, Jason J.; Summer, Elizabeth J.; Russell, William K.; Cologna, Stephanie M.; Carlile, Thomas M.; Fuller, Alicia C.; Kitsopoulos, Kate; Mebane, Leslie M.; Parkinson, Brandi N.; Sullivan, David; Carmody, Lisa A.; Gonzalez, Carlos F.; LiPuma, John J.; Young, Ry
2011-01-01
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages. PMID:21804006
The North Sea goes viral: Occurrence and distribution of North Sea bacteriophages.
Garin-Fernandez, Alexa; Pereira-Flores, Emiliano; Glöckner, Frank Oliver; Wichels, Antje
2018-06-01
Marine viruses are dominated by phages and have an enormous influence on microbial population dynamics, due to lysis and horizontal gene transfer. The aim of this study is to analyze the occurrence and diversity of phages in the North Sea, considering the virus-host interactions and biogeographic factors. The virus community of four sampling stations were described using virus metagenomics (viromes). The results show that the virus community was not evenly distributed throughout the North Sea. The dominant phage members were identified as unclassified phage group, followed by Caudovirales order. Myoviridae was the dominant phage family in the North Sea, which occurrence decreased from the coast to the open sea. In contrast, the occurrence of Podoviridae increased and the occurrence of Siphoviridae was low throughout the North Sea. The occurrence of other groups such as Phycodnaviridae decreased from the coast to the open sea. The coastal virus community was genetically more diverse than the open sea community. The influence of riverine inflow and currents, for instance the English Channel flow affects the genetic virus diversity with the community carrying genes from a variety of metabolic pathways and other functions. The present study offers the first insights in the virus community in the North Sea using viromes and shows the variation in virus diversity and the genetic information moved from coastal to open sea areas. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Hannigan, Geoffrey D.; Duhaime, Melissa B.; Koutra, Danai
2018-01-01
Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks. PMID:29668682
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva
2016-12-01
Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.
Hannigan, Geoffrey D; Duhaime, Melissa B; Koutra, Danai; Schloss, Patrick D
2018-04-01
Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks.
Singh, Sudhir Kumar; Bharati, Akhilendra Pratap; Singh, Neha; Pandey, Praveen; Joshi, Pankaj; Singh, Kavita; Mitra, Kalyan; Gayen, Jiaur R.; Sarkar, Jayanta; Akhtar, Md. Sohail
2014-01-01
Streptococcus equi is the causative agent of the highly contagious disease “strangles” in equines and zoonotic meningitis in human. Spreading of infection in host tissues is thought to be facilitated by the bacterial gene encoded extracellular hyaluronate lyase (HL), which degrades hyaluronan (HA), chondroitin 6-sulfate, and dermatan sulfate of the extracellular matrix). The clinical strain S. equi 4047 however, lacks a functional extracellular HL. The prophages of S. equi and other streptococci encode intracellular HLs which are reported to partially degrade HA and do not cleave any other glycosaminoglycans. The phage HLs are thus thought to play a role limited to the penetration of streptococcal HA capsules, facilitating bacterial lysogenization and not in the bacterial pathogenesis. Here we systematically looked into the structure-function relationship of S. equi 4047 phage HL. Although HA is the preferred substrate, this HL has weak activity toward chondroitin 6-sulfate and dermatan sulfate and can completely degrade all of them. Even though the catalytic triple-stranded β-helix domain of phage HL is functionally independent, its catalytic efficiency and specificity is influenced by the N-terminal domain. The phage HL also interacts with human transmembrane glycoprotein CD44. The above results suggest that the streptococci can use phage HLs to degrade glycosaminoglycans of the extracellular matrix for spreading virulence factors and toxins while utilizing the disaccharides as a nutrient source for proliferation at the site of infection. PMID:25378402
Singh, Sudhir Kumar; Bharati, Akhilendra Pratap; Singh, Neha; Pandey, Praveen; Joshi, Pankaj; Singh, Kavita; Mitra, Kalyan; Gayen, Jiaur R; Sarkar, Jayanta; Akhtar, Md Sohail
2014-12-19
Streptococcus equi is the causative agent of the highly contagious disease "strangles" in equines and zoonotic meningitis in human. Spreading of infection in host tissues is thought to be facilitated by the bacterial gene encoded extracellular hyaluronate lyase (HL), which degrades hyaluronan (HA), chondroitin 6-sulfate, and dermatan sulfate of the extracellular matrix). The clinical strain S. equi 4047 however, lacks a functional extracellular HL. The prophages of S. equi and other streptococci encode intracellular HLs which are reported to partially degrade HA and do not cleave any other glycosaminoglycans. The phage HLs are thus thought to play a role limited to the penetration of streptococcal HA capsules, facilitating bacterial lysogenization and not in the bacterial pathogenesis. Here we systematically looked into the structure-function relationship of S. equi 4047 phage HL. Although HA is the preferred substrate, this HL has weak activity toward chondroitin 6-sulfate and dermatan sulfate and can completely degrade all of them. Even though the catalytic triple-stranded β-helix domain of phage HL is functionally independent, its catalytic efficiency and specificity is influenced by the N-terminal domain. The phage HL also interacts with human transmembrane glycoprotein CD44. The above results suggest that the streptococci can use phage HLs to degrade glycosaminoglycans of the extracellular matrix for spreading virulence factors and toxins while utilizing the disaccharides as a nutrient source for proliferation at the site of infection. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher M.; Bidle, Kay D., E-mail: bidle@marine.rutgers.edu
2014-10-15
Infection dynamics (saturation kinetics, infection efficiency, adsorption and burst size) for the Aureococcus anophagefferens-Brown Tide virus (AaV) system were investigated using susceptible and resistant strains. Adsorption assays revealed that virus affinity to the cell surface is a key determinant of infectivity. Saturation of infection occurred at a multiplicity of infection (MOI) of 8 viruses per host and resulted in ∼90–95% of infected cells, with burst sizes ranging from 164 to 191. Insight from the AaV genome implicates recycling of host nucleotides rather than de novo synthesis as a constraint on viral replication. Viral yields and mean burst sizes were significantlymore » diminished with increasing MOI. This phenomenon, which was reminiscent of phage-induced ‘lysis from without’, appeared to be caused by viral contact and was unrelated to bacteria, signaling/toxic compounds, or defective interfering viruses. We posit that high-MOI effects attenuate viral proliferation in natural systems providing a negative feedback on virus-induced bloom collapse.« less
Genome Sequences of 12 Cluster AN Arthrobacter Phages
Lee-Soety, Julia Y.; Bhatt, Shantanu; Adair, Tamarah L.; Bonilla, J. Alfred; Klyczek, Karen K.; Harrison, Melinda; Garlena, Rebecca A.; Bowman, Charles A.; Russell, Daniel A.; Jacobs-Sera, Deborah
2017-01-01
ABSTRACT Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, ranging from 15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster AN Arthrobacter phages. PMID:29122859
Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio
2014-01-01
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478
Emerging methods to study bacteriophage infection at the single-cell level.
Dang, Vinh T; Sullivan, Matthew B
2014-01-01
Bacteria and their viruses (phages) are abundant across diverse ecosystems and their interactions influence global biogeochemical cycles and incidence of disease. Problematically, both classical and metagenomic methods insufficiently assess the host specificity of phages and phage-host infection dynamics in nature. Here we review emerging methods to study phage-host interaction and infection dynamics with a focus on those that offer resolution at the single-cell level. These methods leverage ever-increasing sequence data to identify virus signals from single-cell amplified genome datasets or to produce primers/probes to target particular phage-bacteria pairs (digital PCR and phageFISH), even in complex communities. All three methods enable study of phage infection of uncultured bacteria from environmental samples, while the latter also discriminates between phage-host interaction outcomes (e.g., lytic, chronic, lysogenic) in model systems. Together these techniques enable quantitative, spatiotemporal studies of phage-bacteria interactions from environmental samples of any ecosystem, which will help elucidate and predict the ecological and evolutionary impacts of specific phage-host pairings in nature.
[Peptide phage display in biotechnology and biomedicine].
Kuzmicheva, G A; Belyavskaya, V A
2016-07-01
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Bodier-Montagutelli, Elsa; Morello, Eric; L'Hostis, Guillaume; Guillon, Antoine; Dalloneau, Emilie; Respaud, Renaud; Pallaoro, Nikita; Blois, Hélène; Vecellio, Laurent; Gabard, Jérôme; Heuzé-Vourc'h, Nathalie
2017-08-01
Bacterial respiratory tract infections (RTIs) are increasingly difficult to treat due to evolving antibiotic resistance. In this context, bacteriophages (or phages) are part of the foreseen alternatives or combination therapies. Delivering phages through the airways seems more relevant to accumulate these natural antibacterial viruses in proximity to their bacterial host, within the infectious site. Areas covered: This review addresses the potential of phage therapy to treat RTIs and discusses preclinical and clinical results of phages administration in this context. Recent phage formulation and aerosolization attempts are also reviewed, raising technical challenges to achieve efficient pulmonary deposition via inhalation. Expert opinion: Overall, the inhalation of phages as antibacterial treatment seems both clinically relevant and technically feasible. Several crucial points still need to be investigated, such as phage product pharmacokinetics and immunogenicity. Furthermore, given phage-specific features, appropriate regulatory and manufacturing guidelines will need to be defined. Finally, randomized controlled clinical trials should be carried out to establish phage therapy's clinical positioning in the antimicrobial arsenal against RTIs.
McCallin, Shawna; Alam Sarker, Shafiqul; Barretto, Caroline; Sultana, Shamima; Berger, Bernard; Huq, Sayeda; Krause, Lutz; Bibiloni, Rodrigo; Schmitt, Bertrand; Reuteler, Gloria; Brüssow, Harald
2013-09-01
Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
Hobbs, Zack; Abedon, Stephen T
2016-04-01
Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships
Pope, Welkin H.; Mavrich, Travis N.; Garlena, Rebecca A.; Guerrero-Bustamante, Carlos A.; Jacobs-Sera, Deborah; Montgomery, Matthew T.; Russell, Daniel A.; Warner, Marcie H.
2017-01-01
ABSTRACT The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. PMID:28811342
The scope of phage display for membrane proteins.
Vithayathil, Rosemarie; Hooy, Richard M; Cocco, Melanie J; Weiss, Gregory A
2011-12-09
Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7(+) helper phage. The modified phage coat of KO7(+) can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7(+) phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J
2015-09-09
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.
A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome
O’Hara, Brendan J.
2017-01-01
Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution. PMID:28594826
A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.
O'Hara, Brendan J; Barth, Zachary K; McKitterick, Amelia C; Seed, Kimberley D
2017-06-01
Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.
Yamamoto, N; Naraparaju, V R; Moore, M; Brent, L H
1997-03-01
A serum glycoprotein, Gc protein (vitamin D3-binding protein), can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor for MAF. Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates a remarkably high titered macrophage-activating factor (GcMAF). When peripheral blood monocytes/ macrophages (designated macrophages) of 33 systemic lupus erythematosus patients were incubated with GcMAF (100 pg/ml), the macrophages of all patients were activated as determined by superoxide generation. However, the precursor activity of patient plasma Gc protein was lost or reduced in these patients. Loss of the precursor activity was the result of deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase activity found in the patient plasma. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Deglycosylated Gc protein cannot be converted to macro-phage-activating factor. The resulting defect in macro-phage activation may lead to an inability to clear pathogenic immune complexes. Thus, elevated plasma alpha-N-acetylgalactosaminidase activity resulting in the loss of MAF precursor activity and reduced macro-phage activity may play a role in the pathogenesis of systemic lupus erythematosus.
Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.
Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire
2015-04-08
Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.
Comparative genomics of 9 novel Paenibacillus larvae bacteriophages
Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.
2016-01-01
ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559
Cytotoxic Tumor-Targeting Peptides From In Vivo Phage Display.
Northup, Jessica R Newton; Deutscher, Susan L
2016-01-01
We previously utilized an in vivo peptide phage display selection technique, which included the use of detergent elution of phage from excised tumor, to obtain tumor-targeting phage with the ability to extravasate the vasculature and bind directly to prostate tumor tissue. It is hypothesized that this same in vivo phage selection technique can be used to functionally select for molecules that not only bind to cancer cells but also kill them. Here we analyzed two different in vivo phage display selected phage clones, G1 and H5, retrieved from PC-3 human prostate carcinoma xenografted tumors. First, cell de-attachment as an endpoint criterion for apoptosis and cell cycle was examined. After 2.5 hours incubation with G1 phage, PC-3 cell attachment was reduced by 23.8% and the percent of cell population in M phase reduced by 32.1%. In comparison, PC-3 cells incubated with H5 phage had a reduction of 25.0% cell attachment and 33.6% of cell population in M phase. These changes in combination with elevated caspase activation within cells in M phase, and no significant changes to G1/G0 or S phase cell populations suggest that the cytotoxic phages are targeting actively dividing PC-3 cells. Microscopic studies were also performed to further analyze the nature of cytotoxicity of these two phage clones. It was found that G1 phage induced and co- localized with tubulin based projections within apoptotic cells, while H5 phage did not. These phage may form the foundation for a new class of targeted prostate cancer therapeutic agents.
Samoylov, Alexandre; Cochran, Anna; Schemera, Bettina; Kutzler, Michelle; Donovan, Caitlin; Petrenko, Valery; Bartol, Frank; Samoylova, Tatiana
2015-12-20
Phage display is based on genetic engineering of phage coat proteins resulting in fusion peptides displayed on the surface of phage particles. The technology is widely used for generation of phages with novel characteristics for numerous applications in biomedicine and far beyond. The focus of this study was on development of phage-peptide constructs that stimulate production of antibodies against gonadotropin releasing hormone (GnRH). Phage-peptide constructs that elicit production of neutralizing GnRH antibodies can be used for anti-fertility and anti-cancer applications. Phage-GnRH constructs were generated via selection from a phage display library using several types of GnRH antibodies as selection targets. Such phage constructs were characterized for sequence similarities to GnRH peptide and frequency of their occurrence in the selection rounds. Five of the constructs with suitable characteristics were tested in mice as a single dose 5×10(11) virions (vir) vaccine and were found to be able to stimulate production of GnRH-specific antibodies, but not to suppress testosterone (indirect indicator of GnRH antibody neutralizing properties). Next, one of the constructs was tested at a higher dose of 2×10(12) vir per mouse in combination with a poly(lactide-co-glycolide) (PLGA)-based adjuvant. This resulted in multifold increase in GnRH antibody production and significant reduction of serum testosterone, indicating that antibodies produced in response to the phage-GnRH immunization possess neutralizing properties. To achieve optimal immune responses for desired applications, phage-GnRH constructs can be modified with respect to flanking sequences of GnRH-like peptides displayed on phage. Anticipated therapeutic effects also might be attained using optimized phage doses, a combination of several constructs in a single treatment, or application of adjuvants and advanced phage delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico
2012-01-01
Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Xiao-Hui; Tang, Liang; Liu, Dong; Sun, Hong-Mei; Zhou, Cai-Cun; Tan, Li-Song; Wang, Li-Ping; Zhang, Pei-De; Zhang, Shang-Quan
2006-10-01
Angiogenesis plays an important role in growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is considered as a fundamental regulator for angiogenesis. This study was to construct a recombinant T7 phage vaccine expressing xenogenic VEGF on the capsid, and test its inhibitory effect on Lewis lung cancer cells in mice. VEGF gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from human lung cancer tissues, and inserted into phage using T7 Select10-3b kit to construct T7 Select10-3b_VEGF vaccine. The titer of prepared phage reached 1x10(13) pfu/ml. C57BL/6J mice were randomly divided into 3 groups: T7 Select10-3b_VEGF vaccine group (T7-VEGF), T7 phage (T7) group, normal saline (NS) group (10 mice/group). Each mouse was injected with Freundos adjuvant mixed with 1x10(12) pfu/200 microl T7 Select10-3b_VEGF, or T7, or normal saline once a week for 4 weeks. Lewis lung carcinoma model (LL/2) was established in C57BL/6J mice after 4-week immunization. Tumor growth and mouse's physical status were observed during immunization. Tumor weight and serum level of specific anti-VEGF antibody were measured by enzyme-linked immunosorbent assay (ELISA). Microvessel density (MVD) of tumors was detected by immunohistochemistry 14 days after the inoculation of tumor cells. Tumor weight of T7-VEGF vaccine group,T7 group, and NS group were (0.543+/-0.259)g, (0.982+/-0.359)g, (1.169+/-0.460)g, respectively. Tumor weight of T7-VEGF vaccine group was significantly lower than that of NS group (P<0.01). Serum anti-VEGF antibody level in T7-VEGF vaccine group was 1:1,000. MVD was significantly lower in T7-VEGF vaccine group than in NS group (8.5+/-0.8 vs 18.5+/-1.6, P<0.05). MVD in T7 group was 16.4+/-1.3. Recombinant T7 phage vaccine expressing xenogenic VEGF can break immunologic tolerance against self-VEGF and inhibit the growth of Lewis lung cancer cells.
Zhang, Jiping; Valianou, Matthildi; Simmons, Heidi; Robinson, Matthew K.; Lee, Hyung-Ok; Mullins, Stefanie R.; Marasco, Wayne A.; Adams, Gregory P.; Weiner, Louis M.; Cheng, Jonathan D.
2013-01-01
Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.—Zhang, J., Valianou, M., Simmons, H., Robinson, M. K., Lee, H.-O., Mullins, S. R., Marasco, W. A., Adams, G. P., Weiner, L. M., Cheng, J. D. Identification of inhibitory ScFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. PMID:23104982
Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis
USDA-ARS?s Scientific Manuscript database
Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...
Phage display for generating peptide reagents.
Brigati, Jennifer R; Samoylova, Tatiana I; Jayanna, Prashanth K; Petrenko, Valery A
2008-02-01
This unit presents detailed protocols for selection and propagation of landscape phages, which are fusions of filamentous phage fd (or its close relatives M13 and f1) and foreign DNA that result in chimeric phage virions with foreign peptides (8 to 9 amino acids long) covering the entire surface of the phage particles. These landscape phages bind specifically to mammalian and bacterial cells, spores, or discrete molecular targets. (c) 2008 by John Wiley & Sons, Inc.
Thioredoxin is required for filamentous phage assembly.
Russel, M; Model, P
1985-01-01
Sequence comparisons show that the fip gene product of Escherichia coli, which is required for filamentous phage assembly, is thioredoxin. Thioredoxin serves as a cofactor for reductive processes in many cell types and is a constituent of phage T7 DNA polymerase. The fip-1 mutation makes filamentous phage and T7 growth temperature sensitive in cells that carry it. The lesion lies within a highly conserved thioredoxin active site. Thioredoxin reductase (NADPH), as well as thioredoxin, is required for efficient filamentous phage production. Mutant phages defective in phage gene I are particularly sensitive to perturbations in the fip-thioredoxin system. A speculative model is presented in which thioredoxin reductase, thioredoxin, and the gene I protein interact to drive an engine for filamentous phage assembly. Images PMID:3881756
Tangney, Mark; Fitzgerald, Gerald F
2002-04-23
Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.
Cui, Haiying; Yuan, Lu; Lin, Lin
2017-12-01
In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection
Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui
2016-01-01
Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325
Phage display—A powerful technique for immunotherapy
Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej
2012-01-01
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display. PMID:22906939
Bacteriophage Procurement for Therapeutic Purposes
Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej
2016-01-01
Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518
Chen, Juhong; Alcaine, Samuel D; Jackson, Angelyca A; Rotello, Vincent M; Nugen, Sam R
2017-04-28
T7 bacteriophages (phages) have been genetically engineered to carry the lacZ operon, enabling the overexpression of beta-galactosidase (β-gal) during phage infection and allowing for the enhanced colorimetric detection of Escherichia coli (E. coli). Following the phage infection of E. coli, the enzymatic activity of the released β-gal was monitored using a colorimetric substrate. Compared with a control T7 phage, our T7 lacZ phage generated significantly higher levels of β-gal expression following phage infection, enabling a lower limit of detection for E. coli cells. Using this engineered T7 lacZ phage, we were able to detect E. coli cells at 10 CFU·mL -1 within 7 h. Furthermore, we demonstrated the potential for phage-based sensing of bacteria antibiotic resistance profiling using our T7 lacZ phage, and subsequent β-gal expression to detect antibiotic resistant profile of E. coli strains.
Grose, Julianne H; Casjens, Sherwood R
2014-11-01
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
Grose, Julianne H.; Casjens, Sherwood R.
2014-01-01
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328
Munsch-Alatossava, Patricia; Alatossava, Tapani
2013-01-01
The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed. PMID:24400001
Phage therapy dosing: The problem(s) with multiplicity of infection (MOI).
Abedon, Stephen T
2016-01-01
The concept of bacteriophage multiplicity of infection (MOI) - ratios of phages to bacteria - historically has been less easily applied than many phage workers would prefer or, perhaps, may be aware. Here, toward clarification of the concept, I discuss multiplicity of infection in terms of semantics, history, mathematics, pharmacology, and actual practice. For phage therapy and other biocontrol purposes it is desirable, especially, not to solely employ MOI to describe what phage quantities have been applied during dosing. Why? Bacterial densities can change between bacterial challenge and phage application, may not be easily determined immediately prior to phage dosing, and/or target bacterial populations may not be homogeneous with regard to phage access and thereby inconsistent in terms of what MOI individual bacteria experience. Toward experiment reproducibility and as practiced generally for antibacterial application, phage dosing instead should be described in terms of concentrations of formulations (phage titers) as well as volumes applied and, in many cases, absolute numbers of phages delivered. Such an approach typically will be far more desirable from a pharmacological perspective than solely indicating ratios of agents to bacteria. This essay was adapted, with permission, from an appendix of the 2011 monograph, Bacteriophages and Biofilms , Nova Science Publishers.
Munsch-Alatossava, Patricia; Alatossava, Tapani
2013-12-24
The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.
Stochasticity in the Expression of LamB and its Affect on λ phage Infection
NASA Astrophysics Data System (ADS)
Chapman, Emily; Wu, Xiao-Lun
2006-03-01
λ phage binds to E. Coli's lamB protein and injects its DNA into the cell. The phage quickly replicates and after a latent period the bacteria bursts, emitting mature phages. We developed a mathematical model based on the known physical events that occur when a λ phage infects an E.Coli cell. The results of these models predict that the bacteria and phage populations become extinct unless the parameters of the model are very finely tuned, which is untrue in the nature. The lamB protein is part of the maltose regulon and can be repressed to minimal levels when grown in the absence of inducer. Therefore, a cell that is not expressing any lamB protein at that moment is resistant against phage infection. We studied the dynamic relationship between λ phage and E. Coli when the concentration of phage greatly outnumbers the concentration of bacteria. We study how the stochasticity of the expression of lamB affects the percentage of cells that the λ phage infects. We show that even in the case when the maltose regulon is fully induced a percentage of cells continue to persist against phage infection.
Phage Therapy: Eco-Physiological Pharmacology
Abedon, Stephen T.
2014-01-01
Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies), impact on body-associated microbiota (as ecological communities), and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology. PMID:25031881
Uchiyama, Jumpei; Takemura-Uchiyama, Iyo; Kato, Shin-ichiro; Sato, Miho; Ujihara, Takako; Matsui, Hidehito; Hanaki, Hideaki; Daibata, Masanori; Matsuzaki, Shigenobu
2014-01-01
Staphylococcus aureus is a clinically important bacterium that is commensal in both humans and animals. Bacteriophage (phage) attachment to the host bacterial surface is an important process during phage infection, which involves interactions between phage receptor-binding proteins and host receptor molecules. However, little information is available on the receptor-binding protein of S. aureus phages. S. aureus virulent phages S24-1 and S13′ (family Podoviridae, genus AHJD-like viruses) were isolated from sewage. In the present study, we investigated the receptor-binding protein of AHJD-like viruses using phage S24-1. First, based on a comparative genomic analysis of phages S24-1 and S13′, open reading frame 16 (ORF16) of phage S24-1 was speculated to be the receptor-binding protein, which possibly determines the host range. Second, we demonstrated that this was the receptor-binding protein of phage S24-1. Third, our study suggested that wall teichoic acids in the cell walls of S. aureus are the main receptor molecules for ORF16 and phage S24-1. Finally, the C-terminal region of ORF16 may be essential for binding to S. aureus. These results strongly suggest that ORF16 of phage S24-1 and its homologs may be the receptor-binding proteins of AHJD-like viruses. PMID:24591378
Adapter-directed display: a modular design for shuttling display on phage surfaces.
