Science.gov

Sample records for attitude control method

  1. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  2. Students' Attitudes towards Control Methods in Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Hintze, Hanne; And Others

    1988-01-01

    Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…

  3. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  4. A Minimum-Slip Attitude Control Method for the Erebus Walking Robot

    DTIC Science & Technology

    1992-05-01

    terrain of Mount Erebus (an active volcano in Antarctica) motivated the present research on how to level the walker with only the vertical actuators of the...freedom, as with the Erebus walker. The task is then to determine the best method to adjust the attitude of the walker body such that foot slippage and...unlimited junlimited unlimited I unlimited A Minimum-Slip Attitude Control Method for the Erebus Walking Robot Peter V. Nagy CMU-RI-TR-92-07 THE ROBOTICS

  5. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1982-01-01

    A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.

  6. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    NASA Technical Reports Server (NTRS)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  7. Satellite attitude control simulations

    NASA Technical Reports Server (NTRS)

    Debra, D. B.; Powell, J. D.

    1973-01-01

    Work was conducted to develop an extremely low drift rate gyroscope and a very precise star tracker. A proposed relativity satellite will measure very accurately the theoretically predicted 'relativistic' precession of the gyroscope relative to an inertial reference frame provided by the star tracker. Aspects of precision spinning attitude control are discussed together with questions of gyro operation, and the hopping mode for lunar transportation. For the attitude control system of the lunar hopper, a number of control laws were investigated. The studies indicated that some suboptimal controls should be adequate for the system.

  8. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  9. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  10. Adaptive mass expulsion attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)

    2001-01-01

    An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.

  11. Optimal magnetic attitude control of small spacecraft

    NASA Astrophysics Data System (ADS)

    Liang, Jinsong

    Spacecraft attitude control, using only magnetic coils, suffers from being unable to apply a torque about the axis defined by the magnetic field of the earth. This lack of controllability results in marginal stability, slow slew maneuvering and convergence to equilibrium positions. Currently available control schemes typically require one or more orbits to finish a large angle attitude maneuver, which severely restricts the application of magnetic control in projects requiring fast attitude maneuvers. In this dissertation, the open-loop time-optimal magnetic control is first presented to show the potential performance increase of the magnetic attitude control method. Nonlinear time-varying models with constrained inputs are considered instead of the linearized model generally used. The results show that time-optimal magnetic attitude control can be considerably faster, than the current available control schemes. The inherent weakness of the open-loop method is its lack of robustness; specifically, its response is sensitive to small changes in the system. Two methods, model predictive control and continuous optimization approach, are presented as closed-loop control strategies to increase the robustness of the time-optimal approach. Simulation results show that these two feedback control schemes effectively improve the robustness of the control system. Finally, magnetic attitude regulation after the time-optimal magnetic control is discussed. The main contribution of this work shows that magnetic attitude control is not necessarily slow, as commonly believed, as long as an appropriate control algorithm is applied. The different time-optimal controllers presented show considerable convergence time reduction for large angle attitude maneuvers; which enables magnetic attitude control to be applied to more time-critical applications.

  12. MERCATOR: Methods and Realization for Control of the Attitude and the Orbit of spacecraft

    NASA Technical Reports Server (NTRS)

    Tavernier, Gilles; Campan, Genevieve

    1993-01-01

    Since 1974, CNES has been involved in geostationary positioning. Among different entities participating in operations and their preparation, the Flight Dynamics Center (FDC) is in charge of performing the following tasks: orbit determination; attitude determination; computation, monitoring, and calibration of orbit maneuvers; computation, monitoring, and calibration of attitude maneuvers; and operational predictions. In order to fulfill this mission, the FDC receives telemetry from the satellite and localization measurements from ground stations (e.g., CNES, NASA, INTELSAT). These data are processed by space dynamics programs integrated in the MERCATOR system which is run on SUN workstations (UNIX O.S.). The main features of MERCATOR are redundancy, modularity, and flexibility: efficient, flexible, and user friendly man-machine interface; and four identical SUN stations redundantly linked in an Ethernet network. Each workstation can perform all the tasks from data acquisition to computation results dissemination through a video network. A team of four engineers can handle the space mechanics aspects of a complete geostationary positioning from the injection into a transfer orbit to the final maneuvers in the station-keeping window. MERCATOR has been or is to be used for operations related to more than ten geostationary positionings. Initially developed for geostationary satellites, MERCATOR's methodology was also used for satellite control centers and can be applied to a wide range of satellites and to future manned missions.

  13. Spacecraft attitude dynamics and control

    NASA Astrophysics Data System (ADS)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  14. Predicted torque equilibrium attitude utilization for Space Station attitude control

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.

    1990-01-01

    An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.

  15. Geometric Attitude Controls And Estimations On The Special Orthogonal Group

    NASA Astrophysics Data System (ADS)

    Wu, Tse-Huai

    This dissertation is concerned with spacecraft attitude control and estimation problems from the point of view of geometric mechanics. The controllers and observers are built on the special orthogonal group without any parameterizations, where the attitude dynamics is treated in a global and unique manner. The dissertation is composed of three parts. A leader-follower attitude formation control scheme is reported such that the leader spacecraft control its absolute attitude with respect to the inertial reference frame and the follower spacecraft control relative attitude with respect to other spacecraft in the formation. The unique feature is that both the absolute attitude and the relative attitude control systems are developed directly in terms of the line-of-sight observations, where attitude determination and estimation processes are not required. Second, an angular velocity observer is developed such that the estimated angular velocity is guaranteed to converge to the true angular velocity asymptotically from almost all initial estimates. Then, the presented observer is integrated with a proportional-derivative attitude tracking controller to show a separation type property for attitude tracking in the absence of angular velocity measurements. A hybrid observer for the attitude dynamics of a rigid body is proposed to guarantee global asymptotic stability. By designing a set of attitude error functions, attitude estimates are expelled from undesired equilibria to achieve global asymptotic stability. To guarantee that the estimated attitudes evolve on the special orthogonal group, a numerical algorithm based on the Lie group method is presented.

  16. Attitude control and stabilization technology discipline

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.

    1990-01-01

    Viewgraphs on attitude control and stabilization technology discipline for the Space Station Freedom are presented. Topics covered include: attitude control technologies for multi-user accommodation; flexible dynamics and control; computational control techniques; and automatic proximity operations.

  17. Attitude Control by Localized Outgassing

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.; Croonquist, A.

    1983-01-01

    Attitude control of levitated object achieved by using laser to vaporize selectively sublimate coating. Laser heats material that will sublime or outgas. To obtain torque reaction force vector from subliming material must not pass through center-of-mass of object. Laser provides beam suitable for controlling objects in noncontact manufacturing processes in acoustic levitation chambers.

  18. Nonlinear fractional order proportion-integral-derivative active disturbance rejection control method design for hypersonic vehicle attitude control

    NASA Astrophysics Data System (ADS)

    Song, Jia; Wang, Lun; Cai, Guobiao; Qi, Xiaoqiang

    2015-06-01

    Near space hypersonic vehicle model is nonlinear, multivariable and couples in the reentry process, which are challenging for the controller design. In this paper, a nonlinear fractional order proportion integral derivative (NFOPIλDμ) active disturbance rejection control (ADRC) strategy based on a natural selection particle swarm (NSPSO) algorithm is proposed for the hypersonic vehicle flight control. The NFOPIλDμ ADRC method consists of a tracking-differentiator (TD), an NFOPIλDμ controller and an extended state observer (ESO). The NFOPIλDμ controller designed by combining an FOPIλDμ method and a nonlinear states error feedback control law (NLSEF) is to overcome concussion caused by the NLSEF and conversely compensate the insufficiency for relatively simple and rough signal processing caused by the FOPIλDμ method. The TD is applied to coordinate the contradiction between rapidity and overshoot. By attributing all uncertain factors to unknown disturbances, the ESO can achieve dynamic feedback compensation for these disturbances and thus reduce their effects. Simulation results show that the NFOPIλDμ ADRC method can make the hypersonic vehicle six-degree-of-freedom nonlinear model track desired nominal signals accurately and fast, has good stability, dynamic properties and strong robustness against external environmental disturbances.

  19. Attitude Control Working Group report

    NASA Technical Reports Server (NTRS)

    Reid, Daniel F.; Studer, Phillip A.

    1986-01-01

    The goals were to establish the Attitude Control System (ACS) requirements, constraints, technology assessment, technology shortfalls, expected in the year 2000. These were based upon all missions, military and civil, for LEO and GEO. The critical ACS technology issues were identified and ACS programs developed to address these critical issues.

  20. Low Earth orbit satellite attitude control by fractional control laws

    NASA Astrophysics Data System (ADS)

    Kailil, A.; Mrani, N.; Abid, M.; Touati, M. Mliha; Choukri, S.; Elalami, N.

    2004-11-01

    Dans cet article, le controle d'attitude trois-axes d'un satellite par roues de reaction est etabli par les methodes fractionnaires. Dans le but d'expliquer les avantages de ces methodes, une etude comparative a etablie entre la methode lineaire quadratique (LQR) et la methode fractionnaire (FOC). Le but de cette etude est de realiser une loi de controle efficace satisfaisant des specifications donnees, et maintenant la stabilite et les performances requises meme en presence des incertitudes sur les parametres intrinsiques du systeme et sous l'effet des perturbations externes. Mots-cles : controle fractionnaire ; controle d'attitude trois-axes ; roues de reaction ; systeme quasi-bilineaire ; controle optimal. Abstract Fractional order control (FOC) methods are applied to the three-axis reaction wheels satellite attitude control. In order to show the advantages of this method, a comparative study between a Linear Quadratic Regulator (LQR) and a FOC is established through two principal fractional control laws. The aim of this paper is to establish an efficient control law which satisfies a given specifications, and maintains sufficient stability and accuracy even under the strong effects of intrinsic parameters uncertainties, and also external perturbations. Keywords: fractional control; 3-axis attitude control; reaction wheels; quasi-bilinear system; optimal control

  1. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  2. GRO attitude control and determination

    NASA Technical Reports Server (NTRS)

    Jerkovsky, W.; Keranen, L.; Koehler, F.; Tung, F.; Ward, B.

    1986-01-01

    Design features of the attitude control and determination (ACAD) system for the Gamma Ray Observatory (GRO) that will eventually be launched on the Shuttle are described. A tabulation of the ACAD system components is provided and the various standby and normal pointing operational modes of the system are summarized. The system software and sensors will maintain a quaternion model of the GRO attitude on the bases of kinematic equations and inertial data. The software is standardized and has previously been used on the Solar Maximum Mission and Landsat-D. Details of the processing components, redundant electronics for sensor processing, data handling and actuator control are outlined and illustrated with block diagrams. Tests applied to validate the ACAD design are outlined, as are ground support which will be implemented once the GRO is launched.

  3. Attitude Dynamics and Control of Solar Sails

    NASA Astrophysics Data System (ADS)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  4. Public attitudes towards alcohol control policies in Scotland and England: Results from a mixed-methods study.

    PubMed

    Li, Jessica; Lovatt, Melanie; Eadie, Douglas; Dobbie, Fiona; Meier, Petra; Holmes, John; Hastings, Gerard; MacKintosh, Anne Marie

    2017-03-01

    The harmful effects of heavy drinking on health have been widely reported, yet public opinion on governmental responsibility for alcohol control remains divided. This study examines UK public attitudes towards alcohol policies, identifies underlying dimensions that inform these, and relationships with perceived effectiveness. A cross-sectional mixed methods study involving a telephone survey of 3477 adult drinkers aged 16-65 and sixteen focus groups with 89 adult drinkers in Scotland and England was conducted between September 2012 and February 2013. Principal components analysis (PCA) was used to reduce twelve policy statements into underlying dimensions. These dimensions were used in linear regression models examining alcohol policy support by demographics, drinking behaviour and perceptions of UK drinking and government responsibility. Findings were supplemented with a thematic analysis of focus group transcripts. A majority of survey respondents supported all alcohol policies, although the level of support varied by type of policy. Greater enforcement of laws on under-age sales and more police patrolling the streets were strongly supported while support for pricing policies and restricting access to alcohol was more divided. PCA identified four main dimensions underlying support on policies: alcohol availability, provision of health information and treatment services, alcohol pricing, and greater law enforcement. Being female, older, a moderate drinker, and holding a belief that government should do more to reduce alcohol harms were associated with higher support on all policy dimensions. Focus group data revealed findings from the survey may have presented an overly positive level of support on all policies due to differences in perceived policy effectiveness. Perceived effectiveness can help inform underlying patterns of policy support and should be considered in conjunction with standard measures of support in future research on alcohol control policies.

  5. Linearization of Attitude-Control Error Dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1993-01-01

    Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.

  6. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  7. Three axis attitude control system

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1988-01-01

    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

  8. Seasat-A attitude control system

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Rodden, J. J.; Hendricks, R. J.

    1977-01-01

    The Seasat-A attitude control system controls the attitude of the satellite system during injection into final circular orbit after Atlas boost, during orbit adjust and trim phases, and throughout the 3-year mission. Ascent and injection guidance and attitude control are provided by the Agena spacecraft with a gyrocompassed mass expulsion system. On-orbit attitude control functions are performed by a system that has its functional roots in the gravity-gradient momentum bias technology. The paper discusses hardware, control laws, and simulation results.

  9. Satellite Attitude Control Using Atmospheric Drag

    DTIC Science & Technology

    2007-03-01

    Satellite Attitude Control Using Atmospheric Drag THESIS David B. Guettler, Captain, USAF AFIT/GA/ENY/07-M10 DEPARTMENT OF THE AIR FORCE AIR...U.S. Government. AFIT/GA/ENY/07-M10 Satellite Attitude Control Using Atmospheric Drag THESIS Presented to the Faculty Department of Aeronautics and...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GA/ENY/07-M10 Satellite Attitude Control Using Atmospheric Drag David B. Guettler, BS Captain

  10. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  11. ISS Update: Attitude Determination and Control Officer

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot talks with Attitude Determination and Control Officer (ADCO) flight controller Ann Esbeck in the Mission Control Center at Johnson Space Center. They discuss th...

  12. Lorentz Force Based Satellite Attitude Control

    NASA Astrophysics Data System (ADS)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  13. On the Constrained Attitude Control Problem

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Kim, Yoonsoo; Mesbahi, Mehran; Singh, Gurkipal

    2004-01-01

    In this paper, we consider various classes of constrained attitude control (CAC) problem in single and multiple spacecraft settings. After categorizing attitude constraints into four distinct types, we provide an overview of the existing approaches to this problem. We then proceed to further expand on a recent algorithmic approach to the CAC problem. The paper concludes with an example demonstrating the viability of the proposed algorithm for a multiple spacecraft constrained attitude reconfiguration scenario.

  14. Spacecraft attitude and velocity control system

    NASA Technical Reports Server (NTRS)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  15. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  16. Attitude Control Propulsion Components, Volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Effort was made to include as much engineering information on each component as possible, consistent with usefulness and catalog size limitations. The contents of this catalog contain components which were qualified for use with spacecraft monopropellant hydrazine and inert gas attitude control systems. Thrust ranges up to 44.5 N (10.0 lbf) for hydrazine and inert gas sytems were considered. Additionally, some components qualified for uses other than spacecraft attitude control are included because they are suitable for use in attitude controls systems.

  17. H∞ control option for a combined energy and attitude control system

    NASA Astrophysics Data System (ADS)

    Ban, Ying Siang; Varatharajoo, Renuganth

    2013-10-01

    A combined energy and attitude control system (CEACS) is a hybrid system that uses flywheels to store energy and provide a simultaneous attitude control in satellites. Previous work appeared in Advances in Space Research (ASR) employing the proportional-derivative (PD) control has proven that CEACS works well and achieves its mission requirement. However, the in-orbit system performance uncertainties present a challenge to the CEACS attitude pointing capability. Thus, this paper complements the previous mentioned work, and focuses on employing the H∞ optimal attitude control solution for the CEACS attitude control enhancement. The mathematical model and numerical treatments for the CEACS H∞ control architecture are presented. Numerical results show that a better attitude pointing accuracy at least up to 0.043° can be achieved with the H∞ control method.

  18. Miniaturized attitude control system for nanosatellites

    NASA Astrophysics Data System (ADS)

    Candini, Gian Paolo; Piergentili, Fabrizio; Santoni, Fabio

    2012-12-01

    A miniaturized attitude control system suitable for nanosatellites, developed using only commercial off-the-shelf components, is described in the paper. It is a complete and independent system to be used on board nanosatellites, allowing automated attitude control. To integrate this system into nanosatellites such as Cubesats its size has been reduced down to a cube of side about 5 cm. The result is a low cost attitude control system built with terrestrial components, integrating three micro magnetotorquers, three micro reaction wheels, three magnetometers and redundant control electronics, capable of performing automatics operations on request from the ground. The system can operate as a real time maneuvering system, executing commands sent from the ground or as a standalone attitude control system receiving the solar array status from a hosting satellite and the satellite ephemeris transmitted from the ground station. The main characteristics of the developed system and test results are depicted in this paper.

  19. Experiments with the KITE attitude control simulator

    NASA Technical Reports Server (NTRS)

    Powell, J. David; Kline-Schoder, Robert

    1989-01-01

    Simulation experiments are conducted to test an attitude control technique for tethered satellites using the tether tension force to generate control torques by moving the tether attach point relative to the satellite center of mass. A scaled, one-dimensional, air-bearing supported laboratory simulation of the Kinetic Isolation Tether Experiment shows that the attitude of the simulator can be regulated to within 0.75 arcsec with a bandwidth of about 0.1 Hz. The control design includes a state estimator to calculate the vehicle mass center and to calculate the effect of the stepper motor dynamics on the state estimate. Results are presented from closed-loop attitude control experiments to verify the attitude control technique.

  20. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies

  1. Attitude Control Propulsion Components, Volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.

  2. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2010-01-01

    The importance of accurately pointing spacecraft to our daily lives is pervasive, yet somehow escapes the notice of most people. In this section, we will summarize the processes and technologies used in designing and operating spacecraft pointing (i.e. attitude) systems.

  3. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  4. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  5. Integrated power and single axis attitude control system with two flywheels

    NASA Astrophysics Data System (ADS)

    Han, Bangcheng

    2012-05-01

    The existing research of the integrated power and attitude control system (IPACS) in satellites mainly focuses on the IPACS concept, which aims at solving the coupled problem between the attitude control and power tracking. In the IPACS, the configuration design of IPACS is usually not considered, and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved. In this paper, an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed. The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved. A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed, which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table. Both DC bus and a single axis attitude are the regulation goals. An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems. The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller. The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels. The proposed research provides theory basis for design of the IPACS.

  6. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  7. Comparison of low-Earth-orbit satellite attitude controllers submitted to controllability constraints

    NASA Astrophysics Data System (ADS)

    Steyn, Willem H.

    1994-07-01

    A rule-based fuzzy controller is presented and compared with an adaptive MIMO LQR controller in a low-earth-orbit small satellite attitude control system. The attitude is passively gravity gradient stabilized and actively three-axis magnetorquer controlled. This method insures an earth-pointing satellite making use of a nondepletable and nonmechanical means of control. A realistic simulation environment, using a nonlinear satellite dynamic model with linear attitude estimators plus sensor measurement noise and external disturbance torques, was used to evaluate the different control techniques.

  8. All sky pointing attitude control system

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Murphy, J. P. (Inventor)

    1977-01-01

    In a strapped-down gyroscope space vehicle attitude control system, a method and apparatus are provided for gyro drift and input axis misalignment error compensation employing a sun and a star tracker and preselected vehicle calibration maneuvers. The outputs of two-axis strapped-down gyroscopes nominally aligned with the optical axis of the sun and star trackers are measured to provide gyro drift calibration, roll, pitch and yaw axis scale factors and values corresponding to the degree of nonorthogonality between the roll axis and the pitch and yaw gyro input axes and the nonorthogonality of the roll and pitch axes relative to the yaw axis. The vehicle is then rolled and yawed through precomputed angles as modified by the calibrated data stored in a digital computer, and acquires a target without recourse to external references.

  9. Attitude controls for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.

    1971-01-01

    Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.

  10. Chaotic satellite attitude control by adaptive approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping

    2014-06-01

    In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.

  11. Attitude control compensator for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.

  12. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2011-01-01

    designing and operating spacecraft pointing (i.e. attitude) systems.

  13. Robust attitude tracking control of small-scale unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Wang, Xiafu; Chen, You; Lu, Geng; Zhong, Yisheng

    2015-06-01

    Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.

  14. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  15. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  16. Inversion Of Dynamical Equations For Control Of Attitude

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1995-01-01

    Method of inverting nonlinear equations of rotational dynamics of rigid body used to design feedback control of orientation of body. Applicable to both direction-cosine and quaternion formulations suitable for large-angle maneuvers. Exploiting some apparently little-known properties of direction cosine and quaternion formulations, method leads to equations for model-follower control system that exhibits exactly linear attitude-error dynamics. Quarternion system more robust in responding to large roll-angle commands.

  17. Low noise spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay; Downer, James R.; Eisenhaure, David B.; Hockney, Richard L.; Johnson, Bruce G.

    1991-01-01

    The authors describe two ongoing research efforts directed at developing advanced spacecraft momentum control flywheels. The first effort is directed at developing low-noise momentum wheels through the use of magnetic bearings. The second effort is directed at demonstrating critical subcomponents of an integrated power and attitude control system (IPACS) that stores energy as kinetic energy in mechanical rotors with the accompanying angular momentum available for attitude control of the spacecraft. The authors describe a ground experiment that was designed to demonstrate an energy storage capability of 1 kWh at a 40 Wh/kg energy density and a 1 kW electrical generation capacity at 85 percent round-trip efficiency and that will allow single-degree-of-freedom gimballing to quantify experimentally the bearing power requirements for processing the flywheel.

  18. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  19. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  20. Small Satellite Passive Magnetic Attitude Control

    NASA Astrophysics Data System (ADS)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  1. Precision tethered satellite attitude control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  2. SSS-A attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  3. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  4. Attitude Dynamics and Controls for Large Solar Sails

    NASA Astrophysics Data System (ADS)

    Fu, Bo

    This dissertation enriches our knowledge of attitude control methodologies that are suitable for solar sails, and in particularly large solar sails. In chapter 1, the fundamental physics of solar sails and existing solar sail attitude control methodologies are reviewed. In chapter 2, an attitude control methodology (Tip Displacement Method) that is suitable for large solar sail is presented. In the proposed method, the sail wing-boom attachment points are allowed to move, and under solar radiation pressure, the sail membrane sags into a curved profile. A mathematical model of this curved profile is built, and analytical solutions of solar radiation body torque based on the curved wing is derived. It is shown that this methodology along can generate enough body toque in all three body axis directions for attitude control of large solar sails. In chapter 3, the propose method is further investigated, and the effect of incident solar radiation direction on solar radiation pressure body torque generation is studied. The effect of sail shape is also studied a step further, mainly by relaxing previously made cylindrical assumption on the shape of the wing. Based on an optimization process, algorithms for determining the shape of the wing are given, and solar radiation body torques are developed for the shape of the wing. One finding is that for small tip displacements, the cylindrical sail wing model is sufficient in estimating the solar radiation body torque. In chapters 2 and 3, the analyses are carried out based on the assumption that the wing shape is of a generalized cylinder. In chapter 4 a theoretical basis is provided for this assumption. Using the mathematical model of the single wing for the proposed tip displacement attitude control strategy, in chapter 5 a whole square solar sail model is built, and the system controllability is studied for linearized system states. The system is found to be robust because of the many actuators used, and is controllable even

  5. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  6. NEW METHODS FOR MEASURING THE DEVELOPMENT OF ATTITUDES IN CHILDREN.

    ERIC Educational Resources Information Center

    HESS, ROBERT D.; TORNEY, JUDITH V.

    STRUCTURAL (NONCONTENT) DIMENSIONS OF CHILDREN'S POLITICAL ATTITUDES AND THEIR DEVELOPMENT WERE INVESTIGATED USING NEW METHODS DERIVED FROM SELF-REPORT DATA. THE CONSTRUCT, "ATTITUDE-CONCEPT SYSTEM," WAS INTRODUCED TO DESIGNATE EVALUATIONS OF AN ATTITUDE OBJECT AND BELIEFS ASSOCIATED WITH THIS EVALUATION. THE FIVE STRUCTURAL DIMENSIONS…

  7. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  8. Flexible Dynamics and Attitude Control of a Square Solar Sail

    NASA Astrophysics Data System (ADS)

    Choi, Mirue

    This thesis presents a comprehensive analysis of attitude and structural dynamics of a square solar sail. In particular, this research examines the use of corner-attached reflective vanes to control the attitude of the spacecraft. An introduction to known solar sail designs is given, then the mathematics involved in calculating solar radiation pressure forces are presented. A detailed derivation and implementation of the unconstrained nonlinear flexible structural dynamics with Finite Element Method (FEM) models are explored, with several sample simulations of published large deflection experiments used as verification measures. To simulate the inability of a thin membrane to resist compression, the sail membrane elements are augmented with a method that approximates the wrinkling and the slacking dynamics, which is followed by a simulation of another well-known experiment as a verification measure. Once the structural dynamics are established, the usage of the tip vanes is explored. Specifically, a control allocation problem formed by having two degrees of freedom for each tip vane is defined and an efficient solution to this problem is presented, allowing desired control torques to be converted to appropriate vane angles. A randomized testing mechanism is implemented to show the efficacy of this algorithm. The sail shadowing problem is explored as well, where a component of the spacecraft casts shadow upon the sail and prevents solar radiation pressure force from being produced. A method to calculate the region of shadow is presented, and two different shadowing examples are examined --- due to the spacecraft bus, and due to the sail itself. Combining all of the above, an attitude control simulation of the sail model is presented. A simple PD controller combined with the control allocation scheme is used to provide the control torque for the sail, with which the spacecraft must orient towards a number of pre-specified attitude targets. Several attitude

  9. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  10. Position and attitude tracking control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances.

  11. The Spartan attitude control system - Control electronics assembly

    NASA Technical Reports Server (NTRS)

    Stone, R. W.

    1986-01-01

    The Spartan attitude control system (ACS) represents an evolutionary development of the previous STRAP-5 ACS through the use of state-of-the-art microprocessors and hardware. Despite a gyro rate signal noise problem that caused the early depletion of argon gas, the Spartan 101 experiment was able to collect several hours of data from two targets. Attention is presently given to the ACS sequencer module, sensor interface box, valve driver box, control electronics software, jam tables, and sequencer programs.

  12. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  13. Fine attitude control by reaction wheels using variable-structure controller

    NASA Astrophysics Data System (ADS)

    Wang, Bingquan; Gong, Ke; Yang, Di; Li, Junfeng

    2003-04-01

    This paper presents a method for decreasing the disturbance of reaction wheels static friction to the attitude of a three-axis stabilized small spacecraft. Based upon variable-structure control theory, this method is independent of static friction model of reaction wheels, so that the difficulty of getting an accurate model is avoided. Meanwhile, the disturbance of friction to attitude is analyzed and experimentally verified in order to understand its physical mechanism. The real time simulation is made using MATRIXx RealSim Tools. The simulated vehicle response to wheel speed reversal shows that the variable controller is effective, and the attitude error could be reduced by 10:1 in comparison to PID controller.

  14. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  15. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    NASA Astrophysics Data System (ADS)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  16. Attitude Control Performance of IRVE-3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  17. An automated method of tuning an attitude estimator

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Mook, D. Joseph

    1995-01-01

    Attitude determination is a major element of the operation and maintenance of a spacecraft. There are several existing methods of determining the attitude of a spacecraft. One of the most commonly used methods utilizes the Kalman filter to estimate the attitude of the spacecraft. Given an accurate model of a system and adequate observations, a Kalman filter can produce accurate estimates of the attitude. If the system model, filter parameters, or observations are inaccurate, the attitude estimates may be degraded. Therefore, it is advantageous to develop a method of automatically tuning the Kalman filter to produce the accurate estimates. In this paper, a three-axis attitude determination Kalman filter, which uses only magnetometer measurements, is developed and tested using real data. The appropriate filter parameters are found via the Process Noise Covariance Estimator (PNCE). The PNCE provides an optimal criterion for determining the best filter parameters.

  18. MSFC Skylab attitude and pointing control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1974-01-01

    The results of detailed performance analyses of the attitude and pointing control system in-orbit hardware and software on Skylab are reported. Performance is compared with requirements, test results, and prelaunch predictions. A brief history of the altitude and pointing control system evolution leading to the launch configuration is presented. The report states that the attitude and pointing system satisfied all requirements.

  19. Variable-structure control of spacecraft attitude maneuvers

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas A. W., III; Sira-Ramirez, Hebertt

    1988-01-01

    A variable-structure control approach is presented for multiaxial spacecraft attitude maneuvers. Nonlinear sliding surfaces are proposed that result in asymptotically stable, ideal linear decoupled sliding motions of Cayley-Rodrigues attitude parameters, as well as of angular velocities. The resulting control laws are interpreted as more easily implemented and more robust versions of those previously obtained by feedback linearization.

  20. IMP-J attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.

    1973-01-01

    A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.

  1. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  2. Take It or Leave It: Students' Attitudes about Research Methods

    ERIC Educational Resources Information Center

    Wisecup, Allison K.

