Science.gov

Sample records for attitude controlling system

  1. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  2. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1982-01-01

    A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.

  3. Three axis attitude control system

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1988-01-01

    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

  4. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  5. Seasat-A attitude control system

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Rodden, J. J.; Hendricks, R. J.

    1977-01-01

    The Seasat-A attitude control system controls the attitude of the satellite system during injection into final circular orbit after Atlas boost, during orbit adjust and trim phases, and throughout the 3-year mission. Ascent and injection guidance and attitude control are provided by the Agena spacecraft with a gyrocompassed mass expulsion system. On-orbit attitude control functions are performed by a system that has its functional roots in the gravity-gradient momentum bias technology. The paper discusses hardware, control laws, and simulation results.

  6. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1983-01-01

    Application of modular control techniques to the attitude control of a prototype flexible spacecraft and a prototype flexible space platform was further developed by determining numerical values for the physical parameters of a four body approximation of the MSFC/hybrid deployable truss incorporated in the space platform model, generating sensitivity coefficients for the model of the flexible spacecraft, evaluating the changes in the digital computer simulation of the flexible spacecraft resulting from the addition of another rigid body to the model and comparing attitude control effectiveness with actuators on more than one rigid body of the model with that for the case in which the actuators were restricted to one body.

  7. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2010-01-01

    The importance of accurately pointing spacecraft to our daily lives is pervasive, yet somehow escapes the notice of most people. In this section, we will summarize the processes and technologies used in designing and operating spacecraft pointing (i.e. attitude) systems.

  8. Miniaturized attitude control system for nanosatellites

    NASA Astrophysics Data System (ADS)

    Candini, Gian Paolo; Piergentili, Fabrizio; Santoni, Fabio

    2012-12-01

    A miniaturized attitude control system suitable for nanosatellites, developed using only commercial off-the-shelf components, is described in the paper. It is a complete and independent system to be used on board nanosatellites, allowing automated attitude control. To integrate this system into nanosatellites such as Cubesats its size has been reduced down to a cube of side about 5 cm. The result is a low cost attitude control system built with terrestrial components, integrating three micro magnetotorquers, three micro reaction wheels, three magnetometers and redundant control electronics, capable of performing automatics operations on request from the ground. The system can operate as a real time maneuvering system, executing commands sent from the ground or as a standalone attitude control system receiving the solar array status from a hosting satellite and the satellite ephemeris transmitted from the ground station. The main characteristics of the developed system and test results are depicted in this paper.

  9. Adaptive mass expulsion attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)

    2001-01-01

    An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.

  10. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  11. A magnetic control system for attitude acquisition

    NASA Technical Reports Server (NTRS)

    Stickler, A. C.

    1972-01-01

    A spacecraft magnetic attitude acquisition system is reported that is capable of automatically despinning a satellite from arbitrarily high rates around any axis and provides terminal orientation that makes capture by conventional fine control attitude control systems routine. The system consists of a 3-axis magnetometer, a set of 3 orthogonal magnets, and appropriate control logic. A well-configured system results in despin times of the order of 5 orbits per rpm for spacecraft in low earth orbits. Following despin, terminal orientation is achieved after another one to three orbits, depending on the capture range of the associated fine control system.

  12. Attitude Determination and Control Systems

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Eterno, John

    2011-01-01

    designing and operating spacecraft pointing (i.e. attitude) systems.

  13. Orbital maneuvering vehicle attitude control system

    NASA Astrophysics Data System (ADS)

    Parry, Paul G.; Golub, Alex D.; Southwood, Dana M.

    The NASA/TRW Orbital Maneuvering Vehicle (OMV) will be one of the most versatile spacecraft ever built. Designed to extend the reach of the Space Shuttle, the OMV will be required to perform orbit transfers and proximity operations both alone and with payloads of various sizes. It will be able to rendezvous, dock with, and retrieve or deploy other spacecraft, using both automatic and remote man-in-the-loop techniques. Its multiple mission and operational requirements place a heavy burden on the attitude control system (ACS), which must be equally versatile to be successful. The ACS is being designed to operate in four distinct operational modes, during which three separate propulsion systems are utilized by two distinct control laws to perform any attitude control task required of the OMV. The preliminary designs of these two control laws have been evaluated by both linear stability analysis and nonlinear simulation.

  14. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  15. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  16. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  17. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  18. Spacecraft attitude and velocity control system

    NASA Technical Reports Server (NTRS)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  19. All sky pointing attitude control system

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Murphy, J. P. (Inventor)

    1977-01-01

    In a strapped-down gyroscope space vehicle attitude control system, a method and apparatus are provided for gyro drift and input axis misalignment error compensation employing a sun and a star tracker and preselected vehicle calibration maneuvers. The outputs of two-axis strapped-down gyroscopes nominally aligned with the optical axis of the sun and star trackers are measured to provide gyro drift calibration, roll, pitch and yaw axis scale factors and values corresponding to the degree of nonorthogonality between the roll axis and the pitch and yaw gyro input axes and the nonorthogonality of the roll and pitch axes relative to the yaw axis. The vehicle is then rolled and yawed through precomputed angles as modified by the calibrated data stored in a digital computer, and acquires a target without recourse to external references.

  20. MSFC Skylab attitude and pointing control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1974-01-01

    The results of detailed performance analyses of the attitude and pointing control system in-orbit hardware and software on Skylab are reported. Performance is compared with requirements, test results, and prelaunch predictions. A brief history of the altitude and pointing control system evolution leading to the launch configuration is presented. The report states that the attitude and pointing system satisfied all requirements.

  1. The Spartan attitude control system - Control electronics assembly

    NASA Technical Reports Server (NTRS)

    Stone, R. W.