Wang, Kevin Caili; Wang, Xinwei; Zhong, Pingyu; Luo, Peter Peizhi
2010-02-05
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems. Copyright 2009 Elsevier Ltd. All rights reserved.
Application of a phage in decontaminating Vibrio parahaemolyticus in oysters.
Zhang, Hui; Yang, Zhenquan; Zhou, Yan; Bao, Hongduo; Wang, Ran; Li, Tingwu; Pang, Maoda; Sun, Lichang; Zhou, Xiaohui
2018-06-20
Vibrio parahaemolyticus is a major pathogen that is mainly associated with seafood and is a global concern of food safety. With high prevalence of contamination in food, efficient strategy is needed to decontaminate those contaminated foods and control the emergence of vibriosis. In the present study, a V. parahaemolyticus-specific phage vB_VpaS_OMN (designated as phage OMN) was isolated from oyster. Phage OMN had good pH (5-9) and temperature tolerance (<50 °C). Phage OMN exhibited broad host range against isolates of V. parahaemolyticus (20/31). After treatment with phage OMN in the liquid condition for 7 h, the number of V. parahaemolyticus was reduced significantly compared to control treatment. When phage OMN was applied to oyster samples for 48 and 72 h, 90% and 99%, respectively, of V. parahaemolyticus was inactivated on Oyster meat surface. Sequence analysis showed that phage OMN had a 42.202 bp genome and revealed about 59.04% homology with Cronobacter phage vB_CsaP_Ss1. Only 10 CDSs can be predicted based on the GenBank database, while 42% of the CDSs were unique to OMN and had no known function, indicating that phage OMN is a new lytic phage. Fully understanding of the function for the phage genes and the properties of the phage is important for the development of strategies to control V. parahaemolyticus contamination in oysters and disease in aquaculture. Copyright © 2018 Elsevier B.V. All rights reserved.
Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe
2014-10-01
So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.
Kalatzis, Panos G.; Rørbo, Nanna; Castillo, Daniel; Mauritzen, Jesper Juel; Jørgensen, Jóhanna; Kokkari, Constantina; Zhang, Faxing; Katharios, Pantelis; Middelboe, Mathias
2017-01-01
Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics. PMID:28531104
Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L.; Krych, Lukasz; Hansen, Lars H.; Nielsen, Dennis S.; Sørensen, Søren J.; Heller, Knut J.; van Sinderen, Douwe
2017-01-01
ABSTRACT Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. PMID:28754704
Mustaev, Arkady; Roberts, Jeffrey; Gottesman, Max
2017-05-27
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
A new helper phage for improved monovalent display of Fab molecules.
Beaber, John W; Tam, Eric M; Lao, Llewelyn S; Rondon, Isaac J
2012-02-28
Phage display technology is a powerful tool for the identification of novel antibodies for drug discovery. Phage display libraries have been constructed with massive diversity, but their use may be hindered by limited antibody display levels when rescued with the M13KO7 helper phage. Variants of M13KO7 have been constructed previously that increase the levels of display of rescued phage, but all produce phage that display multiple copies of the antibody fragment on their surface and have reduced titer and infectivity. In this study, we describe a new helper phage, XP5, which increased the display level of Fab molecules more than two-fold compared to phage rescued with M13KO7. XP5 uses a combination of ribosome binding site spacing alterations and rare codon clusters to reduce the expression of pIII from the helper phage. This reduction in pIII expression leads to an increase in the incorporation of pIII-Fab fusions during phage rescue. The rescued phage displayed a single copy of the Fab molecule, preventing any avidity effects during the selection process. This also suggests that the percentage of the population of phage displaying a Fab molecule is increased when rescued with XP5. Additionally, the phage titers and infectivity are comparable to libraries rescued with M13KO7. After two rounds of panning we observed a nearly 5-fold increase in the number of antigen binding Fab molecules compared to panning conducted with the same library rescued with M13KO7. The nature of the mutations in XP5 makes it a universal substitute for M13KO7 in pIII-based phage display, compatible with most phagemids and bacterial strains. Copyright © 2011 Elsevier B.V. All rights reserved.
Lu, Z.; Altermann, E.; Breidt, F.; Kozyavkin, S.
2010-01-01
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage. PMID:20118355
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.
Ploss, Martin; Kuhn, Andreas
2011-09-26
Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage
2011-01-01
Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062
Kęsik-Szeloch, Agata; Drulis-Kawa, Zuzanna; Weber-Dąbrowska, Beata; Kassner, Jerzy; Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lusiak-Szelachowska, Marzanna; Zaczek, Maciej; Górski, Andrzej; Kropinski, Andrew M
2013-03-28
Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Electron microscopy, burst size, host range, sensitivity of phage particles to temperature, chloroform, pH, and restriction digestion of phage DNA were used to characterize Klebsiella phages. Of the 32 isolated phages eight belonged to the family Myoviridae, eight to the Siphoviridae whilst the remaining 16 belonged to the Podoviridae. The host range of these phages was characterised against 254 clinical Enterobacteriaceae strains including multidrug resistant Klebsiella isolates producing extended-spectrum beta-lactamases (ESBLs). Based on their lytic potential, six of the phages were further characterised for burst size, physicochemical properties and sensitivity to restriction endonuclease digestion. In addition, five were fully sequenced. Multiple phage-encoded host resistance mechanisms were identified. The Siphoviridae phage genomes (KP16 and KP36) contained low numbers of host restriction sites similar to the strategy found in T7-like phages (KP32). In addition, phage KP36 encoded its own DNA adenine methyltransferase. The φKMV-like KP34 phage was sensitive to all endonucleases used in this study. Dam methylation of KP34 DNA was detected although this was in the absence of an identifiable phage encoded methyltransferase. The Myoviridae phages KP15 and KP27 both carried Dam and Dcm methyltransferase genes and other anti-restriction mechanisms elucidated in previous studies. No other anti-restriction mechanisms were found, e.g. atypical nucleotides (hmC or glucosyl hmC), although Myoviridae phage KP27 encodes an unknown anti-restriction mechanism that needs further investigation.
Anti-CDR3 Therapy for B-Cell Malignancies
2013-10-01
1-5 in the report). The "Tomlinson" human antibody phage library will be used to pan for antibodies that bind these target CDR3s and not the parent...selection of phage to a test antigen. Successful expression will lead directly to the selection of CDR3-specific antibody-encoding phage : from which we... phage that bind to the purified candidate antibody and not to irrelevant antibodies. Phage are from single chain Fv library. Sequence phage that
Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis.
Roach, Dwayne R; Sjaarda, David R; Castle, Alan J; Svircev, Antonet M
2013-05-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.
Host Exopolysaccharide Quantity and Composition Impact Erwinia amylovora Bacteriophage Pathogenesis
Roach, Dwayne R.; Sjaarda, David R.; Svircev, Antonet M.
2013-01-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan. PMID:23503310
Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.
2015-01-01
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678
PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES
Price, Winston H.
1950-01-01
1. Four strains of Staphylococcus muscae have been isolated which differ in their growth rates and phage syntheses in Fildes' synthetic medium. 2. Two of the strains when singly infected cannot release phage in Fildes' synthetic medium unless a substance present in certain acid-hydrolyzed proteins is added to the medium. One of these strains also requires other substance(s) present in acid-hydrolyzed proteins in order to grow in Fildes' medium. 3. The two strains which do not require the addition of the phage-stimulating factor have been found either to synthesize this substance, or one similar to it. One of these strains will not grow in Fildes' medium unless substance(s) present in acid-hydrolyzed proteins is added to the medium. 4. The purified acid-hydrolyzed protein factor necessary for virus liberation does not affect the multiplication rate of uninfected S. muscae cells in Fildes' synthetic medium. 5. The substance is not needed for the adsorption or the invasion of the host cell by the virus. In the absence of the factor, the virus is adsorbed to the cell and "kills" it. 6. An analysis carried out by means of the one-step growth curve technique has indicated that the substance is not concerned simply with the mechanism of virus release, but is necessary for some initial stage in virus synthesis. 7. With one bacterial strain not requiring the AHPF, aspartic acid had to be present at least during the minimum latent period for the cell to form virus. 8. In the absence of aspartic acid, the virus was adsorbed to the cell and killed it, but no virus was released from singly infected bacteria. 9. If the cells were grown in a medium containing aspartic acid and then resuspended in the medium minus aspartic acid, no virus was released, although such cells contained at least two times the amount of aspartic acid necessary for the burst size in the complete medium. 10. Aspartic acid, a constituent of the virus particle, appears from an analysis of one-step growth curves to take part in the initial phase of phage synthesis. 11. The effect of amino acids on virus formation is discussed in relation to the time sequence of virus protein and desoxyribonucleic acid synthesis. PMID:14824494
Identification of chondrocyte-binding peptides by phage display.
Cheung, Crystal S F; Lui, Julian C; Baron, Jeffrey
2013-07-01
As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. Copyright © 2013 Orthopaedic Research Society.
Engineering M13 for phage display.
Sidhu, S S
2001-09-01
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.
Therapeutic and Prophylactic Applications of Bacteriophage Components in Modern Medicine
Adhya, Sankar; Merril, Carl R.; Biswas, Biswajit
2014-01-01
As the interactions of phage with mammalian innate and adaptive immune systems are better delineated and with our ability to recognize and eliminate toxins and other potentially harmful phage gene products, the potential of phage therapies is now being realized. Early efforts to use phage therapeutically were hampered by inadequate phage purification and limited knowledge of phage–bacterial and phage–human relations. However, although use of phage as an antibacterial therapy in countries that require controlled clinical studies has been hampered by the high costs of patient trials, their use as vaccines and the use of phage components such as lysolytic enzymes or lysozymes has progressed to the point of commercial applications. Recent studies concerning the intimate associations between mammalian hosts and bacterial and phage microbiomes should hasten this progress. PMID:24384811
Bacteriophages in food fermentations: new frontiers in a continuous arms race.
Samson, Julie E; Moineau, Sylvain
2013-01-01
Phage contamination represents an important risk to any process requiring bacterial growth, particularly in the biotechnology and food industries. The presence of unwanted phages may lead to manufacturing delays, lower quality product, or, in the worst cases, total production loss. Thus, constant phage monitoring and stringent application of the appropriate control measures are indispensable. In fact, a systematic preventive approach to phage contamination [phage analysis and critical control points (PACCP)] should be put in place. In this review, sources of phage contamination and novel phage detection methods are described, with an emphasis on bacterial viruses that infect lactic acid bacteria used in food fermentations. Recent discoveries related to antiphage systems that are changing our views on phage-host interactions are highlighted. Finally, future directions are also discussed.
Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland.
Salem, M; Virtanen, S; Korkeala, H; Skurnik, M
2015-03-01
Bacteriophages infect bacteria, and they are present everywhere in the world including the intestinal tracts of animals. Yersiniosis is a common foodborne infection caused by Yersinia enterocolitica and Yersinia pseudotuberculosis. As these bacteria are frequently isolated from pigs, we wanted to know whether Yersinia-specific bacteriophages are also present in the pig stools and, if so, whether there is a positive or negative association between the prevalence of the Yersinia phages and the pathogenic Yersinia in the stool samples. Altogether 793 pig stool samples collected between November 2010 and March 2012 from 14 Finnish pig farms were screened for the presence of bacteriophages able to infect Y. enterocolitica serotype O:3, O:5,27 or O:9 strains, or Y. pseudotuberculosis serotype O:1a, O:1b or O:3 strains. Yersinia phages were isolated from 90 samples from eight farms. Yersinia enterocolitica O:3 was infected by 59 phages, 28 phages infected serotypes O:3 and O:5,27, and eight phages infected serotypes O:3, O:5,27 and O:9, and Y. pseudotuberculosis O:1a by eight phages. Many phages originating from pigs in the same farm were identical based on their restriction enzyme digestion patterns; 20 clearly different phages were selected for further characterization. Host ranges of these phages were tested with 94 Yersinia strains. Six of the phages infected eight strains, 13 phages infected three strains, and one phage infected only one strain, indicating that the phages had a relatively narrow host range. There was a clear association between the presence of the host bacteria and specific phages in the stools. The isolated bacteriophages may have potential as biocontrol agents for yersiniosis in both humans and pigs in future, and as alternatives or in addition to antibiotics. To our knowledge, this is the first reported isolation of Yersinia-specific phages from pig stool samples. © 2014 The Society for Applied Microbiology.
Purification of phage display-modified bacteriophage T4 by affinity chromatography
2011-01-01
Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development. PMID:21627821
Envisaging bacteria as phage targets
Abedon, Stephen T.
2011-01-01
It can be difficult to appreciate just how small bacteria and phages are or how large, in comparison, the volumes that they occupy. A single milliliter, for example, can represent to a phage what would be, with proper scaling, an “ocean” to you and me. Here I illustrate, using more easily visualized macroscopic examples, the difficulties that a phage, as a randomly diffusing particle, can have in locating bacteria to infect. I conclude by restating the truism that the rate of phage adsorption to a given target bacterium is a function of phage density, that is, titer, in combination with the degree of bacterial susceptibility to adsorption by an encountering phage. PMID:23616932
Dwivedi, Bhakti; Schmieder, Robert; Goldsmith, Dawn B; Edwards, Robert A; Breitbart, Mya
2012-03-04
Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose. Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (http://www.phantome.org/phisigns/; http://phisigns.sourceforge.net/) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study. PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution.
2012-01-01
Background Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose. Results Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (http://www.phantome.org/phisigns/; http://phisigns.sourceforge.net/) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study. Conclusions PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution. PMID:22385976
Madera, Carmen; Monjardín, Cristina; Suárez, Juan E.
2004-01-01
Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may have been due to the higher susceptibility of c2 to pasteurization (936-like phages were found to be approximately 35 times more resistant than c2 strains to treatment of contaminated milk in a plate heat exchanger at 72°C for 15 s). The restriction patterns of 936-like phages isolated from milk and whey were different, indicating that survival to pasteurization does not result in direct contamination of the dairy environment. The main alternative source of phages (commercial bacterial starters) does not appear to significantly contribute to phage contamination. Twenty-four strains isolated from nine starter formulations were generally resistant to phage infection, and very small progeny were generated upon induction of the lytic cycle of resident prophages. Thus, we postulate that a continuous supply of contaminated milk, followed by pasteurization, creates a factory environment rich in diverse 936 phage strains. This equilibrium would be broken if a particular starter strain turned out to be susceptible to infection by one of these 936-like phages, which, as a consequence, became prevalent. PMID:15574937
Thuraisamy, Thujitha; Lodato, Patricia B
2018-05-01
In enterohaemorrhagic Escherichia coli (EHEC), stx1 or stx2 genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both stx phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate stx genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated. Cultures of the EHEC strains TEA028-rne containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively. RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious stx2 phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. stx1 phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures. RNase E scarcity reduces stx2 phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.
Phage as a template to grow bone mineral nanocrystals.
Cao, Binrui; Xu, Hong; Mao, Chuanbin
2014-01-01
Phage display is a biotechnique that fuses functional peptides on the outer surface of filamentous phage by inserting DNA encoding the peptides into the genes of its coat proteins. The resultant peptide-displayed phage particles have been widely used as biotemplates for the synthesis of functional hybrid nanomaterials. Here, we describe the bioengineering of M13 filamentous phage to surface-display bone mineral (hydroxyapatite (HAP))-nucleating peptides derived from dentin matrix protein-1 and using the engineered phage as a biotemplate to grow HAP nanocrystals.
Phage Therapy: Beyond Antibacterial Action.
Górski, Andrzej; Jończyk-Matysiak, Ewa; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Łusiak-Szelachowska, Marzanna; Bagińska, Natalia; Borysowski, Jan; Łobocka, Małgorzata B; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2018-01-01
Until recently, phages were considered as mere "bacteria eaters" with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
2012-09-01
and phage Giraffe exhibits a similar morphology (Fig. 1A). Phage BA39 (Fig. 1E) appears to belong to the Myoviridae family (icosahedral head and...see later) but this assignment is tentative. Monitoring the kinetics of bacterial growth using OmniLogTM system upon infection with Giraffe phage...spores with and without infection by Giraffe phage are shown in Figure 2A and B respectively. The growth of 7702 without phage infection followed a
NASA Astrophysics Data System (ADS)
Essler, Markus; Ruoslahti, Erkki
2002-02-01
In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here we report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the breast-homing peptide. The cDNA insert was homologous to a fragment of aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatography. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.
Recombinant phage probes for Listeria monocytogenes
NASA Astrophysics Data System (ADS)
Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.
2007-10-01
Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.
The Human Gut Phage Community and Its Implications for Health and Disease.
Manrique, Pilar; Dills, Michael; Young, Mark J
2017-06-08
In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.
Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.
2013-01-01
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638
A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes
2013-01-01
Background Ribonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively. Results RNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host’s ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage. Conclusions This comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments. PMID:23391036
First genome sequences of Achromobacter phages reveal new members of the N4 family.
Wittmann, Johannes; Dreiseikelmann, Brigitte; Rohde, Manfred; Meier-Kolthoff, Jan P; Bunk, Boyke; Rohde, Christine
2014-01-27
Multi-resistant Achromobacter xylosoxidans has been recognized as an emerging pathogen causing nosocomially acquired infections during the last years. Phages as natural opponents could be an alternative to fight such infections. Bacteriophages against this opportunistic pathogen were isolated in a recent study. This study shows a molecular analysis of two podoviruses and reveals first insights into the genomic structure of Achromobacter phages so far. Growth curve experiments and adsorption kinetics were performed for both phages. Adsorption and propagation in cells were visualized by electron microscopy. Both phage genomes were sequenced with the PacBio RS II system based on single molecule, real-time (SMRT) technology and annotated with several bioinformatic tools. To further elucidate the evolutionary relationships between the phage genomes, a phylogenomic analysis was conducted using the genome Blast Distance Phylogeny approach (GBDP). In this study, we present the first detailed analysis of genome sequences of two Achromobacter phages so far. Phages JWAlpha and JWDelta were isolated from two different waste water treatment plants in Germany. Both phages belong to the Podoviridae and contain linear, double-stranded DNA with a length of 72329 bp and 73659 bp, respectively. 92 and 89 putative open reading frames were identified for JWAlpha and JWDelta, respectively, by bioinformatic analysis with several tools. The genomes have nearly the same organization and could be divided into different clusters for transcription, replication, host interaction, head and tail structure and lysis. Detailed annotation via protein comparisons with BLASTP revealed strong similarities to N4-like phages. Analysis of the genomes of Achromobacter phages JWAlpha and JWDelta and comparisons of different gene clusters with other phages revealed that they might be strongly related to other N4-like phages, especially of the Escherichia group. Although all these phages show a highly conserved genomic structure and partially strong similarities at the amino acid level, some differences could be identified. Those differences, e.g. the existence of specific genes for replication or host interaction in some N4-like phages, seem to be interesting targets for further examination of function and specific mechanisms, which might enlighten the mechanism of phage establishment in the host cell after infection.
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less
Muhammed, Musemma K; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L; Krych, Lukasz; Hansen, Lars H; Nielsen, Dennis S; Sørensen, Søren J; Heller, Knut J; van Sinderen, Douwe; Vogensen, Finn K
2017-10-01
Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus ), P335, c2 (now C2virus ) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales , family Siphoviridae ) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales , family Siphoviridae ) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. Copyright © 2017 American Society for Microbiology.
Comparative studies with tox plus and tox minus corynebacteriophages.
Holmes, R K; Barksdale, L
1970-06-01
The characteristics of nine inducible temperate corynebacteriophages designated alpha(tox+), beta(tox+), P(tox+), gamma(tox-), pi(tox+), K(tox-), rho(tox-), L(tox+), and delta(tox+) have been compared. Virion morphology and ability to recombine genetically with the well-studied phage beta(tox+) have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage beta(tox+) was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage beta(tox+), latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as beta(tox+) were capable of genetic recombination with beta(tox+), but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with beta(tox+) resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with beta(tox+) differed in these characteristics. The phages capable of genetic recombination with beta(tox+) were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in beta(tox+) and delta(tox+), phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.
Comparative Studies with tox+ and tox− Corynebacteriophages 1
Holmes, Randall K.; Barksdale, Lane
1970-01-01
The characteristics of nine inducible temperate corynebacteriophages designated αtox+, βtox+, Ptox+, γtox−, πtox+, Ktox−, ρtox−, Ltox+, and δtox+ have been compared. Virion morphology and ability to recombine genetically with the well-studied phage βtox+ have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage βtox+ was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage βtox+, latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as βtox+ were capable of genetic recombination with βtox+, but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with βtox+ resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with βtox+ differed in these characteristics. The phages capable of genetic recombination with βtox+ were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in βtox+ and δtox+, phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin. Images PMID:4193835
Bacteriophage Protein–Protein Interactions
Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian
2012-01-01
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812
Rajaram, Kaushik; Losada-Pérez, Patricia; Vermeeren, Veronique; Hosseinkhani, Baharak; Wagner, Patrick; Somers, Veerle; Michiels, Luc
2015-01-01
Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.
Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process
Mahony, Jennifer; Moscarelli, Angelo; Kelleher, Philip; Lugli, Gabriele A.; Ventura, Marco; Settanni, Luca; van Sinderen, Douwe
2017-01-01
Dairy fermentations constitute a perfect “breeding ground” for bacteriophages infecting starter cultures, particularly strains of Lactococcus lactis. In modern fermentations, these phages typically belong to one of three groups, i.e., the 936, P335, and c2 phage groups. Traditional production methods present fewer chemical and physical barriers to phage proliferation compared to modern production systems, while the starter cultures used are typically complex, variable, and undefined. In the current study, a variety of cheese whey, animal-derived rennet, and vat swab samples from artisanal cheeses produced in Sicily were analysed for the presence of lactococcal phages to assess phage diversity in such environments. The complete genomes of 18 representative phage isolates were sequenced, allowing the identification of 10 lactococcal 949 group phages, six P087 group phages, and two members of the 936 group phages. The genetic diversity of these isolates was examined using phylogenetic analysis as well as a focused analysis of the receptor binding proteins, which dictate specific interactions with the host-encoded receptor. Thermal treatments at 63 °C and 83 °C indicate that the 949 phages are particularly sensitive to thermal treatments, followed by the P087 and 936 isolates, which were shown to be much less sensitive to such treatments. This difference may explain the relatively low frequency of isolation of the so-called “rare” 949 and P087 group phages in modern fermentations. PMID:28300778
Characterization and adsorption of Lactobacillus virulent phage P1.
Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W
2016-09-01
Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Żaczek, Maciej; Łusiak-Szelachowska, Marzanna; Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Międzybrodzki, Ryszard; Owczarek, Barbara; Kopciuch, Agnieszka; Fortuna, Wojciech; Rogóż, Paweł; Górski, Andrzej
2016-01-01
In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties toward applied phages (K rate). Among 20 examined patients receiving the MS-1 phage cocktail orally and/or locally, the majority did not show a noticeably higher level of antiphage antibodies in their sera during phage administration. Even in those individual cases with an increased immune response, mostly by induction of IgG and IgM, the presence of antiphage antibodies did not translate into unsatisfactory clinical results of phage therapy. On the other hand, a negative outcome of the treatment occurred in some patients who showed relatively weak production of antiphage antibodies before and during treatment. This may imply that possible induction of antiphage antibodies is not an obstacle to the implementation of phage therapy and support our assumption that the outcome of the phage treatment does not primarily depend on the appearance of antiphage antibodies in sera of patients during therapy. These conclusions are in line with our previous findings. The confirmation of this thesis is of great interest as regards the efficacy of phage therapy in humans.
Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R
2016-08-15
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional display of platelet-binding VWF fragments on filamentous bacteriophage.
Yee, Andrew; Tan, Fen-Lai; Ginsburg, David
2013-01-01
von Willebrand factor (VWF) tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A) confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V) common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.
Kaplan, M H; Chmel, H; Hsieh, H C; Stephens, A; Brinsko, V
1986-01-01
Clustered epidemics of pustulosis due to Staphylococcus aureus occurred in two geographically distant newborn nurseries. In nurseries A and B an attack rate of pustulosis of 0.8 and 2.0 cases per 100 live births occurred, respectively. Experimental phage type 1046/1116 belonging to phage group II dominated clustered epidemics in nursery A, while group II phage type 3A/3C/55/71 and 3A/3C/55 occurred in nursery B. Other group II strains also occasionally produced clustered epidemics. These epidemic strains were found to be making heat-stable dermal exfoliatin toxin A (ETA) which had a pI of 6.8 and a molecular weight of 32,000 and 33,000. ETA-bearing strains did not make bacteriocin. Children infected with ETA-producing strains developed extensive bullous pustulosis. Surveillance cultures of personnel revealed an ETA-bearing strain in only one person. This strain was not the same phage type as the epidemic cluster. In contrast, ETA-bearing epidemic strains were found in the inanimate environment of both nurseries. ETA protein acts as an important virulence factor in the production of neonatal pustulosis infection and appears to be linked with the ability of S. aureus organisms to stick to the inanimate environment. Images PMID:3700612
MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations
NASA Astrophysics Data System (ADS)
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.
1993-04-01
In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.
Fogg, P. C. M.; Rigden, D. J.; Saunders, J. R.; McCarthy, A. J.; Allison, H. E.
2011-01-01
Shigatoxigenic Escherichia coli emerged as new food borne pathogens in the early 1980s, primarily driven by the dispersal of Shiga toxin-encoding lambdoid bacteriophages. At least some of these Stx phages display superinfection phenotypes, which differ significantly from lambda phage itself, driving through in situ recombination further phage evolution, increasing host range and potentially increasing the host's pathogenic profile. Here, increasing levels of Stx phage Φ24B integrase expression in multiple lysogen cultures are demonstrated along with apparently negligible repression of integrase expression by the cognate CI repressor. The Φ24B int transcription start site and promoter region were identified and found to differ from in silico predictions. The unidirectional activity of this integrase was determined in an in situ, inducible tri-partite reaction. This indicated that Φ24B must encode a novel directionality factor that is controlling excision events during prophage induction. This excisionase was subsequently identified and characterized through complementation experiments. In addition, the previous proposal that a putative antirepressor was responsible for the lack of immunity to superinfection through inactivation of CI has been revisited and a new hypothesis involving the role of this protein in promoting efficient induction of the Φ24B prophage is proposed. PMID:21062824
Ohnishi, Toshiyuki; Sakamoto, Kotaro; Asami-Odaka, Asano; Nakamura, Kimie; Shimizu, Ayako; Ito, Takashi; Asami, Taiji; Ohtaki, Tetsuya; Inooka, Hiroshi
2017-01-29
Tropomyosin receptor kinase B (TrkB) is a known receptor of brain-derived neurotrophic factor (BDNF). Because it plays a critical role in the regulation of neuronal development, maturation, survival, etc., TrkB is a good target for drugs against central nervous system diseases. In this study, we aimed to generate peptidic TrkB agonists by applying random peptide phage display technology. After the phage panning against recombinant Fc-fused TrkB (TrkB-Fc), agonistic phages were directly screened against TrkB-expressing HEK293 cells. Through subsequent screening of the first-hit BM17 peptide-derived focus library, we successfully obtained the BM17d99 peptide, which had no sequence similarity with BDNF but had TrkB-binding capacity. We then synthesized a dimeric BM17d99 analog peptide that could phosphorylate or activate TrkB by facilitating receptor homodimerization. Treatment of TrkB-expressing HEK293 cells with the dimeric BM17d99 analog peptide significantly induced the phosphorylation of TrkB, suggesting that homodimerization of TrkB was enhanced by the dimeric peptide. This report demonstrates that our approach is useful for the generation of artificial peptidic agonists of cell surface receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
R-factor cointegrate formation in Salmonella typhimurium bacteriophage type 201 strains.
Helmuth, R; Stephan, R; Bulling, E; van Leeuwen, W J; van Embden, J D; Guinée, P A; Portnoy, D; Falkow, S
1981-01-01
The genetic and molecular properties of the plasmids in Salmonella typhimurium phase type 201 isolated are described. Such strains are resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, kanamycin, and several other antimicrobial drugs, and are highly pathogenic for calves. These strains have been encountered with increasing frequency since 1972 in West Germany and The Netherlands. We show that isolates of this phage type constitute a very homogeneous group with regard to their extrachromosomal elements. These bacteria carry three small plasmids: pRQ3, a 4.2-megadalton (Md) colicinogenic plasmid; pRQ4, 3.4-Md plasmid that interferes with the propagation of phages; and pRQ5, a 3.2-Md cryptic plasmid. Tetracycline resistance resides on a conjugative 120-MD plasmid pRQ1, belonging to the incompatibility class H2. Other antibiotic resistance determinants are encoded by a nonconjugative 108-Md plasmid pRQ2. Transfer of multiple-antibiotic resistance to appropriate recipient strains was associated with the appearance of a 230-Md plasmid, pRQ6. It appears that pRQ6 is a stable cointegrate of pRQ1 and pRQ2. This cointegrate plasmid was transferable with the same efficiency as pRQ1. Other conjugative plasmids could mobilize pRQ2, but stable cointegrates were not detected in the transconjugants. Phase type 201 strains carry a prophage, and we show that phage pattern 201 reflects the interference with propagation of typing phages effected by this prophage and plasmid pRQ4 in strains of phage type 201. Images PMID:7012128
Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu
2016-11-04
When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of V H and V L genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Pandey, Kavita R; Joshi, Chetan; Vakil, Babu V
2016-01-01
Probiotics are microorganisms which when administered in adequate amounts confer health benefits to the host. A leading pharmaceutical company producing Bacillus coagulans as a probiotic was facing the problem of recurring phage attacks. Two mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture were characterized at functional and molecular level and were noted to have undergone interesting genetic changes. The non-specific genetic alterations induced by mutagenesis can also lead to alterations in cell performance. Hence, in the current study the parental strain and the two mutants were selected for shake flask optimization. Plackett-Burman design was used to select the significant culture variables affecting biomass production. Evolutionary operation method was applied for further optimization. The study showed wide variations in the nutritional requirements of phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 152 % was observed in the biomass productions of B. coagulans (parental type) and mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-a-time technique. Using Logistic and modified Leudeking-Piret equations, biomass accumulation and substrate utilization efficiency of the bioprocess were determined. The experimental data was in agreement with the results predicted by statistical analysis and modelling. The developed model may be useful for controlling the growth and substrate consumption kinetics in large scale fermentation using B. coagulans .
The genomes and comparative genomics of Lactobacillus delbrueckii phages.
Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani
2011-07-01
Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.
Use of phages to control Campylobacter spp.
Janež, Nika; Loc-Carrillo, Catherine
2013-10-01
The use of phages to control pathogenic bacteria has been investigated since they were first discovered in the beginning of the 1900s. Over the last century we have slowly gained an in-depth understanding of phage biology including which phage properties are desirable when considering phage as biocontrol agents and which phage characteristics to potentially avoid. Campylobacter infections are amongst the most frequently encountered foodborne bacterial infections around the world. Handling and consumption of raw or undercooked poultry products have been determined to be the main route of transmission. The ability to use phages to target these bacteria has been studied for more than a decade and although we have made progress towards deciphering how best to use phages to control Campylobacter associated with poultry production, there is still much work to be done. This review outlines methods to improve the isolation of these elusive phages, as well as methods to identify desirable characteristics needed for a successful outcome. It also highlights the body of research undertaken so far and what criteria to consider when doing in-vivo studies, especially because some in-vitro studies have not been found to translate into to phage efficacy in-vivo. © 2013. Published by Elsevier B.V. All rights reserved.
Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages
Adair, Tamarah L.; Afram, Patricia; Allen, Katherine G.; Archambault, Megan L.; Aziz, Rahat M.; Bagnasco, Filippa G.; Ball, Sarah L.; Barrett, Natalie A.; Benjamin, Robert C.; Blasi, Christopher J.; Borst, Katherine; Braun, Mary A.; Broomell, Haley; Brown, Conner B.; Brynell, Zachary S.; Bue, Ashley B.; Burke, Sydney O.; Casazza, William; Cautela, Julia A.; Chen, Kevin; Chimalakonda, Nitish S.; Chudoff, Dylan; Connor, Jade A.; Cross, Trevor S.; Curtis, Kyra N.; Dahlke, Jessica A.; Deaton, Bethany M.; Degroote, Sarah J.; DeNigris, Danielle M.; DeRuff, Katherine C.; Dolan, Milan; Dunbar, David; Egan, Marisa S.; Evans, Daniel R.; Fahnestock, Abby K.; Farooq, Amal; Finn, Garrett; Fratus, Christopher R.; Gaffney, Bobby L.; Garlena, Rebecca A.; Garrigan, Kelly E.; Gibbon, Bryan C.; Goedde, Michael A.; Guerrero Bustamante, Carlos A.; Harrison, Melinda; Hartwell, Megan C.; Heckman, Emily L.; Huang, Jennifer; Hughes, Lee E.; Hyduchak, Kathryn M.; Jacob, Aswathi E.; Kaku, Machika; Karstens, Allen W.; Kenna, Margaret A.; Khetarpal, Susheel; King, Rodney A.; Kobokovich, Amanda L.; Kolev, Hannah; Konde, Sai A.; Kriese, Elizabeth; Lamey, Morgan E.; Lantz, Carter N.; Lapin, Jonathan S.; Lawson, Temiloluwa O.; Lee, In Young; Lee, Scott M.; Lee-Soety, Julia Y.; Lehmann, Emily M.; London, Shawn C.; Lopez, A. Javier; Lynch, Kelly C.; Mageeney, Catherine M.; Martynyuk, Tetyana; Mathew, Kevin J.; Mavrich, Travis N.; McDaniel, Christopher M.; McDonald, Hannah; McManus, C. Joel; Medrano, Jessica E.; Mele, Francis E.; Menninger, Jennifer E.; Miller, Sierra N.; Minick, Josephine E.; Nabua, Courtney T.; Napoli, Caroline K.; Nkangabwa, Martha; Oates, Elizabeth A.; Ott, Cassandra T.; Pellerino, Sarah K.; Pinamont, William J.; Pirnie, Ross T.; Pizzorno, Marie C.; Plautz, Emilee J.; Pope, Welkin H.; Pruett, Katelyn M.; Rickstrew, Gabbi; Rimple, Patrick A.; Rinehart, Claire A.; Robinson, Kayla M.; Rose, Victoria A.; Russell, Daniel A.; Schick, Amelia M.; Schlossman, Julia; Schneider, Victoria M.; Sells, Chloe A.; Sieker, Jeremy W.; Silva, Morgan P.; Silvi, Marissa M.; Simon, Stephanie E.; Staples, Amanda K.; Steed, Isabelle L.; Stowe, Emily L.; Stueven, Noah A.; Swartz, Porter T.; Sweet, Emma A.; Sweetman, Abigail T.; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S.; Thompson, Allison R.; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L.; Vo, Quynh D.; Vonberg, Zachary T.; Ware, Vassie C.; Warrad, Yasmene M.; Wathen, Kaitlyn E.; Weinstein, Jonathan L.; Wyper, Jacqueline F.; Yankauskas, Jakob R.; Zhang, Christine
2017-01-01
The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate. PMID:28715480
Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.
Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia
2016-01-20
A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind phages from the suspension.
Review: Efficiency of Physical and Chemical Treatments on the Inactivation of Dairy Bacteriophages
Guglielmotti, Daniela M.; Mercanti, Diego J.; Reinheimer, Jorge A.; Quiberoni, Andrea del L.
2011-01-01
Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time nor high temperature short time pasteurization were able to inactivate most lactic acid bacteria (LAB) phages. Even though most phages did not survive 90°C for 2 min, there were some that resisted 90°C for more than 15 min (conditions suggested by the International Dairy Federation, for complete phage destruction). Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated non-ylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis), rather than using them separately at extreme conditions. PMID:22275912
In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage.
Ahiwale, Sangeeta; Tamboli, Nilofer; Thorat, Kiran; Kulkarni, Rajendra; Ackermann, Hans; Kapadnis, Balasaheb
2011-02-01
Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1-HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.
Vonasek, Erica L; Choi, Angela H; Sanchez, Juan; Nitin, Nitin
2018-06-15
There is a significant unmet need to develop antimicrobial solutions to reduce the risk of contamination in fresh produce. Bacteriophages have been proposed as a potential approach for controlling foodborne pathogens. This study evaluated the combination of edible dip coatings with T7 bacteriophages on whole and cut produce. The evaluation includes an assessment of phage loading, phage storage stability, antimicrobial activity, and phage stability during simulated gastric digestion on sliced cucumbers, sliced apples, and whole cherry tomatoes. In this evaluation, phages coated on fresh produce using edible whey protein isolate (WPI) were compared with phages coated from an aqueous suspension (control coating). The results demonstrated that WPI coatings load more phages than the control and enhanced phage stability during cold storage (4 °C) for cut apples and whole cherry tomatoes. Phage stability decreased by 1 to 3 log(PFU) in a simulated gastric environment. Phage antimicrobial activity against Escherichia coli BL21 decreased 2 to 4 log(CFU) of bacteria on cut apples and whole cherry tomatoes, while no significant bacterial reduction was observed for sliced cucumbers. Overall, the results show that WPI dip coating provides phage loading, stability, and antimicrobial activity to produce surfaces compared to the control coating, and thus may be considered an effective approach for extending phage therapy on fresh produce. The practical application is to prevent bacterial cross contamination of fresh produce by using a combination of edible coating with bacteriophages. The results demonstrate enhanced loading and stability of phages on fresh produce when used in combination with an edible coating. © 2018 Institute of Food Technologists®.
Amgarten, Deyvid; Martins, Layla Farage; Lombardi, Karen Cristina; Antunes, Luciana Principal; de Souza, Ana Paula Silva; Nicastro, Gianlucca Gonçalves; Kitajima, Elliott Watanabe; Quaggio, Ronaldo Bento; Upton, Chris; Setubal, João Carlos; da Silva, Aline Maria
2017-05-04
Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment.
De Paepe, Marianne; Hutinet, Geoffrey; Son, Olivier; Amarir-Bouhram, Jihane; Schbath, Sophie; Petit, Marie-Agnès
2014-01-01
Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself. PMID:24603854
Target-specific copper hybrid T7 phage particles.
Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai
2012-12-18
Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.
Comparative genomic and morphological analyses of Listeria phages isolated from farm environments.
Denes, Thomas; Vongkamjan, Kitiya; Ackermann, Hans-Wolfgang; Moreno Switt, Andrea I; Wiedmann, Martin; den Bakker, Henk C
2014-08-01
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large genome (~135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (~66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (~56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes.
Xie, Yicheng; Wahab, Laith; Gill, Jason J
2018-04-12
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Xie, Yicheng; Wahab, Laith
2018-01-01
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135
Protein and Antibody Engineering by Phage Display
Frei, J.C.; Lai, J.R.
2017-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328
Bacteriophage as models for virus removal from Pacific oysters (Crassostrea gigas) during re-laying.
Humphrey, T. J.; Martin, K.
1993-01-01
A study was undertaken to examine the feasibility of using naturally-occurring bacteriophages to assess the impact of re-laying on levels of viral contamination in Crassostrea gigas, the Pacific oyster. Two phages were chosen. One, male-specific (F+), was enumerated using Salmonella typhimurium. The other, a somatic phage, was detected using an, as yet, uncharacterized Escherichia coli. Investigations, using a variety of re-laying sites, demonstrated that numbers of F+ phage in oyster tissue declined more rapidly than those of somatic phage. For example, in oysters placed in commercially-used sea water ponds, F+ phage reached undetectable levels within 2-3 weeks, whereas somatic phage could still be detected 5 weeks after re-laying. The studies suggest that F+ phage may not be a suitable indicator for virus removal and that somatic phage may be better suited to this role. PMID:8405159
Construction of a filamentous phage display peptide library.
Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann
2014-01-01
The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.
Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages
Krylov, Victor N.; Shaburova, Olga V.; McGrath, John W.; Allen, Christopher C. R.; Quinn, John P.; Kulakov, Leonid A.
2017-01-01
We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group. PMID:28877269
Dover, John A; Burmeister, Alita R; Molineux, Ian J; Parent, Kristin N
2016-09-19
Genomic architecture is the framework within which genes and regulatory elements evolve and where specific constructs may constrain or potentiate particular adaptations. One such construct is evident in phages that use a headful packaging strategy that results in progeny phage heads packaged with DNA until full rather than encapsidating a simple unit-length genome. Here, we investigate the evolution of the headful packaging phage Sf6 in response to barriers that impede efficient phage adsorption to the host cell. Ten replicate populations evolved faster Sf6 life cycles by parallel mutations found in a phage lysis gene and/or by large, 1.2- to 4.0-kb deletions that remove a mobile genetic IS911 element present in the ancestral phage genome. The fastest life cycles were found in phages that acquired both mutations. No mutations were found in genes encoding phage structural proteins, which were a priori expected from the experimental design that imposed a challenge for phage adsorption by using a Shigella flexneri host lacking receptors preferred by Sf6. We used DNA sequencing, molecular approaches, and physiological experiments on 82 clonal isolates taken from all 10 populations to reveal the genetic basis of the faster Sf6 life cycle. The majority of our isolates acquired deletions in the phage genome. Our results suggest that deletions are adaptive and can influence the duration of the phage life cycle while acting in conjunction with other lysis time-determining point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Barr, Jeremy J; Auro, Rita; Sam-Soon, Nicholas; Kassegne, Sam; Peters, Gregory; Bonilla, Natasha; Hatay, Mark; Mourtada, Sarah; Bailey, Barbara; Youle, Merry; Felts, Ben; Baljon, Arlette; Nulton, Jim; Salamon, Peter; Rohwer, Forest
2015-11-03
Bacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro. On this basis, we proposed our bacteriophage adherence to mucus (BAM) model of immunity. Here, to test this model, we developed a microfluidic device (chip) that emulates a mucosal surface experiencing constant fluid flow and mucin secretion dynamics. Using mucus-producing human cells and Escherichia coli in the chip, we observed similar accumulation and persistence of mucus-adherent T4 phage and nonadherent T4∆hoc phage in the mucus. Nevertheless, T4 phage reduced bacterial colonization of the epithelium >4,000-fold compared with T4∆hoc phage. This suggests that phage adherence to mucus increases encounters with bacterial hosts by some other mechanism. Phages are traditionally thought to be completely dependent on normal diffusion, driven by random Brownian motion, for host contact. We demonstrated that T4 phage particles displayed subdiffusive motion in mucus, whereas T4∆hoc particles displayed normal diffusion. Experiments and modeling indicate that subdiffusive motion increases phage-host encounters when bacterial concentration is low. By concentrating phages in an optimal mucus zone, subdiffusion increases their host encounters and antimicrobial action. Our revised BAM model proposes that the fundamental mechanism of mucosal immunity is subdiffusion resulting from adherence to mucus. These findings suggest intriguing possibilities for engineering phages to manipulate and personalize the mucosal microbiome.
Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
Bari, S M Nayeemul; Walker, Forrest C; Cater, Katie; Aslan, Barbaros; Hatoum-Aslan, Asma
2017-12-15
Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific species in the microbiome. However, since over half their genes have unknown functions, virulent staphylococcal phages carry inherent risk to cause unknown downstream side effects. Further, their swift and destructive reproductive cycle make them intractable by current genetic engineering techniques. CRISPR-Cas10 is an elaborate prokaryotic immune system that employs small RNAs and a multisubunit protein complex to detect and destroy phages and other foreign nucleic acids. Some staphylococci naturally possess CRISPR-Cas10 systems, thus providing an attractive tool already installed in the host chromosome to harness for phage genome engineering. However, the efficiency of CRISPR-Cas10 immunity against virulent staphylococcal phages and corresponding utility as a tool to facilitate their genome editing has not been explored. Here, we show that the CRISPR-Cas10 system native to Staphylococcus epidermidis exhibits robust immunity against diverse virulent staphylococcal phages. On the basis of this activity, a general two-step approach was developed to edit these phages that relies upon homologous recombination machinery encoded in the host. Variations of this approach to edit toxic phage genes and access phages that infect CRISPR-less staphylococci are also presented. This versatile set of genetic tools enables the systematic study of phage genes of unknown functions and the design of genetically defined phage-based antimicrobials that can eliminate or manipulate specific Staphylococcus species.
Development of phoH as a Novel Signature Gene for Assessing Marine Phage Diversity▿
Goldsmith, Dawn B.; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D.; Varsani, Arvind; Suttle, Curtis A.; Weinbauer, Markus G.; Sandaa, Ruth-Anne; Breitbart, Mya
2011-01-01
Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220
Breyne, Koen; Honaker, Ryan W; Hobbs, Zachary; Richter, Manuela; Żaczek, Maciej; Spangler, Taylor; Steenbrugge, Jonas; Lu, Rebecca; Kinkhabwala, Anika; Marchon, Bruno; Meyer, Evelyne; Mokres, Lucia
2017-01-01
Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo . Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740), a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.
Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean
Tucker, Kimberly P; Parsons, Rachel; Symonds, Erin M; Breitbart, Mya
2011-01-01
Knowledge of marine phages is highly biased toward double-stranded DNA (dsDNA) phages; however, recent metagenomic surveys have also identified single-stranded DNA (ssDNA) phages in the oceans. Here, we describe two complete ssDNA phage genomes that were reconstructed from a viral metagenome from 80 m depth at the Bermuda Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea and examine their spatial and temporal distributions. Both genomes (SARssφ1 and SARssφ2) exhibited similarity to known phages of the Microviridae family in terms of size, GC content, genome organization and protein sequence. PCR amplification of the replication initiation protein (Rep) gene revealed narrow and distinct depth distributions for the newly described ssDNA phages within the upper 200 m of the water column at the BATS site. Comparison of Rep gene sequences obtained from the BATS site over time revealed changes in the diversity of ssDNA phages over monthly time scales, although some nearly identical sequences were recovered from samples collected 4 years apart. Examination of ssDNA phage diversity along transects through the North Atlantic Ocean revealed a positive correlation between genetic distance and geographic distance between sampling sites. Together, the data suggest fundamental differences between the distribution of these ssDNA phages and the distribution of known marine dsDNA phages, possibly because of differences in host range, host distribution, virion stability, or viral evolution mechanisms and rates. Future work needs to elucidate the host ranges for oceanic ssDNA phages and determine their ecological roles in the marine ecosystem. PMID:21124487
Dynamics of success and failure in phage and antibiotic therapy in experimental infections.