    2017-01-01

    This study employs a cross-sectional design to explore sociology majors' attitudes toward research methods. Survey data from a convenience sample of students enrolled in 16 departments are used to compare the attitudes of students who have and have not completed a research methods course. Despite consistent anecdotal claims that students harbor…

  3. Attitude determination and control subsystem for the TOPEX satellite

    NASA Technical Reports Server (NTRS)

    Dennehy, C. J.; Welch, R. V.; Kia, T.

    1988-01-01

    The Ocean Topography Experiment satellite will carry a modular Attitude Determination and Control Subsystem (ADCS) which contains all equipment required for attitude determination, stabilization, and control, as well as hydrazine thruster firing control, during all mission phases. Attention is presently given to the ADCS's architecture, constituent hardware components, performance requirements, and predicted on-orbit performance compliance, with emphasis on the design and analysis of the Normal Mission Mode control algorithm furnishing the primary scientific data-acquisition operational mode. This mode's attitude determination and control of on-orbit performance is predicted to better than 43 arcsec.

  4. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  5. Attitude towards Responsibility and Teacher Locus of Control: Predicting Teacher Stress and Attitudes. Research Paper ERU-2-88.

    ERIC Educational Resources Information Center

    Soh, Kay-cheng

    The relationships between teachers' attitudes toward responsibility and locus of control and other characteristics such as stress, educational attitudes, and attitudes toward change were studied in 54 (35 female and 19 male) experienced primary and secondary school teachers taking a course on classroom-based research. Attitude toward…

  6. Computer simulation for time optimal or energy optimal attitude control of spin-stabilized spacecraft.

    NASA Technical Reports Server (NTRS)

    Woolley, R. D.; Werking, R. D.

    1973-01-01

    An original technique for determining the optimal magnetic torque strategy for control of the attitude of spin stabilized spacecraft is presented. By employing Lagrange multipliers and the Calculus of Variations, optimal control equations are derived which define minimum time and minimum energy attitude maneuvers. Computer program algorithms to numerically solve these optimal control equations are also described. The performance of this technique is compared with a commonly employed planning method.

  7. Method and apparatus for rate integration supplement for attitude referencing with quaternion differencing

    NASA Technical Reports Server (NTRS)

    Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)

    2002-01-01

    A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.

  8. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  9. Attitude dynamics and control of a spacecraft using shifting mass distribution

    NASA Astrophysics Data System (ADS)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  10. The Relationship between Values and Attitudes toward Three Therapy Methods.

    ERIC Educational Resources Information Center

    Madell, Thomas O.

    1982-01-01

    Examined relationships between value dimensions and attitudes toward therapy with a sample of 65 college students who chose which counseling method they thought would be most helpful. Results showed attitudes toward the behavioral and rational-emotive approaches were related to values to a small degree. (JAC)

  11. Passive Magnetic Attitude Control System for the Munin Nanosatellite

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Penkov, V. I.

    2002-03-01

    The instrumental and applied problems related to the design of a passive magnetic attitude control system for the Munin nanosatellite are considered. The system is constructed from a strong permanent magnet and a set of hysteresis rods. These rods are made of magnetically soft material using a special technology, and they allow us to support the satellite orientation with respect to the local magnetic field vector with a given accuracy and time response. By using asymptotic and numerical methods, we investigate the satellite dynamics for different models of hysteresis. The issues concerning the arrangement of the rods and their interaction with the fields of permanent magnets mounted onboard the satellite are discussed.

  12. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment

  13. Optimal periodic control for spacecraft pointing and attitude determination

    NASA Technical Reports Server (NTRS)

    Pittelkau, Mark E.

    1993-01-01

    A new approach to autonomous magnetic roll/yaw control of polar-orbiting, nadir-pointing momentum bias spacecraft is considered as the baseline attitude control system for the next Tiros series. It is shown that the roll/yaw dynamics with magnetic control are periodically time varying. An optimal periodic control law is then developed. The control design features a state estimator that estimates attitude, attitude rate, and environmental torque disturbances from Earth sensor and sun sensor measurements; no gyros are needed. The state estimator doubles as a dynamic attitude determination and prediction function. In addition to improved performance, the optimal controller allows a much smaller momentum bias than would otherwise be necessary. Simulation results are given.

  14. Anti-sway control of tethered satellite systems using attitude control of the main satellite

    NASA Astrophysics Data System (ADS)

    Yousefian, Peyman; Salarieh, Hassan

    2015-06-01

    In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.

  15. Birth Control Methods

    MedlinePlus

    ... Z Health Topics Birth control methods Birth control methods > A-Z Health Topics Birth control methods fact ... Publications email updates Enter email Submit Birth control methods Birth control (contraception) is any method, medicine, or ...

  16. Longitudinal Studies of Attitude Change: Issues and Methods

    DTIC Science & Technology

    1975-04-01

    relative contributions of variables which are presently influencing attitudes from historical variables. Conversely a longitudinal method can be used to...different training techniques. Neidt and Meredith (1966) used a longitudinal method to determine the changes in attitudes of a single group of Air... longitudinal method is viewed as the most promising for measurement of change. With the increasing improvement in unobtrusive measures (e.g., Webb

  17. Is Racial Attitude Change a Function of Locus of Control?

    ERIC Educational Resources Information Center

    Sharma, Vijay

    1977-01-01

    This study explores the relationship between counselors' locus of control and the degree of change on racial attitudes followed by a structured awareness program and counseling experience on racial and multi-ethnic cultures. (Author)

  18. A summary of the Dynamics Explorer /DE/-2 spacecraft attitude control operations and dynamics

    NASA Technical Reports Server (NTRS)

    Stengle, T. H.

    1982-01-01

    A summary of attitude control operations and observed attitude dynamics for the Dynamics Explorer (DE)-2 spacecraft is presented. By performing a systematic analysis of spacecraft drift and through optimization of modeling parameters in dynamics simulators, insight is given into spacecraft dynamics, techniques for reducing drift, and methods for streamlining operational procedures. This paper discusses how attitude and momentum drift were reduced for DE-2 by changing spacecraft geometry, altering operational procedures and making timely use of the control modes available. Attempts to correlate spacecraft drift activity with known environmental variables are made with only limited success.

  19. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  20. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  1. Periodic attitude control of a slowly spinning spacecraft.

    NASA Technical Reports Server (NTRS)

    Todosiev, E. P.

    1973-01-01

    A periodic attitude control system is presented which permits control of secular errors of a slowly spinning spacecraft operating in a high disturbance environment. Attitude errors of the spin-axis are detected by sun sensors (or rate gyros) and are controlled by a periodic control law which modulates external control torques generated by mass expulsion torquers. Attitude stability during the uncontrolled periods is obtained passively via the vehicle spin momentum. Equations of motion, a system block diagram, and design parameters are presented for a typical spacecraft application. Simulation results are included which demonstrate the feasibility of the novel control concept. Salient features of the periodic control approach are implementation simplicity, excellent response, and a propellant utilization efficiency greater than 75 percent.

  2. Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics

    NASA Astrophysics Data System (ADS)

    Pukdeboon, Chutiphon

    2015-10-01

    This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H∞ inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H∞ state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.

  3. Attitude Control Optimization for ROCSAT-2 Operation

    NASA Astrophysics Data System (ADS)

    Chern, Jeng-Shing; Wu, A.-M.

    one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.

  4. The development and demonstration of hybrid programmable attitude control electronics

    NASA Technical Reports Server (NTRS)

    Smith, L. S.; Kopf, E. H., Jr.

    1973-01-01

    In the course of extended life attitude control system (ELACS) research sponsored by NASA a hybrid programable attitude control electronics (HYPACE) concept was developed and demonstrated. The wide variety of future planetary missions demanded a new control approach to accommodate the automatic fault tolerance and long the life requirements of such missions. HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, and spacecraft changes, through programing. This enabled broad multimission flexibility of application in a cost effective manner. Previously, flight control computers have not been not flown on planetary missions because of weight and power problems. These problems were resolved in the design of HYPACE. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs.

  5. A system for spacecraft attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.

    1974-01-01

    A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

  6. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  7. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  8. Design of Attitude Control Actuators for a Simulated Spacecraft

    DTIC Science & Technology

    2011-03-24

    building and connecting programming blocks, such as math functions, switches, and integrators . Figure 3.10 shows an example of a Simulink program written...Inverse Steering Law . . . . . . . . . . . . . . . . . . 37 2.5 Linearized Proportional- Integral -Derivative Attitude Control . . . 38 2.5.1 PID Control...67 3.6 SimSat Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.1 Data Collection from Sensors

  9. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  10. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  11. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  12. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Astrophysics Data System (ADS)

    Azzolini, John D.; McGlew, David E.

    1990-12-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  13. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  14. Design of a Control Moment Gyroscope Attitude Actuation System for the Attitude Control Subsystem Proving Ground

    DTIC Science & Technology

    2013-03-01

    induction. Faraday’s law of induction states: The induced electromotive force in any closed circuit is equal to the negative time rate of change of the... series 70 of target attitudes, where the spacecraft must align the z-axis of its body frame to target attitude, and hold at each attitude for a set...The simulation ran the ACSPG through a series of target attitudes, where the ACSPG’s z-axis in its body frame must be aligned to a target vector for

  15. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  16. Spherical Air Bearing testbed for nanosatellite attitude control development

    NASA Astrophysics Data System (ADS)

    Ustrzycki, Tyler

    Spherical Air Bearing systems have been used as a test bed for attitude control systems for many decades. With the advancements of nanosatellite technologies as a platform for scientific missions, there is an increased demand for comprehensive, pre-launch testing of nanosatellites. Several spherical air bearing systems have been developed for larger satellite applications and add too much parasitic mass to be applicable for nanosatellite applications. This thesis details the design and validation of a Nanosatellite Three Axis Attitude Control Testbed. The testbed consists of the physical design of the system, a complete electronics system, and validation of the testbed using low-cost reaction wheels as actuators. The design of the air bearing platform includes a manual balancing system to align the centre of gravity with the centre of rotation. The electronics system is intended to measure the attitude of the platform and control the actuator system. Validation is achieved through a controlled slew maneuver of the air bearing platform.

  17. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  18. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  19. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  20. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  1. Weight Control: Attitudes of Dieters and Change Agents.

    ERIC Educational Resources Information Center

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  2. Factors That Affect Patient Attitudes toward Infection Control Measures.

    ERIC Educational Resources Information Center

    Jones, Daniel J.; And Others

    1991-01-01

    A study investigated patient attitudes toward different disease control measures taken in dental school clinics (n=272 patients) and private practices (n=107 patients). Variables examined included sex, age, educational background, and knowledge of infectious diseases. Patients tended to accept the control measures being used in each context. (MSE)

  3. Laboratory Control System's Effects on Student Achievement and Attitudes

    ERIC Educational Resources Information Center

    Cicek, Fatma Gozalan; Taspinar, Mehmet

    2016-01-01

    Problem Statement: The current study investigates whether the learning environment designed based on the laboratory control system affects the academic achievement, the attitude toward the learning-teaching process and the retention of the students in computer education. Purpose of Study: The study aims to identify the laboratory control system…

  4. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    and Spacecraft Body from Gyro Measurements ......... .................................. 119 D.2 An Approximation to Exact Linearization using IPSRU...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback...though basic techniques were adapted from recent references on the use of exact linearization (such as [8] and [27]), the specific control approach

  5. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  6. Weight Control Beliefs, Body Shape Attitudes, and Physical Activity among Adolescents

    ERIC Educational Resources Information Center

    Martin, Scott B.; Rhea, Deborah J.; Greenleaf, Christy A.; Judd, Doryce E.; Chambliss, Heather O.

    2011-01-01

    Background: Relatively little is known about how perceived weight controllability influences important psychological health factors among adolescents. Thus, the purpose of this study is to explore adolescents' weight controllability beliefs and how those beliefs influence weight-related attitudes and behaviors. Methods: Adolescents (N = 369, mean…

  7. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    NASA Astrophysics Data System (ADS)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  8. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  9. Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School

    ERIC Educational Resources Information Center

    Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.

    2008-01-01

    This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…

  10. Attitude stabilization of a rigid spacecraft using two control torques: A nonlinear control approach based on the spacecraft attitude dynamics

    NASA Astrophysics Data System (ADS)

    Krishnan, Hariharan; Reyhanoglu, Mahmut; McClamroch, Harris

    1994-06-01

    The attitude stabilization problem of a rigid spacecraft using control torques supplied by gas jet actuators about only two of its principal axes is considered. If the uncontrolled principal axis of the spacecraft is not an axis of symmetry, then the complete spacecraft dynamics are small time locally controllable. However, the spacecraft cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback. A discontinuous stabilizing feedback control strategy is constructed which stabilizes the spacecraft to any equilibrium attitude. If the uncontrolled principal axis of the spacecraft is an axis of symmetry, the complete spacecraft dynamics are not even assessible. However, the spacecraft dynamics are strongly accessible and small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy is constructed. In both cases, the discontinuous feedback controllers are constructed by switching between several feedback functions which are selected to accomplish a sequence of spacecraft maneuvers. The results of the paper show that although standard nonlinear control techniques are not applicable, it is possible to construct a nonlinear discontinuous control law based on the dynamics of the particular physical system.

  11. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  12. Attitude control study for a large flexible spacecraft using a Solar Electric Propulsion System (SEPS)

    NASA Technical Reports Server (NTRS)

    Tolivar, A. F.; Key, R. W.

    1980-01-01

    The attitude control performance of the solar electric propulsion system (SEPS) was evaluated. A thrust vector control system for powered flight control was examined along with a gas jet reaction control system, and a reaction wheel system, both of which have been proposed for nonpowered flight control. Comprehensive computer simulations of each control system were made and evaluated using a 30 mode spacecraft model. Results obtained indicate that thrust vector control and reaction wheel systems offer acceptable smooth proportional control. The gas jet control system is shown to be risky for a flexible structure such as SEPS, and is therefore, not recommended as a primary control method.

  13. Passification based simple adaptive control of quadrotor attitude: Algorithms and testbed results

    NASA Astrophysics Data System (ADS)

    Tomashevich, Stanislav; Belyavskyi, Andrey; Andrievsky, Boris

    2017-01-01

    In the paper, the results of the Passification Method with the Implicit Reference Model (IRM) approach are applied for designing the simple adaptive controller for quadrotor attitude. The IRM design technique makes it possible to relax the matching condition, known for habitual MRAC systems, and leads to simple adaptive controllers, ensuring fast tuning the controller gains, high robustness with respect to nonlinearities in the control loop, to the external disturbances and the unmodeled plant dynamics. For experimental evaluation of the adaptive systems performance, the 2DOF laboratory setup has been created. The testbed allows to safely test new control algorithms in the laboratory area with a small space and promptly make changes in cases of failure. The testing results of simple adaptive control of quadrotor attitude are presented, demonstrating efficacy of the applied simple adaptive control method. The experiments demonstrate good performance quality and high adaptation rate of the simple adaptive control system.

  14. Design and simulation of satellite attitude control system based on Simulink and VR

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  15. Student Attitudes to Traditional and Online Methods of Delivery

    ERIC Educational Resources Information Center

    Wong, Lily; Fong, Michelle

    2014-01-01

    Rapid developments in education technology have provided educators and students new options in a constantly changing, competitive teaching and learning environment. As the number of online teaching resources continue to increase, research into student attitudes toward traditional and online methods of delivery is important in order to determine…

  16. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  17. Low cost attitude control system reaction wheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  18. Attitudes toward Nutrition, Locus of Control and Smoking Behavior.

    ERIC Educational Resources Information Center

    Corfield, V. Kilian; And Others

    Research has shown that many behaviors previously thought to be purely psychological in origin do, in fact, have a physiological basis. To examine the relationship of smoking behavior to locus of control, and to attitudes toward, knowledge about, and behavior with respect to nutrition, 116 Canadian undergraduate students completed the Nutrition…

  19. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  20. The SAS-3 attitude control system

    NASA Technical Reports Server (NTRS)

    Mobley, F. F.; Konigsberg, R.; Fountain, G. H.

    1975-01-01

    SAS-3 uses a reaction wheel to provide torque to control the spin rate. If the wheel speed becomes too great or too small, it must be restored to its nominal rate by momentum dumping which is done by magnetic torquing against the earth's magnetic field by the satellite's magnetic coils. A small rate-integrating gyro is used to sense the spin rate so that closed loop control of the spin rate can be achieved. These various systems are described in detail including the reaction wheel system, the gyro system, along with control modes (spin rate control and the star lock mode).

  1. Adaptive attitude controller for a satellite based on neural network in the presence of unknown external disturbances and actuator faults

    NASA Astrophysics Data System (ADS)

    Fazlyab, Ali Reza; Fani Saberi, Farhad; Kabganian, Mansour

    2016-01-01

    In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite. The proposed attitude control is based on nonlinear modified Rodrigues parameters feedback control in the presence of unknown terms like external disturbances and actuator faults. In order to eliminate the effect of the uncertainties, a multilayer neural network with a new learning rule will be designed appropriately. In this method, asymptotic stability of the proposed algorithm has been proven in the presence of unknown terms based on Lyapunov stability theorem. Finally, the performance of the designed attitude controller is investigated by simulations.

  2. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  3. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  4. A spacecraft integrated power/attitude control system

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Jacobs, K. L.

    1974-01-01

    A study to determine the viability and application of a system capable of performing the dual function of power storage/generation and attitude control has been conducted. Results from the study indicate that an integrated power/attitude control system (IPACS) can satisfy future mission requirements while providing significant savings in weight, volume, and cost over conventional systems. A failure-mode configuration of an IPACS was applied to a shuttle-launched RAM free-flyer and simulated using make-do hardware linked to a hybrid computer. Data from the simulation runs indicate that control interactions resulting from heavy power demands have minimal effect on system control effectiveness. The system was shown to be capable of meeting the stringent pointing requirements of 1 arc-second while operating under the influence of an orbital disturbance environment and during periods of momentum variations imposed by energy transfer requirements.

  5. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1992-08-01

    Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  6. Spacecraft Attitude Estimation Integrating the Q-Method into an Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Ainscough, Thomas G.

    A new algorithm is proposed that smoothly integrates the nonlinear estimation of the attitude quaternion using Davenport's q-method and the estimation of non-attitude states within the framework of an extended Kalman filter. A modification to the q-method and associated covariance analysis is derived with the inclusion of an a priori attitude estimate. The non-attitude states are updated from the nonlinear attitude estimate based on linear optimal Kalman filter techniques. The proposed filter is compared to existing methods and is shown to be equivalent to second-order in the attitude update and exactly equivalent in the non-attitude state update with the Sequential Optimal Attitude Recursion filter. Monte Carlo analysis is used in numerical simulations to demonstrate the validity of the proposed approach. This filter successfully estimates the nonlinear attitude and non-attitude states in a single Kalman filter without the need for iterations.

  7. Preliminary Attitude Control Studies for the ASTER Mission

    NASA Astrophysics Data System (ADS)

    Victorino Sarli, Bruno; Luís da Silva, André; Paglione, Pedro

    2013-10-01

    This work discusses an attitude control study for the ASTER mission, the first Brazilian mission to the deep space. The study is part of a larger scenario that is the development of optimal trajectories to navigate in the 2001 SN263 asteroid system, together with the generation of orbit and attitude controllers for autonomous operation. The spacecraft attitude is defined from the orientation of the body reference system to the Local Vertical Local Horizontal (LVLH) of a circular orbit around the Alpha asteroid. The rotational equations of motion involve the dynamic equations, where the three angular speeds are generated from a set of three reaction wheels and the gravitational torque. The rotational kinematics is represented in the Euler angles format. The controller is developed via the linear quadratic regulator approach with output feedback. It involves the generation of a stability augmentation (SAS) loop and a tracking outer loop, with a compensator of desired structure. It was chosen the feedback of the p, q and r angular speeds in the SAS, one for each reaction wheel. In the outer loop, it was chosen a proportional integral compensator. The parameters are tuned using a numerical minimization that represents a linear quadratic cost, with weightings in the tracking error and controls. Simulations are performed with the nonlinear model. For small angle manoeuvres, the linear results with reaction wheels or thrusters are reasonable, but, for larger manoeuvres, nonlinear control techniques shall be applied, for example, the sliding mode control.

  8. Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    DTIC Science & Technology

    2009-03-01

    attitude can be described in the Earth -Centered Inertial (ECI) coordinate system, a non-rotating coordinate frame fixed to the center of the Earth . In order...significant nutational component.” With the advent of pseudospectral methods based optimal control solvers, researchers such as Ross and Fleming

  9. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  10. Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2016-11-01

    This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.

  11. Attitude-Control Algorithm for Minimizing Maneuver Execution Errors

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet

    2008-01-01

    A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.

  12. Elizabethan birth control and Puritan attitudes.

    PubMed

    Schnucker, R V

    1975-01-01

    During the Elizabethan era there was a considerable body of knowledge concerning birth control techniques including coitus interruptus, penis ointments, pessaries, purgatives, genital baths and bloodletting. Works were available describing the symptons and causes of abortion and reporting some abortifacients. The Puritans were aware of birth control techniques, but were opposed to them for several reasons: 1) it would go against the biblical injunction to be fruitful and multiply; 2) birth control frustrated the creation of what was in the image of God; 3) fecundity was a blessing and should not be thwarted; 4) the society of the elect should be increased; and 5) through childbirth a woman could atone for Eve's original sin. Although some Puritans recognized that marriage was for comfort and solace as well as for the bearing of progeny, birth control was frowned upon, the the Puritan clergy practiced what it preached. In a random sample of Puritan clergy there was an average of 6.8 children born per family, which was higher than the average to be found among English nobility of the same period.

  13. Attitude Control System Design for Fast Rest-to-Rest Attitude Maneuver

    NASA Astrophysics Data System (ADS)

    Sakai, S.-I.; Bando, N.; Hashimoto, T.; Murata, Y.; Mochizuki, N.; Nakamura, T.; Kamiya, T.; Ogura, N.; Maeda, K.

    2009-08-01

    The VSOP-2 project is a new space VLBI (very long baseline interferometer) radio astronomy mission, proposed to inherit the fruitful success of the VSOP mission with the HALCA satellite. One of the most important advances of VSOP-2 is the use of higher observation frequency, which requires fast alternating observation of a target and calibrator in order to remove the phase changes caused by the atmosphere. Typically, both sources must be observed within 60 sec, and this switching must be carried out over many hours. ``ASTRO-G" is a satellite planned for this VSOP-2 project, and one of technical challenges is to achieve such fast rest-to-rest maneuvers, and the proper hardware must be selected to account for this fast attitude maneuver. The controlled momentum gyro (CMG) is an actuator that provides high torque with small power consumption, and the fiber optical gyro is a sensor able to measure the high angular velocity with excellent accuracy. This paper first describes these components for attitude control. Another challenge of the ASTRO-G's attitude control system is to design the switching for the flexible mode of the satellite structure, containing a large deployable reflector and a large solar panel. These produce resonances with fast switching and these must be attenuated. To achieve high agility in a flexible satellite, the controller design is crucial. One design feature is a novel robust input shaper named ``nil mode exciting profiler". Another feature is the feedback controller design. The paper describes these features and other potential problems with fast switching..

  14. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  15. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    NASA Technical Reports Server (NTRS)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  16. Wheel configurations for combined energy storage and attitude control systems

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1985-01-01

    Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.

  17. Laser Gyro Attitude Control System Feasibility Study.

    DTIC Science & Technology

    1987-04-24

    GYROS (Distinguishable by method used to circumvent lock-in phenomenon) M ECHANICAL DITHER ,. MAGNETIC MIRROR DILAG (MULTI-OSCILLATOR) Figure 1...by a multiple transit of a light beam within a closed optical cavity (a three- mirror system). The beam traverses the cavity continuously; after each...circulation a small fraction of the beam intensity is output at one of the mirrors . Each transit incurs a phase % %0 ? % o I" us ol *..~% % %~*,~*)*f

  18. Attitude control/momentum management and payload pointing in advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.

  19. A study of interceptor attitude control based on adaptive wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  20. Magnetic bearing reaction wheel. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sabnis, A.; Schmitt, F.; Smith, L.

    1976-01-01

    The results of a program for the development, fabrication and functional test of an engineering model magnetically suspended reaction wheel are described. The reaction wheel develops an angular momentum of + or - 0.5 foot-pound-second and is intended for eventual application in the attitude control of long-life interplanetary and orbiting spacecraft. A description of the wheel design and its major performance characteristics is presented. Recommendations for flight prototype development are made.

  1. Angular Rate Estimation for Gyroless Satellite Attitude Control

    DTIC Science & Technology

    2002-08-01

    momentum of the spacecraft by neglecting the contribution by the relative motion of the receive telescope and reaction wheels with respect to transmit...momentum due to relative motion of the reaction wheels . The next step in the derivation is to determine these angular momentums. Inertia Let IT be...spacecraft attitude control, reaction wheels are used as actuators with magnetic torque rods to desaturate the reaction wheels . The primary sensors are

  2. Fault tolerant programmable digital attitude control electronics study

    NASA Technical Reports Server (NTRS)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  3. Attitude and Translation Control of a Solar Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  4. The Spartan attitude control system - Ground support computer

    NASA Technical Reports Server (NTRS)

    Schnurr, R. G., Jr.

    1986-01-01

    The Spartan Attitude Control System (ACS) contains a command and control computer. This computer is optimized for the activities of the flight and contains very little human interface hardware and software. The computer system provides the technicians testing of Spartan ACS with a convenient command-oriented interface to the flight ACS computer. The system also decodes and time tags data automatically sent out by the flight computer as key events occur. The duration and magnitude of all system maneuvers is also derived and displayed by this system. The Ground Support Computer is also the primary Ground Support Equipment for the flight sequencer which controls all payload maneuvers, and long term program timing.

  5. Entry Attitude Controller for the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; SanMartin, A. Miguel; Wong, Edward C.

    2007-01-01

    This paper describes the preliminary concept for the RCS 3-axis attitude controller for the exo-atmospheric and guided entry phases of the Mars Science Laboratory Entry, Descend and Landing. The entry controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via simulation.

  6. Pulsed plasma thrusters for small spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed Plasma Thrusters (PPTS) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LERC) currently has a contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October 1997. The PPT systems in this study are based upon the work being done under the NASA LERC program. Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though rapid slewing power requirements may present an issue.

  7. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  8. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  9. Spacecraft attitude maneuver using two single-gimbal control moment gyros

    NASA Astrophysics Data System (ADS)

    Kasai, Shinya; Kojima, Hirohisa; Satoh, Mitsunori

    2013-03-01

    In this paper, arbitrary rest-to-rest attitude maneuver problems for a satellite using two single-gimbal control moment gyros (2SGCMGs) are considered. Although single-gimbal control moment gyros are configured in the same manner as the traditional pyramid-array CMG, only two CMGs are assumed to be available. Attitude maneuver problems are similar to problems involving two reaction wheels (RWs) from the viewpoint of the number of actuators. In other words, the problem treated herein is a kind of underactuated problem. Although 2SGCMGs can generate torques around all axes, they cannot generate torques around each axis independently. Therefore, control methods designed for a satellite using two reaction wheels cannot be applied to three-axis attitude maneuver problems for a satellite using 2SGCMGs. In this paper, for simplicity, maneuvers around the x- and z-axes are first considered, and then a maneuver around the y-axis due to the corning effect resulting from the maneuver around the x- and z-axes is considered. Since maneuvers around each axis are established by the proposed method, arbitrary attitude maneuvers can be achieved using 2SGCMGs. In addition, the maneuvering angles around the z- and x-axes, which are required in order to maneuver around the y-axis, are analytically determined, and the total time required for maneuvering around the y-axis is then analyzed numerically.

  10. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  11. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1995-01-01

    Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  12. attitude control design for the solar polar orbit radio telesope

    NASA Astrophysics Data System (ADS)

    Gao, D.; Zheng, J.

    This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same

  13. System and method for attitude determination based on optical imaging

    NASA Technical Reports Server (NTRS)

    Junkins, John L. (Inventor); Pollock, Thomas C. (Inventor); Mortari, Daniele (Inventor)

    2003-01-01

    A method and apparatus is provide for receiving a first set of optical data from a first field of view and receiving a second set of optical data from a second field of view. A portion of the first set of optical data is communicated and a portion of the second set of optical data is reflected, both toward an optical combiner. The optical combiner then focuses the portions onto the image plane such that information at the image plane that is associated with the first and second fields of view is received by an optical detector and used to determine an attitude characteristic.

  14. Singularity-free integral-augmented sliding mode control for combined energy and attitude control system

    NASA Astrophysics Data System (ADS)

    Eshghi, Samira; Varatharajoo, Renuganth

    2017-01-01

    A combined energy and attitude control system (CEACS) is a synergized system in which flywheels are used as attitude control actuators and simultaneously as a power storage system. This paper, a subsequent to previous research on CEACS, addresses the attitude-tracking problem. Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL), a locally asymptotically stable controller, is developed to provide a robust and accurate solution for the CEACS's attitude-tracking problem. The controller alleviates the chattering phenomenon associated with the sliding mode using a boundary-layer technique. Simultaneously, it reduces the steady-state error using an integral action. This paper highlights the uncertainty of inertia matrix as a contributing factor to singularity problem. The inversion of the uncertain inertia matrix in simulation of a spacecraft dynamics is also identified as a leading factor to a singular situation. Therefore, an avoidance strategy is proposed in this paper to guarantee a singular-free dynamics behavior in faces of the uncertainties. This maiden work attempts to employ the singularity-free Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL) to provide a robust, accurate and nonsingular attitude-tracking solution for CEACS.