    1986-01-01

    The Spartan attitude control system (ACS) represents an evolutionary development of the previous STRAP-5 ACS through the use of state-of-the-art microprocessors and hardware. Despite a gyro rate signal noise problem that caused the early depletion of argon gas, the Spartan 101 experiment was able to collect several hours of data from two targets. Attention is presently given to the ACS sequencer module, sensor interface box, valve driver box, control electronics software, jam tables, and sequencer programs.

  2. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment

  3. The Saab spinning rocket attitude control (SPINRAC): An attitude control system for obtaining low impact dispersion

    NASA Astrophysics Data System (ADS)

    Hall, L.; Helmersson, A.

    The Spining Rocket Attitude Control system, (SPINRAC) system for three-stage sounding rocket impact dispersion reduction is described. The SPINRAC points the spin-stabilized third stage to a predetermined attitude, prior to ignition. The SPINRAC uses a roll-stabilized gyro platform for inertial attitude information, processes the signals in a microcomputer, and uses a cold-gas system for actuation. Using control theory the guidance time can be kept small and thrust force low. Typically a reorientation angle of 20 deg and a coning half-angle of 10 deg is controlled to an accuracy of 0.4 deg 3-sigma value within 20 sec. Using the SPINRAC on a three-stage sounding rocket (Black Brant X, Skylark 12) makes it possible to reach apogee altitudes of 1000 km while maintaining low impact dispersion.

  4. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  5. The SAS-3 attitude control system

    NASA Technical Reports Server (NTRS)

    Mobley, F. F.; Konigsberg, R.; Fountain, G. H.

    1975-01-01

    SAS-3 uses a reaction wheel to provide torque to control the spin rate. If the wheel speed becomes too great or too small, it must be restored to its nominal rate by momentum dumping which is done by magnetic torquing against the earth's magnetic field by the satellite's magnetic coils. A small rate-integrating gyro is used to sense the spin rate so that closed loop control of the spin rate can be achieved. These various systems are described in detail including the reaction wheel system, the gyro system, along with control modes (spin rate control and the star lock mode).

  6. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  7. A system for spacecraft attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.

    1974-01-01

    A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

  8. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Astrophysics Data System (ADS)

    Azzolini, John D.; McGlew, David E.

    1990-12-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  9. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  10. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  11. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  12. Laboratory Control System's Effects on Student Achievement and Attitudes

    ERIC Educational Resources Information Center

    Cicek, Fatma Gozalan; Taspinar, Mehmet

    2016-01-01

    Problem Statement: The current study investigates whether the learning environment designed based on the laboratory control system affects the academic achievement, the attitude toward the learning-teaching process and the retention of the students in computer education. Purpose of Study: The study aims to identify the laboratory control system…

  13. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  14. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  15. A spacecraft integrated power/attitude control system

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Jacobs, K. L.

    1974-01-01

    A study to determine the viability and application of a system capable of performing the dual function of power storage/generation and attitude control has been conducted. Results from the study indicate that an integrated power/attitude control system (IPACS) can satisfy future mission requirements while providing significant savings in weight, volume, and cost over conventional systems. A failure-mode configuration of an IPACS was applied to a shuttle-launched RAM free-flyer and simulated using make-do hardware linked to a hybrid computer. Data from the simulation runs indicate that control interactions resulting from heavy power demands have minimal effect on system control effectiveness. The system was shown to be capable of meeting the stringent pointing requirements of 1 arc-second while operating under the influence of an orbital disturbance environment and during periods of momentum variations imposed by energy transfer requirements.

  16. Low cost attitude control system reaction wheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  17. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  18. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  19. H∞ control option for a combined energy and attitude control system

    NASA Astrophysics Data System (ADS)

    Ban, Ying Siang; Varatharajoo, Renuganth

    2013-10-01

    A combined energy and attitude control system (CEACS) is a hybrid system that uses flywheels to store energy and provide a simultaneous attitude control in satellites. Previous work appeared in Advances in Space Research (ASR) employing the proportional-derivative (PD) control has proven that CEACS works well and achieves its mission requirement. However, the in-orbit system performance uncertainties present a challenge to the CEACS attitude pointing capability. Thus, this paper complements the previous mentioned work, and focuses on employing the H∞ optimal attitude control solution for the CEACS attitude control enhancement. The mathematical model and numerical treatments for the CEACS H∞ control architecture are presented. Numerical results show that a better attitude pointing accuracy at least up to 0.043° can be achieved with the H∞ control method.

  20. Wheel configurations for combined energy storage and attitude control systems

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1985-01-01

    Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.

  1. Wheel configurations for combined energy storage and attitude control systems

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1985-01-01

    Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.

  2. Attitude control system testing on SCOLE

    NASA Technical Reports Server (NTRS)

    Shenhar, J.; Sparks, D., Jr.; Williams, J. P.; Montgomery, R. C.

    1988-01-01

    This paper presents implementation of two control policies on SCOLE (Space Control Laboratory Experiment), a laboratory apparatus representing an offset-feed antenna attached to the Space Shuttle by a flexible mast. In the first case, the flexible mast was restrained by cables, permitting modeling of SCOLE as a rigid-body. Starting from an arbitrary state, SCOLE was maneuvered to a specified terminal state using rigid-body minimum-time control law. In the second case, the so called single step optimal control (SSOC) theory is applied to suppress vibrations of the flexible mast mounted as a cantilever beam. Based on the SSOC theory, two parameter optimization algorithms were developed.