Bull, J J; Levin, Bruce R; DeRouin, Terry; Walker, Nina; Bloch, Craig A
2002-11-26
In 1982 Smith and Huggins showed that bacteriophages could be at least as effective as antibiotics in preventing mortality from experimental infections with a capsulated E. coli (K1) in mice. Phages that required the K1 capsule for infection were more effective than phages that did not require this capsule, but the efficacies of phages and antibiotics in preventing mortality both declined with time between infection and treatment, becoming virtually ineffective within 16 hours. We develop quantitative microbiological procedures that (1) explore the in vivo processes responsible for the efficacy of phage and antibiotic treatment protocols in experimental infections (the Resistance Competition Assay, or RCA), and (2) survey the therapeutic potential of phages in vitro (the Phage Replication Assay or PRA). We illustrate the application and utility of these methods in a repetition of Smith and Huggins' experiments, using the E. coli K1 mouse thigh infection model, and applying treatments of phages or streptomycin. 1) The Smith and Huggins phage and antibiotic therapy results are quantitatively and qualitatively robust. (2) Our RCA values reflect the microbiological efficacies of the different phages and of streptomycin in preventing mortality, and reflect the decline in their efficacy with a delay in treatment. These results show specifically that bacteria become refractory to treatment over the term of infection. (3) The K1-specific and non-specific phages had similar replication rates on bacteria grown in broth (based on the PRA), but the K1-specific phage had markedly greater replication rates in mouse serum.
T7 phage factor required for managing RpoS in Escherichia coli.
Tabib-Salazar, Aline; Liu, Bing; Barker, Declan; Burchell, Lynn; Qimron, Udi; Matthews, Steve J; Wigneshweraraj, Sivaramesh
2018-06-05
T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ 70 , by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit Eσ S , the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.
Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.
Yamada, Takashi
2013-01-01
Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.
Modeling the interactions between pathogenic bacteria, bacteriophage and immune response
NASA Astrophysics Data System (ADS)
Leung, Chung Yin (Joey); Weitz, Joshua S.
The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.
Hosseinidoust, Zeinab
2017-01-01
Bacteriophages (bacterial viruses) have long been under investigation as vectors for gene therapy. Similar to other viral vectors, the phage coat proteins have evolved over millions of years to protect the viral genome from degradation post injection, offering protection for the valuable therapeutic sequence. However, what sets phage apart from other viral gene delivery vectors is their safety for human use and the relative ease by which foreign molecules can be expressed on the phage outer surface, enabling highly targeted gene delivery. The latter property also makes phage a popular choice for gene therapy target discovery through directed evolution. Although promising, phage-mediated gene therapy faces several outstanding challenges, the most notable being lower gene delivery efficiency compared to animal viruses, vector stability, and nondesirable immune stimulation. This review presents a critical review of promises and challenges of employing phage as gene delivery vehicles as well as an introduction to the concept of phage-based microbiome therapy as the new frontier and perhaps the most promising application of phage-based gene therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Van Belleghem, Jonas D; Merabishvili, Maya; Vergauwen, Bjorn; Lavigne, Rob; Vaneechoutte, Mario
2017-01-01
Bacterial endotoxins have high immunogenicity. Phage biology studies as well as therapeutic phage applications necessitate highly purified phage particles. In this study, we compared combinations of seven different endotoxin removal strategies and validated their endotoxin removal efficacy for five different phages (i.e. four Pseudomonas aeruginosa phages and one Staphylococcus aureus phage). These purification strategies included Endotrap HD column purification and/or CsCl density centrifugation in combination with Endotrap purification, followed by organic solvent (1-octanol), detergent (Triton X-100), enzymatic inactivation of the endotoxin using alkaline phosphatase and CIM monolytic anion exchange chromatography. We show that CsCl density purification of the P. aeruginosa phages, at an initial concentration of 10 12 -10 13 pfu/ml, led to the strongest reduction of endotoxins, with an endotoxin removal efficacy of up to 99%, whereas additional purification methods did not result in a complete removal of endotoxins from the phage preparations and only yielded an additional endotoxin removal efficacy of 23 to 99%, sometimes accompanied with strong losses in phage titer. Copyright © 2016 Elsevier B.V. All rights reserved.
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L.; Geisbrecht, Brian V.; Foukas, Periklis G.; Lambris, John D.; Mastellos, Dimitrios C.; Sfyroera, Georgia
2015-01-01
Staphylococcus aureus (S. aureus) can cause a broad range of potentially fatal inflammatory complications (e.g. sepsis, endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular Fibrinogen-binding Protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for monoclonal antibody (mAb)-based antimicrobial therapeutics. Herein we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mAbs (miniAbs) that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface Plasmon Resonance-based kinetic analysis enabled the selection of miniAbs with favorable Efb-binding profiles as therapeutic leads. MiniAb-mediated blockade of Efb attenuated S aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release and modulation of IL-6 secretion. Finally, these miniAbs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way towards novel antibody-based therapeutics for S. aureus-related diseases. PMID:26342032
Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo
2015-01-01
To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual genetically encoded phage-displayed ligands.
Mohan, Kritika; Weiss, Gregory A
2014-05-15
M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display. Copyright © 2014 Elsevier Inc. All rights reserved.
Improvement and Optimization of Two Engineered Phage Resistance Mechanisms in Lactococcus lactis
McGrath, Stephen; Fitzgerald, Gerald F.; van Sinderen, Douwe
2001-01-01
Homologous replication module genes were identified for four P335 type phages. DNA sequence analysis revealed that all four phages exhibited more than 90% DNA homology for at least two genes, designated rep2009 and orf17. One of these genes, rep2009, codes for a putative replisome organizer protein and contains an assumed origin of phage DNA replication (ori2009), which was identical for all four phages. DNA fragments representing the ori2009 sequence confer a phage-encoded resistance (Per) phenotype on lactococcal hosts when they are supplied on a high-copy-number vector. Furthermore, cloning multiple copies of the ori2009 sequence was found to increase the effectiveness of the Per phenotype conferred. A number of antisense plasmids targeting specific genes of the replication module were constructed. Two separate plasmids targeting rep2009 and orf17 were found to efficiently inhibit proliferation of all four phages by interfering with intracellular phage DNA replication. These results represent two highly effective strategies for inhibiting bacteriophage proliferation, and they also identify a novel gene, orf17, which appears to be important for phage DNA replication. Furthermore, these results indicate that although the actual mechanisms of DNA replication are very similar, if not identical, for all four phages, expression of the replication genes is significantly different in each case. PMID:11157223
L'Abée-Lund, Trine M; Jørgensen, Hannah J; O'Sullivan, Kristin; Bohlin, Jon; Ligård, Goro; Granum, Per Einar; Lindbäck, Toril
2012-01-01
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx(2)-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages.
L'Abée-Lund, Trine M.; Jørgensen, Hannah J.; O'Sullivan, Kristin; Bohlin, Jon; Ligård, Goro; Granum, Per Einar; Lindbäck, Toril
2012-01-01
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx2-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages. PMID:22403614
Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.
Ju, Zhigang; Sun, Wei
2017-11-01
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.
2014-01-01
Background This study was conducted to explore new approaches of animal biocontrol via biological control feed. Method White rats were subjected to 140 highly lytic designed phages specific against E. coli. Phages were fed via drinking water, oral injection, and vegetable capsules. Phage feeding was applied by 24 h feeding with 11d monitoring and 20d phage feeding and monitoring. Group of rats received external pathogenic E. coli and another group did not, namely groups A and B. Results Phage feeding for 20d via vegetable capsules yielded the highest reduction of fecal E. coli, 3.02 and 4.62 log, in rats group A and B respectively. Second best, feeding for 20d via drinking water with alkali yielded 2.78 and 4.08 log in rats groups A and B respectively. The peak reduction in E. coli output was 5–10 d after phage feeding. Phage control declined after 10th day of feeding. Conclusions The use of cocktail of designed phages succeeded in suppressing flora or external E. coli. The phage feed biocontrol is efficient in controlling E. coli at the pre-harvest period, precisely at the 6th-8th day of phage feeding when the lowest E. coli output found. PMID:25062829
Oh, Jun-Hyun; Park, Mi-Kyung
2017-12-28
Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.
Stubbs, A D; Hickman-Brenner, F W; Cameron, D N; Farmer, J J
1994-01-01
Three additional phage typing systems for Salmonella enteritidis, plasmid analysis, biochemical tests, and antimicrobial susceptibility tests, were used in an attempt to subdivide 30 phage type 8 (phage typing system used by the WHO International Center for Enteric Phage Typing, London, England) isolates. These isolates represented 18 different egg-related outbreaks (21 strains) and 9 reference strains or strains that were not egg-associated. Only 7 of the 30 strains (28%) were subdivided by one or more of the methods used; this included 3 of the 21 strains from egg-related outbreaks. Twenty-seven strains contained a 55-kb plasmid that is associated with S. enteritidis. Of 65 additional phages tested, 2 from the phage typing system obtained from the Pasteur Institute, Paris, France, were useful in differentiating the three strains that lacked the 55-kb plasmid. Although the results obtained for the 21 strains from egg-related outbreaks showed that the strains had minor phenotypic differences, the overall results suggested that the strains may represent a single clone. Studies are planned to test additional phages and other typing methods to see whether strains of phage type 8 can be further differentiated. PMID:8126179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...
2016-06-28
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Isolation and Characterization of Phages Infecting Bacillus subtilis
Biegalska, Anna; Łoś, Marcin; Richert, Malwina
2015-01-01
Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages) or noncontractile (ARπ phage) tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0) and alkaline (9.0 and 10.0) pH. PMID:26273592
Advances in the T7 phage display system (Review).
Deng, Xiangying; Wang, Li; You, Xiaolong; Dai, Pei; Zeng, Yanhua
2018-01-01
The present review describes the advantages and updated applications of the T7 phage display system in bioscience and medical science. Current phage display systems are based on various bacteriophage vectors, including M13, T7, T4 and f1. Of these, the M13 phage display is the most frequently used, however, the present review highlights the advantages of the T7 system. As a phage display platform, M13 contains single‑stranded DNA, while the T7 phage consists of double‑stranded DNA, which exhibits increased stability and is less prone to mutation during replication. Additional characteristics of the T7 phage include the following: The T7 phage does not depend on a protein secretion pathway in the lytic cycle; expressed peptides and proteins are usually located on the C‑terminal region of capsid protein gp10B, which avoids problems associated with steric hindrance; and T7 phage particles exhibit high stability under various extreme conditions, including high temperature and low pH, which facilitates effective high‑throughput affinity elutriation. Recent applications of the T7 phage display system have been instrumental in uncovering mechanisms of molecular interaction, particularly in the fields of antigen discovery, vaccine development, protein interaction, and cancer diagnosis and treatment.
Comparative analysis of multiple inducible phages from Mannheimia haemolytica.
Niu, Yan D; Cook, Shaun R; Wang, Jiaying; Klima, Cassidy L; Hsu, Yu-hung; Kropinski, Andrew M; Turner, Dann; McAllister, Tim A
2015-08-30
Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A). Overall, four P2-like (535AP1, 587AP1, 1127AP1 and 2256AP1; genomes: 34.9-35.7 kb; G+C content: 41.5-42.1 %; genes: 51-53 coding sequences, CDSs), four λ-like (535AP2, 587AP2, 1152AP2 and 3927AP1; genomes: 48.6-52.1 kb; 41.1-41.4 % mol G+C; genes: 77-83 CDSs and 2 tRNAs) and one Mu-like (3927AP2; genome: 33.8 kb; 43.1 % mol G+C; encoding 50 CDSs) phages were identified. All P2-like phages are collinear with the temperate phage φMhaA1-PHL101 with 535AP1, 2256AP1 and 1152AP1 being most closely related, followed by 587AP1 and 1127AP1. Lambdoid phages are not collinear with any other known λ-type phages, with 587AP2 being distinct from 535AP2, 3927AP1 and 1152AP2. All λ-like phages contain genes encoding a toxin-antitoxin (TA) system and cell-associated haemolysin XhlA. The Mu-like phage induced from 3927A is closely related to the phage remnant φMhaMu2 from M. haemolytica PHL21, with similar Mu-like phages existing in the genomes of M. haemolytica 535A and 587A. This is among the first reports of both λ- and Mu-type phages being induced from M. haemolytica. Compared to phages induced from commensal strains of M. haemolytica serotype A2, those induced from the more virulent A1 and A6 serotypes are more closely related. Moreover, when P2-, λ- and Mu-like phages co-existed in the M. haemolytica genome, only P2- and λ-like phages were detected upon induction, suggesting that Mu-type phages may be more resistant to induction. Toxin-antitoxin gene cassettes in λ-like phages may contribute to their genomic persistence or the establishment of persister subpopulations of M. haemolytica. Further work is required to determine if the cell-associated haemolysin XhlA encoded by λ-like phages contributes to the pathogenicity and ecological fitness of M. haemolytica.
2011-01-01
Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS. PMID:21223537
Shimomura, Yumi; Okumura, Kayo; Murayama, Somay Yamagata; Yagi, Junji; Ubukata, Kimiko; Kirikae, Teruo; Miyoshi-Akiyama, Tohru
2011-01-11
Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS.
2012-01-01
Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531
INACTIVATION AND REACTIVATION OF B. MEGATHERIUM PHAGE
Northrop, John H.
1955-01-01
Preparation of Reversibly Inactivated (R.I.) Phage.— If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5–6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.— The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0°C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.— There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20°C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active ⇌ inactive phage, may be repeated many times at 0°C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.— The inactivation is too rapid, even at 0° to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 104 particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 104 per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.— Addition of varying concentrations of MgSO4 (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO4, are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.— The rate of inactivation is too rapid to be measured with any accuracy, even at 0°C. The rate of reactivation in pH 5 peptone, at 0 and 10°, was measured and found to have a temperature coefficient Q 10 = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole–1. This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15° and 2.8 at 2°. This corresponds to a change in free energy of –600 cal. mole–1 and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7–8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium. PMID:13271723
Comparative Genomic and Morphological Analyses of Listeria Phages Isolated from Farm Environments
Denes, Thomas; Ackermann, Hans-Wolfgang; Moreno Switt, Andrea I.; Wiedmann, Martin; den Bakker, Henk C.
2014-01-01
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large-genome (∼135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (∼66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (∼56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes. PMID:24837381
Essoh, Christiane; Latino, Libera; Midoux, Cédric; Blouin, Yann; Loukou, Guillaume; Nguetta, Simon-Pierre A.; Lathro, Serge; Cablanmian, Arsher; Kouassi, Athanase K.; Vergnaud, Gilles; Pourcel, Christine
2015-01-01
Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released. PMID:26115051
Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y
2016-12-06
Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.
Essoh, Christiane; Latino, Libera; Midoux, Cédric; Blouin, Yann; Loukou, Guillaume; Nguetta, Simon-Pierre A; Lathro, Serge; Cablanmian, Arsher; Kouassi, Athanase K; Vergnaud, Gilles; Pourcel, Christine
2015-01-01
Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released.
Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate; Shi, Wenyuan; Hu, Fuquan
2013-01-01
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy. PMID:23874674
Genomic analysis of WCP30 Phage of Weissella cibaria for Dairy Fermented Foods.
Lee, Young-Duck; Park, Jong-Hyun
2017-01-01
In this study, we report the morphogenetic analysis and genome sequence of a new WCP30 phage of Weissella cibaria , isolated from a fermented food. Based on its morphology, as observed by transmission electron microscopy, WCP30 phage belongs to the family Siphoviridae . Genomic analysis of WCP30 phage showed that it had a 33,697-bp double-stranded DNA genome with 41.2% G+C content. Bioinformatics analysis of the genome revealed 35 open reading frames. A BLASTN search showed that WCP30 phage had low sequence similarity compared to other phages infecting lactic acid bacteria. This is the first report of the morphological features and complete genome sequence of WCP30 phage, which may be useful for controlling the fermentation of dairy foods.
Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages
Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio
2014-01-01
In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431
Phage display as a technology delivering on the promise of peptide drug discovery.
Hamzeh-Mivehroud, Maryam; Alizadeh, Ali Akbar; Morris, Michael B; Church, W Bret; Dastmalchi, Siavoush
2013-12-01
Phage display represents an important approach in the development pipeline for producing peptides and peptidomimetics therapeutics. Using randomly generated DNA sequences and molecular biology techniques, large diverse peptide libraries can be displayed on the phage surface. The phage library can be incubated with a target of interest and the phage which bind can be isolated and sequenced to reveal the displayed peptides' primary structure. In this review, we focus on the 'mechanics' of the phage display process, whilst highlighting many diverse and subtle ways it has been used to further the drug-development process, including the potential for the phage particle itself to be used as a drug carrier targeted to a particular pathogen or cell type in the body. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T
1993-01-01
Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043
NASA Astrophysics Data System (ADS)
Closek, C. J.; Langevin, S.; Burge, C. A.; Crosson, L.; White, S.; Friedman, C. S.
2016-02-01
Withering syndrome (WS), caused by the bacterium Candidatus Xenohaliotis californiensis, a Rickettsia-like organism (RLO), infects many species of abalone. Black abalone (Haliotis cracherodii), one of two endangered species of abalone, has experienced high population losses along the California coast due to WS. Recently, we observed reduced pathogenicity and mortality events in RLO-infected abalone when a novel bacteriophage (phage) was also present. To better understand phage-bacterium dynamics and develop more informative diagnostic tools, we sequenced the genome of the novel phage associated with the RLO responsible for WS. Metagenomic sequencing libraries were prepared with extracted genomic DNA from two experimentally infected H. cracherodii and phage sequences were enriched using hydroxyapatite chromatography normalization. Normalized libraries were individually barcoded and sequenced with Illumina MiSeq. Raw sequence reads were processed using VIrominer and de novo assembly produced one single phage-like contig (35.7Kb) from the experimentally infected abalone. This highly divergent genome had closest homology with a virus associated with abalone shriveling syndrome (SS). Of the 34 predicted ORFs, overlapping homology with the SS virus ranged from 20-72%, demonstrating the phage sequenced is genetically distinct from any known phage. The phage-like sequences represented a significant portion of the total reads sequenced ( 2 million of the 12 million paired-end reads; 17%) and we obtained 94,000X coverage across the novel phage genome. Beyond characterization of this novel phage, which appears to reduce pathogenicity of the RLO, the genome enabled us to develop quantitative PCR and in situ hybridization assays as diagnostic tools. These tools allow us to detect and quantify this phage in the endangered H. cracherodii.
Stalin, Nattan; Srinivasan, Pappu
2017-08-01
A diverse set of novel phages infecting the marine pathogenic Vibrio harveyi was isolated from shrimp aquaculture environments in the south east coast of India. Based on initial screening, three phages with a broad host range revealed that the growth inhibition of phage is relatively specific to V. harveyi. They were also able to infect V. alginolyticus and V. parahemolyticus that belonged to the Harveyi clade species from shrimp pond and sea coast environment samples. However, the impact of these phages on their host bacterium are well understood; a one-step growth curve experiment and transmission electron microscope (TEM) revealed three phages grouped under the Myoviridae (VHM1 and VHM2); Siphoviridae (VHS1) family. These phages were further molecular characterized with respect to phage genomic DNA isolates. The randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) digestion with HindIII, and major structural proteins were distinguished by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) clearly indicated that all the phage isolates were different, even when they came from the same source, giving an insight into the diversity of phages. Evaluation of microcosm studies of Penaeus monodon larvae infected with V. harveyi (105 CFU mL-1) showed that larvae survival after 96 h in the presence of phage treatment at 109 PFU mL-1 was enhanced when compared with the control. The resolution in over survival highly recommended that this study provides the phage-based therapy which could be an innovative and eco-friendly solution against Vibrio disease in shrimp aquaculture and in the natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Clostridium difficile phages: still difficult?
Hargreaves, Katherine R.; Clokie, Martha R. J.
2014-01-01
Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893
Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim
2016-01-01
Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668
Berg, Jordan A.; Merrill, Bryan D.; Crockett, Justin T.; Esplin, Kyle P.; Evans, Marlee R.; Heaton, Karli E.; Hilton, Jared A.; Hyde, Jonathan R.; McBride, Morgan S.; Schouten, Jordan T.; Simister, Austin R.; Thurgood, Trever L.; Ward, Andrew T.; Breakwell, Donald P.; Hope, Sandra; Grose, Julianne H.
2016-01-01
Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared. PMID:27304881
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat
2015-07-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Tsonos, Jessica; Oosterik, Leon H; Tuntufye, Huruma N; Klumpp, Jochen; Butaye, Patrick; De Greve, Henri; Hernalsteens, Jean-Pierre; Lavigne, Rob; Goddeeris, Bruno M
2014-07-16
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, leading to important economic losses worldwide. To cure APEC-infected chickens, a cocktail of four different APEC-specific bacteriophages (phages) was composed and tested. Specific phages were selected from a collection of phages isolated in Belgium. The selection was based on their obligate lytic infection cycle, a broad host range, low cross-resistance and low frequency of development of resistant APEC mutants. Genome analysis of the phages indicated they were close relatives of T4 and N4, considered to be safe in vivo. Chickens were intratracheally infected with APEC strain CH2 (serogroup O78), causing a mortality of about 50% during the seven days following the infection. The phage cocktail was administered 2h after the infection, via three different ways: intratracheally, intra-esophageally or via the drinking water. Treated groups did not show a significant decrease in mortality, lesion scores or weight loss compared to untreated groups, although the APEC-specific phages could be re-isolated from the lung and heart of chickens that were euthanized. Moreover, the re-isolated bacteria from infected chickens had remained sensitive to the phage cocktail. Our results indicate that the efficiency of the phage cocktail used in treating CH2-infected chickens in vivo is negligible, even though in vitro, the phages in the cocktail were able to efficiently lyse the APEC strain CH2. Our results emphasize that the 'traditional' pathway of isolation, followed by phenotypical and genotypical characterization of phages composing the cocktail, does not lead to success in phage therapy in all cases. Copyright © 2013 Elsevier B.V. All rights reserved.
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar
2015-01-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778
Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M
2006-10-24
The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.
Xu, Yue; Yu, Xinyan; Gu, Yu; Huang, Xu; Liu, Genyan; Liu, Xiaoqiu
2018-01-01
The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli. PMID:29780362
Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe
2017-01-01
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.
Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb
2013-11-01
Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.
Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities
NASA Astrophysics Data System (ADS)
Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.
2014-12-01
Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.
Coevolution of CRISPR bacteria and phage in 2 dimensions
NASA Astrophysics Data System (ADS)
Han, Pu; Deem, Michael
2014-03-01
CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.
Protein and Antibody Engineering by Phage Display.
Frei, J C; Lai, J R
2016-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.
Targeting mammalian organelles with internalizing phage (iPhage) libraries
Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih
2015-01-01
Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441
Phages of life - the path to pharma.
Forde, Amanda; Hill, Colin
2018-02-01
Bacteriophage (phage) therapy has encountered both enthusiasm and scepticism in the past century. New antimicrobial strategies against lethal pathogens are now a top priority for the World Health Organization, and although compassionate use of phages recently met with significant success, regulated clinical interventions seem unlikely in the near future. The hundredth anniversary of their discovery seems an appropriate time for a revival of phage therapy, particularly as the dilemma of antibiotic resistance grows. Phages are ubiquitous in the environment, on our food and in and on our bodies. Their influence on human health is currently being evaluated, and in this mini-review, we examine data from recent metagenomic studies that propose a role for phages in the structure of the microbiome and in health and disease. We assess evidence for phages as vehicles for gene transfer in the context of antibiotic resistance and discuss challenges and opportunities along the critical path from phage discovery to a patient-focused pharmaceutical intervention. © 2017 The British Pharmacological Society.
Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector.
Xu, Hai; Bao, Xi; Wang, Yiwei; Xu, Yue; Deng, Bihua; Lu, Yu; Hou, Jibo
2018-03-20
DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage. In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat). We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides. These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.
Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge
2004-01-01
Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused. PMID:15364983
In vivo gene delivery and expression by bacteriophage lambda vectors.