  15. The case method of instruction, conceptual change, and student attitude

    NASA Astrophysics Data System (ADS)

    Gallucci, Kathleen K.

    The purpose of this study was to investigate the effect of the case method of instruction (CMI) on conceptual change in students' understanding of genes, biodiversity, and evolution topics, and to investigate the effect of learning with CMI on student attitude regarding the discipline of science, and learning about science. The study also investigated students' perceptions of their learning gains based on CMI. This was a mixed-methods action research study that used a quasi-experimental design. The study participants were enrolled in three sections (n1 = 20, n2 = 16, n3 = 30) of the same introductory biology course during the spring of 2006 at a small, private university in the southeastern United States. At the beginning of the semester, students completed a pretest composed of six open-ended questions (two on each topic) to uncover their alternative conceptions---or lack of them, and after instruction using CMI, students answered the same questions as a post-test on two hourly class exams. The answers were scored with original rubrics and the differences between the scores were analyzed using the Student's paired t-Test. In addition, twelve student volunteers were interviewed twice, once after each exam, by an independent interviewer, to elicit their understanding about the method of CMI, their understanding of the topics from the recent exam, and their attitudes about science and learning about science. The interviews were audio taped and transcribed, and analyzed for themes and comments about conceptual understanding and learning about science. Students also completed two instruments anonymously: the Science Attitude Inventory (SAI II) and the Student Assessment of Learning Gains (SALG). The SAI II was completed on the first and the last day of the semester to assess change in student attitude about science and the pretest and posttest scores were analyzed for significant differences. Students completed the SALG online immediately before the course final exam

  16. An Evaluation of Attitude-Independent Magnetometer-Bias Determination Methods

    NASA Technical Reports Server (NTRS)

    Hashmall, J. A.; Deutschmann, Julie

    1996-01-01

    Although several algorithms now exist for determining three-axis magnetometer (TAM) biases without the use of attitude data, there are few studies on the effectiveness of these methods, especially in comparison with attitude dependent methods. This paper presents the results of a comparison of three attitude independent methods and an attitude dependent method for computing TAM biases. The comparisons are based on in-flight data from the Extreme Ultraviolet Explorer (EUVE), the Upper Atmosphere Research Satellite (UARS), and the Compton Gamma Ray Observatory (GRO). The effectiveness of an algorithm is measured by the accuracy of attitudes computed using biases determined with that algorithm. The attitude accuracies are determined by comparison with known, extremely accurate, star-tracker-based attitudes. In addition, the effect of knowledge of calibration parameters other than the biases on the effectiveness of all bias determination methods is examined.

  17. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  18. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  19. Pulsed Plasma Thrusters for Small Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed plasma thrusters (PPT's) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft configuration to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Reserach Center (LeRC) currently has a contracted flight PPT system development program in place with Olin Aerospace and a delivery date of October 1997. The PPT system in this study are based upon the work being done under the NASA LeRC program. Analysis of the use of PPT's for ACS showed that the replacement of the standard momentum wheels and torque rods systems with a PTT system to perform the altitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75 percent with no increase in required power level over comparable wheel-based systems.

  20. An Efficient Sub-optimal Motion Planning Method for Attitude Manoeuvres

    NASA Astrophysics Data System (ADS)

    Caubet, Albert; Biggs, James D.

    A motion planning technique for efficiently generating smooth spacecraft attitude slew manoeuvres is presented. The attitude trajectory (using quaternions) is shaped by a polynomial, determined by matching prescribed boundary conditions and the manoeuvre time. This method allows constraints such as limits on velocity, acceleration, jerk, and torque to be evaluated via inverse dynamics. Pointing constraints are also considered. A spin-to-spin case is presented whereby an axis-azimuth parameterisation is used. The problem of time minimization (within the set of trajectories defined by the given polynomials) is addressed, and a method for analytically estimating the minimum time of a manoeuvre is proposed. The method requires low computational capacity, and a comparison with optimal control solutions shows its relative performance.

  1. An Attitude Control of Flexible Spacecraft Using Fuzzy-PID Controller

    NASA Astrophysics Data System (ADS)

    Park, Jong-Oh; Im, Young-Do

    This primary objective of this study is to demonstrate simulation and ground-based experiment for the attitude control of flexible spacecraft. A typical spacecraft structure consists of the rigid body and flexible appendages which are large flexible solar panels, parabolic antennas built from light materials in order to reduce their weight. Therefore the attitude control has a big problem because these appendages induce structural vibration under the excitation of external forces. A single-axis rotational simulator with a flexible arm is constructed with on-off air thrusters and reaction wheel as actuation. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The experiment of flexible spacecraft attitude control is performed using only the reaction wheel. Using the reaction wheel the performance of the fuzzy-PID controller is illustrated by simulation and experimental results for a single-axis rotational simulator.

  2. Attitude determination and control system design of the ITU-UUBF LEO1 satellite

    NASA Astrophysics Data System (ADS)

    Hajiyev, Ch.; Bahar, M.

    2003-01-01

    In this paper an attitude determination and control system for ITU-UUBF LEO1 satellite is proposed. To determine the attitude of the satellite this system uses algebraic method (2-vector algorithm). As a reference direction, the unit vectors toward the Sun and the Earth's center, and the Earth's magnetic field are used. Thus, it includes three different 2-vector algorithms based on using Earth's magnetic field-Sun vector, Earth's magnetic field-nadir vector, and nadir vector-Sun vector couples. A redundant data processing algorithm based on maximum likelihood was designed. The parameters of satellite's rotational motion are estimated using extended Kalman filter (EKF). For control purposes an EKF-based PD controller is designed. To reveal the performance of the designed system a simulation is made.

  3. Structural control interaction for an LSS attitude control system using thrusters and reaction wheels

    NASA Astrophysics Data System (ADS)

    da Fonseca, Ijar M.; Bainum, Peter M.; da Silva, Adenilson R.

    2007-05-01

    This work provides some important information about control structure interaction (CSI) for a large space structure (LSS) attitude control subsystem (ACS) comprised of thrusters and reaction wheels. The LSS physical model is assumed as a rigid long tubular beam as the main bus with two attached long flexible solar panels. Two thrusters (one at each tip of the LSS) are used for large amplitude maneuvers and the reaction wheels for fine control. Lagrange's formulations for generalized and quasi-coordinates were used to derive the equations of motion. The gravity gradient, the solar pressure and the drag were included in the mathematical model as external perturbations. The assumed modes discretization method has been used to model the solar array elastic displacements so as to obtain a set of ordinary differential equations to describe the LSS motion. Different control strategies were implemented to analyze the CSI for two configurations, fine and coarse control. The MatLab/Simulink platform has been used for the computational simulations. The results are in agreement with the CSI theory in that thruster firings excite the solar panel vibrations and that the elastic vibration is an important issue to be taken into account for LSS ACS performance evaluation for both fine and coarse control. In spite of the CSI the maneuver objectives have been accomplished with results that meet the mission criteria.

  4. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  5. Attitude and translation control of a low-altitude Gravsat

    NASA Technical Reports Server (NTRS)

    Ray, J. C.; Jenkins, R. E.; Debra, D. B.; Van Patten, R. A.; Junkins, J. L.

    1982-01-01

    Dynamic simulation of the Gravsat's attitude and translation control system is used to provide an upper bound for the fuel supply and test the feasibility of the preliminary design. A preliminary design is made for the disturbance compensation system (DISCOS) sensor, the thruster control laws, reaction wheel control laws, and the onboard state estimators. The sensor analysis and noise measurements show no problems in scaling the Triad navigation satellite sensor design up to meet the Gravsat requirements, except for proof mass center-of-mass offset. A promising technique is proposed to measure and eliminate this error. The covariance analysis confirms that a sophisticated post-flight data fit will be necessary to reconstruct a scientifically useful proof mass state. The DISCOS sensor will have to be continuously calibrated from the inflight data to achieve this reconstruction.

  6. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  8. Fault Tolerant Attitude Control for spacecraft with SGCMGs under actuator partial failure and actuator saturation

    NASA Astrophysics Data System (ADS)

    Zhang, Fuzhen; Jin, Lei; Xu, Shijie

    2017-03-01

    A Fault Tolerant Attitude Control algorithm for the spacecraft using Single Gimbal Control Moment Gyros (SGCMGs) as actuator is proposed. The controller is designed using the sliding mode control theory to control the gimbal rate directly and there is no singular point in the control algorithm, which means that we don't need to design the steering laws again and the singularity problems can be avoided. Also the gimbal rate saturation is considered when designing the control method. The adaptive control algorithm is used to estimate the disturbance and the boundary of the fault and saturation, which means that no prior information of the fault is needed. Although the controller is designed based on the SGCMGs, it can also be employed when reaction wheels work as the actuator of the spacecraft. Also the complete failure of several SGCMGs is allowed. It is proved based on the Lyapunov stability theorem that the designed control algorithm can achieve the attitude asymptotic stability both on the fault or fault-free condition. The simulation results show that the proposed method has a strong robustness.

  9. Attitude control of an underactuated spacecraft using quaternion feedback regulator and tube-based MPC

    NASA Astrophysics Data System (ADS)

    Mirshams, M.; Khosrojerdi, M.

    2017-03-01

    Feasibility of achieving 3-axis stabilization of an asymmetric spacecraft for cases where there is no control available in one axis (underactuated spacecraft) is explored in this paper. A novel control design methodology is presented which can stabilize the underactuated spacecraft and steer it to the origin. A passive fault tolerant control (FTC) is defined which controls and maintains the attitude of the spacecraft near the desired point in presence of uncertainties, disturbances, control constraints and actuator faults. Considering the general conditions of the underactuated spacecraft, a hybrid controller combining a quaternion feedback regulator (QFR) with a tube-based model predictive controller (MPC) is developed based on the nonlinear kinematic and dynamic equations of the spacecraft motion. The hybrid controller is composed of two control stages. At the first stage, QFR decreases the angular velocities and brings the state vector to an acceptable region for the next stage. Then, tube-based MPC solves two optimal control problems, a standard problem for the nominal system to define a central guide path, and an ancillary problem to steer the state vector towards the central path with semi-optimal control effort. Numerical simulation results obtained for the underactuated spacecraft merely indicate effectiveness of the proposed attitude control method.

  10. Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam

    2013-01-01

    A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin

  11. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  12. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  13. Health literacy and parent attitudes about weight control for children.

    PubMed

    Liechty, Janet M; Saltzman, Jaclyn A; Musaad, Salma M

    2015-08-01

    The purpose of this study was to examine associations between parental health literacy and parent attitudes about weight control strategies for young children. Parental low health literacy has been associated with poor child health outcomes, yet little is known about its relationship to child weight control and weight-related health information-seeking preferences. Data were drawn from the STRONG Kids Study, a Midwest panel survey among parents of preschool aged children (n = 497). Parents endorsed an average of 4.3 (SD =2.8) weight loss strategies, 53% endorsed all three recommended weight loss strategies for children, and fewer than 1% of parents endorsed any unsafe strategies. Parents were most likely to seek child weight loss information from healthcare professionals but those with low (vs. adequate) health literacy were significantly less likely to use the Internet or books and more likely to use minister/clergy as sources. Poisson and logistic regressions showed that higher health literacy was associated with endorsement of more strategies overall, more recommended strategies, and greater odds of endorsing each specific recommended strategy for child weight control, after adjusting for parent age, education, race/ethnicity, income, marital status, weight concern, and child BMI percentile. Findings suggest that health literacy impacts parental views about child weight loss strategies and health information-seeking preferences. Pediatric weight loss advice to parents should include assessment of parent attitudes and prior knowledge about child weight control and facilitate parent access to reliable sources of evidence-informed child weight control information.

  14. Gaining control over responses to implicit attitude tests: Implementation intentions engender fast responses on attitude-incongruent trials.

    PubMed

    Webb, Thomas L; Sheeran, Paschal; Pepper, John

    2012-03-01

    The present research investigated whether forming implementation intentions could promote fast responses to attitude-incongruent associations (e.g., woman-manager) and thereby modify scores on popular implicit measures of attitude. Expt 1 used the Implicit Association Test (IAT) to measure associations between gender and science versus liberal arts. Planning to associate women with science engendered fast responses to this category-attribute pairing and rendered summary scores more neutral compared to standard IAT instructions. Expt 2 demonstrated that forming egalitarian goal intentions is not sufficient to produce these effects. Expt 3 extended these findings to a different measure of implicit attitude (the Go/No-Go Association Task) and a different stereotypical association (Muslims-terrorism). In Expt 4, managers who planned to associate women with superordinate positions showed more neutral IAT scores relative to non-planners and effects were maintained 3 weeks later. In sum, implementation intentions enable people to gain control over implicit attitude responses.

  15. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  16. Attitude tracking control for spacecraft formation with time-varying delays and switching topology

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; You, Xiu; Hua, Changchun

    2016-09-01

    This paper investigates attitude dynamic tracking control for spacecraft formation in the presence of unmeasurable velocity information with time-varying delays and switching topology. Based on an extended state observer, a nonlinear attitude tracking control approach is developed for spacecraft attitude model formulated by Euler-Lagrangian equations. The attitude tracking controller allows for external disturbances and absence of angular velocity information. Both auto-stable region techniques and a Lyapunov function approach are developed to prove ultimately bounded tracking. Simulation results demonstrate effectiveness of the nonlinear control techniques proposed in this paper.

  17. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Jinjin; Dong, Chaoyang; Wang, Qing

    2008-10-01

    The structures and missions of modern satellites are very complicated, so the reliability of satellites is becoming increasingly important. This paper proposed a fault-tolerant attitude control system for a satellite based on Fuzzy Global Sliding Mode Control (FGSMC) algorithm. We designed a controller for the nonlinear model of a satellite. By designing a global sliding surface, this controller can ensure that the response of the system has global robustness against the uncertainties of system and external disturbances. In this paper attitude control is performed by four reaction flywheels. The attitude control system distributed the three control torques to the four reaction flywheels according to the distribution matrix. We deduced the formula to calculate the distribution matrix. Paper proved the stability of the designed control law, and simulated the attitude control system. The simulation results show that the attitude control law has high accuracy and robustness.

  18. A comparison of attitude propagation and parameterization methods for low-cost UAVs

    NASA Astrophysics Data System (ADS)

    Casey, Robert Taylor

    Unmanned aerial vehicles (UAVs) represent an increasingly important and prolific technology in today's world, finding use in myriad applications across multiple domains, including civil, commercial, military, and research environments. Control of these aircraft requires fundamental information on the vehicle's position and orientation in space. Attitude determination algorithms calculate this spatial orientation by propagating the attitude kinematic equations that estimate the current attitude based on previous estimates along with information about the vehicle's angular velocities. Within the domain of low-cost UAVs, numerous options exist for the choice of 1) propagation algorithms, 2) attitude representation, and 3) the assumptions about the behavior of the angular velocity vector between samples within the discrete-time hardware of the embedded system typically running the estimation algorithms. This thesis examines the impact of these three variables upon propagated attitude estimates with respect to accuracy, computational efficiency, and noise response. Noise response is evaluated in terms of the algorithm's ability to track an underlying clean signal in spite of inputs corrupted by additive Gaussian noise. Various propagation methods are evaluated across four attitude representations: the direction cosine matrix, Euler angles, quaternions, and the angle-axis or eigen-axis parameterization. Lastly, the nature of angular velocity (constant, linear, and quadratic) is evaluated in terms of accuracy, computational efficiency, and noise resilience. The algorithms were tested using simulated angular velocity inputs from analytic functions as well as flight test data from low-cost, fixed wing UAVs. Implementation was done in Matlab as well as Simulink-based test modules to evaluate algorithm performance. The quaternion parameterization proved most beneficial across all three test metrics, though the DCM representation was only slightly deficient in terms of

  19. Analysis of Pan-European attitudes to the eradication and control of bovine viral diarrhoea.

    PubMed

    Heffernan, C; Misturelli, F; Nielsen, L; Gunn, G J; Yu, J

    2009-02-07

    At present, national-level policies concerning the eradication and control of bovine viral diarrhoea (BVD) differ widely across Europe. Some Scandinavian countries have enacted strong regulatory frameworks to eradicate the disease, whereas other countries have few formal policies. To examine these differences, the attitudes of stakeholders and policy makers in 17 European countries were investigated. A web-based questionnaire was sent to policy makers, government and private sector veterinarians, and representatives of farmers' organisations. In total, 131 individuals responded to the questionnaire and their responses were analysed by applying a method used in sociolinguistics: frame analysis. The results showed that the different attitudes of countries that applied compulsory or voluntary frameworks were associated with different views about the attribution or blame for BVD and the roles ascribed to farmers and other stakeholders in its eradication and control.

  20. GPS IIF yaw attitude control during eclipse season

    NASA Astrophysics Data System (ADS)

    Dilssner, F.; Springer, T.; Enderle, W.

    2011-12-01

    On May 27, 2010, the first satellite of the Block II "follow-on" (Block IIF) series, the fourth generation of Global Positioning System (GPS) spacecraft, has been successfully placed into orbit. GPS IIF-1, also referred to as space vehicle number (SVN) 62, has been injected into orbital plane B, slot position 2 of the GPS constellation. After completing three months of comprehensive in-orbit testing, the satellite entered service for the US Air Force (USAF) on August 26, 2010. A little over a year after the inaugural launch of GPS IIF-1, the USAF has now launched the second spacecraft of the IIF series (SVN-63). The IIF series includes a total of 12 satellites: SVN-62 through SVN-73. Despite having many technical advances over their predecessors such as enhanced rubidium frequency standards, more precise and powerful signals and an extended design life, the three-axis stabilized Block IIF satellites follow a completely different yaw attitude scheme, when passing through the Earth's shadow, to the Block IIA and IIR spacecraft. We will describe how high-rate carrier phase and pseudo-range measurements from a global GPS tracking network can be exploited to precisely monitor the yaw attitude behavior of SVN-62 and SVN-63 during their solar eclipse phases. The insights gained from this study have led to the development of a new GPS Block IIF yaw attitude model. We will show that the yaw rate of a Block IIF space vehicle is kept constant to the value needed to get the satellite back to near its nominal attitude when leaving the Earth's shadow and that a IIF satellite being in deep eclipse therefore needs to yaw significantly faster than an eclipsing IIF space vehicle passing only partly through the Earth's shadow. How the satellites' attitude control system (ACS) exactly computes this dynamical yaw rate parameter will be discussed here as well. Moreover, we will report on yaw attitude anomalies occurring when the GPS Block IIF satellites are shaded from the Sun by the

  1. Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot

    PubMed Central

    Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul

    2016-01-01

    This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549

  2. CMC 20N thruster for hermes attitude control

    NASA Astrophysics Data System (ADS)

    Mathieu, A. C.

    Ceramic Matrix Composite materials (CMC) have been developped by SEP Solid Propulsion an Composite Materials Division in Le Haillan since the seventies for solid propulsion applications. In the race to create a new generation of small high performance bipropellant engines, SEP has opted for Ceramic Matrix Composite (CMC) such as SEPCARBINOX (R) or CERASEP (R), as combustion chamber and nozzle material. The main advantage of these composites is enabling increase of maximum combustion temperature to 1600°C without requiring anti-oxydation coatings, and with improved resistance to thermal cycles. SEP's Defense and Space group started preliminary work on choosing the composite materials best adapted to liquid bipropellant engines in 1983. Based on some 30 5N thrust combustion chambers, about 20 different materials were evaluated during firing tests. Next, using different combustion chambers sizes, SEP implemented a program designed to demonstrate the endurance of this material, and initiated a study on producing larger size parts including large area ratio nozzles. This program comprised the production and testing of combustion chambers rated at 200N and 6000N, associated with injectors derived from other applications. Finaly, in order to simulate the operating conditions experienced by certain motors on HERMES spaceplane, tests of the 200N motor were also carried out with an external thermal protection system. As of end 1987, designers had set the thrust level required for the HERMES attitude control system at between 10 and 30N. SEP therefore decided to focus further work on 20N-thrust engines, a choice which took into consideration the potential applications of this thrust level for satellite attitude control systems. Starting in mid-1988 and continuing until fall 1990, this program is designed to validate before going into final qualification all technologies required for the two planned applications: - the HERMES spaceplane, which has several thrusters integrated

  3. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  4. Application of model following control and estimation techniques to attitude control of maneuvering spacecraft. Part 1: Theory and simulation results

    NASA Astrophysics Data System (ADS)

    Zwartbol, T.; Terpstra, A. P.; Vanwoerkom, P. T. L. M.; Vandendam, R. F.

    1982-10-01

    An approach to on-board sampled data estimation and control of the attitude motion of maneuvering spacecraft is presented. Algorithms for model following control of attitude maneuvers; estimation of spacecraft state (attitude, angular velocity, disturbance, torque); and optical-inertial attitude determination, with estimation of gyro parameters (drift rate bias, scale factor error) were developed. The algorithms were validated in single-axis software simulations of an attitude control system of the type used in the Infrared Astronomical Satellite. The control system comprises a strapdown rate-integrating gyro and a slit-type star sensor for optical-inertial attitude sensing, a reaction wheel actuator, and a digital on-board computer. The truth models for simulation of the hardware components are discussed.

  5. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  6. Nonlinear H∞ based underactuated attitude control for small satellites with two reaction wheels

    NASA Astrophysics Data System (ADS)

    Han, Congying; Guo, Jian; Pechev, Alexandre

    2014-11-01

    Underactuated attitude control is supposed to be used on spacecraft when failure happens with onboard actuators. One main problem with existing underactuated attitude control designs is their limited capabilities against disturbances. In order to solve this problem, an approach based on the theory of H∞ is proposed in this paper. Two propositions are derived from the H∞ theory to improve the robustness of one popular underactuated attitude control design, which was presented by Tsiotras et al. It is proved mathematically that the controller satisfying these two propositions respectively can stabilize the underactuated attitude system locally or globally. The numerical simulations show that the improved controllers based on the H∞ theory could provide higher pointing accuracy for small satellites against disturbances. This validates the effectiveness of the proposed H∞ based approach to improve existing underactuated attitude control designs.

  7. The Measurement of Nuclear War Attitudes: Methods and Concerns.

    ERIC Educational Resources Information Center

    Mayton, Daniel M., II

    Measures of adults' attitudes toward nuclear war are briefly discussed, and Mayton's Modified World Affairs Questionnaire (MWAQ) is described. The 23-item MWAQ was developed from Novak and Lerner's World Affairs Questionnaire, a nuclear war attitude measure by Mayton and Delamater, and related interview items by Jeffries. When the MWAQ was…

  8. AE-C attitude determination and control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  9. Dynamic attitude command and control of the TOPEX/Poseidon spacecraft

    NASA Technical Reports Server (NTRS)

    Zimbelman, D. F.; Lee, B. B.; Welch, R. V.

    1991-01-01

    The dynamic control laws utilized by the TOPEX/Poseidon (T/P) spacecraft attitude determination and control subsystem to command and maneuver the satellite during normal mission mode (NMM) laws are described. Results show that the vehicle is able to respond to the dynamic attitude commands while at the same time providing ample disturbance rejection capability.

  10. The attitude control of fixed-wing MAVS in turbulent environments

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdulghani; Massey, Kevin; Watkins, Simon; Clothier, Reece

    2014-04-01

    The small scale and portability of fixed-wing Micro Aerial Vehicles lend them to many unique applications, however their utility is often limited by ineffective attitude control in turbulent environments. The performance of attitude control systems themselves are affected by a variety of factors. Assessment of this system’s performance needs to be viewed in relation to the MAVs’ unique constraints. Certain aspects and limitations of MAV attitude control related issues are addressed in the literature, but to fully address the degradation of utility, the entire system must be examined. These issues can only be fully addressed when considering them concurrently. There is no framework for defining the attitude control problem explicitly for MAVs. This paper attempts to (1) Define the MAV attitude control problem with respect to the unique constraints imposed by this class of Unmanned Aircraft; (2) Review current design trends of MAVs with respect to vulnerability to atmospheric turbulence.

  11. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  12. Dynamic modeling and optimal control of spacecraft with flexible structures undergoing general attitude maneuvers

    NASA Astrophysics Data System (ADS)

    Lin, Yiing-Yuh; Lin, Gern-Liang

    1992-08-01

    In this research, the dynamics and control of a rigid spacecraft with flexible structures were studied for the case of optimal simultaneous multiaxis reorientation. A model spacecraft consisting of a rigid hub in the middle and two solid bodies symmetrically connected to either side of the hub through uniformly distributed flexible beams is considered for the dynamic analysis and control simulation. To optimally reorienting the spacecraft, an optimal nominal control trajectory is found first through an iterative procedure. Linear flexural deformations are assumed for the beam structures and the assumed modes method is applied to find the vibration control law of the beams. The system overall optimal attitude control is achieved by following the open loop optimal reference control trajectory with an stabilizing guidance law.

  13. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  14. Control of antenna-feed attitude and reflector vibrations in large spaceborne antennas by mechanical decoupling and movable dampers

    NASA Astrophysics Data System (ADS)

    Wang, P. K. C.; Hong, E. C.; Sarina, J. S.

    1983-07-01

    Simple, practical methods for damping reflector vibrations and designing antenna-feed attitude control systems in large deployable spaceborne antennas are proposed. The former involves a movable damper which is positioned so that the rate-of-change of total vibrational energy is minimized. The latter introduces a mechanical decoupler between the flexible boom and the antenna-feed, whereby the feed-attitude control system can be designed independent of boom dynamics. The validity of these approaches are substantiated by analytical studies, computer simulation, and experimental studies.

  15. GPS-aided method for platform attitude determination based on target images.

    PubMed

    Xu, Teng; Xu, Lijun; Tian, Xiangrui; Li, Xiaolu

    2017-03-10

    Attitude measurement error is one of the main factors that deteriorates the imaging accuracy of laser scanning. In view of the fact that the inertial navigation system (INS) with high accuracy is very costly, a low-cost but effective GPS-aided method based on the target images is proposed to measure the platform attitude angles in this paper. Based on the relationship between the attitude change of the platform and the displacement of two adjacent images, the attitude change can be derived by the proposed method. To quantitatively evaluate the accuracy of the platform attitude angles measured by the proposed method, an outdoor experiment was carried out in comparison with the GPS/INS method. The preliminary results demonstrated that the measurement accuracy using the proposed method was better than 0.05° (RMSE).

  16. Relative attitude dynamics and control for a satellite inspection mission

    NASA Astrophysics Data System (ADS)

    Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark

    2012-02-01

    The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.

  17. Attitudes toward Placebo-Controlled Clinical Trials of Patients with Schizophrenia in Japan

    PubMed Central

    Sugawara, Norio; Ishioka, Masamichi; Tsuchimine, Shoko; Tsuruga, Koji; Sato, Yasushi; Furukori, Hanako; Kudo, Shuhei; Tomita, Tetsu; Nakagami, Taku; Yasui-Furukori, Norio

    2015-01-01

    Background Although the use of placebo in clinical trials of schizophrenia patients is controversial because of medical and ethical concerns, placebo-controlled clinical trials are commonly used in the licensing of new drugs. Aims The objective of this study was to assess the attitudes toward placebo-controlled clinical trials among patients with schizophrenia in Japan. Method Using a cross-sectional design, we recruited patients (n = 251) aged 47.7±13.2 (mean±SD) with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder who were admitted to six psychiatric hospitals from December 2013 to March 2014. We employed a 14-item questionnaire specifically developed to survey patients' attitudes toward placebo-controlled clinical trials. Results The results indicated that 33% of the patients would be willing to participate in a placebo-controlled clinical trial. Expectations for improvement of disease, a guarantee of hospital treatment continuation, and encouragement by family or friends were associated with the willingness to participate in such trials, whereas a belief of additional time required for medical examinations was associated with non-participation. Conclusions Fewer than half of the respondents stated that they would be willing to participate in placebo-controlled clinical trials. Therefore, interpreting the results from placebo-controlled clinical trials could be negatively affected by selection bias. PMID:26600382

  18. Output feedback control for rigid-body attitude with constant disturbances

    NASA Astrophysics Data System (ADS)

    Hu, Jinchang; Zhang, Honghua

    2015-03-01

    In this article, the control problem of rigid-body attitude under constant disturbances without angular-velocity measurement is solved by the combination of the immersion and invariance methodology and the dynamic scaling technique. Two observers, which are respectively for estimating the angular velocity and the disturbance, are constructed by utilising the immersion and invariance method. The mismatched term arising from the observers is dominated by the high-gain injection. The control law is a simple proportional-derivative controller plus a disturbance compensation term, where the estimates of the angular velocity and the disturbance from observers are used for feedback directly. The overall closed-loop system is shown to be almost globally asymptotically stable under easy choices of some control parameters. Finally, simulations are conducted to demonstrate the effectiveness of the proposed control scheme.