  3. Laser Gyro Attitude Control System Feasibility Study.

    DTIC Science & Technology

    1987-04-24

    GYROS (Distinguishable by method used to circumvent lock-in phenomenon) M ECHANICAL DITHER ,. MAGNETIC MIRROR DILAG (MULTI-OSCILLATOR) Figure 1...by a multiple transit of a light beam within a closed optical cavity (a three- mirror system). The beam traverses the cavity continuously; after each...circulation a small fraction of the beam intensity is output at one of the mirrors . Each transit incurs a phase % %0 ? % o I" us ol *..~% % %~*,~*)*f

  4. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  5. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  6. Passive Magnetic Attitude Control System for the Munin Nanosatellite

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Penkov, V. I.

    2002-03-01

    The instrumental and applied problems related to the design of a passive magnetic attitude control system for the Munin nanosatellite are considered. The system is constructed from a strong permanent magnet and a set of hysteresis rods. These rods are made of magnetically soft material using a special technology, and they allow us to support the satellite orientation with respect to the local magnetic field vector with a given accuracy and time response. By using asymptotic and numerical methods, we investigate the satellite dynamics for different models of hysteresis. The issues concerning the arrangement of the rods and their interaction with the fields of permanent magnets mounted onboard the satellite are discussed.

  7. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  8. Integrated power and single axis attitude control system with two flywheels

    NASA Astrophysics Data System (ADS)

    Han, Bangcheng

    2012-05-01

    The existing research of the integrated power and attitude control system (IPACS) in satellites mainly focuses on the IPACS concept, which aims at solving the coupled problem between the attitude control and power tracking. In the IPACS, the configuration design of IPACS is usually not considered, and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved. In this paper, an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed. The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved. A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed, which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table. Both DC bus and a single axis attitude are the regulation goals. An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems. The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller. The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels. The proposed research provides theory basis for design of the IPACS.

  9. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  10. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  11. Attitude Control System Design for Fast Rest-to-Rest Attitude Maneuver

    NASA Astrophysics Data System (ADS)

    Sakai, S.-I.; Bando, N.; Hashimoto, T.; Murata, Y.; Mochizuki, N.; Nakamura, T.; Kamiya, T.; Ogura, N.; Maeda, K.

    2009-08-01

    The VSOP-2 project is a new space VLBI (very long baseline interferometer) radio astronomy mission, proposed to inherit the fruitful success of the VSOP mission with the HALCA satellite. One of the most important advances of VSOP-2 is the use of higher observation frequency, which requires fast alternating observation of a target and calibrator in order to remove the phase changes caused by the atmosphere. Typically, both sources must be observed within 60 sec, and this switching must be carried out over many hours. ``ASTRO-G" is a satellite planned for this VSOP-2 project, and one of technical challenges is to achieve such fast rest-to-rest maneuvers, and the proper hardware must be selected to account for this fast attitude maneuver. The controlled momentum gyro (CMG) is an actuator that provides high torque with small power consumption, and the fiber optical gyro is a sensor able to measure the high angular velocity with excellent accuracy. This paper first describes these components for attitude control. Another challenge of the ASTRO-G's attitude control system is to design the switching for the flexible mode of the satellite structure, containing a large deployable reflector and a large solar panel. These produce resonances with fast switching and these must be attenuated. To achieve high agility in a flexible satellite, the controller design is crucial. One design feature is a novel robust input shaper named ``nil mode exciting profiler". Another feature is the feedback controller design. The paper describes these features and other potential problems with fast switching..

  12. Singularity-free integral-augmented sliding mode control for combined energy and attitude control system

    NASA Astrophysics Data System (ADS)

    Eshghi, Samira; Varatharajoo, Renuganth

    2017-01-01

    A combined energy and attitude control system (CEACS) is a synergized system in which flywheels are used as attitude control actuators and simultaneously as a power storage system. This paper, a subsequent to previous research on CEACS, addresses the attitude-tracking problem. Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL), a locally asymptotically stable controller, is developed to provide a robust and accurate solution for the CEACS's attitude-tracking problem. The controller alleviates the chattering phenomenon associated with the sliding mode using a boundary-layer technique. Simultaneously, it reduces the steady-state error using an integral action. This paper highlights the uncertainty of inertia matrix as a contributing factor to singularity problem. The inversion of the uncertain inertia matrix in simulation of a spacecraft dynamics is also identified as a leading factor to a singular situation. Therefore, an avoidance strategy is proposed in this paper to guarantee a singular-free dynamics behavior in faces of the uncertainties. This maiden work attempts to employ the singularity-free Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL) to provide a robust, accurate and nonsingular attitude-tracking solution for CEACS.

  13. Design of a Control Moment Gyroscope Attitude Actuation System for the Attitude Control Subsystem Proving Ground

    DTIC Science & Technology

    2013-03-01

    induction. Faraday’s law of induction states: The induced electromotive force in any closed circuit is equal to the negative time rate of change of the... series 70 of target attitudes, where the spacecraft must align the z-axis of its body frame to target attitude, and hold at each attitude for a set...The simulation ran the ACSPG through a series of target attitudes, where the ACSPG’s z-axis in its body frame must be aligned to a target vector for

  14. Flight Performance of Skylab Attitude and Pointing Control System

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    In 1967 a paper at the AIAA Guidance, Control and Flight Dynamics Conference in Huntsville, Ala. presented for the first time the prot)osed SKYLAB Attitude and Pointing Control System (APCS) The system requirements, Apollo Telescope Mount (ATM) configuration, control philosophy, and operational modes were presented and the APCS described. The Initial mission and system design requirements changed during the period of time before the SKYLAB was launched. This paper will review the Initial and final APCS requirements and goals and their relationship. The actual flight mission (and Its alterations during the flight) and known achieved APCS performance will then be presented. SKYLAB was a tremendous success in furthering man's scientific knowledge; but perhaps SKYLAB will be remembered more for the anomalies and the efforts undertaken to solve them. On May 14, 1973, the unmanned SKYLAB Orbital Workshop (OWS) was launched from Cape Kennedy. Serious hardware failures began to occur during ascent through the atmosphere and their spectre continued to haunt both the astronauts and their ground based support team. Nor were these the only surprises affecting the design and operation of the APCS. Mission requirements for pointing to various stellar targets and to nadir for earth resources experiments were added after the hardware was designed. The chance appearance of comet Kohoutek during the SKYLAB operational life-time caused NASA to add comet observation to the mission requirements and to adjust the time when the third crew would man the SKYLAB. The development of new procedures and software for the opportunity to observe this visitor to our solar system is described.