Lankes, H A; Zanghi, C N; Santos, K; Capella, C; Duke, C M P; Dewhurst, S
2007-05-01
Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo luc expression was detected, which peaked within 24 h of delivery and declined to undetectable levels within a week. Display of an integrin-binding peptide increased cellular internalization of phage in vitro and enhanced phage-mediated gene transfer in vivo. Finally, in vivo depletion of phagocytic cells using clodronate liposomes had only a minor effect on the efficiency of phage-mediated gene transfer. Unmodified lambda phage particles are capable of transducing mammalian cells in vivo, and may be taken up -- at least in part -- by nonphagocytic mechanisms. Surface modifications that enhance phage uptake result in more efficient in vivo gene transfer. These experiments shed light on the mechanisms involved in phage-mediated gene transfer in vivo, and suggest new approaches that may enhance the efficiency of this process.
Competitive and noncompetitive phage immunoassays for the determination of benzothiostrobin.
Hua, Xiude; Zhou, Liangliang; Feng, Lu; Ding, Yuan; Shi, Haiyan; Wang, Limin; Gee, Shirley J; Hammock, Bruce D; Wang, Minghua
2015-08-26
Twenty-three phage-displayed peptides that specifically bind to an anti-benzothiostrobin monoclonal antibody (mAb) in the absence or presence of benzothiostrobin were isolated from a cyclic 8-residue peptide phage library. Competitive and noncompetitive phage enzyme linked immunosorbent assays (ELISAs) for benzothiostrobin were developed by using a clone C3-3 specific to the benzothiostrobin-free mAb and a clone N6-18 specific to the benzothiostrobin immunocomplex, respectively. Under the optimal conditions, the half maximal inhibition concentration (IC50) of the competitive phage ELISA and the concentration of analyte producing 50% saturation of the signal (SC50) of the noncompetitive phage ELISA for benzothiostrobin were 0.94 and 2.27 ng mL(-1), respectively. The noncompetitive phage ELISA showed higher selectivity compared to the competitive. Recoveries of the competitive and the noncompetitive phage ELISAs for benzothiostrobin in cucumber, tomato, pear and rice samples were 67.6-119.6% and 70.4-125.0%, respectively. The amounts of benzothiostrobin in the containing incurred residues samples detected by the two types of phage ELISAs were significantly correlated with that detected by high-performance liquid chromatography (HPLC). Copyright © 2015 Elsevier B.V. All rights reserved.
Yzquierdo, Sergio Luis; Lemus, Dihadenys; Echemendia, Miguel; Montoro, Ernesto; McNerney, Ruth; Martin, Anandi; Palomino, Juan Carlos
2006-01-01
Background Conventional methods for susceptibility testing require several months before results can be reported. However, rapid methods to determine drug susceptibility have been developed recently. Phage assay have been reported as a rapid useful tools for antimicrobial susceptibility testing. The aim of this study was to apply the Phage assay for rapid detection of resistance on Mycobacterium tuberculosis strains in Cuba. Methods Phage D29 assay was performed on 102 M. tuberculosis strains to detect rifampicin resistance. The results were compared with the proportion method (gold standard) to evaluate the sensitivity and specificity of Phage assay. Results Phage assay results were available in 2 days whereas Proportion Methods results were obtain in 42 days. A total of 44 strains were detected as rifampicin resistant by both methods. However, one strains deemed resistant by Proportion Methods was susceptible by Phage assay. The sensitivity and specificity of Phage assay were 97.8 % and 100% respectively. Conclusion Phage assay provides rapid and reliable results for susceptibility testing; it's easy to perform, requires no specialized equipment and is applicable to drug susceptibility testing in low income countries where tuberculosis is a major public health problem. PMID:16630356
Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9.
Shen, Juntao; Zhou, Jinjie; Chen, Guo-Qiang; Xiu, Zhi-Long
2018-06-13
Klebsiella pneumoniae is one of the most common nosocomial opportunistic pathogens usually with multiple drug-resistance. Phage therapy, a potential new therapeutics to replace or supplement antibiotics, has attracted much attention. However, very few Klebsiella phages have been well-characterized as the lack of efficient genome editing tools. Here, Cas9 from Streptococcus pyogenes and a single guide RNA (sgRNA) were used to modify a virulent Klebsiella bacteriophage phiKpS2. We firstly evaluated the distribution of sgRNA activity in phages and proved that it's largely inconsistent with the predicted activity from current models trained on eukaryotic cell datasets. A simple CRISPR-based phage genome editing procedure was developed based on the discovery that homologous arms as short as 30-60 bp was sufficient to introduce point mutation, gene deletion and swap. We also demonstrated that weak sgRNAs could be used for precise phage genome editing but failed to select random recombinants, possibly because inefficient cleavage can be tolerated through continuous repair by homologous recombination with the uncut genomes. Small frameshift deletion was proved to be an efficient way to evaluate the essentiality of phage genes. By using the above strategies, a putative promoter and nine genes of phiKpS2 were successfully deleted. Interestingly, the holin gene can be deleted with little effect on phiKpS2 infection, but the reason is not yet clear. This study established an efficient, time-saving, and cost-effective procedure for phage genome editing, which is expected to significantly promote the development of bacteriophage therapy. IMPORTANCE In the present study, we have addressed an efficient, time-saving and cost-effective CRISPR-based phage genome editing of Klebsiella phage, which has the potential to significantly expand our knowledge of phage-host interactions and to promote the applications of phage therapy. The distribution of sgRNA activity was first evaluated in phages. Short homologous arms were proved enough to introduce point mutation, small frameshift deletion, gene deletion and swap into phages, and weak sgRNAs were proved useful for precise phage genome editing but failed to select random recombinants, which all make the CRISPR-based phage genome editing easier to use. Copyright © 2018 American Society for Microbiology.
Kot, Witold
2015-01-01
Here, we describe the sequencing and genome annotations of a set of four Escherichia coli bacteriophages (phages) belonging to newly discovered groups previously consisting of only a single phage and thus expand our knowledge of these phage groups. PMID:26184932
Complete genome sequences of three Campylobacter jejuni phage-propagating strains
USDA-ARS?s Scientific Manuscript database
Bacteriophage therapy has the potential to reduce Campylobacter jejuni numbers in livestock, but requires a detailed understanding of phage-host interactions. Some C. jejuni strains are readily infected by certain phages, and are thus designated as phage-propagating strains. Here we report the compl...
Zhang, Qian; Xing, Shaozhen; Sun, Qiang; Pei, Guangqian; Cheng, Shi; Liu, Yannan; An, Xiaoping; Zhang, Xianglilan; Qu, Yonggang; Tong, Yigang
2017-06-01
Bovine mastitis is one of the most costly diseases in dairy cows worldwide. It can be caused by over 150 different microorganisms, where Staphylococcus aureus is the most frequently isolated and a major pathogen responsible for heavy economic losses in dairy industry. Although antibiotic therapy is most widely used, alternative treatments are necessary due to the increasing antibiotic resistance. Using phage for pathogen control is a promising tool in the fight against antibiotic resistance. Mainly using high-throughput sequencing, bioinformatics and our proposed phage termini identification method, we have isolated and characterized a novel virulent phage, designated as vB_SauS_IMEP5, from manure collected from dairy farms in Shihezi, Xinjiang, China, for use as a biocontrol agent against Staphylococcus aureus infections. Its latent period was about 30 min and its burst size was approximately 272PFU/cell. Phage vB_SauS_IMEP5 survives in a wide pH range between 3 and 12. A treatment at 70 °C for 20 min can inactive the phage. Morphological analysis of vB_SauS_IMEP5 revealed that phage vB_SauS_IMEP5 morphologically resembles phages in the family Siphoviridae. Among our tested multiplicity of infections (MOIs), the optimal multiplicity of infection (MOI) of this phage was determined to be 0.001, suggesting that phage vB_SauS_IMEP5 has high bacteriolytic potential and good efficiency for reducing bacterial growth. The complete genome of IME-P5 is a 44,677-bp, linear, double-stranded DNA, with a G+C content of 34.26%, containing 69 putative ORFs. The termini of genome were determined with next-generation sequencing data using our previously proposed termini identification method, which suggests that this phage has non-redundant termini with 9nt 3' protruding cohesive ends. The genomic and proteomic characteristics of IMEP5 demonstrate that this phage does not belong to any of the previously recognized Siphoviridae Staphylococcus phage groups, suggesting the creation of a new lineage, thus adding to the knowledge on the diversity of Staphylococcus phages. An N-acetylmuramoyl-L-alanine amidase gene and several conserved genes were predicted, while no virulence or antibiotic resistance genes were identified. This study isolated and characterized a novel S. aureus phage vB_SauS_IMEP5, and our findings suggest that this phage may be potentially utilized as a therapeutic or prophylactic candidate against S.aureus infections.
Pirnay, Jean-Paul; Verbeken, Gilbert; Ceyssens, Pieter-Jan; Huys, Isabelle; De Vos, Daniel; Ameloot, Charlotte; Fauconnier, Alan
2018-01-01
Since time immemorial, phages—the viral parasites of bacteria—have been protecting Earth’s biosphere against bacterial overgrowth. Today, phages could help address the antibiotic resistance crisis that affects all of society. The greatest hurdle to the introduction of phage therapy in Western medicine is the lack of an appropriate legal and regulatory framework. Belgium is now implementing a pragmatic phage therapy framework that centers on the magistral preparation (compounding pharmacy in the US) of tailor-made phage medicines. PMID:29415431
BACTERIOPHAGE FORMATION WITHOUT BACTERIAL GROWTH
Price, Winston H.
1947-01-01
1. Iodoacetate, fluoride, and azide have been found to prevent the formation of phage and to inhibit the synthesis of ATP by Staphylococcus muscae. It is suggested that energy-rich phosphate is needed for the synthesis of phage. 2. Gramicidin prevented the formation of phage. 3. No differences were found between normal bacteria and phage-infected bacteria in the inorganic phosphate, adenosinetriphosphate, ribonucleic acid, and desoxyribonucleic acid content of the cells. 4. The mechanism of phage formation is discussed. PMID:18896936
Addwebi, Tarek M; Call, Douglas R; Shah, Devendra H
2014-04-01
Salmonella enterica serovar Enteritidis is one of the most common serovars associated with poultry and poultry product contamination in the United States. We previously identified 14 mutant strains of Salmonella Enteritidis phage type 4 (PT4) with significantly reduced invasiveness in human intestinal epithelial cells (Caco-2), chicken macrophages (HD-11), and chicken hepatocellular epithelial cells (LMH). These included Salmonella Enteritidis mutants with transposon insertions in 6 newly identified Salmonella Enteritidis-specific genes (pegD and SEN1393), and genes or genomic islands common to most other Salmonella serovars (SEN0803, SEN0034, SEN2278, and SEN3503) along with 8 genes previously known to contribute to enteric infection (hilA, pipA, fliH, fljB, csgB, spvR, and rfbMN). We hypothesized that Salmonella Enteritidis employs both common Salmonella enterica colonization factors and Salmonella Enteritidis-specific traits to establish infection in chickens. Four Salmonella Enteritidis mutants (SEN0034::Tn5, fliH::Tn5, SEN1393::Tn5, and spvR::Tn5) were indistinguishable from the isogenic wild-type strain when orally inoculated in 1-d-old chickens, whereas 2 mutants (CsgB::Tn5 and PegD::Tn5) were defective for intestinal colonization (P < 0.05) and 8 mutants (hilA::Tn5, SEN3503::Tn5, SEN0803::Tn5, SEN2278::Tn5, fljB::Tn5, rfbM::Tn5, rfbN::Tn5, and pipA::Tn5) showed significant in vivo attenuation in more than one organ (P < 0.05). Complementation studies confirmed the role of rfbN and SEN3503 during infection. This study should contribute to a better understanding of the mechanisms involved in Salmonella Enteritidis pathogenesis, and the target genes identified here could potentially serve as targets for the development of live-attenuated or subunit vaccine.
Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms
Chaudhry, Waqas Nasir; Concepción-Acevedo, Jeniffer; Park, Taehyun; Andleeb, Saadia; Bull, James J.
2017-01-01
In contrast to planktonic cells, bacteria imbedded biofilms are notoriously refractory to treatment by antibiotics or bacteriophage (phage) used alone. Given that the mechanisms of killing differ profoundly between drugs and phages, an obvious question is whether killing is improved by combining antibiotic and phage therapy. However, this question has only recently begun to be explored. Here, in vitro biofilm populations of Pseudomonas aeruginosa PA14 were treated singly and with combinations of two phages and bactericidal antibiotics of five classes. By themselves, phages and drugs commonly had only modest effects in killing the bacteria. However some phage-drug combinations reduced bacterial densities to well below that of the best single treatment; in some cases, bacterial densities were reduced even below the level expected if both agents killed independently of each other (synergy). Furthermore, there was a profound order effect in some cases: treatment with phages before drugs achieved maximum killing. Combined treatment was particularly effective in killing in Pseudomonas biofilms grown on layers of cultured epithelial cells. Phages were also capable of limiting the extent to which minority populations of bacteria resistant to the treating antibiotic ascend. The potential of combined antibiotic and phage treatment of biofilm infections is discussed as a realistic way to evaluate and establish the use of bacteriophage for the treatment of humans. PMID:28076361
Międzybrodzki, Ryszard; Kłak, Marlena; Jończyk-Matysiak, Ewa; Bubak, Barbara; Wójcik, Anna; Kaszowska, Marta; Weber-Dąbrowska, Beata; Łobocka, Małgorzata; Górski, Andrzej
2017-01-01
In this article we compare the efficacy of different pharmacological agents (ranitidine, and omeprazole) to support phage transit from stomach to distal portions of the gastrointestinal tract in rats. We show that a temporal modification of environment in the animal stomach may protect Twort-like therapeutic antistaphylococcal phage A5/80 (from bacteriophage collection of the Hirszfeld Institute of Immunology and Experimental Therapy PAS in Wroclaw, Poland) from the inactivation by gastric juice effectively enough to enable a significant fraction of orally administered A5/80 to pass to the intestine. Interestingly, we found that yogurt may be a relatively strong in enhancing phage transit. Given the immunomodulating activities of phages our data may suggest that phages and yogurt can act synergistically in mediating their probiotic activities and enhancing the effectiveness of oral phage therapy. We also demonstrate that orally applied phages of similar size, morphology, and sensitivity to acidic environment may differ in their translocation into the bloodstream. This was evident in mice in which a therapeutic staphylococcal phage A5/80 reached the blood upon oral administration combined with antacid agent whilst T4 phage was not detected even when applied in 103 times higher dose. Our findings also suggest that phage penetration from digestive tract to the blood may be species-specific. PMID:28386250
NASA Astrophysics Data System (ADS)
Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun
2015-05-01
The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V2O5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V2O5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V2O5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/VxOx composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V2O5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing aid, such as the two cysteine-constrained peptides on the phage surface, and has potential for use in nanotechnology applications.
Dröge, Melloney J; Boersma, Ykelien L; Braun, Peter G; Buining, Robbert Jan; Julsing, Mattijs K; Selles, Karin G A; van Dijl, Jan Maarten; Quax, Wim J
2006-07-01
Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.
Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.
2015-01-01
Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971
Osório, Nádia; Pereira, Carla; Simões, Sara; Delgadillo, Ivonne
2018-01-01
The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells. PMID:29518018
Han, Han; Wei, Xiaoting; Wei, Yi; Zhang, Xiufeng; Li, Xuemin; Jiang, Jinzhong; Wang, Ran
2017-02-01
Salmonella Enteritidis remains a major threat for food safety. To take efforts to develop phage-based biocontrol for S. Enteritidis contamination in food, in this study, the phages against S. Enteritidis were isolated from sewage samples, characterized by host range assays, DNA restriction enzyme pattern analyses, and transmission electron microscope observations, and tested for antibacterial activity in food; some potent phages were further characterized by bioinformatic analyses. Results showed that based on the plaque quality and host range, seven lytic phages targeting S. Enteritidis were selected, considered as seven distinct phages through DNA physical maps, and classified as Myoviridae or Siphoviridae family by morphologic observations; the combined use of such seven strain phages as a "food additive" could succeed in controlling the artificial S. Enteritidis contamination in the different physical forms of food at a range of temperatures; by bioinformatic analyses, both selected phage BPS 11 Q 3 and BPS 15 Q 2 seemed to be newfound obligate lytic phage strains with no indications for any potentially harmful genes in their genomes. In conclusion, our results showed a potential of isolated phages as food additives for controlling S. Enteritidis contamination in some salmonellosis outbreak-associated food vehicles, and there could be minimized potential risk associated with using BPS 11 Q 3 and BPS 15 Q 2 in food.
Bacteriophages and Phage-Derived Proteins – Application Approaches
Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara
2015-01-01
Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799
Park, Joseph P; Do, Minjae; Jin, Hyo-Eon; Lee, Seung-Wuk; Lee, Haeshin
2014-01-01
M13 bacteriophage (phage) was engineered for the use as a versatile template for preparing various nanostructured materials via genetic engineering coupled to enzymatic chemical conversions. First, we engineered the M13 phage to display TyrGluGluGlu (YEEE) on the pVIII coat protein and then enzymatically converted the Tyr residue to 3,4-dihydroxyl-l-phenylalanine (DOPA). The DOPA-displayed M13 phage could perform two functions: assembly and nucleation. The engineered phage assembles various noble metals, metal oxides, and semiconducting nanoparticles into one-dimensional arrays. Furthermore, the DOPA-displayed phage triggered the nucleation and growth of gold, silver, platinum, bimetallic cobalt-platinum, and bimetallic iron-platinum nanowires. This versatile phage template enables rapid preparation of phage-based prototype devices by eliminating the screening process, thus reducing effort and time.
Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages.
Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe
2014-09-01
In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tozzoli, Rosangela; Grande, Laura; Michelacci, Valeria; Ranieri, Paola; Maugliani, Antonella; Caprioli, Alfredo; Morabito, Stefano
2014-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. PMID:24999453
Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins.
Mullaney, Julienne M; Black, Lindsay W
2014-01-01
Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids. The prohead receptacles for DNA packaging can also display peptides or full-length proteins from capsid display proteins HOC and SOC. Our laboratory has also developed a protein expression, packaging, and processing (PEPP) system which we have found to have advantages over mammalian and bacterial cell systems, including high yield, increased stability, and simplified downstream processing. Proteins that we have produced by the phage PEPP platform include human HIV-1 protease, micrococcal endonuclease from Staphylococcus aureus, restriction endonuclease EcoRI, luciferase, human granulocyte colony stimulating factor (GCSF), green fluorescent protein (GFP), and the 99 amino acid C-terminus of amyloid precursor protein (APP). Difficult to produce proteins that are toxic in mammalian protein expression systems are easily produced, packaged, and processed with the PEPP platform. APP is one example of such a highly refractory protein that has been produced successfully. The methods below describe the procedures for in vitro packaging of proheads with DNA and for producing recombinant T4 phage that carry a gene of interest in the phage genome and produce and internally package the corresponding protein of interest.
Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages.
Joerger, R D
2003-04-01
Bacteriocins, antimicrobial peptides, and bacteriophage have attracted attention as potential substitutes for, or as additions to, currently used antimicrobial compounds. This publication will review research on the potential application of these alternative antimicrobial agents to poultry production and processing. Bacteriocins are proteinaceous compounds of bacterial origin that are lethal to bacteria other than the producing strain. It is assumed that some of the bacteria in the intestinal tract produce bacteriocins as a means to achieve a competitive advantage, and bacteriocin-producing bacteria might be a desirable part of competitive exclusion preparations. Purified or partially purified bacteriocins could be used as preservatives or for the reduction or elimination of certain pathogens. Currently only nisin, produced by certain strains of Lactococcus lactis subsp. lactis, has regulatory approval for use in certain foods, and its use for poultry products has been studied extensively. Exploration of the application of antimicrobial peptides from sources other than bacteria to poultry has not yet commenced to a significant extent. Evidence for the ability of chickens to produce such antimicrobial peptides has been provided, and it is likely that these peptides play an important role in the defense against various pathogens. Bacteriophages have received renewed attention as possible agents against infecting bacteria. Evidence from several trials indicates that phage therapy can be effective under certain circumstances. Numerous obstacles for the use of phage as antimicrobials for poultry or poultry products remain. Chiefly among them are the narrow host range of many phages, the issue of phage resistance, and the possibility of phage-mediated transfer of genetic material to bacterial hosts. Regulatory issues and the high cost of producing such alternative antimicrobial agents are also factors that might prevent application of these agents in the near future.
Smoot, James C; Barbian, Kent D; Van Gompel, Jamie J; Smoot, Laura M; Chaussee, Michael S; Sylva, Gail L; Sturdevant, Daniel E; Ricklefs, Stacy M; Porcella, Stephen F; Parkins, Larye D; Beres, Stephen B; Campbell, David S; Smith, Todd M; Zhang, Qing; Kapur, Vivek; Daly, Judy A; Veasy, L George; Musser, James M
2002-04-02
Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human-GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.
Khan Mirzaei, Mohammadali; Haileselassie, Yeneneh; Navis, Marit; Cooper, Callum; Sverremark-Ekström, Eva; Nilsson, Anders S
2016-01-01
Due to a global increase in the range and number of infections caused by multi-resistant bacteria, phage therapy is currently experiencing a resurgence of interest. However, there are a number of well-known concerns over the use of phages to treat bacterial infections. In order to address concerns over safety and the poorly understood pharmacokinetics of phages and their associated cocktails, immunological characterization is required. In the current investigation, the immunogenicity of four distinct phages (taken from the main families that comprise the Caudovirales order) and their interaction with donor derived peripheral blood mononuclear cells and immortalized cell lines (HT-29 and Caco-2 intestinal epithelial cells) were investigated using standard immunological techniques. When exposed to high phage concentrations (10(9) PFU/well), cytokine driven inflammatory responses were induced from all cell types. Although phages appeared to inhibit the growth of intestinal epithelial cell lines, they also appear to be non-cytotoxic. Despite co-incubation with different cell types, phages maintained a high killing efficiency, reducing extended-spectrum beta-lactamase-producing Escherichia coli numbers by 1-4 log10 compared to untreated controls. When provided with a suitable bacterial host, phages were also able to actively reproduce in the presence of human cells resulting in an approximately 2 log10 increase in phage titer compared to the initial inoculum. Through an increased understanding of the complex pharmacokinetics of phages, it may be possible to address some of the safety concerns surrounding phage preparations prior to creating new therapeutic strategies.
Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development.
Samoylova, Tatiana I; Braden, Timothy D; Spencer, Jennifer A; Bartol, Frank F
2017-11-20
Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to address this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Filamentous bacteriophages can be used as platforms for development of such vaccines. In this review authors highlight structural and immunogenic properties of filamentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in animals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those administering the vaccines. Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be produced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.
Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Phage display: concept, innovations, applications and future.
Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K
2010-01-01
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field. Copyright © 2010 Elsevier Inc. All rights reserved.
Mazor, Yariv; Van Blarcom, Thomas; Carroll, Sean; Georgiou, George
2010-05-01
Phage display of antibody libraries is a powerful tool for antibody discovery and evolution. Recombinant antibodies have been displayed on phage particles as scFvs or Fabs, and more recently as bivalent F(ab')(2). We recently developed a technology (E-clonal) for screening of combinatorial IgG libraries using bacterial periplasmic display and selection by fluorescence-activated cell sorting (FACS) [Mazor Y et al. (2007) Nat Biotechnol 25, 563-565]. Although, as a single-cell analysis technique, FACS is very powerful, especially for the isolation of high-affinity binders, even with state of the art instrumentation the screening of libraries with diversity > 10(8) is technically challenging. We report here a system that takes advantage of display of full-length IgGs on filamentous phage particles as a prescreening step to reduce library size and enable subsequent rounds of FACS screening in Escherichia coli. For the establishment of an IgG phage display system, we utilized phagemid-encoded IgG with the fUSE5-ZZ phage as a helper phage. These phage particles display the Fc-binding ZZ protein on all copies of the phage p3 coat protein, and are exploited as both helper phages and anchoring surfaces for the soluble IgG. We demonstrate that tandem phage selection followed by FACS allows the selection of a highly diversified profile of binders from antibody libraries without undersampling, and at the same time capitalizes on the advantages of FACS for real-time monitoring and optimization of the screening process.
Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development
Samoylova, Tatiana I.; Braden, Timothy D.; Spencer, Jennifer A.; Bartol, Frank F.
2017-01-01
Background: Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to ad-dress this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Fil-amentous bacteriophages can be used as platforms for development of such vaccines. Objective: In this review authors highlight structural and immunogenic properties of fila-mentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. Results: Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in ani-mals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those ad-ministering the vaccines. Conclusion: Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be pro-duced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents. PMID:28901276
Elbakidze, T; Kokashvili, T; Janelidze, N; Porchkhidze, K; Koberidze, T; Tediashvili, M
2015-03-01
Vibrio cholerae, a widely spread bacterium in various marine, fresh, and brackish water environments, can cause a devastating diarrheal disease - cholera and also mild forms of gastroenteritis. Bacterial viruses are natural controllers of bacterial population density in water systems. The goal of this study was to isolate and characterize V. cholerae-specific bacteriophages occurring in the Georgian coastal zone of the Black Sea and inland water reservoirs in the eastern part of Georgia. During 2006-2009, 71 phages lytic to V. cholerae were collected from these aquatic environments. The phage isolation rate was varying from 8% to 15%, depending on the sampling season and site, and the abundance of host bacteria. The majority of phages specific to V. cholerae were collected from freshwater sources. The phage isolation showed seasonal character covering warm period -from April to September. Based on basic characteristics of primary phage isolates (lytic spectrum, virion morphology and DNA restriction profiles) 23 V. cholerae -specific phages were selected for series of consecutive screenings. Comparatively wide spectrum of lytic activity was revealed in case of 14 phages specific to V. cholerae O1, and one phage - VchBS3, active against non-O1 V. cholerae. Three phages active against V. cholerae non-O1 and six V. cholerae O1 -specific phages have been studied in detail for a number of biological features (stability in different solutions, temperature-, pH- and UV- sensitivity, influence of high ionic strength etc.), considered to be additional important characteristics for selection of phages with therapeutic potential.
Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas
Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944
Laing, Chad R; Zhang, Yongxiang; Gilmour, Matthew W; Allen, Vanessa; Johnson, Roger; Thomas, James E; Gannon, Victor P J
2012-01-01
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.
Laing, Chad R.; Zhang, Yongxiang; Gilmour, Matthew W.; Allen, Vanessa; Johnson, Roger; Thomas, James E.; Gannon, Victor P. J.
2012-01-01
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors. PMID:22649523
Development of a Novel Human scFv Against EGFR L2 Domain by Phage Display Technology.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Khosroshahi, Shiva Ahdi; Tanomand, Asghar
2017-01-01
Epidermal growth factor receptor (EGFR) as a transmembrane tyrosine kinase receptor frequently overexpresses in tumors with epithelial origin. The L2 domain from extracellular part of EGFR is involved in ligand binding and the blockage of this domain prevents activation of related signaling pathways. This study was aimed to develop a novel human scFv against EGFR L2 domain as a promising target for cancer therapy. The L2 recombinant protein was purified and used for panning a human scFv phage library (Tomlinson I). In this study, a novel screening strategy was applied to select clones with high binding and enrichment of rare specific phage clones of the L2 protein. After five biopanning rounds several specific clones were isolated which among them one phage clone with high binding was purified for further analysis. The specific interaction of selected clone against target antigen was confirmed by ELISA and western blotting. Immunofluorescence staining showed that purified scFv binds to A431 cells surface, displaying EGFR surface receptor. In the present study, we isolated for the first time a novel human scFv against EGFR L2 domain. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFR overexpressing cancers using this novel human anti-L2 ScFv. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
Nayak, Dhananjaya; Guo, Qing; Sousa, Rui
2009-05-15
Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.
Seo, Moon-Hyeong; Nim, Satra; Jeon, Jouhyun; Kim, Philip M
2017-01-01
Protein-protein interactions are essential to cellular functions and signaling pathways. We recently combined bioinformatics and custom oligonucleotide arrays to construct custom-made peptide-phage libraries for screening peptide-protein interactions, an approach we call proteomic peptide-phage display (ProP-PD). In this chapter, we describe protocols for phage display for the identification of natural peptide binders for a given protein. We finally describe deep sequencing for the analysis of the proteomic peptide-phage display.
Mushegian, Arcady; Karin, Eli Levy; Pupko, Tal
2018-01-01
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes. Published by Elsevier Inc.
Application of bacteriophages in sensor development.
Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz
2016-03-01
Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.
Bacteriophages of Yersinia pestis.
Zhao, Xiangna; Skurnik, Mikael
2016-01-01
Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.
Siegrist, M Sloan; Rubin, Eric J
2009-01-01
Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.
Petrovski, Steve; Tillett, Daniel; Seviour, Robert J
2012-01-01
Activated sludge plants suffer frequently from the operational problem of stable foam formation on aerobic reactor surfaces, which can be difficult to prevent. Many foams are stabilized by mycolic acid-containing Actinobacteria, the mycolata. The in situ biocontrol of foaming using phages is an attractive strategy. We describe two polyvalent phages, GTE5 and GRU1, targeting Gordonia terrae and Gordonia rubrupertincta, respectively, isolated from activated sludge. Phage GRU1 also propagates on Nocardia nova. Both phages belong to the family Siphoviridae and have similar-size icosahedral heads that encapsulate double-stranded DNA genomes (∼65 kb). Their genome sequences are similar to each other but markedly different from those of other sequenced phages. Both are arranged in a modular fashion. These phages can reduce or eliminate foam formation by their host cells under laboratory conditions.
Bacteriophage-Based Pathogen Detection
NASA Astrophysics Data System (ADS)
Ripp, Steven
Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.
Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael
2018-01-01
ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.
Advancement and applications of peptide phage display technology in biomedical science.
Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung
2016-01-19
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Carvalho, Carla; Costa, Ana Rita; Silva, Filipe; Oliveira, Ana
2017-09-01
Nowadays, the world is facing an increasing emergence of antibiotic resistant bacteria. Simultaneously, the banning of some existing antibiotics and the lack of development of new antimicrobials have created an urgent need to find new alternatives against animal infections. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and harmless to animals. For these reasons, phages and their derivatives are being considered valuable antimicrobial alternatives and an opportunity to reduce the current use of antibiotics in agri-food production, increasing animal productivity and providing environmental protection. Furthermore, the possibility of combining phage genetic material with foreign genes encoding peptides of interest has enabled their use as vaccine delivery tools. In this case, besides bacterial infections, they might be used to prevent viral infections. This review explores current data regarding advances on the use of phages and phage-encoded proteins, such as endolysins, exolysins and depolymerases, either for therapeutic or prophylactic applications, in animal husbandry. The use of recombinant phage-derived particles or genetically modified phages, including phage vaccines, will also be reviewed.
Stability of bacteriophages in burn wound care products
Monserez, Riet; van Belleghem, Jonas; Rose, Thomas; Jennes, Serge; De Vos, Daniel; Verbeken, Gilbert; Vaneechoutte, Mario; Pirnay, Jean-Paul
2017-01-01
Bacteriophages could be used along with burn wound care products to enhance antimicrobial pressure during treatment. However, some of the components of the topical antimicrobials that are traditionally used for the prevention and treatment of burn wound infection might affect the activity of phages. Therefore, it is imperative to determine the counteraction of therapeutic phage preparations by burn wound care products before application in patients. Five phages, representatives of two morphological families (Myoviridae and Podoviridae) and active against 3 common bacterial burn wound pathogens (Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus) were tested against 13 different products commonly used in the treatment of burn wounds. The inactivation of the phages was quite variable for different phages and different products. Majority of the anti-infective products affected phage activity negatively either immediately or in the course of time, although impact was not always significant. Products with high acidity had the most adverse effect on phages. Our findings demonstrate that during combined treatment the choice of phages and wound care products must be carefully defined in advance. PMID:28750102
Oligopeptide M13 Phage Display in Pathogen Research
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-01-01
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline. PMID:24136040
Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Bourkaltseva, Maria; Krylov, Sergey; Kaplan, Alla; Chesnokova, Elena; Kulakov, Leonid; Magill, Damian; Polygach, Olga
2016-01-01
This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants. PMID:27790211
Wang, Min S; Nitin, Nitin
2014-10-01
Bacteriophage contamination of starter culture and raw material poses a major problem in the fermentation industry. In this study, a rapid detection of lytic phage contamination in starter culture using water-in-oil-in-water (W/O/W) emulsion microdroplets was described. A model bacteria with varying concentrations of lytic phages were encapsulated in W/O/W emulsion microdroplets using a simple needle-in-tube setup. The detection of lytic phage contamination was accomplished in 1 h using the propidium iodide labeling of the phage-infected bacteria inside the W/O/W emulsion microdroplets. Using this approach, a detection limit of 10(2) PFU/mL of phages was achieved quantitatively, while 10(4) PFU/mL of phages could be detected qualitatively based on visual comparison of the fluorescence images. Given the simplicity and sensitivity of this approach, it is anticipated that this method can be adapted to any strains of bacteria and lytic phages that are commonly used for fermentation, and has potential for a rapid detection of lytic phage contamination in the fermentation industry.
Oligopeptide m13 phage display in pathogen research.
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-10-16
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.
Pros and cons of phage therapy
Loc-Carrillo, Catherine
2011-01-01
Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of “Pros,” for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These “Cons,” however, tend to be relatively minor. PMID:22334867
Prospects of Phage Application in the Treatment of Acne Caused by Propionibacterium acnes
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Żaczek, Maciej; Międzybrodzki, Ryszard; Letkiewicz, Sławomir; Łusiak-Szelchowska, Marzanna; Górski, Andrzej
2017-01-01
Propionibacterium acnes is associated with purulent skin infections, and it poses a global problem for both patients and doctors. Acne vulgaris (acne) remains a problem due to its chronic character and difficulty of treatment, as well as its large impact on patients' quality of life. Due to the chronic course of the disease, treatment is long lasting, and often ineffective. Currently there are data regarding isolation of P. acnes phages, and there have been numerous studies on phage killing of P. acnes, but no data are available on phage application specifically in acne treatment. In this review, we have summarized the current knowledge on the phages active against P. acnes described so far and their potential application in the treatment of acne associated with P. acnes. The treatment of acne with phages may be important in order to reduce the overuse of antibiotics, which are currently the main acne treatment. However, more detailed studies are first needed to understand phage functioning in the skin microbiome and the possibility to use phages to combat P. acnes. PMID:28228751
Vandersteegen, Katrien; Kropinski, Andrew M; Nash, John H E; Noben, Jean-Paul; Hermans, Katleen; Lavigne, Rob
2013-03-01
The renewed interest in controlling Staphylococcus aureus infections using their natural enemies, bacteriophages, has led to the isolation of a limited number of virulent phages so far. These phages are all members of the Twortlikevirus, displaying little variance. We present two novel closely related (95.9% DNA homology) lytic myoviruses, Romulus and Remus, with double-stranded DNA (dsDNA) genomes of 131,333 bp and 134,643 bp, respectively. Despite their relatedness to Staphylococcus phages K, G1, ISP, and Twort and Listeria phages A511 and P100, Romulus and Remus can be proposed as isolates of a new species within the Twortlikevirus genus. A distinguishing feature for these phage genomes is the unique distribution of group I introns compared to that in other staphylococcal myoviruses. In addition, a hedgehog/intein domain was found within their DNA polymerase genes, and an insertion sequence-encoded transposase exhibits splicing behavior and produces a functional portal protein. From a phage therapy application perspective, Romulus and Remus infected approximately 70% of the tested S. aureus isolates and displayed promising lytic activity against these isolates. Furthermore, both phages showed a rapid initial adsorption and demonstrated biofilm-degrading capacity in a proof-of-concept experiment.
Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.
Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio
2017-09-01
In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petrovic, Aleksandra; Kostanjsek, Rok; Rakhely, Gabor; Knezevic, Petar
2017-02-01
Bordetella bronchiseptica is a well-known etiological agent of kennel cough in dogs and cats and one of the two causative agents of atrophic rhinitis, a serious swine disease. The aim of the study was to isolate B. bronchiseptica bacteriophages from environmental samples for the first time. A total of 29 phages from 65 water samples were isolated using the strain ATCC 10580 as a host. The lytic spectra of the phages were examined at 25 and 37 °C, using 12 strains of B. bronchiseptica. All phages were able to plaque on 25.0 % to 41.7 % of the strains. The selected phages showed similar morphology (Siphoviridae, morphotype B2), but variation of RFLP patterns and efficacy of plating on various strains. The partial genome sequence of phage vB_BbrS_CN1 showed its similarity to phages from genus Yuavirus. Using PCR, it was confirmed that the phages do not originate from the host strain, and environmental origin was additionally confirmed by the analysis of host genome sequence in silico and plating heated and unheated samples in parallel. Accordingly, this is the first isolation of B. bronchiseptica phages from environment and the first isolation and characterization of phages of B. bronchiseptica belonging to family Siphoviridae.
Loison, Pauline; Majou, Didier; Gelhaye, Eric; Boudaud, Nicolas; Gantzer, Christophe
2016-11-01
Qβ phages infect Escherichia coli in the human gut by recognizing F-pili as receptors. Infection therefore occurs under reducing conditions induced by physiological agents (e.g. glutathione) or the intestinal bacterial flora. After excretion in the environment, phage particles are exposed to oxidizing conditions and sometimes disinfection. If inactivation does not occur, the phage may infect new hosts in the human gut through the oral route. During such a life cycle, we demonstrated that, outside the human gut, cysteines of the major protein capsid of Qβ phage form disulfide bonds. Disinfection with NaClO does not allow overoxidation to occur. Such oxidation induces inactivation rather by irreversible damage to the minor proteins. In the presence of glutathione, most disulfide bonds are reduced, which slightly increases the capacity of the phage to infect E. coli in vitro Such reduction is reversible and barely alters infectivity of the phage. Reduction of all disulfide bonds by dithiothreitol leads to complete capsid destabilization. These data provide new insights into how the phages are impacted by oxidizing-reducing conditions outside their host cell and raises the possibility of the intervention of the redox during life cycle of the phage. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abedon, Stephen T.
2012-01-01
The ability of bacteria to survive and propagate can be dramatically reduced upon exposure to lytic bacteriophages. Study of this impact, from a bacterium’s perspective, tends to focus on phage-bacterial interactions that are governed by mass action, such as can be observed within continuous flow or similarly planktonic ecosystems. Alternatively, bacterial molecular properties can be examined, such as specific phage‑resistance adaptations. In this study I address instead how limitations on bacterial movement, resulting in the formation of cellular arrangements, microcolonies, or biofilms, could increase the vulnerability of bacteria to phages. Principally: (1) Physically associated clonal groupings of bacteria can represent larger targets for phage adsorption than individual bacteria; and (2), due to a combination of proximity and similar phage susceptibility, individual bacteria should be especially vulnerable to phages infecting within the same clonal, bacterial grouping. Consistent with particle transport theory—the physics of movement within fluids—these considerations are suggestive that formation into arrangements, microcolonies, or biofilms could be either less profitable to bacteria when phage predation pressure is high or require more effective phage-resistance mechanisms than seen among bacteria not living within clonal clusters. I consider these ideas of bacterial ‘spatial vulnerability’ in part within a phage therapy context. PMID:22754643
Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii.
Zhang, J; Liu, X; Li, X-J
2015-01-16
The phages of Acinetobacter baumannii has drawn increasing attention because of the multi-drug resistance of A. baumanni. The aim of this study was to sequence Acinetobacter baumannii phage AB3 and conduct bioinformatic analysis to lay a foundation for genome remodeling and phage therapy. We isolated and sequenced A. baumannii phage AB3 and attempted to annotate and analyze its genome. The results showed that the genome is a double-stranded DNA with a total length of 31,185 base pairs (bp) and 97 open reading frames greater than 100 bp. The genome includes 28 predicted genes, of which 24 are homologous to phage AB1. The entire coding sequence is located on the negative strand, representing 90.8% of the total length. The G+C mol% was 39.18%, without areas of high G+C content over 200 bp in length. No GC island, tRNA gene, or repeated sequence was identified. Gene lengths were 120-3099 bp, with an average of 1011 bp. Six genes were found to be greater than 2000 bp in length. Genomic alignment and phylogenetic analysis of the RNA polymerase gene showed that similar to phage AB1, phage AB3 is a phiKMV-like virus in the T7 phage family.
Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library.
Krumpe, Lauren R H; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki
2007-10-05
Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.
Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy
2013-08-01
The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs). Copyright © 2013 Elsevier B.V. All rights reserved.
Phage display as a promising approach for vaccine development.
Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar
2016-09-29
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Naser, Iftekhar Bin; Hoque, M Mozammel; Abdullah, Ahmed; Bari, S M Nayeemul; Ghosh, Amar N; Faruque, Shah M
2017-01-01
Phages isolated from environmental waters in Bangladesh were tested for their host specificity towards V. cholerae O1 and O139, and the ability to disperse V. cholerae biofilms formed in the laboratory. Representative phages were further characterized by electron microscopy and whole genome sequencing. Selected phages were then introduced in various combinations to biofilms of toxigenic V. cholerae added to samples of river water, and the dispersion of biofilms as well as the growth kinetics of V. cholerae and the phages were monitored. A phage cocktail composed of three different phages isolated from surface waters in Bangladesh and designated as JSF7, JSF4, and JSF3 could significantly influence the distribution and concentration of the active planktonic form and biofilm associated form of toxigenic V. cholerae in water. While JSF7 showed a biofilm degrading activity and dispersed cells from both V. cholerae O1 and O139 derived biofilms thus increasing the concentration of planktonic V. cholerae in water, JSF4 and JSF3 showed strong bactericidal activity against V. cholerae O1 and O139 respectively. A mixture of all three phages could effectively reduce both biofilm-associated and planktonic V. cholerae in river water microcosms. Besides potential applicability in phage-mediated control of cholera, our results have relevance in appreciating possible intricate role of diverse environmental phages in the epidemiology of the disease, since both biofilms and phages influence the prevalence and infectivity of V. cholerae in a variety of ways.
Allué-Guardia, Anna; Jofre, Juan; Muniesa, Maite
2012-08-01
Two cytolethal distending toxin (Cdt) type V-encoding bacteriophages (Φ62 and Φ125) were induced spontaneously from their wild-type Escherichia coli strains and from the lysogens generated in Shigella sonnei. The stability of Cdt phages was determined at various temperatures and pH values after 1 month of storage by means of infectivity tests using a plaque blot assay and analysis of phage genomes using real-time quantitative PCR (qPCR): both were highly stable. We assessed the inactivation of Cdt phages by thermal treatment, chlorination, UV radiation, and in a mesocosm in both summer and winter. The results for the two Cdt phages showed similar trends and were also similar to the phage SOM23 used for reference, but they showed a much higher persistence than Cdt-producing E. coli. Cdt phages showed maximal inactivation after 1 h at 70°C, 30 min of UV radiation, and 30 min of contact with a 10-ppm chlorine treatment. Inactivation in a mesocosm was higher in summer than in winter, probably because of solar radiation. The treatments reduced the number of infectious phages but did not have a significant effect on the Cdt phage particles detected by qPCR. Cdt phages were quantified by qPCR in 73% of river samples, and these results suggest that Cdt phages are a genetic vehicle and the natural reservoir for cdt in the environment.
Energy-efficient growth of phage Q Beta in Escherichia coli.
Kim, Hwijin; Yin, John
2004-10-20
The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.
Zuber, Sophie; Boissin‐Delaporte, Catherine; Michot, Lise; Iversen, Carol; Diep, Benjamin; Brüssow, Harald; Breeuwer, Pieter
2008-01-01
Summary Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life‐threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 108 pfu ml−1 of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (106 and 102 cfu ml−1). In contrast, broth inoculated with 104 phage and 102 bacteria per ml first showed normal bacterial growth until reaching a cell titre of 105 cfu ml−1. Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml−1. Phages could be produced with titres of 1010 pfu ml−1 in broth culture, but they were not stable upon freeze‐drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature. PMID:21261874
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J.
2011-01-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen. PMID:21764969
Cheng, Lucy; Marinelli, Laura J; Grosset, Noël; Fitz-Gibbon, Sorel T; Bowman, Charles A; Dang, Brian Q; Russell, Daniel A; Jacobs-Sera, Deborah; Shi, Baochen; Pellegrini, Matteo; Miller, Jeff F; Gautier, Michel; Hatfull, Graham F; Modlin, Robert L
2018-03-01
A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.
Soendergaard, Mette; Newton-Northup, Jessica R; Deutscher, Susan L
2014-01-01
Ovarian cancer is among the leading causes of cancer deaths in women, and is the most fatal gynecological malignancy. Poor outcomes of the disease are a direct result of inadequate detection and diagnostic methods, which may be overcome by the development of novel efficacious screening modalities. However, the advancement of such technologies is often time-consuming and costly. To overcome this hurdle, our laboratory has established a time and cost effective method of selecting and identifying ovarian carcinoma avid bacteriophage (phage) clones using high throughput phage display technology. These phage clones were selected from a filamentous phage fusion vector (fUSE5) 15-amino acid peptide library against human ovarian carcinoma (SKOV-3) cells, and identified by DNA sequencing. Two phage clones, pM6 and pM9, were shown to exhibit high binding affinity and specificity for SKOV-3 cells using micropanning, cell binding and fluorescent microscopy studies. To validate that the binding was mediated by the phage-displayed peptides, biotinylated peptides (M6 and M9) were synthesized and the specificity for ovarian carcinoma cells was analyzed. These results showed that M6 and M9 bound to SKOV-3 cells in a dose-response manner and exhibited EC50 values of 22.9 ± 2.0 μM and 12.2 ± 2.1μM (mean ± STD), respectively. Based on this, phage clones pM6 and pM9 were labeled with the near-infrared fluorophore AF680, and examined for their pharmacokinetic properties and tumor imaging abilities in vivo. Both phage successfully targeted and imaged SKOV-3 tumors in xenografted nude mice, demonstrating the ability of this method to quickly and cost effectively develop novel ovarian carcinoma avid phage.
Schnabel, Elise L.; Jones, Alan L.