  19. Single Axis Attitude Control and DC Bus Regulation with Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.

    2002-01-01

    A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.

  20. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim

    2003-01-01

    Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.

  1. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  2. An Approach to the Design and Implementation of Spacecraft Attitude Control Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and .what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  3. An approach to the design and implementation of spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  4. Parental Discipline and Control Attempts in Relation to Adolescent Sexual Attitudes and Behavior.

    ERIC Educational Resources Information Center

    Miller, Brent C.; And Others

    1986-01-01

    Assessed how reports of parental discipline and control were related to adolescent sexual attitudes and behavior. Adolescents' perceptions of parental strictness and rules show a curvilinear relationship to their sexual attitudes and behavior; sexual permissiveness and intercourse experience was highest among adolescents who viewed their parents…

  5. Attitude control/momentum management of the Space Station Freedom for large angle torque-equilibrium-attitude configurations

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Sunkel, John W.

    1990-01-01

    An attitude-control and momentum-management (ACMM) system for the Space Station in a large-angle torque-equilibrium-attitude (TEA) configuration is developed analytically and demonstrated by means of numerical simulations. The equations of motion for a rigid-body Space Station model are outlined; linearized equations for an arbitrary TEA (resulting from misalignment of control and body axes) are derived; the general requirements for an ACMM are summarized; and a pole-placement linear-quadratic regulator solution based on scheduled gains is proposed. Results are presented in graphs for (1) simulations based on configuration MB3 (showing the importance of accounting for the cross-inertia terms in the TEA estimate) and (2) simulations of a stepwise change from configuration MB3 to the 'assembly complete' stage over 130 orbits (indicating that the present ACCM scheme maintains sufficient control over slowly varying Space Station dynamics).

  6. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents' Risky Sexual Behavior

    ERIC Educational Resources Information Center

    Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann

    2014-01-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual…

  7. Vega roll and attitude control system algorithms trade-off study

    NASA Astrophysics Data System (ADS)

    Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.

    2013-12-01

    This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.

  8. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2015-01-01

    Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth's magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio (α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α* and the difference between the components of the moment of inertia for the spacecraft.

  9. Students' Attitudes toward Statistics across the Disciplines: A Mixed-Methods Approach

    ERIC Educational Resources Information Center

    Griffith, James D.; Adams, Lea T.; Gu, Lucy L.; Hart, Christian L.; Nichols-Whitehead, Penney

    2012-01-01

    Students' attitudes toward statistics were investigated using a mixed-methods approach including a discovery-oriented qualitative methodology among 684 undergraduate students across business, criminal justice, and psychology majors where at least one course in statistics was required. Students were asked about their attitudes toward statistics and…

  10. Attitude control of the LACE satellite: A gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Ivory, J. E.; Campion, R. E.; Bakeris, D. F.

    1993-01-01

    The Low-power Atmospheric Compensation Experiment (LACE) satellite was launched in February 1990 by the Naval Research Laboratory. The spacecraft's pitch and roll are maintained with a gravity gradient boom and a magnetic damper. There are two other booms with much smaller tip masses, one in the velocity direction (lead boom) of variable length and the other in the opposite direction (balance boom) also of variable length. In addition, the system uses a momentum wheel with its axis perpendicular to the plane of the orbit to control yaw and keep these booms in the orbital plane. The primary LACE experiment requires that the lead boom be moved to lengths varying from 4.6 m to 45.7 m. This and other onboard experiments require that the spacecraft attitude remain within tight constraints while operating. The problem confronting the satellite operators was to move the lead boom without inducing a net spacecraft attitude disturbance. A description of a method used to change the length of the lead boom while minimizing the disturbance to the attitude of the spacecraft is given. Deadbeating to dampen pitch oscillations has also been accomplished by maneuvering either the lead or balance boom and is discussed.

  11. Attitude control of the LACE satellite: A gravity gradient stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Ivory, J. E.; Campion, R. E.; Bakeris, D. F.

    1993-02-01

    The Low-power Atmospheric Compensation Experiment (LACE) satellite was launched in February 1990 by the Naval Research Laboratory. The spacecraft's pitch and roll are maintained with a gravity gradient boom and a magnetic damper. There are two other booms with much smaller tip masses, one in the velocity direction (lead boom) of variable length and the other in the opposite direction (balance boom) also of variable length. In addition, the system uses a momentum wheel with its axis perpendicular to the plane of the orbit to control yaw and keep these booms in the orbital plane. The primary LACE experiment requires that the lead boom be moved to lengths varying from 4.6 m to 45.7 m. This and other onboard experiments require that the spacecraft attitude remain within tight constraints while operating. The problem confronting the satellite operators was to move the lead boom without inducing a net spacecraft attitude disturbance. A description of a method used to change the length of the lead boom while minimizing the disturbance to the attitude of the spacecraft is given. Deadbeating to dampen pitch oscillations has also been accomplished by maneuvering either the lead or balance boom and is discussed.

  12. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  13. System and method for generating attitude determinations using GPS

    NASA Technical Reports Server (NTRS)

    Cohen, Clark E. (Inventor)

    1996-01-01

    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.

  14. Automatic transmission control method

    SciTech Connect

    Hasegawa, H.; Ishiguro, T.

    1989-07-04

    This patent describes a method of controlling an automatic transmission of an automotive vehicle. The transmission has a gear train which includes a brake for establishing a first lowest speed of the transmission, the brake acting directly on a ring gear which meshes with a pinion, the pinion meshing with a sun gear in a planetary gear train, the ring gear connected with an output member, the sun gear being engageable and disengageable with an input member of the transmission by means of a clutch. The method comprises the steps of: detecting that a shift position of the automatic transmission has been shifted to a neutral range; thereafter introducing hydraulic pressure to the brake if present vehicle velocity is below a predetermined value, whereby the brake is engaged to establish the first lowest speed; and exhausting hydraulic pressure from the brake if present vehicle velocity is higher than a predetermined value, whereby the brake is disengaged.

  15. Method of damping nutation motion with minimum spin axis attitude disturbance

    NASA Technical Reports Server (NTRS)

    Hoffman, H. C. (Inventor)

    1983-01-01

    In a method of and apparatus for damping nutation of a spinning spacecraft, spin axis attitude disturbances are substantially reduced by controlling at least one nutation damping gas thruster to fire with nonuniform gas pulses. During the beginning of a nutation control sequence, the duration of successive gas pulses is gradually increased (up pulsed) from zero to a predetermined maximum duration. The duration of successive pulses is then maintained constant for a time period. Finally, at the end of the nutation control sequence, the duration of successive gas pulses is gradually reduced to zero (down pulsed). Up pulsing of the gas thruster is initiated in response to a predetermined maximum nutation angle measured by an accelerometer. Down pulsing of the thruster is initiated in response to a predetermined minimum nutation angle.

  16. GPS compound eye attitude and navigation sensor and method

    NASA Technical Reports Server (NTRS)

    Quinn, David A. (Inventor)

    2003-01-01

    The present invention is a GPS system for navigation and attitude determination, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving signals from space vehicles of a GPS constellation. The present invention also includes a receiver for collecting the signals and making navigation and attitude determinations. In an alternate embodiment the present invention may include two opposing convex hemispherical mounting structures, each of the mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces.

  17. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  18. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2015-01-01

    Principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters is presented. Both the vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has three main aspects: It summarizes key RCS control System design principles from the Space Shuttle and Space Station programs, it demonstrates a new approach to develop a linear model of a phase plane control system using describing functions, and applies each of these to the initial development of the NASA's next generation of upper stage vehicles. Topics addressed include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and automaneuver logic.

  19. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school

    NASA Astrophysics Data System (ADS)

    Whitcher, Carrie Lynn

    2005-08-01

    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0

  20. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  1. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  2. Sliding mode attitude control with L 2-gain performance and vibration reduction of flexible spacecraft with actuator dynamics

    NASA Astrophysics Data System (ADS)

    Hu, Qinglei

    2010-09-01

    This paper presents a dual-stage control system design method for the rotational maneuver control and vibration stabilization of a flexible spacecraft. In this design approach, the sub-systems of attitude control and vibration suppression are designed separately using the low order model. Based on the sliding mode control (SMC) theory, a discontinuous attitude control law in the form of the input voltage of the reaction wheel is derived to control the orientation of the spacecraft, incorporating the L 2-gain performance criterion constraint. The resulting closed-loop system is proven to be uniformly ultimately bounded stability and the effect of the external disturbance on both attitude quaternion and angular velocity can be attenuated to the prescribed level as well. In addition, an adaptive version of the control law is designed for adapting the unknown upper bounds of the lumped disturbance such that the limitation of knowing the bound of the disturbance in advance is released. For actively suppressing the induced vibration, strain rate feedback control method is also investigated by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance and uncertainty.

  3. An investigation of quasi-inertial attitude control for a solar power satellite

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Wang, S. J.

    1982-01-01

    An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.

  4. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  5. Reviewing the effect of two methods of educational package and social inoculation on changing the attitudes towards domestic violence against women

    PubMed Central

    Boroumandfar, Khadijeh; Javaheri, Shabnam; Ehsanpour, Soheila; Abedi, Ahmad

    2010-01-01

    BACKGROUND: Domestic violence (DV) is a serious problem all over the world which had been extended to boundaries of countries, economical, cultural and racial classes. 10-69 percent of women are exposed to physical, sexual and emotional violence which has numerous physical and emotional consequences. Therefore, males’ attitude towards women is one of the strongest predicting factors of violence against women, so one of the ways to remove the violence against women is to change the men's attitude. Changing the attitude, in the basic stages of the marriage for couples who are not yet involved with marital misunderstandings, will probably influence their future relationships, therefore, the present study reviewed two attitude changing methods of educational package (EP) and social inoculation (SI) which were used to change the attitude among male volunteers participating in the premarital counseling classes. METHODS: This was a semi-experimental study aimed to determine the influence of two methods of supplying EP and SI on the change of attitude toward DV against women. The study subjects included male volunteers participating in Isfahan Molla Hadi Sabzevari Premarital Counseling Center, where the attitudes of 183 subjects were investigated primarily using simple sampling method. Ninety-nine subjects who had positive attitude toward DV were selected and then, randomly distributed into three 33-subject groups. The first was SI group, the second was EP supply group and the third was the control group. Data collection tool was an evaluating questionnaire of the attitude toward DV against women which consisted of two parts, demographic data and 34 attitude evaluating questions. Scientific validity was determined by content validity method and scientific reliability was determined using Cronbach's alpha. Analyzing the data was done using descriptive (frequency and mean), analytical statistical methods (paired-t, independent t-tests, ANOVA, Duncan, Kruskal-Wallis and chi

  6. Distributed event-triggered cooperative attitude control of multiple rigid bodies with leader-follower architecture

    NASA Astrophysics Data System (ADS)

    Weng, Shengxuan; Yue, Dong

    2016-02-01

    In this note, the distributed event-triggered cooperative attitude control of multiple rigid bodies with leader-follower architecture is investigated, where both the cases of static and dynamic leaders are all considered. Two distributed triggering procedures are first introduced for the followers and leaders, and then the distributed cooperative controllers are designed under the proposed triggering schemes. Under the designed controllers with the event-triggered strategies, it is shown that the orientations of followers converge to the convex hull formed by the desired leaders' orientations with zero angular velocities. Moreover, the communication pressure in network is reduced and the energy of each agent is saved. Simulation results show the effectiveness of the proposed method.

  7. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  8. Farmer attitudes to vaccination and culling of badgers in controlling bovine tuberculosis.

    PubMed

    Warren, M; Lobley, M; Winter, M

    2013-07-13

    Controversy persists in England, Wales and Northern Ireland concerning methods of controlling the transmission of bovine tuberculosis (bTB) between badgers and cattle. The National Trust, a major land-owning heritage organisation, in 2011, began a programme of vaccinating badgers against bTB on its Killerton Estate in Devon. Most of the estate is farmed by 18 tenant farmers, who thus have a strong interest in the Trust's approach, particularly as all have felt the effects of the disease. This article reports on a study of the attitudes to vaccination of badgers and to the alternative of a culling programme, using face-to-face interviews with 14 of the tenants. The results indicated first that the views of the respondents were more nuanced than the contemporary public debate about badger control would suggest. Secondly, the attitude of the interviewees to vaccination of badgers against bTB was generally one of resigned acceptance. Thirdly, most respondents would prefer a combination of an effective vaccination programme with an effective culling programme, the latter reducing population of density sufficiently (and preferably targeting the badgers most likely to be diseased) for vaccination to have a reasonable chance of success. While based on a small sample, these results will contribute to the vigorous debate concerning contrasting policy approaches to bTB control in England, Wales and Northern Ireland.

  9. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.

    2017-03-01

    Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.

  10. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  11. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  12. The effects of seasonal and latitudinal earth infrared radiance variations on ERBS attitude control

    NASA Technical Reports Server (NTRS)

    Phenneger, M. C.; Dehen, J.; Foch, D.; Harvie, E.; Virdy, M.

    1989-01-01

    Analysis performed in the Flight Dynamics Facility by the Earth Radiation Budget Satellite (ERBS) Attitude Determination Support team illustrates the pitch attitude control motion and roll attitude errors induced by Earth infrared (IR) horizon radiance variations. IR scanner and inertial reference unit (IRU) pitch and roll flight data spanning 4 years of the ERBS mission are analyzed to illustrate the changes in the magnitude of the errors on time scales of the orbital period, months, and seasons. The analysis represents a unique opportunity to compare prelaunch estimates of radiance-induced attitude errors with flight measurements. As a consequence of this work the following additional information is obtained: an assessment of an average model of these errors and its standard deviation, a measurement to determine and verify previously proposed corrections to the current Earth IR radiance data base, and the possibility of a mean motion model derived from flight data in place of IRU data for ERBS fine attitude determination.

  13. A method for attitude measurement of a test vehicle based on the tracking of vectors

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Huo, Ju; Yang, Ming

    2015-08-01

    In the vehicle simulation test, in order to improve the measuring precision for the attitude of a test vehicle, a measuring method based on the vectors of light beams is presented, in which light beams are mounted on the test vehicle as the cooperation target, and the attitude of the test vehicle is calculated with the light beams’ vectors in the test vehicle’s coordinate system and the world coordinate system. Meanwhile, in order to expand the measuring range of the attitude parameters, cooperation targets and light beams in each cooperation target are increased. On this basis, the concept of an attitude calculation container is defined, and the selection method for the attitude calculation container that participates in the calculation is given. Simultaneously, the vectors of light beams are tracked so as to ensure the normal calculation of the attitude parameters. The experiments results show that this measuring method based on the tracking of vectors can achieve the high precision and wide range of measurement for the attitude of the test vehicle.

  14. Adaptive Hierarchical Sliding Mode Control with Input Saturation for Attitude Regulation of Multi-satellite Tethered System

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2016-11-01

    This paper proposes a novel adaptive hierarchical sliding mode control for the attitude regulation of the multi-satellite inline tethered system, where the input saturation is taken into account. The governing equations for the attitude dynamics of the three-satellite inline tethered system are derived firstly by utilizing Lagrangian mechanics theory. Considering the fact that the attitude of the central satellite can be adjusted by using the simple exponential stabilization scheme, the decoupling of the central satellite and the terminal ones is presented, and in addition, the new adaptive sliding mode control law is applied to stabilize the attitude dynamics of the two terminal satellites based on the synchronization and partial contraction theory. In the adaptive hierarchical sliding mode control design, the input is modeled as saturated input due to the fact that the flywheel torque is bounded, and meanwhile, an adaptive update rate is introduced to eliminate the effect of the saturated input and the external perturbation. The proposed control scheme can be applied on the two-satellite system to achieve fixed-point rotation. Numerical results validate the effectiveness of the proposed method.

  15. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Astrophysics Data System (ADS)

    McEwen, Rob

    1994-05-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  16. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  17. Line-of-sight based formation keeping and attitude control of two spacecraft

    NASA Astrophysics Data System (ADS)

    Warier, Rakesh R.; Sinha, Arpita; Sukumar, Srikant

    2016-10-01

    We consider coupled attitude and position control of two spacecraft where absolute attitudes are not available. The objective is to attain a formation requiring a desired distance between two spacecraft and alignment of attitudes along the inertial line-of-sight (LOS) direction between the center of masses of the spacecraft. A relative attitude and position control scheme is developed using LOS vectors measured in each spacecraft's body frame. The current work differs from past research in the sense that the relative positions of the two spacecraft are not assumed to be fixed and all control laws are obtained in respective body fixed frames. The state feedback laws put forth in this work guarantee almost semi-global asymptotic stability of the desired closed-loop equilibrium configuration.

  18. Attitudes of Teachers of Arabic as a Foreign Language toward Methods of Foreign Language Teaching

    ERIC Educational Resources Information Center

    Seraj, Sami A.

    2010-01-01

    This study examined the attitude of teachers of Arabic as a foreign language toward some of the most well known teaching methods. For this reason the following eight methods were selected: (1) the Grammar-Translation Method (GTM), (2) the Direct Method (DM), (3) the Audio-Lingual Method (ALM), (4) Total Physical Response (TPR), (5) Community…

  19. Student nurses' attitudes towards professional containment methods used in psychiatric wards and perceptions of aggression.

    PubMed

    Ozcan, Neslihan Keser; Bilgin, Hülya; Badırgalı Boyacıoğlu, Nur Elçin; Kaya, Fadime

    2014-08-01

    The aim of this study was to determine student nurses' attitudes towards professional containment methods used in psychiatric wards and its relation to their perception of aggression. We employed a cross-sectional descriptive design to evaluate nurses' attitudes. Participants included 120 student nurses who were enrolled in psychiatric nursing during their fourth (final) year of education. The 'Attitude to Containment Measures Questionnaire' and 'The Perception of Aggression Scale' were used for assessments. Student nurses exhibited positive attitudes toward 'intermittent observation', 'Pro re nata Medication' and 'Psychiatric Intensive Care Unit', respectively. The least approved method was 'net bed'. The data showed a negative correlation between approval of 'Intra-Muscular Medication' and 'mechanical restraint' with the perception that aggression was dysfunctional/unacceptable. Student nurses who believed that professional containment methods were effective also perceived aggression as less functional/acceptable. These results emphasize the importance of health care perceptions of aggression towards patients and their experience with containment measures.

  20. Numerical methods in control

    NASA Astrophysics Data System (ADS)

    Mehrmann, Volker; Xu, Hongguo

    2000-11-01

    We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.

  1. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  2. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  3. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    PubMed Central

    O’Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Objective Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. Method The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. Results After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Conclusions Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites’ paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions. PMID:24204867

  4. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  5. Analysis of the relative attitude estimation and control problem for satellite inspection and orbital rendezvous

    NASA Astrophysics Data System (ADS)

    Geller, D.

    2007-06-01

    A key component of satellite inspection and orbital rendezvous missions is relative attitude estimation and control. This paper analyzes a specific angles-only relative attitude estimation concept where it is assumed that a chaser spacecraft is capable of processing onboard imagery of a resident space object (RSO) and identifying the pixel locations of preselected RSO features. The pixel measurements along with chaser gyro and star camera data are processed by an extended Kalman filter to provide continuous estimates of the relative position and attitude. A novel linear covariance program is used to evaluate the effects of feature-tracking camera errors, gyro errors, star camera errors, measurement rates, and translation and rotational disturbances on relative navigation performance. Linear covariance techniques are further employed to evaluate the closed-loop performance of a relative attitude and position control system.

  6. Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.

    1995-01-01

    This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.

  7. Infection Control Knowledge, Attitudes, and Practices among Healthcare Workers in Addis Ababa, Ethiopia

    PubMed Central

    Tenna, Admasu; Stenehjem, Edward A.; Margoles, Lindsay; Kacha, Ermias; Blumberg, Henry M.; Kempker, Russell R.

    2014-01-01

    Objective To better understand hospital infection control practices in Ethiopia. Design A cross-sectional evaluation of healthcare worker (HCW) knowledge, attitudes and practices about hand hygiene and tuberculosis (TB) infection control measures. Methods An anonymous, 76-item questionnaire was administered to HCWs at two university hospitals in Addis Ababa, Ethiopia. Knowledge items were scored as correct/incorrect. Attitude and practice items were assessed using a Likert scale. Results 261 surveys were completed by physicians (51%) and nurses (49%). Fifty-one percent of respondents were male; mean age was 30 years. While hand hygiene knowledge was fair, self-reported practice was suboptimal. Physicians reported performing hand hygiene 7% and 48% before and after patient contact, respectively. Barriers for performing hand hygiene included lack of hand hygiene agents (77%), sinks (30%), proper training (50%), and irritation and dryness (67%) caused by hand sanitizer made per WHO formulation. TB infection control knowledge was excellent (>90% correct). Most HCWs felt at high risk for occupational acquisition of TB (71%) and that proper TB infection control can prevent nosocomial transmission (92%). Only 12% of HCWs regularly wore a mask when caring for TB patients. Only 8% of HCWs reported masks were regularly available and 76% cited a lack of infrastructure to isolate suspected/known TB patients. Conclusions Training HCWs about the importance and proper practice of hand hygiene along with improving hand sanitizer options may improve patient safety. Additionally, enhanced infrastructure is needed to improve TB infection control practices and allay HCW concerns about acquiring TB in the hospital. PMID:24225614

  8. Star trackers and Sun sensors for a modern attitude control system

    NASA Astrophysics Data System (ADS)

    Thuerey, S.; Schmidt, U.; Kulterer, G.

    1991-12-01

    For enhanced accuracy requirements and for autonomous spacecraft operations a family of attitude sensors was developed, consisting of a Sun sensor assembly and a star tracker system. Both types of sensors are based on a common electronic design, and provide for internal data evaluation and real time or offline self test features. The interface to the AOCS (Attitude and Orbit Control System) is established via serial bus electronics and the sensors are easily adaptable to different mission types.

  9. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    NASA Astrophysics Data System (ADS)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

  10. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    NASA Astrophysics Data System (ADS)

    Simon, Miguel

    testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)

  11. 3D measurement and camera attitude estimation method based on trifocal tensor

    NASA Astrophysics Data System (ADS)

    Chen, Shengyi; Liu, Haibo; Yao, Linshen; Yu, Qifeng

    2016-11-01

    To simultaneously perform 3D measurement and camera attitude estimation, an efficient and robust method based on trifocal tensor is proposed in this paper, which only employs the intrinsic parameters and positions of three cameras. The initial trifocal tensor is obtained by using heteroscedastic errors-in-variables (HEIV) estimator and the initial relative poses of the three cameras is acquired by decomposing the tensor. Further the initial attitude of the cameras is obtained with knowledge of the three cameras' positions. Then the camera attitude and the interested points' image positions are optimized according to the constraint of trifocal tensor with the HEIV method. Finally the spatial positions of the points are obtained by using intersection measurement method. Both simulation and real image experiment results suggest that the proposed method achieves the same precision of the Bundle Adjustment (BA) method but be more efficient.

  12. Combined control of fast attitude maneuver and stabilization for large complex spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Jing-Rui

    2013-12-01

    In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and stabilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are separately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's requirement of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.

  13. Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing; Sun, Changyin; Qian, Chengshan; Wang, Li

    2015-12-01

    This paper deals with the problem of linear parameter varying (LPV) switching attitude control for a near space hypersonic vehicle (NSHV) with parametric uncertainties. First, due to the enormous complexity of the NSHV nonlinear attitude dynamics, a slow-fast loop polytopic LPV attitude model is developed by using Jacobian linearisation and the tensor product model transformation approach. Second, for the purpose of less conservative attitude controller design, the flight envelope is divided into four subregions. For each parameter subregion, slow-loop and fast-loop LPV controllers are designed. By the defined switching character function, these slow-fast loop LPV controllers are then switched in order to guarantee the closed-loop NSHV system to be asymptotically stable and satisfy a specified tracking performance criterion. The condition of LPV switching attitude controller synthesis is given in terms of linear matrix inequalities, which can be readily solved via standard numerical software, and the robust stability analysis of the closed-loop NSHV system is verified based on multiple Lypapunov functions. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.

  14. Symbolic Drawings Reveal Changes in Preservice Teacher Mathematics Attitudes after a Mathematics Methods Course

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Harrell, Mary H.

    2006-01-01

    A new method of analyzing mathematics attitudes through symbolic drawings, situated within the field of Jungian-oriented analytical psychology, was applied to 52 preservice elementary teachers before and after a mathematics methods course. In this triangulation mixed methods design study, pretest images related to past mathematics experiences…

  15. The Effect of Teaching Methods on Examination Performance and Attitudes in an Introductory Financial Accounting Course.

    ERIC Educational Resources Information Center

    Marcheggiani, Joseph; Davis, Karel A.; Sander, James F.

    1999-01-01

    Comparison of accounting students taught with a group Socratic method (n=22) and interactive lecture method (n=15) found no evidence that either method significantly improved examination scores. Student attitudes toward the course or the accounting profession did not differ. (SK)

  16. Long-term stability of GOES-8 and -9 attitude control

    NASA Astrophysics Data System (ADS)

    Carr, James L.

    1996-10-01

    An independent audit of the in-orbit behavior of the GOES-8 and GOES-9 satellites has been conducted for the NASA/GSFC. This audit utilized star and landmark observations from the GOES imager to determine long-term histories for spacecraft attitude, orbital position, and instrument internal misalignments. The paper presents results from this audit. Long-term drifts are found in the attitude histories, whereas the misalignment histories are shown to be diurnally stable. The GOES image navigation and registration system is designed to compensate for instrument internal misalignments, and both the diurnally repeatable and drift components of the attitude. Correlations between GOES-8 and GOES-9 long-term roll and pitch drifts implicate the Earth sensor as the origin of these observed drifts. This results clearly demonstrates the enhanced registration stability to be obtained with stellar inertial attitude determination replacing or supplementing Earth sensor control on future GOES missions.

  17. A Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  18. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  19. Report of the Attitude Control and Attitude Determination Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Failures and deficiencies in flight programs are reviewed and suggestions are made for avoiding them. The technology development problem areas considered are control configured vehicle design, gyros, solid state star sensors, control instrumentation, tolerant/accomodating control systems, large momentum exchange devices, and autonomous rendezvous and docking.

  20. An Attitude Control System for SumbandilaSAT an Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Steyn, W. H.

    2008-08-01

    This paper describes the attitude determination and control system to support the multi-spectral earth observation main payload of the SumbandilaSAT microsatellite. The satellite has only a single main Y- body mounted solar panel and the attitude control system must ensure a nominal sun-pointed attitude under all non-imaging conditions during the sunlit part of the orbit. The control actuators employed are 3- axis magnetic torquer rods and reaction wheels. During initial detumbling and safe mode operations a simple new magnetic control law is used to bring the satellite to a sun-pointed Y-spinning attitude for maximum solar power collection. From this sun-pointed, spinning attitude an intermediate control mode is entered when the Y-reaction wheel is utilised as a momentum wheel, to absorb the body spin rate and to inertially stabilise the angular momentum vector towards the sun direction. During the intermediate mode the magnetic rods are used to maintain the momentum vector size and direction and to do nutation damping. The pitch angle is also controlled using the Y-wheel, to keep the main imager payload as close as possible to an earth-pointed attitude and to thermally stabilise the imager telescope. The final and nominal attitude control mode is entered when a zero biased 3-axis reaction wheel controller is enabled, for: 1) sun tracking for optimal solar power collection, 2) target tracking during viewfinder use or during imaging download communication with a ground station and 3) pushbroom imager scanning with a forward motion compensation capability. During the nominal mode the magnetic rods are used to dump the angular momentum from the reaction wheels during sun tracking periods. A short introduction to the Sumbandila satellite will be given. All the control modes, the attitude sensors and estimators utilised, will be introduced in the paper. Specifically, a unique agile viewfinder control mode to manually select targets for subsequent high resolution image

  1. Space Satellite Dynamics with Applications to Sunlight Pressure Attitude Control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stuck, B. W.

    1972-01-01

    A research program into three aspects of space satellite dynamics was carried out. First, a four-dimensional space-time formulation of Newtonian mechanics is developed. This theory allows a new physical interpretation of the conservation theorems of mechanics first derived rigorously by Noether. Second, a new concept for estimating the three angles which specify the orientation in space of a rigid body is presented. Two separate methods for implementing this concept are discussed, one based on direction cosines, the other on quaternions. Two examples are discussed: constant orientation in space, and constant rate of change of the three angles with time. Third, two synchronous equatorial orbit communication satellite designs which use sunlight pressure to control their attitude are analyzed. Each design is equipped with large reflecting surfaces, called solar sails, which can be canted in different directions to generate torques to correct pointing errors.

  2. Concept design, modeling and station-keeping attitude control of an earth observation platform

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2012-11-01

    The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.

  3. Birth control method should suit your lifestyle.

    PubMed

    1986-01-01

    In choosing a method of birth control, effectiveness and safety are the key considerations. Yet, one's decisions about contraception also must be balanced against important considerations regarding children and family. Many other factors play a role in the choice. Women who live in rural areas where medical services are not easily available may not want to use oral contraceptives (OCs) or IUDs because both carry the risk of serious complications. Costs of the contraceptive method and of related medical examinations are a consideration for women in some financial circumstances. A partner's attitude also is crucial to selecting a birth control method. Methods such as condoms, withdrawal, spermicides, and diaphragm require his cooperation if they are to be effective. Health problems which might be worsened by a particular type of contraception require the advice of a physician. The physician should take a woman's health history and sexual pattern into account when prescribing a birth control technique. The contraceptive decision should be based on whether a woman plans to have children eventually. A woman who has several partners may find condoms, foams, and diaphragms inconvenient, even though they help prevention infection, but she should not use in IUD, which is convenient but carries a high risk of infection for women who have more than 1 sexual partner. OCs might be the best choice under these circumstances. A chart identifies the relative advantages and disadvantages of contraceptive methods.