  15. Anti-sway control of tethered satellite systems using attitude control of the main satellite

    NASA Astrophysics Data System (ADS)

    Yousefian, Peyman; Salarieh, Hassan

    2015-06-01

    In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.

  16. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Jinjin; Dong, Chaoyang; Wang, Qing

    2008-10-01

    The structures and missions of modern satellites are very complicated, so the reliability of satellites is becoming increasingly important. This paper proposed a fault-tolerant attitude control system for a satellite based on Fuzzy Global Sliding Mode Control (FGSMC) algorithm. We designed a controller for the nonlinear model of a satellite. By designing a global sliding surface, this controller can ensure that the response of the system has global robustness against the uncertainties of system and external disturbances. In this paper attitude control is performed by four reaction flywheels. The attitude control system distributed the three control torques to the four reaction flywheels according to the distribution matrix. We deduced the formula to calculate the distribution matrix. Paper proved the stability of the designed control law, and simulated the attitude control system. The simulation results show that the attitude control law has high accuracy and robustness.

  17. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  18. Satellite attitude control simulations

    NASA Technical Reports Server (NTRS)

    Debra, D. B.; Powell, J. D.

    1973-01-01

    Work was conducted to develop an extremely low drift rate gyroscope and a very precise star tracker. A proposed relativity satellite will measure very accurately the theoretically predicted 'relativistic' precession of the gyroscope relative to an inertial reference frame provided by the star tracker. Aspects of precision spinning attitude control are discussed together with questions of gyro operation, and the hopping mode for lunar transportation. For the attitude control system of the lunar hopper, a number of control laws were investigated. The studies indicated that some suboptimal controls should be adequate for the system.

  19. Satellite attitude control simulations

    NASA Technical Reports Server (NTRS)

    Debra, D. B.; Powell, J. D.

    1973-01-01

    Work was conducted to develop an extremely low drift rate gyroscope and a very precise star tracker. A proposed relativity satellite will measure very accurately the theoretically predicted 'relativistic' precession of the gyroscope relative to an inertial reference frame provided by the star tracker. Aspects of precision spinning attitude control are discussed together with questions of gyro operation, and the hopping mode for lunar transportation. For the attitude control system of the lunar hopper, a number of control laws were investigated. The studies indicated that some suboptimal controls should be adequate for the system.

  20. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2015-01-01

    Principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters is presented. Both the vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has three main aspects: It summarizes key RCS control System design principles from the Space Shuttle and Space Station programs, it demonstrates a new approach to develop a linear model of a phase plane control system using describing functions, and applies each of these to the initial development of the NASA's next generation of upper stage vehicles. Topics addressed include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and automaneuver logic.

  1. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  2. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  3. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  4. Analysis of the TDRS multiple access system for possible use as an attitude control system sensor

    NASA Technical Reports Server (NTRS)

    Blevins, Bruce Allyn; Sank, Victor J.

    1993-01-01

    A member of the constellation of TDR satellites (TDRS) has experienced a failure of its prime earth sensor. Failure of the remaining earth sensor could result in the inability of the satellite to control its attitude and provide user services. Loss of the satellite would be a serious event. The multiple access (MA) antenna array on the TDRS has been proposed for use as a backup sensor for the attitude control system. This paper describes our analysis of the performance of the MA array as an interferometer used for accurate attitude determination. A least squares fit of a plane to the MA phase information appears to represent the TDRS body roll and pitch within about 0.1 deg. This is sufficient for SGL pointing and MA and SSA user services. Analytic improvements that include ionospheric correction may yield sufficient accuracy for KSA user services.

  5. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  6. A Combination of Silicon Micro-gyroscope that Application Rotary Missile Attitude Control System

    NASA Astrophysics Data System (ADS)

    Qin, Sheng-jie; Zhang, Fu-xue

    For the technical requirements of rotary missile attitude control, there developed a new type of combination of silicon micro-gyroscope, it mainly consists of two perpendicular installation of micro-mechanical pendulum and the circuit. This paper reports this kind of combination of silicon micro-gyroscope, which attitude control system in polar coordinate transformation, the combination can demodulate the horizontal angular velocity, yaw angular velocity, pitch angular velocity and the spin angular velocity of the rotary missile. This combination of silicon microgyroscope have been tested in rotary missile, the results show that it works very well in rotating missile attitude control system.

  7. Attitude control study for a large flexible spacecraft using a Solar Electric Propulsion System (SEPS)

    NASA Technical Reports Server (NTRS)

    Tolivar, A. F.; Key, R. W.

    1980-01-01

    The attitude control performance of the solar electric propulsion system (SEPS) was evaluated. A thrust vector control system for powered flight control was examined along with a gas jet reaction control system, and a reaction wheel system, both of which have been proposed for nonpowered flight control. Comprehensive computer simulations of each control system were made and evaluated using a 30 mode spacecraft model. Results obtained indicate that thrust vector control and reaction wheel systems offer acceptable smooth proportional control. The gas jet control system is shown to be risky for a flexible structure such as SEPS, and is therefore, not recommended as a primary control method.

  8. The results of flight tests of an attitude control system for the Chibis-M microsatellite

    NASA Astrophysics Data System (ADS)

    Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.