2001-01-01
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages φEa1 and φEa7 and 3 novel phages named φEa100, φEa125, and φEa116C, were identified based on differences in genome size and restriction fragment pattern. φEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages φEa100, φEa7, and φEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. φEa116C contained an approximately 75-kb genome. φEa1, φEa7, φEa100, φEa125, and φEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. φEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU. PMID:11133428
Sinha, Vaibhhav; Goyal, Akshit; Svenningsen, Sine L.; Semsey, Szabolcs; Krishna, Sandeep
2017-01-01
Bacteriophages are the most abundant organisms on the planet and both lytic and temperate phages play key roles as shapers of ecosystems and drivers of bacterial evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts by producing multiple phage particles and releasing them by lysing the host cell, and (ii) lysogeny: establishing a potentially mutually beneficial relationship with the host by integrating their chromosome into the host cell's genome. Temperate phages exhibit lysogeny propensities in the curiously narrow range of 5–15%. For some temperate phages, the propensity is further regulated by the multiplicity of infection, such that single infections go predominantly lytic while multiple infections go predominantly lysogenic. We ask whether these observations can be explained by selection pressures in environments where multiple phage variants compete for the same host. Our models of pairwise competition, between phage variants that differ only in their propensity to lysogenize, predict the optimal lysogeny propensity to fall within the experimentally observed range. This prediction is robust to large variation in parameters such as the phage infection rate, burst size, decision rate, as well as bacterial growth rate, and initial phage to bacteria ratio. When we compete phage variants whose lysogeny strategies are allowed to depend upon multiplicity of infection, we find that the optimal strategy is one which switches from full lysis for single infections to full lysogeny for multiple infections. Previous attempts to explain lysogeny propensity have argued for bet-hedging that optimizes the response to fluctuating environmental conditions. Our results suggest that there is an additional selection pressure for lysogeny propensity within phage populations infecting a bacterial host, independent of environmental conditions. PMID:28798729
Wan, Zhenmao; Goddard, Noel L
2012-10-01
Inter- and intraspecies horizontal gene transfer enabled by bacterial secretion systems is a powerful mechanism for bacterial genome plasticity. The type IV secretion system of Escherichia coli, encoded by the F plasmid, enables cell-to-cell contact and subsequent DNA transfer known as conjugation. Conjugation is compromised by phage infection that specifically targets the secretion machinery. Hence, the use of phages to regulate the spread of genes, such as acquired antibiotic resistance or as general biosanitation agents, has gained interest. To predict the potential efficacy, the competition kinetics must first be understood. Using quantitative PCR to enumerate genomic loci in a resource-limited batch culture, we quantify the infection kinetics of the nonlytic phage M13 and its impact on conjugation in the absence of selection pressure (isogenic set). Modeling the resulting experimental data reveals the cellular growth rate to be reduced to 60% upon phage infection. We also find a maximum phage infection rate of 3×10(-11) mL phage(-1) min(-1) which is only 1 order of magnitude slower than the maximum conjugation rate (3×10(-10) mL cell(-1) min(-1)), suggesting phages must be in significant abundance to be effective antagonists to horizontal gene transfer. In the regime where the number of susceptible cells (F(+)) and phages are equal upon initial infection, we observe the spread of the conjugative plasmid throughout the cell population despite phage infection, but only at 10% of the uninfected rate. This has interesting evolutionary implications, as even in the absence of selection pressure, cells maintain the ability to conjugate despite phage vulnerability and the associated growth consequences.
Parmar, Krupa M; Dafale, Nishant A; Tikariha, Hitesh; Purohit, Hemant J
2018-05-01
Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.
Biology and Genomics of an Historic Therapeutic Escherichia coli Bacteriophage Collection.
Baig, Abiyad; Colom, Joan; Barrow, Paul; Schouler, Catherine; Moodley, Arshnee; Lavigne, Rob; Atterbury, Robert
2017-01-01
We have performed microbiological and genomic characterization of an historic collection of nine bacteriophages, specifically infecting a K1 E. coli O18:K1:H7 ColV + strain. These phages were isolated from sewage and tested for their efficacy in vivo for the treatment of systemic E. coli infection in a mouse infection model by Smith and Huggins (1982). The aim of the study was to identify common microbiological and genomic characteristics, which co-relate to the performance of these phages in in vivo study. These features will allow an informed selection of phages for use as therapeutic agents. Transmission electron microscopy showed that six of the nine phages were Podoviridae and the remaining three were Siphoviridae . The four best performing phages in vivo belonged to the Podoviridae family. In vitro , these phages exhibited very short latent and rise periods in our study. In agreement with their microbiological profiles, characterization by genome sequencing showed that all six podoviruses belong to the Autographivirinae subfamily. Of these, four were isolates of the same species (99% identity), whereas two had divergent genomes compared to other podoviruses. The Siphoviridae phages, which were moderate to poor performers in vivo , exhibited longer latent and rise periods in vitro . Two of the three siphoviruses were closely related to each other (99% identity), but all can be associated with the Guernseyvirinae subfamily. Genome sequence comparison of both types of phages showed that a gene encoding for DNA-dependent RNA polymerase was only present in phages with faster replication cycle, which may account for their better performance in vivo . These data define a combination of microbiological, genomic and in vivo characteristics which allow a more rational evaluation of the original in vivo data and pave the way for the selection of phages for future phage therapy trails.
Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens.
Sillankorva, Sanna; Neubauer, Peter; Azeredo, Joana
2008-10-27
Despite the proven relevance of Pseudomonas fluorescens as a spoilage microorganism in milk, fresh meats and refrigerated food products and the recognized potential of bacteriophages as sanitation agents, so far no phages specific for P. fluorescens isolates from dairy industry have been closely characterized in view of their lytic efficiency. Here we describe the isolation and characterization of a lytic phage capable to infect a variety of P. fluorescens strains isolated from Portuguese and United States dairy industries. Several phages were isolated which showed a different host spectrum and efficiency of lysis. One of the phages, phage phiIBB-PF7A, was studied in detail due to its efficient lysis of a wide spectrum of P. fluorescens strains and ribotypes. Phage phiIBB-PF7A with a head diameter of about 63 nm and a tail size of about 13 x 8 nm belongs morphologically to the Podoviridae family and resembles a typical T7-like phage, as analyzed by transmission electron microscopy (TEM). The phage growth cycle with a detected latent period of 15 min, an eclipse period of 10 min, a burst size of 153 plaque forming units per infected cell, its genome size of approximately 42 kbp, and the size and N-terminal sequence of one of the protein bands, which gave similarity to the major capsid protein 10A, are consistent with this classification. The isolated T7-like phage, phage phiIBB-PF7A, is fast and efficient in lysing different P. fluorescens strains and may be a good candidate to be used as a sanitation agent to control the prevalence of spoilage causing P. fluorescens strains in dairy and food related environments.
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J
2011-09-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.
The Probiotic Escherichia coli Strain Nissle 1917 Combats Lambdoid Bacteriophages stx and λ.
Bury, Susanne; Soundararajan, Manonmani; Bharti, Richa; von Bünau, Rudolf; Förstner, Konrad U; Oelschlaeger, Tobias A
2018-01-01
Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coli strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype O104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coli strains which got infected by stx2 -encoding lambdoid phages turning the E. coli into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx -phage genome integration. Our experiments revealed the resistance of EcN toward not only stx -phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor ( pr ) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx - as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx -phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.
Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim
2016-06-01
The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.
Jensen, Kyle C; Hair, Bryan B; Wienclaw, Trevor M; Murdock, Mark H; Hatch, Jacob B; Trent, Aaron T; White, Tyler D; Haskell, Kyler J; Berges, Bradford K
2015-01-01
Staphylococcus aureus (SA) is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA) isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages) are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth) and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.
Vongkamjan, Kitiya; Benjakul, Soottawat; Kim Vu, Hue Thi; Vuddhakul, Varaporn
2017-09-01
Listeria monocytogenes is a foodborne pathogen commonly found in environments of seafood processing, thus presenting a challenge for eradication from seafood processing facilities. Monitoring the prevalence and subtype diversity of L. monocytogenes together with phages that are specific to Listeria spp. ("Listeria phages") will provide knowledge on the bacteria-phage ecology in food processing plants. In this work, a total of 595 samples were collected from raw material, finished seafood products and environmental samples from different sites of a seafood processing plant during 17 sampling visits in 1.5 years of study. L. monocytogenes and Listeria spp. (non-monocytogenes) were found in 22 (3.7%) and 43 (7.2%) samples, respectively, whereas 29 Listeria phages were isolated from 9 (1.5%) phage-positive samples. DNA fingerprint analysis of L. monocytogenes isolates revealed 11 Random Amplified Polymorphic DNA (RAPD) profiles, with two subtypes were frequently observed over time. Our data reveal a presence of Listeria phages within the same seafood processing environments where a diverse set of L. monocytogenes subtypes was also found. Although serotype 4b was observed at lower frequency, data indicate that isolates from this seafood processing plant belonged to both epidemiologically important serotypes 1/2a and 4b, which may suggest a potential public health risk. Phages (all showed a unique genome size of 65 ± 2 kb) were classified into 9 host range groups, representing both broad- and narrow-host range. While most L. monocytogenes isolates from this facility were susceptible to phages, five isolates showed resistance to 12-20 phages. Variations in phage host range among Listeria phages isolated from food processing plant may affect a presence of a diverse set of L. monocytogenes isolates derived from the same processing environment in Thailand. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lévesque, Céline; Duplessis, Martin; Labonté, Jessica; Labrie, Steve; Fremaux, Christophe; Tremblay, Denise; Moineau, Sylvain
2005-01-01
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization—time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed. PMID:16000821
2013-01-01
Background Shigella flexneri is the major cause of shigellosis in the developing countries. The O-antigen component of the lipopolysaccharide is one of the key virulence determinants required for the pathogenesis of S. flexneri. The glucosyltransferase and/or acetyltransferase genes responsible for the modification of the O-antigen are encoded by temperate serotype converting bacteriophage present in the S. flexneri genome. Several serotype converting phages have previously been isolated and characterized, however, attempts to isolate a serotype converting phage which encodes the modification genes of serotypes 4a strain have not been successful. Results In this study, a novel temperate serotype converting bacteriophage SfIV was isolated. Lysogenisation of phage SfIV converted serotype Y strain to serotype 4a. Electron microscopy indicated that SfIV belongs to Myoviridae family. The 39,758 bp genome of phage SfIV encompasses 54 open reading frames (orfs). Protein level comparison of SfIV with other serotype converting phages of S. flexneri revealed that SfIV is similar to phage SfII and SfV. The comparative analysis also revealed that SfIV phage contained five proteins which were not found in any other phages of S. flexneri. These proteins were: a tail fiber assembly protein, two hypothetical proteins with no clear function, and two other unknown proteins which were encoded by orfs present on a moron, that presumably got introduced in SfIV genome from another species via a transposon. These unique proteins of SfIV may play a role in the pathogenesis of the host. Conclusions This study reports the isolation and complete genome sequence analysis of bacteriophage SfIV. The SfIV phage has a host range significantly different from the other phages of Shigella. Comparative genome analysis identified several proteins unique to SfIV, which may potentially be involved in the survival and pathogenesis of its host. These findings will further our understanding on the evolution of these phages, and will also facilitate studies on development of new phage vectors and therapeutic agents to control infections caused by S. flexneri. PMID:24090466
Endersen, Lorraine; Buttimer, Colin; Nevin, Eoghan; Coffey, Aidan; Neve, Horst; Oliveira, Hugo; Lavigne, Rob; O'Mahony, Jim
2017-07-17
In recent years, the microbiological safety of powdered infant formula has gained increasing attention due to the identification of contaminating C. sakazakii and its epidemiological link with life-threatening neonatal infections. Current intervention strategies have fallen short of ensuring the production of infant formula that is free from C. sakazakii. In this study, we describe the isolation and characterisation of three bacteriophages (phages) and their application as a phage cocktail to inhibit the growth of C. sakazakii in different brands of infant formula, while also assessing the phages ability to prevent biofilm formation. All three phages, isolated from slurry, possess a relatively broad host range, verified by their ability to infect across genera and species. When all three phages were combined and used as part of a phage cocktail, 73% coverage was obtained across all Cronobacter strains tested. Optimum thermo-tolerance and pH stability were determined between 4°C-37°C, and pH6-8, respectively, well within the normal range of application of infant formula. Genome sequencing and analysis revealed all the phages to be free from lysogenic properties, a trait which renders each favourable for phage therapy applications. As such, the combined-phage preparation (3×10 8 pfu/mL) was found to possess a strong bactericidal effect on C. sakazakii/C. sakazakii LUX cells (≤10 4 cfu/mL), resulting in a significant reduction in cell numbers, to below the limit of detection (<10cfu/mL). This was observed following a 20h challenge in different brands of infant formula, where samples in the absence of the phage cocktail reached concentrations of ~10 9 cfu/mL. The phage cocktail also demonstrated promise in preventing the establishment of biofilm, as biofilm formation could not be detected for up to 48h post treatment. These results highlight the potential application of this phage preparation for biocontrol of C. sakazakii contamination in reconstituted infant formula and also as a preventative agent against biofilm formation. Copyright © 2017. Published by Elsevier B.V.
Marinelli, Laura J; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F; Hatfull, Graham F; Modlin, Robert L
2012-01-01
Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne.
The Caulobacter crescentus phage phiCbK: genomics of a canonical phage
2012-01-01
Background The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. Results Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. Conclusions Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus. PMID:23050599
Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine.
Ren, Shunxiang; Fengyu; Zuo, Shuguang; Zhao, Minyi; Wang, Xiaobin; Wang, Xicai; Chen, Yan; Wu, Zhiping; Ren, Zhaojun
2011-08-05
Vascular endothelial growth factor (VEGF) has been known as a potential vasculogenic and angiogenic factor and its receptor (VEGFR2) is a major receptor to response to the angiogenic activity of VEGF. The technique that to break the immune tolerance of "self-antigens" associated with angiogenesis is an attractive approach for cancer therapy with T4 phage display system. In this experiment, mouse VEGFR2 was constructed on T4 phage nanometer-particle surface as a recombinant vaccine. T4-mVEGFR2 recombinant vaccine was identified by PCR and western blot assay. Immunotherapy with T4-mVEGFR2 was confirmed by protective immunity against Lewis lung carcinoma (LLC) in mice. The antibody against mVEGFR2 was detected by ELISPOT, ELISA and Dot ELISA. The inhibitive effects against angiogenesis were studied using CD31 and CD105 via histological analysis. VEGF-mediated endothelial cells proliferation and tube formation were inhibited in vitro by immunoglobulin induced by T4-mVEGFR2. The antitumor activity was substantiated from the adoptive transfer of the purified immunoglobulin. Antitumor activity and autoantibody production of mVEGFR2 could be neutralized by the depletion of CD4+T lymphocytes. These studies strongly suggest that T4-mVEGFR2 recombinant vaccine might be a promising antitumor approach. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shadrin, Andrey; Sheppard, Carol; Savalia, Dhruti; Severinov, Konstantin; Wigneshweraraj, Sivaramesh
2013-02-01
Successful infection of Escherichia coli by bacteriophage T7 relies upon the transcription of the T7 genome by two different RNA polymerases (RNAps). The bacterial RNAp transcribes early T7 promoters, whereas middle and late T7 genes are transcribed by the T7 RNAp. Gp2, a T7-encoded transcription factor, is a 7 kDa product of an essential middle T7 gene 2, and is a potent inhibitor of the host RNAp. The essential biological role of Gp2 is to inhibit transcription of early T7 genes that fail to terminate efficiently in order to facilitate the coordinated usage of the T7 genome by both host and phage RNAps. Overexpression of the E. coli udk gene, which encodes a uridine/cytidine kinase, interferes with T7 infection. We demonstrate that overexpression of udk antagonizes Gp2 function in E. coli in the absence of T7 infection and thus independently of T7-encoded factors. It seems that overexpression of udk reduces Gp2 stability and functionality during T7 infection, which consequently results in inadequate inhibition of host RNAp and in the accumulation of early T7 transcripts. In other words, overexpression of udk mimics the absence of Gp2 during T7 infection. Our study suggests that the transcriptional regulation of the T7 genome is surprisingly complex and might potentially be affected at many levels by phage- and host-encoded factors.
Nanotube Interactions with Nanoparticles and Peptides
2008-01-01
combinatorial phage display technique. We find a tryptophan rich binding motif to nanotubes on solid silicon substrates. The motif resembles an alpha helix...CHAPTER 2. DIELECTROPHORESIS AND PHAGE DISPLAY 2.1. Dielectrophoresis (DEP) 12 2.2. Phage display 14 References...104 5.3. Conclusions 105 5.4. Experimental Section 105 5.4.1. Nanotube synthesis 105 5.4.2. Phage display
Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1
Andrade-Domínguez, Andrés
2016-01-01
Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. PMID:27563032
Guilfoyle, Richard A.; Smith, Lloyd M.
1994-01-01
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.
Guilfoyle, R.A.; Smith, L.M.
1994-12-27
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.
Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins
Oliveira, Hugo; Melo, Luís D. R.; Santos, Sílvio B.; Nóbrega, Franklin L.; Ferreira, Eugénio C.; Cerca, Nuno; Azeredo, Joana
2013-01-01
Phages are recognized as the most abundant and diverse entities on the planet. Their diversity is determined predominantly by their dynamic adaptation capacities when confronted with different selective pressures in an endless cycle of coevolution with a widespread group of bacterial hosts. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that hinders their release into the environment and the opportunity to start a new infection cycle. Consequently, phages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan. In this work, we bring to light all phage endolysins found in completely sequenced double-stranded nucleic acid phage genomes and uncover clues that explain the phage-endolysin-host ecology that led phages to recruit unique and specialized endolysins. PMID:23408602
Tikunova, N V; Morozova, V V
2009-10-01
The display of peptides and proteins on the surface of filamentous bacteriophage is a powerful methodology for selection of peptides and protein domains, including antibodies. An advantage of this methodology is the direct physical link between the phenotype and the genotype, as an analyzed polypeptide and its encoding DNA fragment exist in one phage particle. Development of phage display antibody libraries provides repertoires of phage particles exposing antibody fragments of great diversity. The biopanning procedure facilitates selection of antibodies with high affinity and specificity for almost any target. This review is an introduction to phage display methodology. It presents recombinant antibodies display in more details:, construction of phage libraries of antibody fragments and different strategies for the biopanning procedure.
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe
Haley, Joshua A.; Stark, W. Marshall
2016-01-01
ABSTRACT Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo. Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo. The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research. PMID:28003200
Lee, C Y; Kim, S J; Park, B C; Han, J H
2017-02-01
The present study was performed to investigate the effects of dietary supplementation of bacteriophages (phages) against enterotoxigenic Escherichia coli (ETEC) K88 as a therapy against the ETEC infection in post-weaning pigs. Two groups of post-weaning pigs aged 35 days, eight animals per group, were challenged with 3.0 × 10 10 colony forming units of ETEC K88, a third group given the vehicle. The unchallenged group and one challenged group were fed a basal nursery diet for 14 days while the remaining challenged group was fed the basal diet supplemented with 1.0 × 10 7 plaque forming units of the phage per kg. Average daily gain (ADG), goblet cell density and villous height:crypt depth (VH:CD) ratio in the intestine were less in the challenged group than in the unchallenged group within the animals fed the basal diet (p < 0.05); the reverse was true for rectal temperature, faecal consistency score (FCS), E. coli adhesion score (EAS) in the intestine, serum interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) concentrations and digesta pH in the stomach, caecum and colon. The ETEC infection symptom within the challenged animals was alleviated by the dietary phage supplementation (p < 0.05) in ADG, FCS, EAS in the jejunum, serum TNF-α concentration, digesta pH in the colon, goblet cell density in the ileum and colon and VH:CD ratio in the ileum. Moreover, the infection symptom tended to be alleviated (p < 0.10) by the phage supplementation in rectal temperature, EAS in the ileum and caecum, and VH:CD ratio in the duodenum and jejunum. However, EAS in the colon, digesta pH in the stomach and caecum, and goblet cell density in the jejunum did not change due to the dietary phage. Overall, results indicate that the phage therapy is effective for alleviation of acute ETEC K88 infection in post-weaning pigs. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Bandara, Nadeeka; Jo, Junhee; Ryu, Sangryeol; Kim, Kwang-Pyo
2012-08-01
Bacillus cereus is a foodborne bacterial pathogen that causes diarrhea and vomiting. In this study, the usefulness of bacteriophages to eradicate B. cereus from fermented foods was investigated. A total of 13 phages were isolated from Korean fermented food products, and 2 (BCP1-1 and BCP8-2) were further characterized. Transmission electron microscopy (TEM), restriction enzyme digestion pattern analysis, and SDS-PAGE of the structural proteins suggest that both phages belong to the family Myoviridae, containing approximately 150 kbp-long genomes. The host ranges of both phages were limited to B. cereus group species (12/13), as they were not able to lyse other Gram-positive or negative strains including Bacillus subtilis. Purified phages were used to inhibit B. cereus growth in a model fermented food system, cheonggukjang, a fast-fermented soybean paste product. BCP1-1 and BCP8-2 were able to effectively eradicate B. cereus from the food only if divalent cations (Ca²⁺, Mg²⁺, or Mn²⁺) were added to the medium. Further studies reveal that divalent cations are essential for phage adsorption, while a monovalent cation (Na⁺) is required for the post-adsorption phase of phage infection. Taken together, our findings imply that a phage could be an ideal anti-bacterial agent for use in fermented food products that require the presence of beneficial microflora and, during phage application, optimization of phage reaction conditions is critical for the successful utilization of phage biocontrol. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lang, Qiaolin; Wang, Fei; Yin, Long; Liu, Mingjun; Petrenko, Valery A; Liu, Aihua
2014-03-04
Probes against targets can be selected from the landscape phage library f8/8, displaying random octapeptides on the pVIII coat protein of the phage fd-tet and demonstrating many excellent features including multivalency, stability, and high structural homogeneity. Prostate-specific antigen (PSA) is usually determined by immunoassay, by which antibodies are frequently used as the specific probes. Herein we found that more advanced probes against free prostate-specific antigen (f-PSA) can be screened from the landscape phage library. Four phage monoclones were selected and identified by the specificity array. One phage clone displaying the fusion peptide ERNSVSPS showed good specificity and affinity to f-PSA and was used as a PSA capture probe in a sandwich enzyme-linked immunosorbent assay (ELISA) array. An anti-human PSA monoclonal antibody (anti-PSA mAb) was used to recognize the captured antigen, followed by horseradish peroxidase-conjugated antibody (HRP-IgG) and o-phenylenediamine, which were successively added to develop plate color. The ELISA conditions such as effect of blocking agent, coating buffer pH, phage concentration, antigen incubation time, and anti-PSA mAb dilution for phage ELISA were optimized. On the basis of the optimal phage ELISA conditions, the absorbance taken at 492 nm on a microplate reader was linear with f-PSA concentration within 0.825-165 ng/mL with a low limit of detection of 0.16 ng/mL. Thus, the landscape phage is an attractive biomolecular probe in bioanalysis.
Li, Baolian; Zhang, Si; Long, Lijuan; Huang, Sijun
2016-09-01
Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1-2 h) but highly variable burst sizes (27-341 pfu cell(-1)). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.
Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.
Colangelo-Lillis, Jesse R; Deming, Jody W
2013-01-01
The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.
Qiang, Xu; Sun, Keyong; Xing, Lijun; Xu, Yifeng; Wang, Hong; Zhou, Zhengpin; Zhang, Juan; Zhang, Fang; Caliskan, Bilgen; Wang, Min; Qiu, Zheng
2017-06-01
Phage peptide display is a powerful technique for discovery of various target-specific ligands. However, target-unrelated peptides can often be obtained and cause ambiguous results. Peptide PB-TUP has been isolated repeatedly in our laboratory on different targets and we conducted a research on PB-TUP phage to investigate their binding properties and rate of propagation. ELISA and phage recovery assay demonstrated that PB-TUP phage had a significant superior affinity to polystyrene solid surface compared with control phage clones. In this study, some incidental bindings are excluded like blocking agents and non-specific binding of secondary antibodies. Propagation rate assays of the selected phage clones showed that the growth rate of PB-TUP phage was not superior to the control phages. Furthermore, the binding of PB-TUB to polystyrene was concentration dependent and varied with solution pH. Molecular modeling revealed that stable structures of α-helix and β-turn may contribute to the binding of PB-TUP to polystyrene plate. The PB-TUP sequence was fused to the N-terminus of peptide P2 and the fusion peptide significantly increased the binding affinity to polystyrene. The fusion peptide also enhanced the cell adhesion ability of peptide P2 with human umbilical vein endothelial cell (HUVEC). The addition of the polystyrene binding peptide provided a convenient method for peptide immobilization.
Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.