  4. A Coupled Nonlinear Spacecraft Attitude Controller/Observer With an Unknown Constant Gyro Bias

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias. The closed loop system is proven to be globally stable, with zero tracking error, thus proving a separation principle for the given system. The nonlinear observer incorporates persistency of excitation, resulting in exponential convergence of the gyro bias error.

  5. Improvement of helicopter attitude stability by active control of the conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.

    1993-01-01

    The Final Report on improvement of helicopter attitude stability by active control of the conventional swash plate covering the period from Nov. 1986 to Dec. 1993 is presented. A paper on the history, principles, and applications of helicopter individual-blade-control is included.

  6. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  7. Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft.

    PubMed

    Mazinan, A H; Pasand, M; Soltani, B

    2015-09-01

    In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks.

  8. A brief measure of attitudes toward mixed methods research in psychology.

    PubMed

    Roberts, Lynne D; Povee, Kate

    2014-01-01

    The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; 'Limited Exposure,' '(in)Compatibility,' 'Validity,' and 'Tokenistic Qualitative Component'; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs.

  9. A brief measure of attitudes toward mixed methods research in psychology

    PubMed Central

    Roberts, Lynne D.; Povee, Kate

    2014-01-01

    The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; ‘Limited Exposure,’ ‘(in)Compatibility,’ ‘Validity,’ and ‘Tokenistic Qualitative Component’; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs. PMID:25429281

  10. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.

  11. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  12. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    NASA Astrophysics Data System (ADS)

    Tang, Jiqiang; Fang, Jiancheng; Ge, Shuzhi Sam

    2012-12-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  13. Understanding Factors that Shape Gender Attitudes in Early Adolescence Globally: A Mixed-Methods Systematic Review

    PubMed Central

    Gibbs, Susannah; Blum, Robert Wm; Moreau, Caroline; Chandra-Mouli, Venkatraman; Herbert, Ann; Amin, Avni

    2016-01-01

    Background Early adolescence (ages 10–14) is a period of increased expectations for boys and girls to adhere to socially constructed and often stereotypical norms that perpetuate gender inequalities. The endorsement of such gender norms is closely linked to poor adolescent sexual and reproductive and other health-related outcomes yet little is known about the factors that influence young adolescents’ personal gender attitudes. Objectives To explore factors that shape gender attitudes in early adolescence across different cultural settings globally. Methods A mixed-methods systematic review was conducted of the peer-reviewed literature in 12 databases from 1984–2014. Four reviewers screened the titles and abstracts of articles and reviewed full text articles in duplicate. Data extraction and quality assessments were conducted using standardized templates by study design. Thematic analysis was used to synthesize quantitative and qualitative data organized by the social-ecological framework (individual, interpersonal and community/societal-level factors influencing gender attitudes). Results Eighty-two studies (46 quantitative, 31 qualitative, 5 mixed-methods) spanning 29 countries were included. Ninety percent of studies were from North America or Western Europe. The review findings indicate that young adolescents, across cultural settings, commonly express stereotypical or inequitable gender attitudes, and such attitudes appear to vary by individual sociodemographic characteristics (sex, race/ethnicity and immigration, social class, and age). Findings highlight that interpersonal influences (family and peers) are central influences on young adolescents’ construction of gender attitudes, and these gender socialization processes differ for boys and girls. The role of community factors (e.g. media) is less clear though there is some evidence that schools may reinforce stereotypical gender attitudes among young adolescents. Conclusions The findings from this

  14. Perception of Locus of Control as a Predictor of Attitude Toward Students' Evaluation of University Faculty. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Kohler, Emmett T.; Christal, Melodie E.

    Student and faculty attitudes about faculty evaluation and the relationship of the attitudes to the concept of locus of control were investigated. Student respondents consisted of 172 males and 256 females, and 108 faculty responses were received. The measure of locus of control closely resembles the Rotter Internal-External Control Scale. Student…

  15. Adaptive backstepping control for three axis microsatellite attitude pointing under actuator faults

    NASA Astrophysics Data System (ADS)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents the design of Low Earth Orbit (LEO) micro-satellite attitude controller using reaction wheels, and under actuator faults. Firstly, a backstepping controller is developed when the actuator is fault-free. Then, a fault tolerant controller is designed to compensate the actuator fault. Two types of this latter are considered (additive and multiplicative faults). The presented control strategy is based on adaptive backstepping technique. The simulation results clearly demonstrate the effectiveness of the presented technique.

  16. The contribution of science locus of control orientation to expressions of attitude toward science teaching

    NASA Astrophysics Data System (ADS)

    Haury, David L.

    Science locus of control (SciLOC) orientation is examined as a predictor of attitudes toward science teaching among 104 preservice elementary school teachers. SciLOC orientation refers to beliefs people hold regarding their personal efficacy, or ability to influence the outcome of events, in situations where decisions or actions require either the application of scientific knowledge or the use of reasoning skills associated with scientific thinking. A causal model that links such beliefs to attitudes toward science teaching was formulated and tested in this study. Multiple regression analysis demonstrates that 46% of the variance in attitudes toward science teaching expressed by subjects in the sample studied can be explained by SciLOC orientation. Path analysis of the proposed causal model accounts for 57% of the variance in expressed attitudes and 11% of the variance in SciLOC orientation. These results are interpreted as evidence that SciLOC orientation is a major contributor to attitudes expressed toward science teaching among preservice elementary teachers, with the major contributors to SciLOC orientation remaining to be identified. A troublesome relationship between expressed attitudes and academic performance in college science is also noted.

  17. Efficacy of the Cooperative Learning Method on Mathematics Achievement and Attitude: A Meta-Analysis Research

    ERIC Educational Resources Information Center

    Capar, Gulfer; Tarim, Kamuran

    2015-01-01

    This research compiles experimental studies from 1988 to 2010 that examined the influence of the cooperative learning method, as compared with that of traditional methods, on mathematics achievement and on attitudes towards mathematics. The related field was searched using the following key words in Turkish "matematik ve isbirlikli ögrenme,…

  18. Teaching Electroconvulsive Therapy to Medical Students: Effects of Instructional Method on Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Warnell, Ronald L.; Duk, Anthony D.; Christison, George W.; Haviland, Mark G.

    2005-01-01

    Objective: To compare the effects of learning about electroconvulsive therapy (ECT) via live observation to learning via an instructional videotape. Method: During their psychiatry clerkship, 122 medical students were randomized using these two educational methods, and their ECT knowledge and attitudes were assessed during the first and last weeks…

  19. Comparison of Students Attitude on Performance Based and Traditional Teaching Methods.

    ERIC Educational Resources Information Center

    Johnson, Dewayne J.; Leider, Fred E.

    The purpose of this study was to determine the effect of two different teaching methods on the attitudes of Texas A&M University students participating in required physical education. Thirteen classes were taught using performance-based instruction, while 15 classes were taught using a traditional method. A two-group posttest design was used…

  20. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  1. A performance improvement method for low-cost land vehicle GPS/MEMS-INS attitude determination.

    PubMed

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-03-09

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)-inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  2. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  3. Tetrahedron array of reaction wheels for attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Flatley, T. W.

    1985-01-01

    A spacecraft subsystem, working in conjunction with a solar array, which provides 3-axis attitude control as well as some power system functions is described. Four flywheels, driven by variable-field d.c. motors and arranged in a tetrahedron configuration, are employed. In sunlight, the system provides voltage regulation while the wheels are accelerated to some maximum speed. In the dark, the motors become flywheel-driven generators which provide regulated power to other spacecraft electrical loads. A microprocessor is used to compute field current levels for each of the 4 motor/generators, based on measurements of the system voltage level, the flywheel speeds, and the attitude control torques desired.

  4. Method for controlling brazing

    DOEpatents

    Hosking, F. Michael; Hall, Aaron C.; Givler, Richard C.; Walker, Charles A.

    2006-08-01

    A method for making a braze joint across a discontinuity in a work piece using alternating current. A filler metal is pre-placed at a location sufficiently close to the discontinuity such that, when an alternating current is applied across a work piece to heat the work piece and melt the filler metal, the filler metal is drawn into the discontinuity. The alternating current is maintained for a set residence time, generally less than 10 seconds and more particularly less than 3 seconds. The alternating current is then altered, generally by reducing the current and/or voltage such that the filler metal can solidify to form a braze joint of desired quality and thickness.

  5. An integrated power/attitude control system /IPACS/ for space vehicle application

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Keckler, C. R.

    1973-01-01

    An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.

  6. Investigation of the dynamics of angular motion and construction of algorithms for controlling the angular momentum of spacecraft using a magnetic attitude control system

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. G.; Kulkov, V. M.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2016-11-01

    The problem of controlling the angular momentum of spacecraft using magnetic attitude control systems interacting with the Earth's magnetic field is considered. A mathematical model for the angular motion dynamics of a spacecraft has been constructed. An approach to determining the parameters of the control law for a spacecraft attitude control and stabilization system that ensures angular momentum dissipation is proposed.

  7. A new method of head attitude tracking based on CCD/MIMU

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Ding, Quanxin; Zhang, Qiuzhi; Wang, Jianghua; Wang, Yongsheng

    2016-09-01

    Head attitude tracking system based on MIMU can only maintain a short-term higher accuracy in the process of measurement. In order to overcome the defect, a new method by using CCD is proposed in this article. It introduces a CCD sensor to detect real-time head attitude, and then, delivers the posture to MIMU to accomplish the calibration process. For CCD could output a high precision data in a small field of view, the drift caused by gyroscopes and accelerometers in MIMU can be corrected effectively. Through the system authentication, we find that the method decreases the drift caused by MIMU obviously and keeps a high precision of measurement.

  8. Analysis of the TDRS multiple access system for possible use as an attitude control system sensor

    NASA Technical Reports Server (NTRS)

    Blevins, Bruce Allyn; Sank, Victor J.

    1993-01-01

    A member of the constellation of TDR satellites (TDRS) has experienced a failure of its prime earth sensor. Failure of the remaining earth sensor could result in the inability of the satellite to control its attitude and provide user services. Loss of the satellite would be a serious event. The multiple access (MA) antenna array on the TDRS has been proposed for use as a backup sensor for the attitude control system. This paper describes our analysis of the performance of the MA array as an interferometer used for accurate attitude determination. A least squares fit of a plane to the MA phase information appears to represent the TDRS body roll and pitch within about 0.1 deg. This is sufficient for SGL pointing and MA and SSA user services. Analytic improvements that include ionospheric correction may yield sufficient accuracy for KSA user services.

  9. Modeling the coupling effect of jitter and attitude control on TDICCD camera imaging

    NASA Astrophysics Data System (ADS)

    Li, Yulun; Yang, Zhen; Ma, Xiaoshan; Ni, Wei

    2016-10-01

    The vibration has an important influence on space-borne TDICCD imaging quality. It is generally aroused by an interaction between satellite jitter and attitude control. Previous modeling for this coupling relation is mainly concentrating on accurate modal analysis, transfer path and damping design, etc. Nevertheless, when controlling attitude, the coupling terms among three body axes are usually ignored. This is what we try to study in this manuscript. Firstly, a simplified formulation dedicated to this problem is established. Secondly, we use Dymola 2016 to execute the simulation model profiting Modelica synchronous feature, which has been proposed in recent years. The results demonstrate that the studied effect can introduce additional oscillatory modes and lead the attitude stabilization process slower. In addition, when fully stabilized, there seems time-statistically no difference but it still intensifies the motion-blur by a tiny amount. We state that this effect might be worth considering in image restoration.

  10. Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control

    DTIC Science & Technology

    1998-05-01

    assumed that 6c = 0. This allows a stabilizing control law using only a feedforward velocity term. If Hie assumption is not made, the control law...configuration, a reasonable first choice is to let Cavg = 0. The resulting control law is r = -K2e2 (200) This is also the stabilizing control law that

  11. TRMM Re-Entry Planning: Attitude Determination and Control During Thruster Modes

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft has been undergoing design for a controlled re-entry to Earth. During simulation of the re-entry plan, there was evidence of errors in the attitude determination algorithms during thruster modes. These errors affected the bum efficiency, and thus planning, during re-entry. During thruster modes, the spacecraft attitude is controlled off of integrated Gyro Error Angles that were designed to closely follow the nominal spacecraft pointing frame (Tip Frame). These angles, however, were not exactly mapped to the Tip Frame from the Body Frame. Additionally, in the initial formulation of the thruster mode attitude determination algorithms, several assumptions and approximations were made to conserve processor speed. These errors became noticeable and significant when simulating bums of much longer duration (-10 times) than had been produced in flight. A solution is proposed that uses attitude determination information from a propagated extended Kalman filter that already exists in the TRMM thruster modes. This attitude information is then used to rotate the Gyro Error Angles into the Tip Frame. An error analysis is presented that compares the two formulations. The new algorithm is tested using the TRMM High-Fidelity Simulator and verified with the TRMM Software Testing and Training Facility. Simulation results for both configurations are also presented.

  12. Public attitudes towards smoking and tobacco control policy in Russia

    PubMed Central

    Danishevski, Kirill; Gilmore, Anna; McKee, Martin

    2014-01-01

    Background Since the political transition in 1991, Russia has been targeted intensively by the transnational tobacco industry. Already high smoking rates among men have increased further; traditionally low rates among women have more than doubled. The tobacco companies have so far faced little opposition as they shape the discourse on smoking in Russia. This paper asks what ordinary Russians really think about possible actions to reduce smoking. Methods A representative sample of the Russian population (1600 respondents) was interviewed face-to-face in November 2007. Results Only 14% of respondents considered tobacco control in Russia adequate, while 37% felt that nothing was being done at all. There was support for prices keeping pace with or even exceeding inflation. Over 70% of all respondents favoured a ban on sales from street kiosks, while 56% believed that existing health warnings (currently 4% of front and back of packs) were inadequate. The current policy of designating a few tables in bars and restaurants as non-smoking was supported by less than 10% of respondents, while almost a third supported a total ban, with 44% supporting provision of equal space for smokers and non-smokers. Older age, non-smoking status and living a smaller town all emerged as significantly associated with the propensity to support of antismoking measures. The tobacco companies were generally viewed as behaving like most other companies in Russia, with three-quarters believing that they definitely or maybe bribe politicians. Knowledge of impact of smoking on health was limited with significant underestimation of dangers and addictive qualities of tobacco. A third believed that light cigarettes are safer than normal. Conclusion The majority of the Russian population would support considerable strengthening of tobacco control policies but there is also a need for effective public education campaigns. PMID:18653793

  13. Attitude Controller for the Atmospheric Entry of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; San Martin, A. Miguel; Wong, Edward C.

    2008-01-01

    This paper describes the attitude controller for the atmospheric entry of the Mars Science Laboratory (MSL). The controller will command 8 RCS thrusters to control the 3- axis attitude of the entry capsule. The Entry Controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback path. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D control structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via computer simulations.

  14. Spin-stabilized satellite magnetic attitude control scheme without initial detumbling

    NASA Astrophysics Data System (ADS)

    Roldugin, D. S.; Testani, P.

    2014-01-01

    The angular motion of an axisymmetrical satellite equipped with an active magnetic attitude control system is considered. The dynamics of the satellite are analytically studied on the whole control loop. The control loop is as follows: preliminary reorientation along with nutation damping, spinning about the axis of symmetry, then precise reorientation of the axis of symmetry in inertial space. Reorientation starts right after separation from the launch vehicle. Active magnetic attitude control system time-response with respect to its parameters is analyzed. It is proven that low-inclined orbit forces low control system time-response. Comparison with the common control scheme shows the time-response gain. Numerical analysis of the disturbances effect is carried out and good pointing accuracy is proved.

  15. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  16. Knowledge, attitude and practice of standard precautions of infection control by hospital workers in two tertiary hospitals in Nigeria

    PubMed Central

    Pondei, Kemebradikumo; Adetunji, Babatunde; Chima, George; Isichei, Christian; Gidado, Sanusi

    2015-01-01

    Background: Standard precautions are recommended to prevent transmission of infection in hospitals. However, their implementation is dependent on the knowledge and attitudes of healthcare workers (HCW). This study describes the knowledge, attitude and practice (KAP) of standard precautions of infection control among HCW of two tertiary hospitals in Nigeria is described. Methods: A cross-sectional study was undertaken in 2011/2012 among HCW in two tertiary hospitals in Nigeria. Data was collected via a structured self-administered questionnaire assessing core elements of KAP of standard precautions. Percentage KAP scores were calculated and professional differences in median percentage KAP scores were ascertained. Results: A total of 290 HCW participated in the study (76% response rate), including 111 (38.3%) doctors, 147 (50.7%) nurses and 32 (11%) laboratory scientists. Overall median knowledge and attitude scores toward standard precautions were above 90%, but median practice score was 50.8%. The majority of the HCW had poor knowledge of injection safety and complained of inadequate resources to practise standard precautions. House officers, laboratory scientists and junior cadres of nurses had lower knowledge and compliance with standard precautions than more experienced doctors and nurses. Conclusion: Our results suggest generally poor compliance with standard precautions of infection control among HCW in Nigeria. Policies that foster training of HCW in standard precautions and guarantee regular provision of infection control and prevention resources in health facilities are required in Nigeria.

  17. Application of Low Thrust Propulsion Techniques to Satellite Attitude Control Systems

    DTIC Science & Technology

    1991-11-01

    If the primary mode of attitude control is the use of reaction wheels , with the thrusters merely used to remove excess momentum due to secular...axis are controlled through a reaction wheel , with its angular momentum vector aligned along, the -v axis of the spacecraft. By controlling the speed...of the reaction wheel , the a gu!ar velocity of the 2-32 ""a *" -.-. .... .’ - -.... . .. i- - - - - - -. -....- ." *: spacecraft about that axis is

  18. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  19. Attitude control system of the Delfi-n3Xt satellite

    NASA Astrophysics Data System (ADS)

    Reijneveld, J.; Choukroun, D.

    2013-12-01

    This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.

  20. Classical and higher-order sliding mode attitude control for launch vehicle systems

    NASA Astrophysics Data System (ADS)

    Stott, James Edward, Jr.

    In determining flight controls for launch vehicle systems, several things must be taken into account. Launch vehicle systems can be expendable or reusable, carry crew or cargo, etc. Each of these launch vehicles maneuvers through a wide range of flight conditions and different mission profiles. Crewed vehicles must adhere to human rating requirements which limit the angular rates. Reusable launch vehicle systems must take into account actuator saturation during entry. Wind disturbances and plant uncertainties are major perturbations to the nominal state of any launch vehicle. An ideal controller is one that is robust enough to handle these uncertainties and external disturbances with limited control authority. One major challenge that exists in the design of these vehicles is the updating of old autopilot technology to new robust designs while also taking into account the different type of launch vehicle system employed. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. This dissertation focuses on systematically studying and developing a 'toolbox' of classical and higher-order sliding mode attitude control algorithms for different types of launch vehicle systems operating in uncertain conditions, including model uncertainties, actuator malfunctions, and external perturbations such as wind gusts. The developed toolbox comprises of time-varying sliding variables, classical and higher-order sliding mode attitude control algorithms, and observer techniques that yield novel sliding mode attitude control architectures. The proposed control toolbox allows achieving even higher standards of performance, reliability, safety, operability, and cost for launch vehicles over the current state of the art. Case studies include controlling the X-33 and SLV-X Launch Vehicles studied under NASA's Space Launch Initiative (SLI

  1. Decentralized diagnosis in a spacecraft attitude determination and control system

    NASA Astrophysics Data System (ADS)

    Pérez, C. G.; Travé-Massuyès, L.; Chanthery, E.; Sotomayor, J.

    2015-11-01

    In model-based diagnosis (MBD), structural models can provide useful information for fault diagnosis and fault-tolerant control design. In particular, they are known for supporting the design of analytical redundancy relations (ARRs) which are widely used to generate residuals for diagnosis. On the other hand, systems are increasingly complex whereby it is necessary to develop decentralized architectures to perform the diagnosis task. Decentralized diagnosis is of interest for on-board systems as a way to reduce computational costs or for large geographically distributed systems that require to minimizing data transfer. Decentralized solutions allow proper separation of industrial knowledge, provided that inputs and outputs are clearly defined. This paper builds on the results of [1] and proposes an optimized approach for decentralized fault-focused residual generation. It also introduce the concept of Fault-Driven Minimal Structurally-Overdetermined set (FMSO) ensuring minimal redundancy. The method decreases communication cost involved in decentralization with respect to the algorithm proposed in [1] while still maintaining the same isolation properties as the centralized approach as well as the isolation on request capability.

  2. Interrelationships of Study Habits and Attitudes, Locus of Control, Motivation Achievement Tendencies and Academic Achievement.

    ERIC Educational Resources Information Center

    Gadzella, Bernadette M.; And Others

    The study investigated (a) relationships between measures on study habits and attitudes, locus of control, achieving tendency, and semester grade-point averages (SGPA), (b) differences between the sexes on the above mentioned variables, and (c) best predictor of SGPA. The subjects were 39 males and 81 females. There were a number of significant…

  3. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  4. Solar attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-08-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar pressure. This work presents a roll/yaw control, which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  5. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Technical Reports Server (NTRS)

    Azor, Ruth

    1992-01-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar radiation pressure. This work presents a roll/yaw control which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  6. Community Involvement, Perceived Control, and Attitudes toward Aging among Lesbians and Gay Men

    ERIC Educational Resources Information Center

    Hostetler, Andrew J.

    2012-01-01

    A person-environment approach was used to explore the relationship between community involvement and attitudes toward aging among middle-age and older lesbians and gay men. Specifically, this study investigated the relationships between participation in gay community activities, perceived control, and aging-related concerns among two…

  7. The Attitudes & Beliefs on Classroom Control Inventory-Revised and Revisited: A Continuation of Construct Validation

    ERIC Educational Resources Information Center

    Martin, Nancy K.; Yin, Zenong; Mayall, Hayley

    2008-01-01

    The purpose of this study was to report the psychometric properties of the revised Attitudes and Beliefs of Classroom Control Inventory (ABCC-R). Data were collected from 489 participants via the ABCC-R, Teacher Efficacy Scale, Problems in School Questionnaire, and a demographic questionnaire. Results were in keeping with the construct. The…

  8. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    NASA Technical Reports Server (NTRS)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  9. Tobacco Control Policy Advocacy Attitudes and Self-Efficacy among Ethnically Diverse High School Students

    ERIC Educational Resources Information Center

    Ramirez, Amelie G.; Velez, Luis F.; Chalela, Patricia; Grussendorf, Jeannie; McAlister, Alfred L.

    2006-01-01

    This study applied self-efficacy theory to assess empowerment to advocate on behalf of tobacco control policies. The Youth Tobacco Survey with added policy advocacy self-efficacy, attitudes, and outcome expectations scales was given to 9,177 high school students in Texas. Asians showed the lowest prevalence of experimentation and current smoking,…

  10. Children's Eating Attitudes and Behaviour: A Study of the Modelling and Control Theories of Parental Influence

    ERIC Educational Resources Information Center

    Brown, Rachael; Ogden, Jane

    2004-01-01

    The present study compared the modelling and control theories of parental influence on children's eating attitudes and behaviour with a focus on snack foods. Matched questionnaires describing reported snack intake, eating motivations and body dissatisfaction were completed by 112 parent/child pairs. Parents completed additional items relating to…

  11. Locus of Control and Computer Attitude: The Effect of User Involvement.

    ERIC Educational Resources Information Center

    Hawk, Stephen R.

    1989-01-01

    Describes study that was conducted to investigate the relationship between locus of control and user attitude toward computer based information systems (CBIS) used at work. The impact of user involvement is examined, the hypotheses tested are described, and implications for introducing CBIS into organizations are discussed. (14 references) (LRW)

  12. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  13. Multiagent Attitude Control System for Satellites Based in Momentum Wheels and Event-Driven Synchronization

    NASA Astrophysics Data System (ADS)

    Garcia, Juan L.; Moreno, Jose Sanchez

    2012-12-01

    Attitude control is a requirement always present in spacecraft design. Several kinds of actuators exist to accomplish this control, being momentum wheels one of the most employed. Usually satellites carry redundant momentum wheels to handle any possible single failure, but the controller remains as a single centralized element, posing problems in case of failures. In this work a decentralized agent-based event-driven algorithm for attitude control is presented as a possible solution. Several agents based in momentum wheels will interact among them to accomplish the satellite control. A simulation environment has been developed to analyze the behavior of this architecture. This environment has been made available through the web page http://www.dia.uned.es.

  14. System Performance Analysis of Three Dimensional Reaction Wheel for the Attitude Control of Microsatellites

    NASA Astrophysics Data System (ADS)

    Shirasawa, Yoji; Tsuda, Yuichi

    This paper presents a novel attitude control device which is called three dimensional reaction wheel (3DRW). 3DRW consists of only one levitated spherical mass which can rotate around arbitrary axes. This leads to the reduction of the weight and volume of the device as compared to existing reaction wheel. Furthermore, this device has no mechanical contact between rotor and stator, so the failure caused by the mechanical contact would be reduced. In this paper, the results of the analysis and experiment on the dynamics and control of 3DRW are shown. In the experiments of the rotation control, the air bearing system is used. Using this device, the characteristics of rotation of the spherical mass are obtained. To verify the feasibility of the concept of 3DRW, the experiments of angular velocity feedback control are carried out. The results of experiments are applied to the numerical simulation of the attitude control for microsatellites, and the feasibility of 3DRW is verified.

  15. An appraisal of linear systems theory with applications to attitude control. Report to ESTEC

    NASA Astrophysics Data System (ADS)

    Crouch, P. E.; Pritchard, A. J.; Carmichael, N.; Lobry, C.

    1980-05-01

    Nonlinear system theory was reviewed with the emphasis on its relevance to significant attitude control problems in stability and in controllability with a limited number of torques. Suitably chosen attitude control systems were studied in order to produce detailed conclusions of import to realistic design and synthesis requirements. In the general framework of systems analysis nonlinear differential equations were handled with the notion of a differentiable manifold along with all its geometric and analytic ramifications. The fundamental concepts were outlined in a manner accessible to most engineers. Global asymptotically stabilizing controls for two types of actuator system were defined, and controllability criteria for both two torques and one torque by gas jets were set.

  16. The method of testing of the attitude reference systems with optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Szelmanowski, Andrzej; Michalak, Slawomir

    2003-09-01

    What the paper deals with is the method of testing of the attitude reference systems with the coning excitation/motion applied. A theoretical description of the excitation at issue has been given and followed with a comparative analysis of the excitation generated in the UPG-48 station with a tilting platform. Experimental data of testing of the attitude and heading reference system AHRS LCR-92 system for the non-holonomical excitation/motion have been compared with results effected by some simulation-based tests of numerical models of the attitude and heading reference systems with the optoelectronic sensors. On the grounds of some numerical-simulation-effected findings gained with the AutoCAD packet, a concept of a coning-excitation-generating measuring station has been developed at the Air Force Institute of Technology and presented in this paper.

  17. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  18. Promise for Enhancing Children's Reading Attitudes through Peer Reading: A Mixed Method Approach

    ERIC Educational Resources Information Center

    Lee, Youngju

    2014-01-01

    Peer-Assisted Learning Strategies (PALS) was implemented for supplementary reading classes in a Korean elementary school. The treatment group children were exposed to PALS during 20 min sessions, 4 times a week, for 8 weeks. The impacts of PALS were investigated in 3 aspects using a mixed-methods approach: improvement in reading attitudes, reading…

  19. The Effect of a Modified Moore Method on Attitudes and Beliefs in Precalculus

    ERIC Educational Resources Information Center

    Bailey, Brad; Cooper, Thomas E.; Briggs, Karen S.

    2012-01-01

    As part of a study on the effects of teaching with a Modified Moore Method (MMM), a survey containing 20 items from Schoenfeld's (1989) investigation of attitudes and beliefs about mathematics was administered to students in undergraduate precalculus classes. The study included one section of precalculus taught with an MMM, a student-centered and…

  20. Attitude angle anti-windup control of small size unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Shao, Taizhou; Long, Haihui; Zhao, Jiankang; Xia, Xuan; Yang, Guang

    2017-01-01

    This paper researches the small-size unmanned helicopter attitude control problem with actuator saturation limit. Traditional approach for this problem is often based on an accurate dynamic model which is complicated and difficult to achieve in engineering. In this paper, we propose an anti-windup PID approach which does not rely on sophicated helicopter dynamic model. The anti-windup PID controller is established by adding a phase-lead compensator to the conventional PID controller. The performance and merits of this proposed controller are exemplified by the simulations between the conventional PID controller and the anti-windup PID controller.