    2014-05-01

    The attitude control system of the Chibis-M microsatellite is described. Results of flight experiments on damping the initial angular velocity (made using magnetorquers) are considered, as well as stabilization in the orbital referece frame, and orientation of solar arrays toward the Sun using reaction wheels. The operation of algorithms of satellite attitude determination on sunlit and shadow segments of the orbit is also under study. The general logic of operation of the attitude control system in automatic mode is presented and discussed.

  9. Design and simulation of satellite attitude control system based on Simulink and VR

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  10. Star trackers and Sun sensors for a modern attitude control system

    NASA Astrophysics Data System (ADS)

    Thuerey, S.; Schmidt, U.; Kulterer, G.

    1991-12-01

    For enhanced accuracy requirements and for autonomous spacecraft operations a family of attitude sensors was developed, consisting of a Sun sensor assembly and a star tracker system. Both types of sensors are based on a common electronic design, and provide for internal data evaluation and real time or offline self test features. The interface to the AOCS (Attitude and Orbit Control System) is established via serial bus electronics and the sensors are easily adaptable to different mission types.

  11. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  12. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Astrophysics Data System (ADS)

    McEwen, Rob

    1994-05-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  13. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    training is based on the concept of enforced performance. A neural network will learn to meet a specific performance goal if the performance standard...is the only solution to a problem. Performance index training is devised to teach the neural network the time-optimal control law for the system. Real...time adaptation of a neural network in closed loop control of the Crew/Equipment Retriever was demonstrated in computer simulations.

  14. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  15. Design study for LANDSAT-D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.

    1977-01-01

    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.

  16. An integrated power/attitude control system /IPACS/ for space vehicle application

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Keckler, C. R.

    1973-01-01

    An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.

  17. An appraisal of linear systems theory with applications to attitude control. Report to ESTEC

    NASA Astrophysics Data System (ADS)

    Crouch, P. E.; Pritchard, A. J.; Carmichael, N.; Lobry, C.

    1980-05-01

    Nonlinear system theory was reviewed with the emphasis on its relevance to significant attitude control problems in stability and in controllability with a limited number of torques. Suitably chosen attitude control systems were studied in order to produce detailed conclusions of import to realistic design and synthesis requirements. In the general framework of systems analysis nonlinear differential equations were handled with the notion of a differentiable manifold along with all its geometric and analytic ramifications. The fundamental concepts were outlined in a manner accessible to most engineers. Global asymptotically stabilizing controls for two types of actuator system were defined, and controllability criteria for both two torques and one torque by gas jets were set.

  18. Decentralized diagnosis in a spacecraft attitude determination and control system

    NASA Astrophysics Data System (ADS)

    Pérez, C. G.; Travé-Massuyès, L.; Chanthery, E.; Sotomayor, J.

    2015-11-01

    In model-based diagnosis (MBD), structural models can provide useful information for fault diagnosis and fault-tolerant control design. In particular, they are known for supporting the design of analytical redundancy relations (ARRs) which are widely used to generate residuals for diagnosis. On the other hand, systems are increasingly complex whereby it is necessary to develop decentralized architectures to perform the diagnosis task. Decentralized diagnosis is of interest for on-board systems as a way to reduce computational costs or for large geographically distributed systems that require to minimizing data transfer. Decentralized solutions allow proper separation of industrial knowledge, provided that inputs and outputs are clearly defined. This paper builds on the results of [1] and proposes an optimized approach for decentralized fault-focused residual generation. It also introduce the concept of Fault-Driven Minimal Structurally-Overdetermined set (FMSO) ensuring minimal redundancy. The method decreases communication cost involved in decentralization with respect to the algorithm proposed in [1] while still maintaining the same isolation properties as the centralized approach as well as the isolation on request capability.

  19. Classical and higher-order sliding mode attitude control for launch vehicle systems

    NASA Astrophysics Data System (ADS)

    Stott, James Edward, Jr.

    In determining flight controls for launch vehicle systems, several things must be taken into account. Launch vehicle systems can be expendable or reusable, carry crew or cargo, etc. Each of these launch vehicles maneuvers through a wide range of flight conditions and different mission profiles. Crewed vehicles must adhere to human rating requirements which limit the angular rates. Reusable launch vehicle systems must take into account actuator saturation during entry. Wind disturbances and plant uncertainties are major perturbations to the nominal state of any launch vehicle. An ideal controller is one that is robust enough to handle these uncertainties and external disturbances with limited control authority. One major challenge that exists in the design of these vehicles is the updating of old autopilot technology to new robust designs while also taking into account the different type of launch vehicle system employed. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. This dissertation focuses on systematically studying and developing a 'toolbox' of classical and higher-order sliding mode attitude control algorithms for different types of launch vehicle systems operating in uncertain conditions, including model uncertainties, actuator malfunctions, and external perturbations such as wind gusts. The developed toolbox comprises of time-varying sliding variables, classical and higher-order sliding mode attitude control algorithms, and observer techniques that yield novel sliding mode attitude control architectures. The proposed control toolbox allows achieving even higher standards of performance, reliability, safety, operability, and cost for launch vehicles over the current state of the art. Case studies include controlling the X-33 and SLV-X Launch Vehicles studied under NASA's Space Launch Initiative (SLI