Tazzyman, Samuel J; Hall, Alex R
2015-03-17
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Lytic phages obscure the cost of antibiotic resistance in Escherichia coli
Tazzyman, Samuel J; Hall, Alex R
2015-01-01
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Tesar, Devin; Hötzel, Isidro
2013-10-01
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
Karumidze, Natia; Kusradze, Ia; Rigvava, Sophio; Goderdzishvili, Marine; Rajakumar, Kumar; Alavidze, Zemphira
2013-03-01
Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.
Novel N4 Bacteriophages Prevail in the Cold Biosphere.
Zhan, Yuanchao; Buchan, Alison; Chen, Feng
2015-08-01
Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Aijaz, Iqbal; Koudelka, Gerald B
2018-04-19
Temperate phage encoded Shiga toxin (Stx) kills the bacterivorous predator, Tetrahymena thermophila, providing Stx + Escherichia coli with a survival advantage over Stx - cells. Although bacterial death accompanies Stx release, since bacteria grow clonally the fitness benefits of predator killing accrue to the kin of the sacrificed organism, meaning Stx-mediated protist killing is a form of self-destructive cooperation. We show here that the fitness benefits of Stx production are not restricted to the kin of the phage-encoding bacteria. Instead, nearby "free loading" bacteria, irrespective of their genotype, also reap the benefit of Stx-mediated predator killing. This finding indicates that the phage-borne Stx exotoxin behaves as a public good. Stx is encoded by a mobile phage. We find that Stx-encoding phage can use susceptible bacteria in the population as surrogates to enhance toxin and phage production. Moreover, our findings also demonstrate that engulfment and concentration of Stx-encoding and susceptible Stx - bacteria in the Tetrahymena phagosome enhances the transfer of Stx-encoding temperate phage from the host to the susceptible bacteria. This transfer increases the population of cooperating bacteria within the community. Since these bacteria now encode Stx, the predation-stimulated increase in phage transfer increases the population of toxin encoding bacteria in the environment. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Persistence of Infectious Shiga Toxin-Encoding Bacteriophages after Disinfection Treatments
Allué-Guardia, Anna; Martínez-Castillo, Alexandre
2014-01-01
In Shiga toxin-producing Escherichia coli (STEC), induction of Shiga toxin-encoding bacteriophages (Stx phages) causes the release of free phages that can later be found in the environment. The ability of Stx phages to survive different inactivation conditions determines their prevalence in the environment, the risk of stx transduction, and the generation of new STEC strains. We evaluated the infectivity and genomes of two Stx phages (Φ534 and Φ557) under different conditions. Infectious Stx phages were stable at 4, 22, and 37°C and at pH 7 and 9 after 1 month of storage but were completely inactivated at pH 3. Infective Stx phages decreased moderately when treated with UV (2.2-log10 reduction for an estimated UV dose of 178.2 mJ/cm2) or after treatment at 60 and 68°C for 60 min (2.2- and 2.5-log10 reductions, respectively) and were highly inactivated (3 log10) by 10 ppm of chlorine in 1 min. Assays in a mesocosm showed lower inactivation of all microorganisms in winter than in summer. The number of Stx phage genomes did not decrease significantly in most cases, and STEC inactivation was higher than phage inactivation under all conditions. Moreover, Stx phages retained the ability to lysogenize E. coli after some of the treatments. PMID:24463973
Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches
Yu, Pingfeng; Li, Mengyan; Dai, Zhaoyi; Alvarez, Pedro J. J.
2015-01-01
Many studies on phage biology are based on isolation methods that may inadvertently select for narrow-host-range phages. Consequently, broad-host-range phages, whose ecological significance is largely unexplored, are consistently overlooked. To enhance research on such polyvalent phages, we developed two sequential multihost isolation methods and tested both culture-dependent and culture-independent phage libraries for broad infectivity. Lytic phages isolated from activated sludge were capable of interspecies or even interorder infectivity without a significant reduction in the efficiency of plating (0.45 to 1.15). Two polyvalent phages (PX1 of the Podoviridae family and PEf1 of the Siphoviridae family) were characterized in terms of adsorption rate (3.54 × 10−10 to 8.53 × 10−10 ml/min), latent time (40 to 55 min), and burst size (45 to 99 PFU/cell), using different hosts. These phages were enriched with a nonpathogenic host (Pseudomonas putida F1 or Escherichia coli K-12) and subsequently used to infect model problematic bacteria. By using a multiplicity of infection of 10 in bacterial challenge tests, >60% lethality was observed for Pseudomonas aeruginosa relative to uninfected controls. The corresponding lethality for Pseudomonas syringae was ∼50%. Overall, this work suggests that polyvalent phages may be readily isolated from the environment by using different sequential hosts, and this approach should facilitate the study of their ecological significance as well as enable novel applications. PMID:26590277
Sequencing, genome analysis and host range of a novel Ralstonia phage RsoP1EGY isolated from Egypt
USDA-ARS?s Scientific Manuscript database
A novel Ralstonia phage was isolated from soil in Egypt and designated RsPod1SoilEGY using our new four-part phage identifier naming system. When tested, this phage selectively infected only race 3 biovar 2 phylotype IIB sequevar 1, and not non-race 3 biovar 2 strains of Ralstonia solanacearum. The ...
Characterization of a ViI-like phage specific to Escherichia coli O157:H7
USDA-ARS?s Scientific Manuscript database
Phage vB_EcoM_CBA120 (CBA120) isolated against Escherichia coli O157:H7 from a cattle feedlot is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and non targeting E...
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L; Geisbrecht, Brian V; Foukas, Periklis G; Lambris, John D; Mastellos, Dimitrios C; Sfyroera, Georgia
2015-10-15
Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?
Mohammed, Manal
2017-11-07
Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.
Melo, Luís D. R.; Veiga, Patrícia; Cerca, Nuno; Kropinski, Andrew M.; Almeida, Carina; Azeredo, Joana; Sillankorva, Sanna
2016-01-01
Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium. PMID:27446059
Next generation phage display by use of pVII and pIX as display scaffolds.
Løset, Geir Åge; Sandlie, Inger
2012-09-01
Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform. Copyright © 2012 Elsevier Inc. All rights reserved.
Therapeutic Antibodies by Phage Display.
Shim, Hyunbo
2016-01-01
Antibody phage display is a major technological platform for the generation of fully human antibodies for therapeutic purposes. The in vitro binder selection by phage display allows researchers to have more extensive control over binding parameters and facilitates the isolation of clinical candidate antibodies with desired binding and/or functional profiles. Since the invention of antibody phage display in late 1980s, significant technological advancements in the design, construction, and selection of the antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. In this review, the background and details of antibody phage display technology, and representative antibody libraries with natural or synthetic sequence diversity and different construction strategies are described. The generation, optimization, functional and biophysical properties, and preclinical and clinical developments of some of the phage display-derived therapeutic antibodies approved for use in patients or in late-stage clinical trials are also discussed. With evolving novel disease targets and therapeutic strategies, antibody phage display is expected to continue to play a central role in the development of the next generation of therapeutic antibodies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chemical and genetic wrappers for improved phage and RNA display.
Lamboy, Jorge A; Tam, Phillip Y; Lee, Lucie S; Jackson, Pilgrim J; Avrantinis, Sara K; Lee, Hye J; Corn, Robert M; Weiss, Gregory A
2008-11-24
An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.
Uptake and processing of modified bacteriophage M13 in mice: implications for phage display.
Molenaar, Tom J M; Michon, Ingrid; de Haas, Sonja A M; van Berkel, Theo J C; Kuiper, Johan; Biessen, Erik A L
2002-02-01
Internalization and degradation of filamentous bacteriophage M13 by a specific target cell may have major consequences for the recovery of phage in in vivo biopanning of phage libraries. Therefore, we investigated the pharmacokinetics and processing of native and receptor-targeted phage in mice. (35)S-radiolabeled M13 was chemically modified by conjugation of either galactose (lacM13) or succinic acid groups (sucM13) to the coat protein of the phage to stimulate uptake by galactose recognizing hepatic receptors and scavenger receptors, respectively. Receptor-mediated endocytosis of modified phage reduced the plasma half-life of native M13 (t(1/2) = 4.5 h) to 18 min for lactosylated and 1.5 min for succinylated bacterophage. Internalization of sucM13 was complete within 30 min after injection and resulted in up to 5000-fold reduction of bioactive phage within 90 min. In conclusion, these data provide information on the in vivo behavior of wild-type and receptor-targeted M13, which has important implications for future in vivo phage display experiments and for the potential use of M13 as a viral gene delivery vehicle.
Targeting the prostate for destruction through a vascular address
Arap, Wadih; Haedicke, Wolfgang; Bernasconi, Michele; Kain, Renate; Rajotte, Daniel; Krajewski, Stanislaw; Ellerby, H. Michael; Bredesen, Dale E.; Pasqualini, Renata; Ruoslahti, Erkki
2002-01-01
Organ specific drug targeting was explored in mice as a possible alternative to surgery to treat prostate diseases. Peptides that specifically recognize the vasculature in the prostate were identified from phage-displayed peptide libraries by selecting for phage capable of homing into the prostate after an i.v. injection. One of the phage selected in this manner homed to the prostate 10–15 times more than to other organs. Unselected phage did not show this preference. The phage bound also to vasculature in the human prostate. The peptide displayed by the prostate-homing phage, SMSIARL (single letter code), was synthesized and shown to inhibit the homing of the phage when co-injected into mice with the phage. Systemic treatment of mice with a chimeric peptide consisting of the SMSIARL homing peptide, linked to a proapoptotic peptide that disrupts mitochondrial membranes, caused tissue destruction in the prostate, but not in other organs. The chimeric peptide delayed the development of the cancers in prostate cancer-prone transgenic mice (TRAMP mice). These results suggest that it may be possible to develop an alternative to surgical prostate resection and that such a treatment may also reduce future cancer risk. PMID:11830668
Latz, Simone; Wahida, Adam; Arif, Assuda; Häfner, Helga; Hoß, Mareike; Ritter, Klaus; Horz, Hans-Peter
2016-10-01
Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Absorption Kinetics of Phage Lambda on Its Host Under Shear Flow
NASA Astrophysics Data System (ADS)
Yip, C. W.; Wu, X. L.
2000-03-01
Classical blender experiment by Hershey and Chase played a seminal role in illustrating the infectious process of bacteriophage to its host, and showed unequivocally that DNA is responsible for the transmission of heredity. Subsequent works by others have established that interaction between phage particles and bacterial cells is a diffusion-limited process in that, statistically speaking, each collision results in an irreversible infection. However, such a result is hard to reconcile with the fact that the infection appears to be independent of the density of phage receptors on the bacterial cell membrane. Thus, quantitative experiments showing how a phage finds its receptor and how long does it take would be valuable to this paradoxical view. Simple calculations based on Brownian motion of the phage particles show that the interaction time between the receptor and the phage is given by tau=b^2/(5D), where b is the length of the phage and D is its diffusion coefficient. Using a shear flow apparatus we study absorption kinetics of lambda phage on E. Coli (strain YMEL) under different flow conditions, and the results are compared with a simple diffusion model taking into account the hydrodynamic convection and the interaction time tau.
Hashemi, Hamidreza; Bamdad, Taravat; Jamali, Abbas; Pouyanfard, Somayeh; Mohammadi, Masoumeh Gorgian
2010-02-01
Phage display is based on expressing peptides as a fusion to one of the phage coat proteins. To date, many vaccine researches have been conducted to display immunogenic peptides or mimotopes of various pathogens and tumors on the surface of filamentous bacteriophages. In recent years as a new approach to application of phages, recombinant bacteriophage lambda particles were used as DNA delivery vehicles to mammalian cells. In this study, recombinant filamentous phage whole particles were used for vaccination of mice. BALB/c mice were inoculated with filamentous phage particles containing expression cassette of Herpes simplex virus 1 (HSV-1) glycoprotein D that has essential roles in the virus attachment and entry. Both humoral and cellular immune responses were measured in the immunized mice and compared to conventional DNA vaccination. A dose-response relationship was observed in both arms of immune responses induced by recombinant filamentous phage inoculation. The results were similar to those from DNA vaccination. Filamentous phages can be considered as suitable alternative candidate vaccines because of easier and more cost-effective production and purification over plasmid DNA or bacteriophage lambda particles. 2009 Elsevier B.V. All rights reserved.
Use of micro-emulsion technology for the directed evolution of antibodies.
Buhr, Diane L; Acca, Felicity E; Holland, Erika G; Johnson, Katie; Maksymiuk, Gail M; Vaill, Ada; Kay, Brian K; Weitz, David A; Weiner, Michael P; Kiss, Margaret M
2012-09-01
Affinity reagents, such as antibodies, are needed to study protein expression patterns, sub-cellular localization, and post-translational modifications in complex mixtures and tissues. Phage Emulsion, Secretion, and Capture (ESCape) is a novel micro-emulsion technology that utilizes water-in-oil (W/O) emulsions for the identification and isolation of cells secreting phage particles that display desirable antibodies. Using this method, a large library of antibody-displaying phage will bind to beads in individual compartments. Rather than using biopanning on a large mixed population, phage micro-emulsion technology allows us to individually query clonal populations of amplified phage against the antigen. The use of emulsions to generate microdroplets has the promise of accelerating phage selection experiments by permitting fine discrimination of kinetic parameters for binding to targets. In this study, we demonstrate the ability of phage micro-emulsion technology to distinguish two scFvs with a 300-fold difference in binding affinities (100nM and 300pM, respectively). In addition, we describe the application of phage micro-emulsion technology for the selection of scFvs that are resistant to elevated temperatures. Copyright © 2012. Published by Elsevier Inc.
Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.
Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi
2016-04-18
The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis.
Li, Zhen; Li, Xiaoyu; Zhang, Jiancheng; Wang, Xitao; Wang, Lili; Cao, Zhenhui; Xu, Yongping
2016-07-01
In the present study, we isolated 3 bacteriophages with the ability to control Vibrio splendidus, a bacterium known to cause disease in the juvenile sea cucumber. These bacteriophages were designated as vB_VspS_VS-ABTNL-1 (PVS-1), vB_VspS_VS-ABTNL-2 (PVS-2) and vB_VspS_VS-ABTNL-3 (PVS-3). The ability of the 3 phages to inhibit the growth of V. splendidus VS-ABTNL was tested in vitro using each of the 3 phages individually or in the form of a cocktail of all 3 phages in the proportion of 1:1:1. All treated cultures produced a significant (P < 0.05) inhibition of growth of V. splendidus VS-ABTNL compared with untreated V. splendidus VS-ABTNL with the cocktail being superior to any of the 3 phages used individually. The lytic capability of the 3 phages was subsequently determined with a Spot Assay Technique performed with 4 isolates of V. splendidus, 3 other Vibrio species and 2 environmental isolates. Both PVS-1 and PVS-2 were lytic to all 4 isolates of V. splendidus while PVS-3 only inhibited the growth of 3 of them. V. splendidus VS-ABTNL was more susceptible to phage PVS-2 than the other 2 phages. In an in vivo performance trial, 360 sea cucumbers (23 ± 2 g) were randomly assigned to 1 of 6 treatments. Each treatment was housed in 3 PVC tanks (38 cm × 54 cm × 80 cm) with 20 sea cucumbers per tank. Six diets were prepared including an unsupplemented control diet, antibiotic treatment diet, 3 diets containing 1 of the 3 phages individually and a diet containing a cocktail of all 3 phages. After 60 days of feeding, all sea cucumber were challenged with V. splendidus VS-ABTNL by immersion in sea water containing a bacterial concentration of 6 × 10(6) CFU/mL for 2 days. The survival rate of sea cucumbers during the next 10 days was 18% for the unsupplemented diet, 82% for the antibiotic treatment, 82% for the phage cocktail, 65% for phage PVS-1, 58% for phage PVS-2 and 50% for phage PVS-3. There were no significant differences in weight gain, ingestion rate or feed conversion among sea cucumber fed the 4 phage treatments compared with those fed the unsupplemented diet (P > 0.05). The levels of nitric oxide synthase and acid phosphatase of sea cucumbers fed phage-containing diets were significantly (P < 0.05) increased compared with those fed the control diet. However, no significant differences (P > 0.05) were detected among the 4 phage-fed treatments. An additional study was conducted in which 60 healthy sea cucumbers (23 ± 2 g) were randomly assigned to a control, an untreated group and a test group to investigate the effects of injecting phages by coelomic injection on the survival rate and enzyme activities in the coelomic fluid of the sea cucumbers. The control was injected with 1 ml of sterilized seawater while the untreated group and the test group were injected with the same volume of V. splendidus-ABTNL culture (3 × 10(5) CFU/mL). Then, the test group was injected with 1 ml of the 3 phage cocktail (MOI = 10). After 48 h, the activities of lysozyme, acid phosphatase and superoxide dismutase were elevated in the untreated group while the levels of these enzymes in the test group were similar to the blank control. After 10-day observation, the survival rate of the sea cucumber was 100% for the blank control, 80% for the test group and 20% for the negative control. The overall results of this experiment indicate that phage therapy increased the survival of sea cucumber infected with V. splendidus VS-ABTNL. The above results demonstrate that using phages, especially a combination of different phages, may be a feasible way to control Vibrio infection in the sea cucumber industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
1st German Phage Symposium—Conference Report
Huber, Irene; Potapova, Katerina; Kuhn, Andreas; Schmidt, Herbert; Hinrichs, Jörg; Rohde, Christine; Beyer, Wolfgang
2018-01-01
In Germany, phage research and application can be traced back to the beginning of the 20th century. However, with the triumphal march of antibiotics around the world, the significance of bacteriophages faded in most countries, and respective research mainly focused on fundamental questions and niche applications. After a century, we pay tribute to the overuse of antibiotics that led to multidrug resistance and calls for new strategies to combat pathogenic microbes. Against this background, bacteriophages came into the spotlight of researchers and practitioners again resulting in a fast growing “phage community”. In October 2017, part of this community met at the 1st German Phage Symposium to share their knowledge and experiences. The participants discussed open questions and challenges related to phage therapy and the application of phages in general. This report summarizes the presentations given, highlights the main points of the round table discussion and concludes with an outlook for the different aspects of phage application. PMID:29596346
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen
2015-01-01
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F
2015-04-28
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.
Pitfalls to avoid when using phage display for snake toxins.
Laustsen, Andreas Hougaard; Lauridsen, Line Præst; Lomonte, Bruno; Andersen, Mikael Rørdam; Lohse, Brian
2017-02-01
Antivenoms against bites and stings from snakes, spiders, and scorpions are associated with immunological side effects and high cost of production, since these therapies are still derived from the serum of hyper-immunized production animals. Biotechnological innovations within envenoming therapies are thus warranted, and phage display technology may be a promising avenue for bringing antivenoms into the modern era of biologics. Although phage display technology represents a robust and high-throughput approach for the discovery of antibody-based antitoxins, several pitfalls may present themselves when animal toxins are used as targets for phage display selection. Here, we report selected critical challenges from our own phage display experiments associated with biotinylation of antigens, clone picking, and the presence of amber codons within antibody fragment structures in some phage display libraries. These challenges may be detrimental to the outcome of phage display experiments, and we aim to help other researchers avoiding these pitfalls by presenting their solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bacteriophages as scaffolds for bipartite display: designing swiss army knives on a nanoscale.
Molek, Peter; Bratkovič, Tomaž
2015-03-18
Bacteriophages have been exploited as cloning vectors and display vehicles for decades owing to their genetic and structural simplicity. In bipartite display setting, phage takes on the role of a handle to which two modules are attached, each endowing it with specific functionality, much like the Swiss army knife. This concept offers unprecedented potential for phage applications in nanobiotechnology. Here, we compare common phage display platforms and discuss approaches to simultaneously append two or more different (poly)peptides or synthetic compounds to phage coat using genetic fusions, chemical or enzymatic conjugations, and in vitro noncovalent decoration techniques. We also review current reports on design of phage frameworks to link multiple effectors, and their use in diverse scientific disciplines. Bipartite phage display had left its mark in development of biosensors, vaccines, and targeted delivery vehicles. Furthermore, multifunctionalized phages have been utilized to template assembly of inorganic materials and protein complexes, showing promise as scaffolds in material sciences and structural biology, respectively.
From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages.
Anany, H; Chou, Y; Cucic, S; Derda, R; Evoy, S; Griffiths, M W
2017-02-28
The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness. When no natural binding with the target exists, phages can be used as vehicles to identify new protein-ligand interactions necessary for diagnostics. This review comprehensively summarizes many uses of phages as detection tools and points the way toward how phage-based technologies may be improved.
Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery
Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin
2014-01-01
Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171
Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage.
Ng, Simon; Jafari, Mohammad R; Matochko, Wadim L; Derda, Ratmir
2012-09-21
Phage display is a powerful technology that enables the discovery of peptide ligands for many targets. Chemical modification of phage libraries have allowed the identification of ligands with properties not encountered in natural polypeptides. In this report, we demonstrated the synthesis of 2 × 10(8) genetically encoded glycopeptides from a commercially available phage-displayed peptide library (Ph.D.-7) in a two-step, one-pot reaction in <1.5 h. Unlike previous reports, we bypassed genetic engineering of phage. The glycan moiety was introduced via an oxime ligation following oxidation of an N-terminal Ser/Thr; these residues are present in the peptide libraries at 20-30% abundance. The construction of libraries was facilitated by simple characterization, which directly assessed the yield and regioselectivity of chemical reactions performed on phage. This quantification method also allowed facile yield determination of reactions in 10(9) distinct molecules. We envision that the methodology described herein will find broad application in the synthesis of custom chemically modified phage libraries.
The genome of the Lactobacillus sanfranciscensis temperate phage EV3
2013-01-01
Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641
Phage phenomics: Physiological approaches to characterize novel viral proteins
Sanchez, Savannah E. [San Diego State Univ., San Diego, CA (United States); Cuevas, Daniel A. [San Diego State Univ., San Diego, CA (United States); Rostron, Jason E. [San Diego State Univ., San Diego, CA (United States); Liang, Tiffany Y. [San Diego State Univ., San Diego, CA (United States); Pivaroff, Cullen G. [San Diego State Univ., San Diego, CA (United States); Haynes, Matthew R. [San Diego State Univ., San Diego, CA (United States); Nulton, Jim [San Diego State Univ., San Diego, CA (United States); Felts, Ben [San Diego State Univ., San Diego, CA (United States); Bailey, Barbara A. [San Diego State Univ., San Diego, CA (United States); Salamon, Peter [San Diego State Univ., San Diego, CA (United States); Edwards, Robert A. [San Diego State Univ., San Diego, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Burgin, Alex B. [Broad Institute, Cambridge, MA (United States); Segall, Anca M. [San Diego State Univ., San Diego, CA (United States); Rohwer, Forest [San Diego State Univ., San Diego, CA (United States)
2018-06-21
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Shafiqul Alam, E-mail: sasarker@icddrb.org; McCallin, Shawna; Barretto, Caroline
The genomic diversity of 99 T4-like coliphages was investigated by sequencing an equimolar mixture with Illumina technology and screening them against different databases for horizontal gene transfer and undesired genes. A 9-phage cocktail was given to 15 healthy adults from Bangladesh at a dose of 3 Multiplication-Sign 10{sup 9} and 3 Multiplication-Sign 10{sup 7} plaque-forming units and placebo respectively. Phages were detected in 64% of the stool samples when subjects were treated with higher titer phage, compared to 30% and 28% with lower-titer phage and placebo, respectively. No Escherichia coli was present in initial stool samples, and no amplification ofmore » phage was observed. One percent of the administered oral phage was recovered from the feces. No adverse events were observed by self-report, clinical examination, or from laboratory tests for liver, kidney, and hematology function. No impact of oral phage was seen on the fecal microbiota composition with respect to bacterial 16S rRNA from stool.« less