  1. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  2. Tuberculosis knowledge, attitudes, and practices among northern Ethiopian prisoners: Implications for TB control efforts

    PubMed Central

    Adane, Kelemework; Spigt, Mark; Johanna, Laturnus; Noortje, Dorscheidt; Abera, Semaw Ferede; Dinant, Geert-Jan

    2017-01-01

    Introduction Although awareness is an important component in tuberculosis (TB) control, we do not know how much Ethiopian prisoners know about TB. This study assessed the level of knowledge, attitudes, and practices (KAP) of prisoners about TB in eight northern Ethiopian prisons. Methods Data were collected cross-sectionally from 615 prisoners using a standardized questionnaire between March and May 2016. The outcome variables were defined considering the basic elements about TB. Results Out of 615 prisoners, only 37.7% mentioned bacteria as a cause of TB while 21.7% related TB to exposure to cold wind. Eighty-eight per cent correctly mentioned the aerial route of TB transmission and 27.3% had perceived stigma towards TB. The majority (63.7%) was not aware of the possibility of getting multi-drug-resistant strains when they would not adhere to treatment. Overall, only 24% knew the basic elements about TB, 41% had favorable attitudes, and 55% had a good practice. Prisoners who were urban residents were generally more knowledgeable than rural residents (adjusted OR = 2.16; 95% CI = 1.15–4.06). Illiterates were found to be less knowledgeable (adjusted OR = 0.17; 95% CI = 0.06–0.46), less likely to have a favorable attitude (adjusted OR = 0.31; 95% CI = 0.15–0.64), and less good practice (adjusted OR = 0.35; 95% CI = 0.18–0.69). Significant differences were also observed between the different study prisons. Conclusions Knowledge of prisoners regarding the cause of TB and consequences of non-adherence to TB treatment was low. Knowledge on the transmission, symptoms, and prevention was fairly high. Health education interventions, focused on the cause and the translation of the knowledge to appropriate practices, are needed in all the study prisons. Special attention should be given to less educated prisoners, and to prisons with a high number of prisoners and those in remote areas. PMID:28358877

  3. Measurement of student attitudes in first year engineering - A mixed methods approach

    NASA Astrophysics Data System (ADS)

    Malik, Qaiser Hameed

    This research study focused on freshman attitudes towards engineering in a newly implemented cornerstone sequence that emphasized holistic design experiences. The students' initial attitudes and changes in these attitudes were examined with the explanatory mixed methods approach that allows a sequential examination of the target population with two methods, using two sets of data, to investigate the treatment effects. In the quantitative phase, the study compared changes in freshman attitude towards engineering, between the new 'design sequence' group (composed of freshmen in the cornerstone sequence) and the prior 'traditional sequence' group (composed of all other freshmen), over the course of one semester. The data were collected in fall 2008 at two time intervals and changes in the two groups' attitudes were examined with repeated measures analysis of covariance models. The analyses reported here include data from 389 students out of the total population of 722 freshmen. The analyses revealed that engineering freshmen joined the program with positive or strongly positive attitudes towards engineering. Those strong attitudes were durable and resistant to change. Students in the design sequence group had higher ACT scores, enjoyed math and science the most, and did not believe engineering to be an exact science. However, no appreciable time-group interaction was observed. To validate the quantitative results, an interview protocol was developed to investigate initial freshman attitudes and changes, if any, that took place as a result of the new cornerstone sequence. One-on-one interviews with a sample of ten students out of the population of 272 freshmen revealed that freshmen in the cornerstone sequence entered the program full of enthusiasm and idealism, and with strongly positive attitudes towards engineering. The strong motivational factors included parental/teacher influences, childhood motivations, and high school extra-curricular experiences. The

  4. University and Student Segmentation: Multilevel Latent-Class Analysis of Students' Attitudes towards Research Methods and Statistics

    ERIC Educational Resources Information Center

    Mutz, Rudiger; Daniel, Hans-Dieter

    2013-01-01

    Background: It is often claimed that psychology students' attitudes towards research methods and statistics affect course enrolment, persistence, achievement, and course climate. However, the inter-institutional variability has been widely neglected in the research on students' attitudes towards research methods and statistics, but it is important…

  5. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  6. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  7. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  8. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  9. Birth control - slow release methods

    MedlinePlus

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... implants while breastfeeding. Progestin implants work better than birth control pills to prevent pregnancy. Very few women who ...

  10. Use of hormonal contraceptives to control menstrual bleeding: attitudes and practice of Brazilian gynecologists

    PubMed Central

    Makuch, María Y; D Osis, Maria José; de Pádua, Karla Simonia; Bahamondes, Luis

    2013-01-01

    Background The purpose of this study was to assess the attitudes and prescribing practices of Brazilian obstetricians and gynecologists regarding use of contraceptive methods to interfere with menstruation and/or induce amenorrhea. Methods We undertook a nationwide survey of Brazilian obstetricians and gynecologists selected using a computer-generated randomization system. Participants completed a questionnaire on prescription of contraceptives and extended/continuous regimens of combined oral contraceptives (COCs). Results In total, 79.2% of Brazilian obstetricians and gynecologists reported that 20%–40% of their patients consulted them for menstrual-related complaints and 26%–34% of the gynecologists reported that 21%–40% of their patients consulted them for reduction in the intensity, frequency, and/or duration of menstrual bleeding. Overall, 93% stated that medically induced amenorrhea represents no risk to women’s health and 82.5% said that they prescribed contraceptives to control menstruation or induce amenorrhea. The contraceptives most commonly prescribed were extended-cycle 24/4 or 26/2 COC regimens and the levonorgestrel-releasing intrauterine system. Poisson regression analysis showed that Brazilian obstetricians and gynecologists prescribing contraceptives to control menstruation or induce amenorrhea consider extended-use or continuous-use COC regimens to be effective for both indications (prevalence ratio 1.23 [95% confidence interval 1.09–1.40] and prevalence ratio 1.28 [95% confidence interval 1.13–1.46], respectively). They also prescribed COCs with an interval of 24/4 or 26/2 to control bleeding patterns (prevalence ratio 1.10 [95% confidence interval 1.01–1.21]). Conclusion Brazilian obstetricians and gynecologists were favorably disposed toward prescribing extended-use or continuous-use COC regimens for control of menstrual bleeding or to induce amenorrhea on patient demand. PMID:24399887

  11. Guidance and adaptive-robust attitude & orbit control of a small information satellite

    NASA Astrophysics Data System (ADS)

    Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.

    2017-01-01

    We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.

  12. Inertia-independent generalized dynamic inversion feedback control of spacecraft attitude maneuvers

    NASA Astrophysics Data System (ADS)

    Bajodah, Abdulrahman H.

    2011-06-01

    The generalized dynamic inversion control methodology is applied to the spacecraft attitude trajectory tracking problem. It is shown that the structure of the skew symmetric cross product matrix alleviates the need to include the inertia matrix in the control law. Accordingly, the proposed control law depends solely on attitude and angular velocity measurements, and it neither requires knowledge of the spacecraft's inertia parameters nor it works towards estimating these parameters. A linear time-varying attitude deviation dynamics in the multiplicative error quaternion is inverted for the control variables using the generalized inversion-based Greville formula. The resulting control law is composed of auxiliary and particular parts acting on two orthogonally complement subspaces of the three dimensional Euclidean space. The particular part drives the attitude variables to their desired trajectories. The auxiliary part is affine in a free null-control vector, and is designed by utilizing a semidefinite control Lyapunov function that exploits the geometric structure of the control law to provide closed loop stability. The generalized inversion singularity avoidance is made by augmenting the generalized inverse with an asymptotically stable fast mode that is driven by angular velocity error's norm from reference angular velocity. Asymptotic tracking is achieved for detumbling maneuvers as the stable augmented mode subdues singularity. If the steady state desired quaternion trajectories are time varying, then asymptotic tracking is lost in favor of close ultimately bounded tracking because the stable augmented mode continues to be excited during steady state phase of response. A rest-to-rest slew and a trajectory tracking maneuver examples are provided to illustrate the methodology.

  13. Appendage modal coordinate truncation criteria in hybrid coordinate dynamic analysis. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Likins, P.; Ohkami, Y.; Wong, C.

    1976-01-01

    The paper examines the validity of the assumption that certain appendage-distributed (modal) coordinates can be truncated from a system model without unacceptable degradation of fidelity in hybrid coordinate dynamic analysis for attitude control of spacecraft with flexible appendages. Alternative truncation criteria are proposed and their interrelationships defined. Particular attention is given to truncation criteria based on eigenvalues, eigenvectors, and controllability and observability. No definitive resolution of the problem is advanced, and exhaustive study is required to obtain ultimate truncation criteria.

  14. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    training is based on the concept of enforced performance. A neural network will learn to meet a specific performance goal if the performance standard...is the only solution to a problem. Performance index training is devised to teach the neural network the time-optimal control law for the system. Real...time adaptation of a neural network in closed loop control of the Crew/Equipment Retriever was demonstrated in computer simulations.

  15. SINO-SOVIET RELATIONS AND ARMS CONTROL. JAPANESE ATTITUDES,

    DTIC Science & Technology

    Harvard University were jointly engaged in a research project on Sino-Soviet Relations and Arms Control under the sponsorship of the United States Arms Control and Disarmament Agency. Because of Japan’s growing role in Asia and her special concern with the problems of East Asia, it seemed important to understand Japanese perspectives on the issues upon which we were working. Consequently, a separate but related series of Japanese-American discussions in Japan was arranged on ’Problems

  16. Views towards infectious diseases shape control strategies. Behavior and attitudes.

    PubMed

    1999-02-08

    To successfully implement infectious disease control programs that rely on meaningful community participation, infection control strategies must consider the views of lay people about contagion, the extent to which diseases are considered infectious, and the relationship between these perceptions and preventive practices. Ethnographic studies in the Ivory Coast and Brazil have revealed that these interpretations involve empirical and analogical thinking, symbolic factors and social organization, concepts of person and body elements, ideas about natural and supernatural powers, and individual and contextual factors.

  17. FUSE Science Planning Under One-Wheel Attitude Control

    NASA Astrophysics Data System (ADS)

    Calvani, H. M.; Kochte, M.; Berman, A. F.; Caplinger, J. R.; Civeit, T.; England, M. N.

    2005-12-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) is a low-Earth orbit NASA astronomy satellite requiring 3-axis stabilized pointing control to perform high resolution spectroscopy in the far ultraviolet regime. In December 2004, one of two remaining reaction wheels failed, temporarily suspending science operations. An intensive research and development effort in 2005 has allowed us to successfully revise the flight software to control the satellite in all three axes using a hybrid control system consisting of the remaining reaction wheel and the on-board magnetic torquer bars. Operations with this new control system is more restricted than was the case with two reaction wheels, significantly complicating the task of generating science observing timelines. The primary constraint is the difficulty in simultaneously achieving pointing control and managing momentum on the remaining wheel when observing a target. Since secular momentum build up is a function of target direction with respect to gravity gradient disturbance, we have found that proper target sequencing can perform most of the momentum unloading for the satellite, allowing better pointing control when scheduling an observation. We discuss modifications made to the science planning tools and procedures to accommodate the revised operations constraints on the satellite. This work is supported by NASA Contract NAS5-32985 to The Johns Hopkins University.

  18. Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn

    2004-01-01

    Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.

  19. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  20. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2012-08-01

    The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or "-Bdot" without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.

  1. A Coupled Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Gyro Misalignment and Gyro Bias

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2002-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro misalignment and bias observer for the case of constant gyro misalignment and bias. A persistency of excitation analysis shows the observer gyro bias estimates converge to the true bias values exponentially fast. The convergence of the misalignment estimates is also presented. Then; the resulting coupled, closed loop dynamics are proven by a Lyapunov analysis to be globally stable, with asymptotically perfect tracking. The analysis is extended to consider the effects of noise in addition to the gyro misalignment and bias. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  2. Security control methods for CEDR

    SciTech Connect

    Rotem, D.

    1990-09-01

    The purpose of this document is to summarize the findings of recent studies on the security problem in statistical databases and examine their applicability to the specific needs of CEDR. The document is organized as follows: In Section 2 we describe some general control methods which are available on most commercial database software. In Section 3 we provide a classification of statistical security methods. In Section 4 we analyze the type of users of CEDR and the security control methods which may be applied to each type. In Section 5 we summarize the findings of this study and recommend possible solutions.

  3. How Intervention and Implementation Characteristics Relate to Community Therapists' Attitudes Toward Evidence-Based Practices: A Mixed Methods Study.

    PubMed

    Barnett, Miya; Brookman-Frazee, Lauren; Regan, Jennifer; Saifan, Dana; Stadnick, Nicole; Lau, Anna

    2017-02-24

    Therapists' perceptions toward evidence-based practices (EBPs) are important in implementation efforts, however little is known about characteristics of EBPs associated with more positive attitudes. This mixed-methods study examined how intervention and implementation characteristics of six EBPs related to therapist attitudes. Quantitative analysis of 793 cross-sectional surveys revealed that therapists endorsed more positive attitudes toward EBPs with (1) prescribed session content and order and (2) required consultation. Associations between these intervention and implementation characteristics and attitudes were not moderated by therapist experience or emotional exhaustion. Qualitative analyses complemented quantitative findings, indicating that "structure" was appealing for interventions and that therapists felt supported by consultation.

  4. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  5. Rotating Space Debris Tracking Based on The Orbit-Attitude Coordinated Control

    NASA Astrophysics Data System (ADS)

    Wang, Shuquan; Zhu, Lingchao

    2016-07-01

    This paper investigates the rotating space debris tracking problem. Active capturing and removal of space debris are challenging because the space debris is noncoorperating. The scenario considered is that a rotating space debris is the target to be captured by a spacecraft with a robotic arm. One rough approach is to capture the space debris with a strong arm then detumble the rotation of the whole system using the attitude control system on board. In this way the arm and the spacecraft have to be strong enough to withstand the impact caused by the relative orbital and attitude motions. Another way is to at first track the motion of the characterized surface, which should be easier to capture, of the debris. Then the robotic arm is engaged to capture the debris. In this way, the impact applied on the robotic arm is greatly reduced such that the possibility of causing new debris is also reduced. The orbit-attitude coordinated controller is developed to track the motion of the space debris. The controller is assymptotically stable without considering the boundness of the control efforts. The stability in the situation of bounded control inputs is analyzed. Analytical criterion for a successful tracking is obtained in the situation that rotational motion of the space debris is percession.

  6. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels

    NASA Astrophysics Data System (ADS)

    Kim, Yeonkyu

    2003-10-01

    A system of differential equations governing the translational and rotational motion of a system model consisting of a rigid satellite and multiple MB suspended rigid flywheels in general configuration is developed. Flywheel modules are contained in a housing rigidly mounted on the satellite and floated by an active MB suspension system, therefore each flywheel module has six degrees of freedom (DOF) as well as the satellite module. Equations of motion for the satellite and flywheels are naturally coupled and the satellite rotational motion and translational motion are coupled. A nonlinear state feedback tracking control law, which is globally asymptotically stable, is developed following a Lyapunov stability theory for integrated power and attitude control using the MB suspended flywheels. The stability, robustness, and tracking and disturbance rejection performance of the present control law with respect to initial attitude error, system modeling error, an imbalance disturbance, is demonstrated by case studies. The satellite departure motion equation derived from the definition of the angular velocity error and the system dynamics equations is presented. Application study of existing power tracking algorithm with this control law shows perfect power tracking for both power charging from and power delivery to the satellite operations and the power tracking can be performed simultaneously with and independent of the attitude control function.

  7. A ground test program to support condition monitoring of a spacecraft attitude control propulsion system

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lester, Robert W.; Baroth, Edmund C.; Coleman, Arthur L.

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.

  8. Design development of the Apollo command and service module thrust vector attitude control systems

    NASA Technical Reports Server (NTRS)

    Peters, W. H.

    1978-01-01

    Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.

  9. Transformation method and wave control

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Hu, Jin; Hu, Geng-Kai

    2010-12-01

    Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.

  10. Effects of Learning Style and Training Method on Computer Attitude and Performance in World Wide Web Page Design Training.

    ERIC Educational Resources Information Center

    Chou, Huey-Wen; Wang, Yu-Fang

    1999-01-01

    Compares the effects of two training methods on computer attitude and performance in a World Wide Web page design program in a field experiment with high school students in Taiwan. Discusses individual differences, Kolb's Experiential Learning Theory and Learning Style Inventory, Computer Attitude Scale, and results of statistical analyses.…

  11. Sex-Role Egalitarian Attitudes and Gender Role Socialization Experiences of African American Men and Women: A Mixed Methods Paradigm

    ERIC Educational Resources Information Center

    Heard, Courtney Christian Charisse

    2013-01-01

    The purpose of this study was to assess the sex-role egalitarian attitudes and gender role socialization experiences of African American men and women. A sequential mixed-methods design was employed to research this phenomenon. The Sex-Role Egalitarianism Scale-Short Form BB (SRES-BB) was utilized to assess sex-role egalitarian attitudes (King…

  12. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  13. Control of contagious bovine pleuropneumonia: Knowledge, attitudes, perceptions and practices in Narok district of Kenya

    PubMed Central

    Kairu-Wanyoike, S.W.; Kiara, H.; Heffernan, C.; Kaitibie, S.; Gitau, G.K.; McKeever, D.; Taylor, N.M.

    2014-01-01

    CBPP is an important transboundary disease in sub-Saharan Africa whose control is urgent. Participatory data collection involving 52 focus group discussions in 37 village clusters and key informant interviews, a cross-sectional study involving 232 households and a post-vaccination follow up involving 203 households was carried out in 2006–2007 in Narok South district of Kenya. This was to investigate knowledge, attitudes, perceptions and practices (KAPP) associated with control of CBPP as well as the adverse post-vaccination reactions in animals in order to advice the control policy. The community perceived trans-boundary CBPP threat to their cattle. They had traditional disease coping mechanisms and were conversant with CBPP prevention and control with 49.8% (95%CI: 42.8–56.7%) giving priority to CBPP control. However, 12.9% (95%CI: 9.0–18.1%) of pastoralists had no knowledge of any prevention method and 10.0% (95%CI: 6.5–14.7%) would not know what to do or would do nothing in the event of an outbreak. Although 43.5% (95%CI: 37.1–50.2%) of pastoralists were treating CBPP cases with antimicrobials, 62.5% (95%CI: 52.1–71.7%) of them doubted the effectiveness of the treatments. Pastoralists perceived vaccination to be the solution to CBPP but vaccination was irregular due to unavailability of the vaccine. Vaccination was mainly to control outbreaks rather than preventive and exhibited adverse post-vaccination reactions among 70.4% (95%CI: 63.6–76.5%) of herds and 3.8% (95%CI: 3.5–4.2%) of animals. Consequently, nearly 25.2% (95%CI: 18.5–33.2%) of pastoralists may resist subsequent vaccinations against CBPP. Pastoralists preferred CBPP vaccination at certain times of the year and that it is combined with other vaccinations. In conclusion, pastoralists were not fully aware of the preventive measures and interventions and post-vaccination reactions may discourage subsequent CBPP vaccinations. Consequently there is need for monitoring and management of

  14. Control of contagious bovine pleuropneumonia: knowledge, attitudes, perceptions and practices in Narok district of Kenya.

    PubMed

    Kairu-Wanyoike, S W; Kiara, H; Heffernan, C; Kaitibie, S; Gitau, G K; McKeever, D; Taylor, N M

    2014-08-01

    CBPP is an important transboundary disease in sub-Saharan Africa whose control is urgent. Participatory data collection involving 52 focus group discussions in 37 village clusters and key informant interviews, a cross-sectional study involving 232 households and a post-vaccination follow up involving 203 households was carried out in 2006-2007 in Narok South district of Kenya. This was to investigate knowledge, attitudes, perceptions and practices (KAPP) associated with control of CBPP as well as the adverse post-vaccination reactions in animals in order to advice the control policy. The community perceived trans-boundary CBPP threat to their cattle. They had traditional disease coping mechanisms and were conversant with CBPP prevention and control with 49.8% (95%CI: 42.8-56.7%) giving priority to CBPP control. However, 12.9% (95%CI: 9.0-18.1%) of pastoralists had no knowledge of any prevention method and 10.0% (95%CI: 6.5-14.7%) would not know what to do or would do nothing in the event of an outbreak. Although 43.5% (95%CI: 37.1-50.2%) of pastoralists were treating CBPP cases with antimicrobials, 62.5% (95%CI: 52.1-71.7%) of them doubted the effectiveness of the treatments. Pastoralists perceived vaccination to be the solution to CBPP but vaccination was irregular due to unavailability of the vaccine. Vaccination was mainly to control outbreaks rather than preventive and exhibited adverse post-vaccination reactions among 70.4% (95%CI: 63.6-76.5%) of herds and 3.8% (95%CI: 3.5-4.2%) of animals. Consequently, nearly 25.2% (95%CI: 18.5-33.2%) of pastoralists may resist subsequent vaccinations against CBPP. Pastoralists preferred CBPP vaccination at certain times of the year and that it is combined with other vaccinations. In conclusion, pastoralists were not fully aware of the preventive measures and interventions and post-vaccination reactions may discourage subsequent CBPP vaccinations. Consequently there is need for monitoring and management of post vaccination

  15. Knowledge, awareness, and attitude regarding infection prevention and control among medical students: a call for educational intervention

    PubMed Central

    Ibrahim, Awab Ali; Elshafie, Sittana Shamseldin

    2016-01-01

    Background Medical students can be exposed to serious health care-associated infections, if they are not following infection prevention and control (IPC) measures. There is limited information regarding the knowledge, awareness, and practices of medical students regarding IPC and the educational approaches used to teach them these practices. Aim To evaluate the knowledge, awareness, and attitude of medical students toward IPC guidelines, and the learning approaches to help improve their knowledge. Methods A cross-sectional, interview-based survey included 73 medical students from Weill Cornell Medical College, Qatar. Students completed a questionnaire concerning awareness, knowledge, and attitude regarding IPC practices. Students’ knowledge was assessed by their correct answers to the survey questions. Findings A total of 48.44% of the respondents were aware of standard isolation precautions, 61.90% were satisfied with their training in IPC, 66.13% were exposed to hand hygiene training, while 85.48% had sufficient knowledge about hand hygiene and practiced it on a routine basis, but only 33.87% knew the duration of the hand hygiene procedure. Conclusion Knowledge, attitude, and awareness of IPC measures among Weill Cornell Medical Students in Qatar were found to be inadequate. Multifaceted training programs may have to target newly graduated medical practitioners or the training has to be included in the graduate medical curriculum to enable them to adopt and adhere to IPC guidelines. PMID:27579002

  16. Inertial attitude control of a bat-like morphing-wing air vehicle.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  17. Air-bearing-based satellite attitude dynamics simulator for control software research and development

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij N.; Rasmussen, Richard E.

    2001-08-01

    A Satellite Attitude Dynamics Simulator (SADS) has been developed to facilitate the research and development of spacecraft flight attitude control software at the Naval Postgraduate School in Monterey, CA. The simulator provides a real-time 3 degree of freedom (3DOF) synthetic spacecraft hardware-in-the-loop environment, that includes realistic angular motions, sensor-effector delays, and control torque profiles. Control software, entered into a notebook PC mounted on the equipment platform, is input as high level object oriented code, allowing rapid code development and thorough post-test analysis. Three flight-like reaction wheels and eight cold-gas thrusters that are mounted to the SADS equipment platform provide motion simulation torque. The equipment platform is suspended in air by a spherical segment air bearing. This virtually frictionless suspension allows free rotation of the equipment platform about any rotation axis. Three separate sets of sensors, three single-axis rate gyros, a three-axis magnetometer, and a two-axis sun sensor monitor SADS platform motion. This paper discusses the SADS design, and the practical uses of this simulator for satellite attitude control system software research and development.

  18. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  19. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    PubMed

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  20. A novel method for low-cost MIMU aiding GNSS attitude determination

    NASA Astrophysics Data System (ADS)

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-07-01

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In most cases, the success rate of the initialization is always a difficult problem, especially the single-frequency measurement model of the double-difference carrier phase. The main reason for this is excessively large noise error that arises in the measurement of the double-difference carrier phase. When the geometric relations of the equations are not good, the difference between the residual error of the optimal solution and that of the suboptimal solution is not very obvious. In this study, we design a smoothing model based on MEMS. The noise error of the measurement of the double-difference carrier phase is suppressed and smoothed via this model. It is designed to reduce the initialization time and improve the success rate of the solution. In addition, we propose a new method based on the rotation matrix to resolve the attitude angle. This method produces a better performance in reducing computation time and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and this method is validated in reducing the span of candidates. The experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging cases of GNSS attitude determination.

  1. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

    PubMed Central

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-01-01

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390

  2. Increasing Slew Performance of Reaction Wheel Attitude Control Systems

    DTIC Science & Technology

    2013-09-01

    Manufacturer Model Mass(kg) Astrium CMG 4-6S 13 Astrium CMG 15-45S 18.4 Astrium CMG 10-30 18.4 Goodrich/Ithaco Violet CMG 1.28 Honeywell M50 33.1 Honeywell...getattachment/8ccf207d-1ada-4bfc-a21b- 5c400a1f5d52/SmallWheel (Accessed 28 July 2013). [49] EADS Astrium , “CMG 4–6S,” datasheet, [online] 2009...http://www.astrium.eads.net/media/document/control-momentum-gyro-cmg-4– 6s.pdf (Accessed 28 July 2013). [50] EADS Astrium , “CMG 15–45S,” datasheet

  3. Design study for LANDSAT-D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.

    1977-01-01

    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.

  4. Realization of LOS (Line of Sight) stabilization based on reflector using carrier attitude compensation method

    NASA Astrophysics Data System (ADS)

    Mao, Yao; Tian, Jing; Ma, Jia-guang

    2015-02-01

    The techonology of LOS stabilization is widely applicated in moving carrier photoelectric systems such as shipborne, airborne and so on. In application situations with compact structure, such as LOS stabilization system of unmanned aerial vehicle, LOS stabilization based on reflector is adopted, and the detector is installed on the carrier to reduce the volume of stabilized platform and loading weight. However, the LOS deflection angle through reflector and the rotation angle of the reflector has a ratio relation of 2:1, simple reflector of stable inertial space can not make the optical axis stable. To eliminate the limitation of mirror stabilizing method, this article puts forward the carrier attitude compensation method, which uses the inertial sensor installed on the carrier to measure the attitude change of the carrier, and the stabilized platform rotating half of the carrier turbulence angle to realize the LOS stabilization.

  5. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Fan; Fertin, Denis

    2008-06-01

    One of the key technologies to be demonstrated on board the LISA Pathfinder spacecraft (S/C) is the drag-free attitude control systems (DFACS), aiming to control the S/C attitude and the S/C test masses relative motion with a precision of the order of the nanometer. This paper explores how the controllers could be designed and tuned with the Quantitative Feedback Theory (QFT). After a summary of the plant dynamics and the control strategy using input decoupling, the various performance specifications are presented and transformed into a set of design criteria expressed as constraints for the controller sensitivity and complementary sensitivity transfer functions of each individual control axis. The QFT technique is then used for designing and tuning the controllers, in particular to perform the trade-off between performances and stability and use the available design margins in the drag-free controllers to meet different performance specifications. Both frequency-domain analysis and time-domain simulation test results are presented to evaluate the performance of controllers designed for different purposes.

  6. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    NASA Technical Reports Server (NTRS)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  7. Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control

    DTIC Science & Technology

    2016-08-16

    on a low-friction spherical air bearing . It is designed to test the behavior of integrated hardware and software for at- titude determination and...radiation pressure and air drag), but air- bearing testbeds like the Attitude Control System Proving Ground (ACSPG) offer low-disturbance torque...1999. ISBN 9781881883104. [2] Jana L. Schwartz, Mason A. Peck, and Christopher D. Hall. Historical Review of Air- Bearing Spacecraft Simula- tors

  8. FUSE in-orbit attitude control with two reaction wheels and no gyroscopes

    NASA Astrophysics Data System (ADS)

    Kruk, Jeffrey W.; Class, Brian F.; Rovner, Dan; Westphal, Jason; Ake, Thomas B.; Moos, H. W.; Roberts, Bryce A.; Fisher, Landis

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA Origins mission launched in June 1999 to obtain high-resolution spectra of astronomical sources at far-ultraviolet wavelengths. The science objectives require the satellite to provide inertial pointing at arbitrary positions on the sky with sub-arcsecond accuracy and stability. The requirements were met using a combination of ring-laser gyroscopes, three-axis magnetometers, and a fine error sensor for attitude knowledge, and reaction wheels for attitude control. Magnetic torquer bars are used for momentum management of the reaction wheels, and coarse sun sensors for safe mode pointing. The gyroscopes are packaged as two coaligned inertial reference units of three orthogonal gyroscopes each. There are four reaction wheels: three oriented along orthogonal axes, the fourth skewed at equal angles (54.7°) with respect to the others. Early in the mission the gyroscopes began showing signs of aging more rapidly than expected, and one failed after two years of operation. In addition, two of the orthogonal wheels failed in late 2001. The flight software has been modified to employ the torquer bars in conjunction with the two remaining wheels to provide fine pointing control. Additional new flight software is under development to provide attitude control if both gyroscopes fail on one or more axes. Simulations indicate that the pointing requirements will still be met, though with some decrease in observing efficiency. We will describe the new attitude control system, compare performance characteristics before and after the reaction wheel failures, and present predicted performance without gyroscopes.