  20. An Attitude Control System for SumbandilaSAT an Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Steyn, W. H.

    2008-08-01

    This paper describes the attitude determination and control system to support the multi-spectral earth observation main payload of the SumbandilaSAT microsatellite. The satellite has only a single main Y- body mounted solar panel and the attitude control system must ensure a nominal sun-pointed attitude under all non-imaging conditions during the sunlit part of the orbit. The control actuators employed are 3- axis magnetic torquer rods and reaction wheels. During initial detumbling and safe mode operations a simple new magnetic control law is used to bring the satellite to a sun-pointed Y-spinning attitude for maximum solar power collection. From this sun-pointed, spinning attitude an intermediate control mode is entered when the Y-reaction wheel is utilised as a momentum wheel, to absorb the body spin rate and to inertially stabilise the angular momentum vector towards the sun direction. During the intermediate mode the magnetic rods are used to maintain the momentum vector size and direction and to do nutation damping. The pitch angle is also controlled using the Y-wheel, to keep the main imager payload as close as possible to an earth-pointed attitude and to thermally stabilise the imager telescope. The final and nominal attitude control mode is entered when a zero biased 3-axis reaction wheel controller is enabled, for: 1) sun tracking for optimal solar power collection, 2) target tracking during viewfinder use or during imaging download communication with a ground station and 3) pushbroom imager scanning with a forward motion compensation capability. During the nominal mode the magnetic rods are used to dump the angular momentum from the reaction wheels during sun tracking periods. A short introduction to the Sumbandila satellite will be given. All the control modes, the attitude sensors and estimators utilised, will be introduced in the paper. Specifically, a unique agile viewfinder control mode to manually select targets for subsequent high resolution image

  1. Simulation and simulator development of a separate surface attitude command control system for light aircraft

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1976-01-01

    A detailed description is presented of the simulation philosophy and process used in the development of a Separate Surface Attitude Command control system (SSAC) for a Beech Model 99 Airliner. The intent of this system is to provide complete three axes stability augmentation at low cost and without the need for system redundancy. The system, although aimed at the general aviation market, also has applications to certain military airplanes as well as to miniature submarines.

  2. Development of a coupled expert system for the spacecraft attitude control problem

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Schaffer, J.; Hsieh, B.-J.; Padalkar, S.; Rodriguezmoscoso, J.; Vinz, F.; Fernandez, K.

    1987-01-01

    A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed.

  3. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  4. Application of Low Thrust Propulsion Techniques to Satellite Attitude Control Systems

    DTIC Science & Technology

    1991-11-01

    non-chemical propulsion techniques, such as electrothermal or electrostatic, in the attitude control systems. Some.,examples of research in this area...in use. Electrothermal systems have efficiencies up to q = 0.8, dropping off with increasing Ve to a value of 0.3 at Ve of 10000 m/s. Electrostatic...many types of electrothermal , electromagnetic, and electrostatic propulsion systems fcr them to be described here. Some, such as resistojets, operate

  5. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  6. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  7. Increasing Slew Performance of Reaction Wheel Attitude Control Systems

    DTIC Science & Technology

    2013-09-01

    Cost Function .................................................................................... 66   8.   Optimal Control Problem...69   1.   Cost Function .................................................................................... 69...63   Figure 28.   Cost Function Implemented as a DIDO Function ........................................... 70   Figure 29

  8. Attitude determination and control system design of the ITU-UUBF LEO1 satellite

    NASA Astrophysics Data System (ADS)

    Hajiyev, Ch.; Bahar, M.

    2003-01-01

    In this paper an attitude determination and control system for ITU-UUBF LEO1 satellite is proposed. To determine the attitude of the satellite this system uses algebraic method (2-vector algorithm). As a reference direction, the unit vectors toward the Sun and the Earth's center, and the Earth's magnetic field are used. Thus, it includes three different 2-vector algorithms based on using Earth's magnetic field-Sun vector, Earth's magnetic field-nadir vector, and nadir vector-Sun vector couples. A redundant data processing algorithm based on maximum likelihood was designed. The parameters of satellite's rotational motion are estimated using extended Kalman filter (EKF). For control purposes an EKF-based PD controller is designed. To reveal the performance of the designed system a simulation is made.

  9. System Performance Analysis of Three Dimensional Reaction Wheel for the Attitude Control of Microsatellites

    NASA Astrophysics Data System (ADS)

    Shirasawa, Yoji; Tsuda, Yuichi

    This paper presents a novel attitude control device which is called three dimensional reaction wheel (3DRW). 3DRW consists of only one levitated spherical mass which can rotate around arbitrary axes. This leads to the reduction of the weight and volume of the device as compared to existing reaction wheel. Furthermore, this device has no mechanical contact between rotor and stator, so the failure caused by the mechanical contact would be reduced. In this paper, the results of the analysis and experiment on the dynamics and control of 3DRW are shown. In the experiments of the rotation control, the air bearing system is used. Using this device, the characteristics of rotation of the spherical mass are obtained. To verify the feasibility of the concept of 3DRW, the experiments of angular velocity feedback control are carried out. The results of experiments are applied to the numerical simulation of the attitude control for microsatellites, and the feasibility of 3DRW is verified.

  10. A ground test program to support condition monitoring of a spacecraft attitude control propulsion system

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lester, Robert W.; Baroth, Edmund C.; Coleman, Arthur L.

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.

  11. Design development of the Apollo command and service module thrust vector attitude control systems

    NASA Technical Reports Server (NTRS)

    Peters, W. H.

    1978-01-01

    Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.

  12. A ground test program to support condition monitoring of a spacecraft attitude control propulsion system

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lester, Robert W.; Baroth, Edmund C.; Coleman, Arthur L.

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.

  13. Investigation of the dynamics of angular motion and construction of algorithms for controlling the angular momentum of spacecraft using a magnetic attitude control system

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. G.; Kulkov, V. M.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2016-11-01

    The problem of controlling the angular momentum of spacecraft using magnetic attitude control systems interacting with the Earth's magnetic field is considered. A mathematical model for the angular motion dynamics of a spacecraft has been constructed. An approach to determining the parameters of the control law for a spacecraft attitude control and stabilization system that ensures angular momentum dissipation is proposed.