  9. Development of a coupled expert system for the spacecraft attitude control problem

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Schaffer, J.; Hsieh, B.-J.; Padalkar, S.; Rodriguezmoscoso, J.; Vinz, F.; Fernandez, K.

    1987-01-01

    A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed.

  10. A new type of magnetic gimballed momentum wheel and its application to attitude control in space

    NASA Astrophysics Data System (ADS)

    Murakami, C.; Ohkami, Y.; Okamoto, O.; Nakajima, A.; Inoue, M.; Tsuchiya, J.; Yabu-uchi, K.; Akishita, S.; Kida, T.

    A new type of magnetically suspended gimbal momentum wheel utilizing permanent magnets is described. The bearing was composed of four independent thrust actuators which control the rotor thrust position and gimbal angles cooperatively, so that the bearing comes to have a simple mechanism with high reliability and light weight. The high speed instability problem due to the internal damping was easily overcome by introducing anisotropic radial stiffness. A momentum flywheel with the 3-axis controlled magnetic bearing displays good performance for attitude control of satellite with biased momentum.

  11. A high precision attitude determination and control system for the UYS-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Chaurais, J. R.; Ferreira, H. C.; Ishihara, J. Y.; Borges, R. A.; Kulabukhov, A. M.; Larin, V. A.; Belikov, V. V.

    This paper presents the design of a high precision attitude determination and control system for the UYS-1 Ukrainian nanosatellite. Its main task is the 3-axis stabilization with less than 0.5° angle errors, so the satellite may take high precision photos of Earth's surface. To accomplish this task, this system comprises a star tracker and three reaction wheels. To avoid external disturbances and actuators faults, a PD-type and a PID-type robust controllers are simulated and the results are compared to an empirically adjusted PD controller.

  12. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    NASA Technical Reports Server (NTRS)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  13. Development and test of the ASAT Bipropellant Attitude Control System (ACS) engine

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Allen, K. A.; Hemmings, B.

    1993-06-01

    The recent Kinetic Energy Anti-Satellite (KE ASAT) Bipropellant Attitude Control System (ACS) Engine testing demonstrated and characterized performance and operational durability. Within the ASAT mission, the bipropellant engines are used to despin the missile after shroud deployment and to provide attitude control of the Kill Vehicle (KV) during all phases of the KV free flight. These engines provide all attitude control thrust from booster separation until target intercept. The ASAT ACS engine is unique both in the amount of on-time that the engine sees during a tactical mission scenario and the high thermal loads which result from performing two diametrically opposed missions with a single thruster - long steady state burns and very short response time pulse mode operations. Two flightweight ASAT ACS Bipropellant engines were individually tested in a developmental test program. Testing was conducted at ambient conditions. Hot-fire testing consisted of steady-state, mission duty cycle (MDC), Chamber Pressure (Pc) excursion, mixture ratio excursion, and pulse performance. Testing was conducted by Rockwell's Rocketdyne Division at the Santa Susana Field Laboratory (SSFL), Systems Test Laboratory IV (STL IV), Cell 37A. Two additional engine tests are planned and will include altitude testing. This paper will summarize engine development, component development testing, valve orificing and cold flow calibration, and engine hot-fire testing approach and results.

  14. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  15. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  16. Recovery of FUSE Attitude Control With Two Reaction Wheels and Magnetic Torquer Bars

    NASA Astrophysics Data System (ADS)

    Ake, T. B.; Class, B. F.; Roberts, B. A.; Kruk, J. W.; Blair, W. P.; Moos, H. W.; FUSE Operations Team

    2002-05-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was at the peak of its scientific productivity when attitude control hardware problems began to surface two years after launch. On November 25 and December 10, 2001, FUSE lost use of two of its four reaction wheels required for slewing and pointing control. The pitch and yaw wheels despun due to excessive friction between the rotors and wheel housings. The remaining roll and skew wheels were inadequate for three-axis control. Since then, several innovative techniques have been developed using the magnetic torquer bars (MTBs), which were installed for momentum management, for attitude control. The first flight software update, made within 10 days of the December failure, constrained the skew wheel to control pitch and directed yaw torque requests to the wheel unloading routine, causing the software to respond as if addition momentum needed to be removed by the MTBs. This achieved enough pointing stability to allow work to proceed on developing a new control law fully integrating the MTBs in the control loop. This software was loaded on January 25, 2002 and immediately reestablished fine pointing capability. The concepts and development of this system are unique in astronomical space observatories and demonstrates the feasibility of using the geomagnetic field for pointing control without the use of reaction wheels for near-earth orbit astronomy missions. This work is supported by NASA Contract NAS5-32985 to the Johns Hopkins University.

  17. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  18. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  19. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  20. Design and validation of inverse optimisation software for the attitude control of microsatellites

    NASA Astrophysics Data System (ADS)

    Horri, N. M.; Palmer, P.; Roberts, M.

    2011-12-01

    The capabilities of microsatellite attitude control hardware have considerably evolved during the last two decades. However, three axis attitude control software is still predominantly based on the conservative use of standard flight proven PD type controllers, which are known to be limited in terms of rapidity for a prescribed level of energy consumption. Microsatellites are therefore typically not as agile as they could be. This conservatism is due to the complexity of implementing global numerical optimisation techniques to satellite attitude control. In this paper, we consider the model of a low earth orbiting microsatellite with a four wheel configuration, where the speed of one of the wheels is kept constant to provide a momentum bias and guarantee gyroscopic stiffness to disturbances. A geometric optimal control approach is presented, which circumvents the tedious tasks of numerically solving online the nonlinear optimisation problem. The approach is based on the design of suboptimal phase space trajectories. The phase space trajectory of a standard linear controller, typically a PD law with gyro-compensation, is used as a benchmark. The proposed inverse optimal control technique is then used to enforce higher convergence rate constraints than the benchmark law, without increasing the total energy consumption. The convergence rate of a Lyapunov function under the effect of the optimal controller outperforms the convergence rate of the same function under PD control and keeps increasing until a design settling time limit is reached. Guidelines are given for the tuning of the controller. The optimal attitude control algorithms are validated on a microsatellite software simulator in collaboration with the space company Surrey Satellite Technology Limited (SSTL). The software simulator incorporates a precise model of the effects of estimation errors, noise, external disturbances, sampling and actuator dynamics. The software is similar to the flight software of

  1. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  2. Randomized Controlled Trial of Parent Therapeutic Education on Antibiotics to Improve Parent Satisfaction and Attitudes in a Pediatric Emergency Department

    PubMed Central

    Prot-Labarthe, Sonia; Boizeau, Priscilla; Skurnik, David; Morin, Laurence; Mercier, Jean-Christophe; Alberti, Corinne; Bourdon, Olivier

    2013-01-01

    Objective To evaluate therapeutic education delivered in a pediatric emergency department to improve parents’ satisfaction and attitudes about judicious antibiotic use. Methods In an emergency department of a tertiary pediatric hospital, children aged 1 month to 6 years and discharged with an oral antibiotic prescription for an acute respiratory or urinary tract infection were randomized to a patient therapeutic education on antibiotic use (intervention group) or fever control (control group) delivered to the parents (in the presence of the children) by a pharmacist trained in therapeutic education. Education consisted in a 30-minute face-to-face session with four components: educational diagnosis, educational contract, education, and evaluation. The main outcome measure was parent satisfaction about information on antibiotics received at the hospital, as assessed by a telephone interview on day 14. The secondary outcome was attitudes about antibiotic use evaluated on day 14 and at month 6. Results Of the 300 randomized children, 150 per arm, 259 were evaluated on day 14. Parent satisfaction with information on antibiotics was higher in the intervention group (125/129, 96.9%, versus 108/130, 83.0%; P=0.002, exact Fisher test). Intervention Group parents had higher proportions of correct answers on day 14 to questions on attitudes about judicious antibiotic use than did control-group parents (P=0.017, Mann-Whitney U test). Conclusion Therapeutic education delivered by a clinical pharmacist in the pediatric emergency department holds promise for improving the use of antibiotics prescribed to pediatric outpatients. Trial Registration ClinicalTrials.gov NCT00948779 http://clinicaltrials.gov/show/NCT00948779 PMID:24086581

  3. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  4. A Mixed-Method Approach on Digital Educational Games for K12: Gender, Attitudes and Performance

    NASA Astrophysics Data System (ADS)

    Law, Effie Lai-Chong; Gamble, Tim; Schwarz, Daniel; Kickmeier-Rust, Michael D.; Holzinger, Andreas

    Research on the influence of gender on attitudes towards and performance in digital educational games (DEGs) has quite a long history. Generally, males tend to play such games more engagingly than females, consequently attitude and performance of males using DEGs should be presumably higher than that of females. This paper reports an investigation of a DEG, which was developed to enhance the acquisition of geographical knowledge, carried out on British, German and Austrian K12 students aged between 11 and 14. Methods include a survey on initial design concepts, user tests on the system and two single-gender focus groups. Gender and cultural differences in gameplay habit, game type preferences and game character perceptions were observed. The results showed that both genders similarly improved their geographical knowledge, although boys tended to have a higher level of positive user experience than the girls. The qualitative data from the focus groups illustrated some interesting gender differences in perceiving various aspects of the game.

  5. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  6. Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.

  7. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.

  8. Integrated Power and Attitude Control System Demonstrated With Flywheels G2 and D1

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.

    2005-01-01

    On September 14, 2004, NASA Glenn Research Center's Flywheel Development Team experimentally demonstrated a full-power, high-speed, two-flywheel system, simultaneously regulating a power bus and providing a commanded output torque. Operation- and power-mode transitions were demonstrated up to 2000 W in charge and 1100 W in discharge, while the output torque was simultaneously regulated between plus or minus 0.8 N-m. The G2 and D1 flywheels--magnetically levitated carbon-fiber wheels with permanent magnet motors--were used for the experiment. The units were mounted on an air bearing table in Glenn's High Energy Flywheel Facility. The operational speed range for these tests was between 20,000 and 60,000 rpm. The bus voltage was regulated at 125 V during charge and discharge, and charge-discharge and discharge-charge transitions were demonstrated by changing the amount of power that the power supply provided between 300 and 0 W. In a satellite system, this would be the equivalent of changing the amount of energy that the solar array provides to the spacecraft. In addition to regulating the bus voltage, we simultaneously controlled the net torque produced by the two flywheel modules. Both modules were mounted on an air table that was restrained by a load cell. The load cell measured the force on the table, and the torque produced by the two flywheels on the table could be calculated from that measurement. This method was used to measure the torque produced by the modules, yielding net torques from -0.8 to 0.8 N-m. This was the first Glenn demonstration of the Integrated Power and Attitude Control System (IPACS) at high power levels and speeds.

  9. Infrared horizon sensor modeling for attitude determination and control: Analysis and mission experience

    NASA Technical Reports Server (NTRS)

    Phenneger, M. C.; Singhal, S. P.; Lee, T. H.; Stengle, T. H.

    1985-01-01

    The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology.

  10. Attitude control requirements for an earth-orbital solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Andrews, P. D.; Jasper, T. P.

    1975-01-01

    Solar Electric Propulsion Stage (SEPS) application in earth orbit requires considerably more maneuvering for thrust vector steering and solar array pointing than planetary missions. Attitude maneuver requirements for geosynchronous and low earth-orbital missions are presented. Situations which result in optimum steering torque requirements exceeding the capability of current SEPS configurations are defined. Sub-optimal steering techniques are defined which reduce the geosynchronous mission torque requirements to acceptable levels with negligible performance penalties. Some low earth-orbital flight regimes with earth shadowing are found to result in much larger torque requirements and impose significant mechanization penalties if serious performance losses are to be avoided. Alternative attitude control mechanization techniques are defined for these cases.

  11. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  12. Method for controlling powertrain pumps

    DOEpatents

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  13. Opportunities for Improved Chagas Disease Vector Control Based on Knowledge, Attitudes and Practices of Communities in the Yucatan Peninsula, Mexico

    PubMed Central

    Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric

    2014-01-01

    Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038

  14. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  15. Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  16. Simulation of flexible appendage interactions with Mariner Venus/Mercury attitude control and science platform pointing

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    A new computer subroutine, which solves the attitude equations of motion for any vehicle idealized as a topological tree of hinge-connected rigid bodies, is used to simulate and analyze science instrument pointing control interaction with a flexible Mariner Venus/Mercury (MVM) spacecraft. The subroutine's user options include linearized or partially linearized hinge-connected models whose computational advantages are demonstrated for the MVM problem. Results of the pointing control/flexible vehicle interaction simulations, including imaging experiment pointing accuracy predictions and implications for MVM science sequence planning, are described in detail.

  17. A robust nonlinear attitude control law for space stations with flexible structural components

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1985-01-01

    In this paper, a nonlinear attitude control law for space stations with flexible structural components is derived using a rigid-body model. This control law, depending on the Cayley-Rodriguez parameters, globally stabilizes the equilibrium of the rigid-body model. The effect of elastic deformations of the flexible structural components on the resulting feedback system dynamics is analyzed. It is found that the system's stability property is highly robust with respect to structural vibrations and inertial variations. The time-domain behavior of the feedback system is studied numerically using a model of a typical space station with flexible solar panels.

  18. Study of Systems Using Inertia Wheels for Precise Attitude Control of a Satellite

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    Systems using inertia wheels are evaluated in this report to determine their suitability for precise attitude control of a satellite and to select superior system configurations. Various possible inertia wheel system configurations are first discussed in a general manner. Three of these systems which appear more promising than the others are analyzed in detail, using the Orbiting Astronomical Observatory as an example. The three systems differ from each other only by the method of damping, which is provided by either a rate gyro, an error-rate network, or a tachometer in series with a high-pass filter. An analytical investigation which consists of a generalized linear analysis, a nonlinear analysis using the switching-time method, and an analog computer study shows that all three systems are theoretically capable of producing adequate response and also of maintaining the required pointing accuracy for the Orbiting Astronomical Observatory of plus or minus 0.1 second of arc. Practical considerations and an experimental investigation show, however, that the system which uses an error-rate network to provide damping is superior to the other two systems. The system which uses a rate gyro is shown to be inferior because the threshold level causes a significant amount of limit-cycle operation, and the system which uses a tachometer with a filter is shown to be inferior because a device with the required dynamic range of operation does not appear to be available. The experimental laboratory apparatus used to investigate the dynamic performance of the systems is described, and experimental results are included to show that under laboratory conditions with relatively large extraneous disturbances, a dynamic tracking error of less than plus or minus 0.5 second of arc was obtained.

  19. Analog neural network control method proposed for use in a backup satellite control mode

    SciTech Connect

    Frigo, J.R.; Tilden, M.W.

    1998-03-01

    The authors propose to use an analog neural network controller implemented in hardware, independent of the active control system, for use in a satellite backup control mode. The controller uses coarse sun sensor inputs. The field of view of the sensors activate the neural controller, creating an analog dead band with respect to the direction of the sun on each axis. This network controls the orientation of the vehicle toward the sunlight to ensure adequate power for the system. The attitude of the spacecraft is stabilized with respect to the ambient magnetic field on orbit. This paper develops a model of the controller using real-time coarse sun sensor data and a dynamic model of a prototype system based on a satellite system. The simulation results and the feasibility of this control method for use in a satellite backup control mode are discussed.

  20. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  1. Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yue, Baozeng

    2017-02-01

    In this paper, the attitude stability of liquid-filled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum, and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are derived from the Hamiltonian. The stability of the coupled system was analyzed by using the energy-Casimir method, and the nonlinear stability theorem of the coupled spacecraft system was also obtained. Through numerical computation, the correctness of the proposed theorem is verified and the boundary curves of the stable region are presented. The increase of the angular velocity and flexible attachment length will weaken the attitude stability, and the change of the filled ratio of liquid fuel tank has a different influence on the stability of the coupled spacecraft, depending on the different conditions. The attitude stability analysis of the coupled spacecraft system in this context is useful for selecting appropriate parameters in the complex spacecraft design.

  2. A robust momentum management and attitude control system for the space station

    NASA Technical Reports Server (NTRS)

    Speyer, J. L.; Rhee, Ihnseok

    1991-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  3. Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller

    NASA Astrophysics Data System (ADS)

    Yan, Ruidong; Wu, Zhong

    2017-04-01

    To achieve the high-precision attitude stabilization for the flexible spacecraft in the presence of space environmental disturbances, unmodeled dynamics, and the disturbances caused by the elastic vibration of flexible appendages, an extended disturbance observer (EDO) based controller is proposed. The proposed controller is formulated by combining EDO and a backstepping feedback controller. EDO is used to estimate the disturbance, which is modeled as an unknown high-order differentiable equation and the rth-order derivative of the disturbance is assumed to be bounded. Compared to the conventional first-order disturbance observer, the higher order EDO offers improvement in estimate accuracy, if the absolute values of poles for EDO transfer function are chosen larger than the frequency content of the disturbance. Then, the output of EDO plus the backstepping feedback controller are applied to stabilize the attitude with high precision by rejecting disturbances for the flexible spacecraft. Finally, numerical simulations have been conducted to verify the effectiveness of the proposed controller.

  4. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  5. Parents' attitude toward multiple vaccinations at a single visit with alternative delivery methods.

    PubMed

    Kaaijk, Patricia; Kleijne, Deborah E; Knol, Mirjam J; Harmsen, Irene A; Ophorst, Olga J A E; Rots, Nynke Y

    2014-01-01

    Last decades, the number of routine childhood vaccinations has increased considerably, which consequently has led to multiple vaccine injections per consultation. Implementation of additional vaccines will probably lead to more than 2 vaccine injections per consult, which might be a barrier for parents to vaccinate their child. A decrease in vaccination coverage, however, increases the risk of disease outbreaks. Less stressful alternative methods for vaccine delivery might lead to an increased acceptance of multiple childhood vaccinations by parents. The present questionnaire study was set up to explore the maximum number of vaccine injections per visit that is acceptable for parents, as well as to gauge parents' attitude toward alternative needle-free methods for vaccine delivery. For this purpose, the parents' opinion toward a jet injector, a patch, a microneedle system, and nasal spray device as methods for vaccine delivery was assessed. The majority of the 1154 participating parents indicated that 3 vaccine injections per visit was perceived as too much. Most participants had a positive attitude with respect to the jet injector and the patch as alternative vaccine delivery method, whereas the microneedle device and an intranasal spray device were not perceived as better than the conventional syringe by the parents. Parents indicated that both the jet injector and the patch might increase their acceptance of giving their children more than 2 vaccinations at the same time. This should encourage vaccine developers and manufacturers to put efforts in developing these delivery methods for their vaccines.

  6. Control method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  7. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  8. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Astrophysics Data System (ADS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-05-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  9. A study of reaction wheel configurations for a 3-axis satellite attitude control

    NASA Astrophysics Data System (ADS)

    Ismail, Zuliana; Varatharajoo, Renuganth

    2010-03-01

    The satellite reaction wheel’s configuration plays also an important role in providing the attitude control torques. Several configurations based on three or four reaction wheels are investigated in order to identify the most suitable orientation that consumes a minimum power. Such information in a coherent form is not summarized in any publication; and therefore, an extensive literature search is required to obtain these results. In addition, most of the available results are from different test conditions; hence, making them difficult for comparison purposes. In this work, the standard reaction wheel control and angular momentum unloading schemes are adopted for all the reaction wheel configurations. The schemes will be presented together with their governing equations, making them fully amenable to numerical treatments. Numerical simulations are then performed for all the possible reaction wheel configurations with respect to an identical reference mission. All the configurations are analyzed in terms of their torques, momentums and attitude control performances. Based on the simulations, the reaction wheel configuration that has a minimum total control torque level is identified, which also corresponds to the configuration with minimum power consumption.

  10. Methanol tailgas combustor control method

    DOEpatents

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  11. Clustering of attitudes towards obesity: a mixed methods study of Australian parents and children

    PubMed Central

    2013-01-01

    Background Current population-based anti-obesity campaigns often target individuals based on either weight or socio-demographic characteristics, and give a ‘mass’ message about personal responsibility. There is a recognition that attempts to influence attitudes and opinions may be more effective if they resonate with the beliefs that different groups have about the causes of, and solutions for, obesity. Limited research has explored how attitudinal factors may inform the development of both upstream and downstream social marketing initiatives. Methods Computer-assisted face-to-face interviews were conducted with 159 parents and 184 of their children (aged 9–18 years old) in two Australian states. A mixed methods approach was used to assess attitudes towards obesity, and elucidate why different groups held various attitudes towards obesity. Participants were quantitatively assessed on eight dimensions relating to the severity and extent, causes and responsibility, possible remedies, and messaging strategies. Cluster analysis was used to determine attitudinal clusters. Participants were also able to qualify each answer. Qualitative responses were analysed both within and across attitudinal clusters using a constant comparative method. Results Three clusters were identified. Concerned Internalisers (27% of the sample) judged that obesity was a serious health problem, that Australia had among the highest levels of obesity in the world and that prevalence was rapidly increasing. They situated the causes and remedies for the obesity crisis in individual choices. Concerned Externalisers (38% of the sample) held similar views about the severity and extent of the obesity crisis. However, they saw responsibility and remedies as a societal rather than an individual issue. The final cluster, the Moderates, which contained significantly more children and males, believed that obesity was not such an important public health issue, and judged the extent of obesity to be

  12. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects

  13. Attitude guidance and control of the navigation satellites at passage of singular orbit sites

    NASA Astrophysics Data System (ADS)

    Fateev, Alexey; Vassilyev, Alexander; Somov, Sergey

    2017-01-01

    The solar-terrestrial reference frame is applied during a navigation satellite flight using onboard measured units of directions on the Sun and Earth, which are beginning in the satellite (Object) mass center. The angle between these units traditionally is named as the angle SOE (Sun - Object - Earth). We consider problems of attitude guidance and control at the spacecraft operation on specific parts of the orbit (singular orbit sites) at following values of the SOE angles — close to 0 deg (small SOE angles) and close to 180 deg (large SOE angles) with a view to minimizing the impact of solar pressure forces on the SC mass center motion.

  14. Structural dynamics and attitude control study of early manned capability space station configurations

    NASA Technical Reports Server (NTRS)

    Ayers, J. Kirk; Cirillo, William M.; Giesy, Daniel P.; Hitchcock, Jay C.; Kaszubowski, Martin J.; Raney, J. Philip

    1987-01-01

    A study was performed to determine the vibration and attitude control characteristics of critical space station configurations featuring early manned capability during buildup from initial user support through the operations capability reference station. Five configurations were selected and were examined thus determining the changes that are likely to occur in the characteristics of the system as the station progresses from a single boom structure to a mature, dual keel, operations capability reference station. Both 9 foot and 5 meter truss bay sizes were investigated. All configurations analyzed were stable; however, the 5 meter truss bay size structure exhibited superior stability characteristics.

  15. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  16. Electric propulsion. [pulsed plasma thruster and electron bombardment ion engine for MSAT attitude control and stationkeeping

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An alternative propulsion subsystem for MSAT is presented which has a potential of reducing the satellite weight by more than 15%. The characteristics of pulsed plasma and ion engines are described and used to estimate of the mass of the propellant and thrusters for attitude control and stationkeeping functions for MSAT. Preliminary estimates indicate that the electric propulsion systems could also replace the large momentum wheels necessary to counteract the solar pressure; however, the fine pointing wheels would be retained. Estimates also show that either electric propulsion system can save approximately 18% to 20% of the initial 4,000 kg mass. The issues that require further experimentation are mentioned.

  17. Attitude control and drag compensation propulsion system for Gravity Probe-B spacecraft

    NASA Technical Reports Server (NTRS)

    Blount, D. H.

    1983-01-01

    An on board propulsion system for attitude control and drag compensation is presented which uses helium boiloff gas from an experiment package dewar as propellant. This boiloff gas would normally be vented nonpropulsively. Use of a small allowable temperature range in the dewar is exploited to store helium and accommodate incompatibilities in dewar heat leak and thruster demand flow over periods of more than one orbit. A relatively detailed thermodynamics analysis of the two phase helium dewar and simulation of pressure loss through the helium distribution system is included.

  18. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  19. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  20. Inverse free steering law for small satellite attitude control and power tracking with VSCMGs

    NASA Astrophysics Data System (ADS)

    Malik, M. S. I.; Asghar, Sajjad

    2014-01-01

    Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.

  1. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  2. Experiments with optical instruments. [attitude control and docking of Soyuz T-4 with Salyut 6

    NASA Technical Reports Server (NTRS)

    Savinykh, V.

    1983-01-01

    Photography was used to document known defects of the periscopic instrument used to check spacecrews in the descent module of the Soyuz T-4. The screen of the altitude control unit was also photographed and revealed glare in the central field of vision. A light filter was installed in the peripheral window to observe the Sun and horizon of the Earth. Checking attitude control by means of polaroids enabled a 5 further advance (500 km) into the zone of shadow. The attitude control unit was used to check the orbital orientation with respect to the vertical during the night segment of flight. A lens screen was used for the emission glow of the atmosphere at an altitude of about 100 km. Docking of the Soyuz T-4 was observed by means of an onboard display, a television camera, and a sighting device. From a distance of about 5 km, the space station could be seen as a bright dot in the sighting device. Docking occurred in shadow.

  3. Simulation and analyses of the aeroassist flight experiment attitude update method

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.

    1991-01-01

    A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.

  4. Simulation and analyses of the aeroassist flight experiment attitude update method

    NASA Astrophysics Data System (ADS)

    Carpenter, J. R.

    1991-06-01

    A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.

  5. The Efficacy of Three Learning Methods Collaborative, Context-Based Learning and Traditional, on Learning, Attitude and Behaviour of Undergraduate Nursing Students: Integrating Theory and Practice

    PubMed Central

    Hasanpour-Dehkordi, Ali

    2016-01-01

    Introduction Communication skills training, responsibility, respect, and self-awareness are important indexes of changing learning behaviours in modern approaches. Aim The aim of this study was to investigate the efficacy of three learning approaches, collaborative, context-based learning (CBL), and traditional, on learning, attitude, and behaviour of undergraduate nursing students. Materials and Methods This study was a clinical trial with pretest and post-test of control group. The participants were senior nursing students. The samples were randomly assigned to three groups; CBL, collaborative, and traditional. To gather data a standard questionnaire of students’ behaviour and attitude was administered prior to and after the intervention. Also, the rate of learning was investigated by a researcher-developed questionnaire prior to and after the intervention in the three groups. Results In CBL and collaborative training groups, the mean score of behaviour and attitude increased after the intervention. But no significant association was obtained between the mean scores of behaviour and attitude prior to and after the intervention in the traditional group. However, the mean learning score increased significantly in the CBL, collaborative, and traditional groups after the study in comparison to before the study. Conclusion Both CBL and collaborative approaches were useful in terms of increased respect, self-awareness, self-evaluation, communication skills and responsibility as well as increased motivation and learning score in comparison to traditional method. PMID:27190926

  6. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  7. Knowledge, attitudes, and practices concerning infection control among travelers between Taiwan and mainland China.

    PubMed

    Chen, Chien Min; Tsai, Jan Sin; Chen, Sheu Hua; Lee, Hong Tau

    2011-09-01

    With an increase in the number of travelers around the world in recent years, widespread efforts to control the human-transmissible influenza and increased surveillance among poultry and humans should be given the highest priority. The purpose of this article is to describe an examination of the passengers traveling via "mini links" from Xiamen (China) to Kinmen (Taiwan) with reference to their knowledge and practice on infection control measures and satisfaction with public health policies. A survey of perceptions, attitudes, and practices was accordingly carried out. Although some research has been conducted on selected health topics and patients, little research has examined the perceptions of normal travelers. The results demonstrate that travelers' perception of risk for infection control was high; by contrast, their practices were not sufficient. The content analysis of this study also provides an empirical starting point for future research into combining travelers' knowledge and practice on disease problems with the worldwide public health policies.

  8. Attitude control and sloshing suppression for liquid-filled spacecraft in the presence of sinusoidal disturbance

    NASA Astrophysics Data System (ADS)

    Zhang, Honghua; Wang, Zeguo

    2016-11-01

    The attitude regulation for a liquid-filled spacecraft in the presence of low frequency sinusoidal disturbance is considered in this paper. The liquid-filled spacecraft is modelled as a rigid body attached with a simple pendulum. A novel control scheme is proposed, which is composed of Active Disturbance Rejection Control (ADRC), Positive Position Feedback (PPF), Extended State Observer (ESO) and Singular Spectrum Analysis (SSA). The unknown sloshing mode could be estimated from the combined ESO and SSA, and accordingly ADRC and PPF controller is designed for the stabilization of the spacecraft. Particularly, the parameters of the disturbance are not required as long as its frequency is lower than the sloshing one. The proposed approach could provide stabilization for the spacecraft, rejection for the disturbance, and active damping for the sloshing. Its effectiveness is validated by numerical simulations.