  14. A high precision attitude determination and control system for the UYS-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Chaurais, J. R.; Ferreira, H. C.; Ishihara, J. Y.; Borges, R. A.; Kulabukhov, A. M.; Larin, V. A.; Belikov, V. V.

    This paper presents the design of a high precision attitude determination and control system for the UYS-1 Ukrainian nanosatellite. Its main task is the 3-axis stabilization with less than 0.5° angle errors, so the satellite may take high precision photos of Earth's surface. To accomplish this task, this system comprises a star tracker and three reaction wheels. To avoid external disturbances and actuators faults, a PD-type and a PID-type robust controllers are simulated and the results are compared to an empirically adjusted PD controller.

  15. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  16. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  17. Balloon infrared astronomy platform (BIRAP). [development and characteristics of a balloon-borne attitude control system

    NASA Technical Reports Server (NTRS)

    Greeb, M. E.; True, G. A.

    1974-01-01

    The development of a balloon-borne attitude control system for infrared astronomy studies is discussed. The Balloon Infrared Astronomy Platform (BIRAP) is the result of the development effort. The BIRAP uses electronic gimballing for the offset pointing which eliminates a set of mechanical gimbals. Guide stars with visual magnitudes as low as plus 6 are used for fine tracking assuring that all areas of the sky can be covered. The BIRAP control concept uses a closed loop system in the airborne equipment with automatic update through a command link that can be operated either manually or automatically by a ground based computer.

  18. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  19. Development and test of the ASAT Bipropellant Attitude Control System (ACS) engine

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Allen, K. A.; Hemmings, B.

    1993-06-01

    The recent Kinetic Energy Anti-Satellite (KE ASAT) Bipropellant Attitude Control System (ACS) Engine testing demonstrated and characterized performance and operational durability. Within the ASAT mission, the bipropellant engines are used to despin the missile after shroud deployment and to provide attitude control of the Kill Vehicle (KV) during all phases of the KV free flight. These engines provide all attitude control thrust from booster separation until target intercept. The ASAT ACS engine is unique both in the amount of on-time that the engine sees during a tactical mission scenario and the high thermal loads which result from performing two diametrically opposed missions with a single thruster - long steady state burns and very short response time pulse mode operations. Two flightweight ASAT ACS Bipropellant engines were individually tested in a developmental test program. Testing was conducted at ambient conditions. Hot-fire testing consisted of steady-state, mission duty cycle (MDC), Chamber Pressure (Pc) excursion, mixture ratio excursion, and pulse performance. Testing was conducted by Rockwell's Rocketdyne Division at the Santa Susana Field Laboratory (SSFL), Systems Test Laboratory IV (STL IV), Cell 37A. Two additional engine tests are planned and will include altitude testing. This paper will summarize engine development, component development testing, valve orificing and cold flow calibration, and engine hot-fire testing approach and results.

  20. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  1. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Fan; Fertin, Denis

    2008-06-01

    One of the key technologies to be demonstrated on board the LISA Pathfinder spacecraft (S/C) is the drag-free attitude control systems (DFACS), aiming to control the S/C attitude and the S/C test masses relative motion with a precision of the order of the nanometer. This paper explores how the controllers could be designed and tuned with the Quantitative Feedback Theory (QFT). After a summary of the plant dynamics and the control strategy using input decoupling, the various performance specifications are presented and transformed into a set of design criteria expressed as constraints for the controller sensitivity and complementary sensitivity transfer functions of each individual control axis. The QFT technique is then used for designing and tuning the controllers, in particular to perform the trade-off between performances and stability and use the available design margins in the drag-free controllers to meet different performance specifications. Both frequency-domain analysis and time-domain simulation test results are presented to evaluate the performance of controllers designed for different purposes.

  2. Analytic investigation of the AEM-A/HCMM attitude control system performance. [Application Explorer Missions/Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Lerner, G. M.; Huang, W.; Shuster, M. D.

    1977-01-01

    The Heat Capacity Mapping Mission (HCMM), scheduled for launch in 1978, will be three-axis stabilized relative to the earth in a 600-kilometer altitude, polar orbit. The autonomous attitude control system consists of three torquing coils and a momentum wheel driven in response to error signals computed from data received from an infrared horizon sensor and a magnetometer. This paper presents a simple model of the attitude dynamics and derives the equations that determine the stability of the system during both attitude acquisition (acquisition-mode) and mission operations (mission-mode). Modifications to the proposed mission-mode control laws which speed the system's response to transient attitude errors and reduce the steady-state attitude errors are suggested. Numerical simulations are performed to validate the results obtained with the simple model.

  3. A robust momentum management and attitude control system for the space station

    NASA Technical Reports Server (NTRS)

    Speyer, J. L.; Rhee, Ihnseok

    1991-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  4. An Approach to the Design and Implementation of Spacecraft Attitude Control Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and .what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  5. An approach to the design and implementation of spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Mangus, David J.

    1998-01-01

    Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.

  6. Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  7. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  8. Development of an Attitude Control System for a Balloon-Borne Gamma Ray Telescope

    NASA Astrophysics Data System (ADS)

    Villela, T.; Fonseca, R. A.; de Souza, P.; Alves, A.; Mejía, J.; Corrêa, R.; Braga, J.

    We describe the attitude control system employed by the MASCO balloon-borne gamma ray telescope and present the first laboratory tests of this system. The MASCO experiment is a low energy gamma ray imaging telescope that employs a MURA coded mask. Its angular resolution is 14' over a 13° field of view, which requires a pointing accuracy of some arcminutes in order to allow the accomplishment of the scientific goals. The attitude control system was designed to provide pointing and stabilization of a 1400 kg, 7 in-high, 2 m-wide, 2 m-deep gondola that encompasses the telescope detector system and its associated electronics. The sensors used are an electronic magnetic compass, an encoder, a two-axis solar sensor, a sun-tracker, two accelerometers, a gyroscope and three CCD stellar sensors. A GPS system is also employed. The actuators are a reaction wheel for azimuth control, an azimuth motor located in the balloon-gondola decoupling mechanism for desaturation of the reaction wheel, and a telescope elevation motor with a harmonic drive reduction. The software architecture and the operation modes are also presented

  9. Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.