  9. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Krishnan, Hariharan

    1993-06-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  10. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  11. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  12. Four methods of attitude determination for spin-stabilized spacecraft with applications and comparative results

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1975-01-01

    The attitude of a spacecraft is determined by specifying independent parameters which relate the spacecraft axes to an inertial coordinate system. Sensors which measure angles between spin axis and other vectors directed to objects or fields external to the spacecraft are discussed. For the spin-stabilized spacecraft considered, the spin axis is constant over at least an orbit, but separate solutions based on sensor angle measurements are different due to propagation of errors. Sensor-angle solution methods are described which minimize the propagated errors by making use of least squares techniques over many sensor angle measurements and by solving explicitly (in closed form) for the spin axis coordinates. These methods are compared with star observation solutions to determine if satisfactory accuracy is obtained by each method.

  13. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters

    NASA Astrophysics Data System (ADS)

    Ghasemi, S.; Khorasani, K.

    2015-10-01

    In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.

  14. Adolescents' attitudes about and consumption of low-fat foods: associations with sex and weight-control behaviors.

    PubMed

    Fulkerson, Jayne A; French, Simone A; Story, Mary

    2004-02-01

    The objective of the study was to examine adolescents' attitudes about and consumption of low-fat foods by sex and weight-control behaviors. Ninth- to 12th-grade students (n=1,083) in 20 Minnesota high schools completed mail surveys (response rate=74%) as part of baseline measurements (Fall 2001) in a randomized controlled trial (TACOS: Trying Alternative Cafeteria Options in Schools). Linear models examined attitudes and consumption of low-fat foods by sex and weight-control behaviors. Girls were more likely than boys to report positive attitudes and consumption of low-fat foods (all P<.01). Weight-control practices were associated with more positive attitudes about and higher consumption of low-fat foods. Promoting low-fat snacks to adolescents who are interested in weight control may be an effective component of nutrition intervention programs because these students have more positive attitudes about low-fat foods. Dietitians' efforts to educate adolescents about the benefits and healthfulness of low-fat foods would aid intervention programs.

  15. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Berry, Matthew M.; Naasz, Bo J.; Kim, Hye-Young; Hall, Christopher D.

    2002-01-01

    HokieSat is a NASA Goddard sponsored spacecraft currently being built by students at Virginia Tech. HokieSat is part of the Ionospheric Observation Nanosatellite Formation (ION-F) project. The project involves spacecraft built by three schools: Virginia Tech (VT), Utah State University (USU), and University of Washington (UW). The three spacecraft are similar in design and will perform formation flying demonstrations, and make ionospheric measurements. HokieSat uses Pulsed Plasma Thrusters (PPTs) to maintain its position in the formation. There are two pairs of PPTs on HokieSat; their position on HokieSat's hexagonal cross-section is shown. Thrusters T(sub 2) and T(sub 3) provide translation control, and Thrusters TI and T4 can provide yaw steering. Any thruster can be fired individually. However because they share a capacitor, thrusters T(sub 1) and T(sub 2) or thrusters T(sub 3) and T(sub 4) cannot be fired simultaneously. Thrusters T(sub 2) T(sub 3) can be fired simultaneously, as well as thrusters T(sub 1) and T(sub 4). Each thruster provides an impulse-bit of 56 micronN-s and fires at a rate of 1 Hz. For translation control thrusters T2 and T3 are fired together providing an impulse-bit of 112 micronN-s. All four thrusters are positioned slightly above the center of mass, and therefore exert a torque on the spacecraft. Because there are no thrusters in the zenith-nadir directions, and the communication system requires that the spacecraft remain nadir-pointing, there is no way to thrust in the radial direction. The attitude of HokieSat is controlled by 3 orthogonal magnetic torque coils. Attitude control is achieved by forcing a current through the torque coils, which interacts with the Earth's magnetic field and creates a torque. Due to magnetic field interactions between the coils and PPTs, the two actuator systems cannot be used simultaneously, and any attitude or orbit control must be performed in a piecewise fashion. Power limitations place an additional

  16. Breast-feeding initiation in low-income women: Role of attitudes, support, and perceived control.

    PubMed

    Khoury, Amal J; Moazzem, S Wakerul; Jarjoura, Chad M; Carothers, Cathy; Hinton, Agnes

    2005-01-01

    Despite the documented health and emotional benefits of breast-feeding to women and children, breast-feeding rates are low among subgroups of women. In this study, we examine factors associated with breast-feeding initiation in low-income women, including Theory of Planned Behavior measures of attitude, support, and perceived control, as well as sociodemographic characteristics. A mail survey, with telephone follow-up, of 733 postpartum Medicaid beneficiaries in Mississippi was conducted in 2000. The breast-feeding initiation rate in this population was 38%. Women who were older, white, non-Hispanic, college-educated, married, not certified for the Supplemental Nutrition Program for Women, Infants, and Children, and not working full-time were more likely to breast-feed than formula-feed at hospital discharge. Attitudes regarding benefits and barriers to breast-feeding, as well as health care system and social support, were associated with breast-feeding initiation at the multivariate level. Adding the health care system support variables to the regression model, and specifically support from lactation specialists and hospital nurses, explained the association between breast-feeding initiation and women's perceived control over the time and social constraints barriers to breast-feeding. The findings support the need for health care system interventions, family interventions, and public health education campaigns to promote breast-feeding in low-income women.

  17. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    NASA Technical Reports Server (NTRS)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  18. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and

  19. Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems

    DTIC Science & Technology

    2003-04-01

    solving optimal control problems for trajectory optimization, spacecraft attitude control, jet thruster control, missile guidance and many other... optimal control problems using a pseudospectral direct transcription method. These problems are stated here so that they may be referred to elsewhere...e.g., [7]. 2.3 Prototypical Examples Throughout this thesis two example problems are used to demonstrate various prop- erties associated with solving

  20. Factors associated with Hispanic teenagers' attitude toward the importance of birth control.

    PubMed

    Gibson, J W; Lanz, J B

    1991-10-01

    Attitudes of 240 female Hispanic teenagers in 1984-85 in New York City toward the importance of birth control (ATIBC) are examined as a reflection of the following: demographic factors, educational aspirations, maternal characteristics, religiosity, clarity of longterm goals, and perception of friends' behavior, i.e., the degree, formation, and variation of these factors. The nonrandom sample was recruited from pregnancy prevention classes. The questionnaire was available in English or Spanish. 9 research questions were of interest including whether girls in female-headed households were more likely to be sexually active and have higher ATIBC scores, whether Catholics will have lower ATIBC scores, whether spanish preference speakers have lower ATIBC scores, whether working mothers' children, or more highly educated mothers' children were more sexually active and have higher scores, whether religiosity lowers scores, whether higher educational aspirations increases scores, whether childrens' beliefs that most of the friends use contraceptive is related to higher cores, and whether clearer longterm goals are related to higher scores. The attitude scale was based on Kirby's and Cvetkovich and Grote's work and focused on peer influence, parental attitudes, and strength of intention to use contraceptives. Other measures are identified by specific questions, i.e., clarity of longterm goals is measured by the question: I have a clear idea of where I'm headed in the future, and I know what I want out of life. The results indicated that 4 variables were significantly associated with ATIBC scores: 1) lower scores were associated with teenagers who had mothers with low education (2nd-9th grades), and 2) teenagers who spoke Spanish best; 3) perceived importance of religion was significantly related to lower ATIBC scores such that great importance was related to low scores and little importance was related to high scores; and 4) teenagers' belief about their friends' potential

  1. Effects of a Lifestyle Modification Program on Knowledge, Attitude and Practice of Hypertensive Patients with Angioplasty: A Randomized Controlled Clinical Trial

    PubMed Central

    Jafari, Fahimeh; Shahriari, Mohsen; Sabouhi, Fakhri; Khosravi Farsani, Alireza; Eghbali Babadi, Maryam

    2016-01-01

    ABSTRACT Background: Lack of knowledge, attitude and practice are some of the barriers of having a healthy lifestyle and controlling high blood pressure. This study aimed to determine the effectiveness of a lifestyle modification program on knowledge, attitude and practice of hypertensive patients with angioplasty. Methods: This study was a randomized controlled clinical trial conducted from November to April 2014 on 60 hypertensive patients with angioplasty in Shahid Chamran hospital of Isfahan, Iran. The samples were randomly assigned to two equal groups. Data collection was performed in three stages by a researcher-made questionnaire. The intervention plan was 6 education sessions and then follow up were done by phone call. The gathered data were analyzed via SPSS (V.20), using t-test, Chi-square, repeated measurement, and post hoc LSD test and ANOVA statistics. Results: The mean score of knowledge, attitude and practice in the experimental group immediately after the intervention was 77.8±7.2, 88.3±6.4 and 86.2±6.5, respectively and one month after the intervention was 80.8±7.4, 91.1±3.5 and 92.5±2.2, respectively. But in the control group, the mean score of knowledge, attitude and practice immediately after the intervention (34.90±11.23, 61.11±6.28, and 38.64±7.15) and one month after the intervention was (38.64±7.15, 59.56±6.31 and 37.27±7.26. Conclusion: Lifestyle modification program can be effective in promoting the knowledge, attitude and practice of hypertensive patients with angioplasty. Nurses can use this program in their care provision programs for these patients. Trial Registration Number:IRCT2015062420912N3 PMID:27713892

  2. Effect of locus of control on disordered eating in athletes: the mediational role of self-regulation of eating attitudes.

    PubMed

    Scoffier, S; Paquet, Y; d'Arripe-Longueville, F

    2010-08-01

    This study examined the influence of locus of control on disordered eating as mediated by the self-regulation of eating attitudes. The assessment instruments were adapted for athletes as the entire sample of 179 volunteer University students (M(age)=21.12; SD=2.87) were all regularly involved in competition. The results showed that (a) an internal locus of control had a positive influence on the self-regulation of eating attitudes in social interaction contexts; (b) self-regulatory eating attitudes had a negative influence on disordered eating in contexts of negative affect, social interaction, and lack of anticipation of consequences on performance; and (c) an internal locus of control had an influence on disordered eating through the mediation of self-regulatory eating attitudes in social interaction contexts, and an external locus of control attributed to the coach and sports friends had an influence on disordered eating through the mediation of self-regulatory eating attitudes in contexts of negative affect, social interaction and lack of anticipation of consequences on performance. This study, combined with an earlier study from Scoffier, Maïano, and d'Arripe-Longueville (2009) on the antecedents of athletes' eating disorders, suggests the powerful impact of the social environment on the development of disordered eating in athletes.

  3. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    NASA Technical Reports Server (NTRS)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  4. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  5. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    NASA Astrophysics Data System (ADS)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  6. Analysis and experiments for delay compensation in attitude control of flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Palmerini, Giovanni B.; Leonangeli, Nazareno; Gasbarri, Paolo

    2014-11-01

    Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on-off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid - attitude - and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.

  7. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  8. Effects of cooperative learning plus inquiry method on student learning and attitudes: a comparative study for engineering economic classrooms

    NASA Astrophysics Data System (ADS)

    Salehizadeh, M. Reza; Behin-Aein, Noureddin

    2014-03-01

    In the Iranian higher education system, including engineering education, effective implementation of cooperative learning is difficult because classrooms are usually crowded and the students never had a formal group working background in their previous education. In order to achieve the benefits of cooperative learning in this condition, this paper proposes a combination of cooperative learning and inquiry method. The method is implemented by grouping students in a way that the learning procedure is done in non-official class sessions by each group, while the inquiry method is done in the regular programmed class sessions. The study is performed in Islamic Azad University and the methods are implemented in two engineering economic classes with different numbers of students in each working group. The results are compared with a control class in which traditional teaching style is implemented. The results of analysis show simultaneous improvement of learning and behavioural attitudes of the students with cooperative learning plus inquiry method in the classroom with a fewer number of students in each working group.

  9. The Effect of Creative Drama Method on Pre-Service Classroom Teachers' Writing Skills and Attitudes towards Writing

    ERIC Educational Resources Information Center

    Erdogan, Tolga

    2013-01-01

    The aim of the study is to explore the effect of the creative drama method on pre-service classroom teachers' writing skills and attitudes towards writing. Additionally, the views of the pre-service teachers concerning the creative drama method were also investigated in the study. The participants of the study were 24 pre-service teachers studying…

  10. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  11. Relations of Children's Effortful Control and Teacher-Child Relationship Quality to School Attitudes in a Low-Income Sample.

    PubMed

    Silva, Kassondra M; Spinrad, Tracy L; Eisenberg, Nancy; Sulik, Michael J; Valiente, Carlos; Huerta, Snjezana; Edwards, Alison; Eggum, Natalie D; Kupfer, Anne S; Lonigan, Christopher J; Phillips, Beth M; Wilson, Shauna B; Clancy-Menchetti, Jeanine; Landry, Susan H; Swank, Paul R; Assel, Michael A; Taylor, Heather B

    2011-01-01

    RESEARCH FINDINGS: The purpose of this study was to examine the relations of children's effortful control and quality of relationships with teachers to school attitudes longitudinally in an ethnically diverse and economically disadvantaged sample. Data were collected as part of a larger intervention project during mid-fall, winter, and late spring (ns = 823, 722, and 758, respectively) for 2 cohorts of 3- to 5-year-olds (collected during 2 different school years). Children's effortful control was assessed in the fall with parents' and teachers' reports and 2 behavioral measures. Teacher-child relationship quality was assessed mid-year with teachers' reports of closeness and conflict. Attitudes toward school were assessed in late spring using teachers' and students' reports of school avoidance and liking. Effortful control, in general, was positively correlated with teacher-child closeness and school liking and negatively correlated with conflict and school avoidance. Using structural equation modeling and controlling for sex and ethnicity, we found that effortful control was positively related to teacher-child relationship quality, which in turn was positively related to school attitudes. Furthermore, the relation of effortful control to school attitudes was mediated by teacher-child relationship quality. PRACTICE OR POLICY: Results provide evidence for the importance of relational processes that take place within the classroom context and have implications for teachers and clinicians working to increase school success in ethnic minority and low-income children.

  12. Knowledge-attitude-practice survey among Portuguese gynaecologists regarding combined hormonal contraceptives methods.

    PubMed

    Bombas, Teresa; Costa, Ana Rosa; Palma, Fátima; Vicente, Lisa; Sá, José Luís; Nogueira, Ana Maria; Andrade, Sofia

    2012-04-01

    ABSTRACT Objectives To evaluate knowledge, attitude and practices of Portuguese gynaecologists regarding combined hormonal contraceptives. Methods A cross-sectional survey was conducted among 303 gynaecologists. Results Ninety percent of the gynaecologists considered that deciding on contraceptive methods is a process wherein the woman has her say. Efficacy, safety and the woman's preference were the major factors influencing gynaecologists, while efficacy, tolerability and ease of use were the major factors perceived by the specialists to influence the women's choice. Gynaecologists believed that only 2% of women taking the pill were 100% compliant compared to 48% of those using the patch and 75% of those using the ring. The lower risk of omission was the strong point for the latter methods. Side effects were the main reason to change to another method. Vaginal manipulation was the most difficult topic to discuss. Conclusions Most gynaecologists decided with the woman on the contraceptive method. The main reasons for the gynaecologist's recommendation of a given contraceptive method and the women's choice were different. Counselling implies an open discussion and topics related to sexuality were considered difficult to discuss. Improving communication skills and understanding women's requirements are critical for contraceptive counselling.

  13. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  14. Saudi arabian students' chemistry achievement and science attitudes stemming from lecture-demonstration and small group teaching methods

    NASA Astrophysics Data System (ADS)

    Harty, Harold; Al-Faleh, Nasser

    The study was designed to determine differences between two chemistry teaching methods on students' chemistry achievement and attitudes toward science. The two methods were the large lecture-demonstration and small-group laboratory approaches to teaching chemistry. The subjects were 74 eleventh-grade Saudi Arabian students randomly assigned to the two treatment groups. The findings revealed that the small-group laboratory students exhibited significantly greater chemistry achievement than students in the lecture-demonstration group on both immediate and delayed posttests. The results also indicated that students taught by the lab approach possessed more desirable attitudes toward science.

  15. Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation

    NASA Astrophysics Data System (ADS)

    Hatten, Noble; Russell, Ryan P.

    2016-12-01

    A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.

  16. FUSE Performance and Data Processing Under One-Wheel Attitude Control

    NASA Astrophysics Data System (ADS)

    Ake, T. B.; Boyer, R. M.; Andersson, B.-G.; Blair, W. P.; Dixon, W. V.; Kaiser, M. E.; Kruk, J. W.; Moos, H. W.; Sahnow, D. J.

    2005-12-01

    After the failure of the roll reaction wheel on the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in December 2004, we have developed a new control system to point the spacecraft with three magnetic torquer bars (MTBs) and the remaining skew reaction wheel. Building on earlier two-wheel operations and gyroless development, we modified the attitude control system to use the MTBs to control two of the satellite axes. In this mode, our initial jitter performance has increased from 1 to about 2 arcseconds RMS, which is well within the 30x30 arcsec LWRS aperture and still smaller than the 4x20 arcsec MDRS aperture. Pointing excursions due to gravity gradient torques on the satellite are more numerous than when using the two-wheel mode. Improvements in the CALFUSE pipeline to correct photon positions for pointing offsets work well to maintain spectral resolution for long time-tagged observations, while short histogram exposures of bright targets are mostly unaffected. Further enhancements in pointing control are expected as we continue to gain experience with the new system. We will describe the new control scheme and provide an update of its performance. This work is supported by NASA Contract NAS5-32985 to The Johns Hopkins University.

  17. A combined Earth scanner and momentum wheel for attitude determination and control of small spacecraft

    NASA Technical Reports Server (NTRS)

    Bialke, Bill

    1992-01-01

    In order to satisfy the stringent cost and power requirements of small satellites, an advanced SCANWHEEL was designed, built, and qualified by ITHACO, Inc. The T-SCANWHEEL is a modular momentum/reaction wheel with an integral conical Earth scanner. The momentum wheel provides momentum bias and control torques about the pitch axis of a spacecraft. An angled scan mirror coupled to the rotating shaft of the momentum wheel provides a conical scan of the field-of-view of an infrared sensor to provide pitch-and-roll attitude information. By using the same motor and bearings for the momentum wheel and Earth scanner, the overall power consumption is reduced and the system reliability is enhanced. The evolution of the T-SCANWHEEL is presented, including design ground rules, tradeoff analyses, and performance results.

  18. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Carrington, C. K.

    1995-01-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  19. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Astrophysics Data System (ADS)

    Woronowicz, M. S.

    2011-05-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm3. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  20. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  1. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  2. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Astrophysics Data System (ADS)

    Polites, M. E.; Carrington, C. K.

    1995-05-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  3. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    SciTech Connect

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  4. Cassini Attitude Control Operations - Guidelines Levied on Science to Extend Reaction Wheel Life

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Carson O.

    2011-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe, which descended through the Titan atmosphere (Saturn's largest moon) and landed on its surface on January 14, 2005. The Cassini mission has recently been approved by NASA to continue through September of 2017. This 7-year extension is called the Solstice mission and it presents challenges to the spacecraft operations team and its ability to maintain the health of the spacecraft. To keep the spacecraft healthy for 7 more years, the spacecraft team must carefully manage hydrazine use (about 48% of the 132 kg launch load remains as of January 2011). A vital part of conserving hydrazine is to use the reaction wheel assembly (RWA) control system for precise pointing and slews wherever possible. In any given week, the Cassini spacecraft is commanded to use RWA control about 99% of the time, with about 1% of the time requiring reaction control system (RCS) thruster control (to perform Delta V course corrections or to bias the RWA momentum). Such extensive use of the RWA hardware throughout the mission requires that the RWAs be operated in a way that minimizes degradation in the RWA electronics, DC motor, and spin bearing for each reaction wheel. Three consumables in particular have been identified for the RWAs: (1) Total number of revolutions for each RWA. (2) Time spent at very low wheel speeds. At these low speeds, good elasto-hydrodynamic (EHD) film lubrication may be compromised. (3) Total number of on/off power cycles. The second of these consumables, minimizing the time spent at very low wheel speeds, is especially important to keep the spin bearing healthy and well-lubricated. These consumables are actively managed by the attitude control operations team throughout the mission. One vital management

  5. Older Adults and Emerging Digital Service Delivery: A Mixed Methods Study on Information and Communications Technology Use, Skills, and Attitudes.

    PubMed

    Siren, Anu; Knudsen, Sine Grønborg

    2017-01-01

    Based on data from a survey (n = 3291) and 14 qualitative interviews among Danish older adults, this study investigated the use of, and attitudes toward, information communications technology (ICT) and the digital delivery of public services. While age, gender, and socioeconomic status were associated with use of ICT, these determinants lost their explanatory power when we controlled for attitudes and experiences. We identified three segments that differed in their use of ICT and attitudes toward digital service delivery. As nonuse of ICT often results from the lack of willingness to use it rather than from material or cognitive deficiencies, policy measures for bridging the digital divide should focus on skills and confidence rather than on access or ability.

  6. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  7. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint.

    PubMed

    Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong

    2015-12-02

    For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  8. A quantitative analysis of attitudes and behaviours concerning sustainable parasite control practices from Scottish sheep farmers.

    PubMed

    Jack, Corin; Hotchkiss, Emily; Sargison, Neil D; Toma, Luiza; Milne, Catherine; Bartley, David J

    2017-04-01

    Nematode control in sheep, by strategic use of anthelmintics, is threatened by the emergence of roundworms populations that are resistant to one or more of the currently available drugs. In response to growing concerns of Anthelmintic Resistance (AR) development in UK sheep flocks, the Sustainable Control of Parasites in Sheep (SCOPS) initiative was set up in 2003 in order to promote practical guidelines for producers and advisors. To facilitate the uptake of 'best practice' approaches to nematode management, a comprehensive understanding of the various factors influencing sheep farmers' adoption of the SCOPS principles is required. A telephone survey of 400 Scottish sheep farmers was conducted to elicit attitudes regarding roundworm control, AR and 'best practice' recommendations. A quantitative statistical analysis approach using structural equation modelling was chosen to test the relationships between both observed and latent variables relating to general roundworm control beliefs. A model framework was developed to test the influence of socio-psychological factors on the uptake of sustainable (SCOPS) and known unsustainable (AR selective) roundworm control practices. The analysis identified eleven factors with significant influences on the adoption of SCOPS recommended practices and AR selective practices. Two models established a good fit with the observed data with each model explaining 54% and 47% of the variance in SCOPS and AR selective behaviours, respectively. The key influences toward the adoption of best practice parasite management, as well as demonstrating negative influences on employing AR selective practices were farmer's base line understanding about roundworm control and confirmation about lack of anthelmintic efficacy in a flock. The findings suggest that improving farmers' acceptance and uptake of diagnostic testing and improving underlying knowledge and awareness about nematode control may influence adoption of best practice behaviour.

  9. Some Effects of Teacher Attitudes and Current Methods Upon Second Language Learners.

    ERIC Educational Resources Information Center

    Wissot, Jay

    The author suggests that teachers of English as a second language unconsciously and unwittingly often display negative attitudes towards the language and culture of their students. These attitudes can be clothed in rather authoritarian modes of behavior. They are the products of linguistic and cultural misunderstandings on the teacher's part. It…

  10. Attitude of Students Towards Cooperative Learning Methods at Knox Community College: A Descriptive Study

    ERIC Educational Resources Information Center

    McLeish, Keritha

    2009-01-01

    The study was conducted to determine the attitude of students towards cooperative learning at a community college. Questionnaires were administered to ninety (90) students and twelve (12) lecturers, in-depth interviews were conducted with three lecturers and two classes were observed to investigate the students attitude towards cooperative…

  11. Linguistically Diverse Students and Special Education: A Mixed Methods Study of Teachers' Attitudes, Coursework, and Practice

    ERIC Educational Resources Information Center

    Greenfield, Renee A.

    2011-01-01

    While the number of linguistically diverse students (LDS) grows steadily in the U.S., schools, research and practice to support their education lag behind (Lucas & Grinberg, 2008). Research that describes the attitudes and practices of teachers who serve LDS and how those attitudes and practice intersect with language and special education is…

  12. A Survey to Identify University Student Attitudes toward the Role of Government in Controlling Human Population Growth.

    ERIC Educational Resources Information Center

    Yost, Thomas E.

    The purpose of this study was to obtain, measure, and evaluate the attitudes of postsecondary students on domestic population issues in order to determine the extent of support for a national government-controlled population stabilization program. A total of 125 students enrolled in either the American government or general sociology course at the…

  13. Predicting Participation in Group Parenting Education in an Australian Sample: The Role of Attitudes, Norms, and Control Factors

    ERIC Educational Resources Information Center

    White, Katherine M.; Wellington, Larne

    2009-01-01

    We examined the theory of planned behavior (TPB) in predicting intentions to participate in group parenting education. One hundred and seventy-six parents (138 mothers and 38 fathers) with a child under 12 years completed TPB items assessing attitude, subjective norms, perceived behavioral control (PBC), and two additional social influence…

  14. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  15. Further development of the attitude difference method for estimating deflections of the vertical in real time

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhou, Zebo; Li, Yong; Rizos, Chris; Wang, Xingshu

    2016-07-01

    An improvement of the attitude difference method (ADM) to estimate deflections of the vertical (DOV) in real time is described in this paper. The ADM without offline processing estimates the DOV with a limited accuracy due to the response delay. The proposed model selection-based self-adaptive delay feedback (SDF) method takes the results of the ADM as the a priori information, then uses fitting and extrapolation to estimate the DOV at the current epoch. The active region selection factor F th is used to take full advantage of the Earth model EGM2008 and the SDF with different DOV exhibitions. The factors which affect the DOV estimation accuracy are analyzed and modeled. An external observation which is specified by the velocity difference between the global navigation satellite system (GNSS) and the inertial navigation system (INS) with DOV compensated is used to select the optimal model. The response delay induced by the weak observability of an integrated INS/GNSS to the violent DOV disturbances in the ADM is compensated. The DOV estimation accuracy of the SDF method is improved by approximately 40% and 50% respectively compared to that of the EGM2008 and the ADM. With an increase in GNSS accuracy, the DOV estimation accuracy could improve further.

  16. Peer Instruction in Introductory Physics: A Method to Bring about Positive Changes in Students' Attitudes and Beliefs

    ERIC Educational Resources Information Center

    Zhang, Ping; Ding, Lin; Mazur, Eric

    2017-01-01

    This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three…

  17. A Comparative Study on Power Point Presentation and Traditional Lecture Method in Material Understandability, Effectiveness and Attitude

    ERIC Educational Resources Information Center

    Sewasew, Daniel; Mengestle, Missaye; Abate, Gebeyehu

    2015-01-01

    The aim of this study was to compare PPT and traditional lecture method in material understandability, effectiveness and attitude among university students. Comparative descriptive survey research design was employed to answer the research questions raised. Four hundred and twenty nine participants were selected randomly using stratified sampling…

  18. Attitudes toward Using Social Networking Sites in Educational Settings with Underperforming Latino Youth: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Howard, Keith E.; Curwen, Margie Sauceda; Howard, Nicol R.; Colón-Muñiz, Anaida

    2015-01-01

    The researchers examined the online social networking attitudes of underperforming Latino high school students in an alternative education program that uses technology as the prime venue for learning. A sequential explanatory mixed methods study was used to cross-check multiple sources of data explaining students' levels of comfort with utilizing…

  19. Prospective Science Teachers' Attitudes and Views of Using Journal Writing in the "Methods of Teaching Science" Course

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah

    2014-01-01

    The aim of this study was to investigate the attitudes of prospective science teachers at Sultan Qaboos University towards and their views about using journal writing in the Methods of Teaching Science course. Twenty-six prospective science teachers were asked to write about each topic in the course in their journal to show their understanding of…

  20. Control-oriented modelization of a satellite with large flexible appendages and use of worst-case analysis to verify robustness to model uncertainties of attitude control

    NASA Astrophysics Data System (ADS)

    Gasbarri, Paolo; Monti, Riccardo; Campolo, Giovanni; Toglia, Chiara

    2012-12-01

    The design of large space structures (LSS) requires the use of design and analysis tools that include different disciplines. For such a kind of spacecrafts it is in fact mandatory that mechanical design and guidance navigation and control (GNC) design are developed within a common framework. One of the key-points in the development of LSS is related to the dynamic phenomena. These phenomena usually lead to two different interpretations. The former one is related to the overall motion of the spacecraft, i.e., the motion of the centre of gravity and motion around the centre of gravity. The latter one is related to the local motion of the elastic elements that leads to oscillations. These oscillations have in turn a disturbing effect on the motion of the spacecraft. From an engineering perspective, the structural model of flexible spacecrafts is generally obtained via FEM involving thousands of degrees of freedom (DOFs). Many of them are not significant from the attitude control point of view. One of the procedures to reduce the structural DOFs is tied to the modal decomposition technique. In the present paper a technique to develop a control-oriented structural model will be proposed. Starting from a detailed FE model of the spacecraft and using a special modal condensation approach, a continuous model is defined. With this transformation the number of DOFs necessary to study the coupled elastic/rigid dynamic is reduced. The final dynamic model will be suitable for the control design implementation. In order to properly design a satellite controller, it is important to recall that the characteristic parameters of the satellite are uncertain. The effect that uncertainties have on control performance must be investigated. A possible solution is that, after the attitude controller is designed on the nominal model, a Verification and Validation (V&V) process is performed to guarantee a correct functionality under a large number of scenarios. The V&V process can be very