  10. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  11. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  12. Attitude control and drag compensation propulsion system for Gravity Probe-B spacecraft

    NASA Technical Reports Server (NTRS)

    Blount, D. H.

    1983-01-01

    An on board propulsion system for attitude control and drag compensation is presented which uses helium boiloff gas from an experiment package dewar as propellant. This boiloff gas would normally be vented nonpropulsively. Use of a small allowable temperature range in the dewar is exploited to store helium and accommodate incompatibilities in dewar heat leak and thruster demand flow over periods of more than one orbit. A relatively detailed thermodynamics analysis of the two phase helium dewar and simulation of pressure loss through the helium distribution system is included.

  13. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  14. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  15. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  16. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  17. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  18. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Krishnan, Hariharan

    1993-06-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  19. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  20. Structural control interaction for an LSS attitude control system using thrusters and reaction wheels

    NASA Astrophysics Data System (ADS)

    da Fonseca, Ijar M.; Bainum, Peter M.; da Silva, Adenilson R.

    2007-05-01

    This work provides some important information about control structure interaction (CSI) for a large space structure (LSS) attitude control subsystem (ACS) comprised of thrusters and reaction wheels. The LSS physical model is assumed as a rigid long tubular beam as the main bus with two attached long flexible solar panels. Two thrusters (one at each tip of the LSS) are used for large amplitude maneuvers and the reaction wheels for fine control. Lagrange's formulations for generalized and quasi-coordinates were used to derive the equations of motion. The gravity gradient, the solar pressure and the drag were included in the mathematical model as external perturbations. The assumed modes discretization method has been used to model the solar array elastic displacements so as to obtain a set of ordinary differential equations to describe the LSS motion. Different control strategies were implemented to analyze the CSI for two configurations, fine and coarse control. The MatLab/Simulink platform has been used for the computational simulations. The results are in agreement with the CSI theory in that thruster firings excite the solar panel vibrations and that the elastic vibration is an important issue to be taken into account for LSS ACS performance evaluation for both fine and coarse control. In spite of the CSI the maneuver objectives have been accomplished with results that meet the mission criteria.

  1. Vega roll and attitude control system algorithms trade-off study

    NASA Astrophysics Data System (ADS)

    Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.

    2013-12-01

    This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.

  2. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects

  3. Linearization of Attitude-Control Error Dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1993-01-01

    Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.

  4. Linearization of Attitude-Control Error Dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1993-01-01

    Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.

  5. Attitude Control Working Group report

    NASA Technical Reports Server (NTRS)

    Reid, Daniel F.; Studer, Phillip A.

    1986-01-01

    The goals were to establish the Attitude Control System (ACS) requirements, constraints, technology assessment, technology shortfalls, expected in the year 2000. These were based upon all missions, military and civil, for LEO and GEO. The critical ACS technology issues were identified and ACS programs developed to address these critical issues.

  6. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  7. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  8. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  9. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  10. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Astrophysics Data System (ADS)

    Polites, M. E.; Carrington, C. K.

    1995-05-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  11. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Carrington, C. K.

    1995-01-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  12. Viking orbiter attitude control analysis

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1977-01-01

    Two Viking orbiters are currently in Mars orbit. In the nearly two years since they were launched, the orbiters have successfully performed many functions including transportation of the Viking landers to Mars. The orbiters have for the last year provided relay links for lander-earth communications, and they have carried out from orbit their own scientific exploration of the planet. Crucial to the success of the orbiters has been the performance of the on-board attitude control system, which has provided the required orbiter stabilization and orientation throughout the missions. A comprehensive spacecraft and attitude control system dynamic analysis was necessary to certify the control system before launch and to evaluate its flight performance. This paper contains an outline of the analysis and of some of its results.

  13. GRO attitude control and determination

    NASA Technical Reports Server (NTRS)

    Jerkovsky, W.; Keranen, L.; Koehler, F.; Tung, F.; Ward, B.

    1986-01-01

    Design features of the attitude control and determination (ACAD) system for the Gamma Ray Observatory (GRO) that will eventually be launched on the Shuttle are described. A tabulation of the ACAD system components is provided and the various standby and normal pointing operational modes of the system are summarized. The system software and sensors will maintain a quaternion model of the GRO attitude on the bases of kinematic equations and inertial data. The software is standardized and has previously been used on the Solar Maximum Mission and Landsat-D. Details of the processing components, redundant electronics for sensor processing, data handling and actuator control are outlined and illustrated with block diagrams. Tests applied to validate the ACAD design are outlined, as are ground support which will be implemented once the GRO is launched.

  14. The ASTRO-1M as part of the attitude control system of the unmanned SPEKTR satellite

    NASA Astrophysics Data System (ADS)

    Rybachev, Aleksandr V.; Uliashin, Aleksandr I.

    A star sensor employed in the attitude-control system of the unmanned SPEKTR satellite is described. The sensor (ASTRO-1M) consists of three optical blocks fixed rigidly to the spacecraft body, an electronic computer block, and a power supply block. It operates on the principle of geometric star selection: the relative coordinates of the brightness centers of all stars seen by each of the optical blocks are measured and compared with the data in a digital star catalog stored in the system. Two-dimensional CCD arrays employed as detectors are covered, as well as positioning of the optical blocks, their protection from elements, and a two-way exchange of data between ASTRO-1M and an onboard computer.

  15. Predicted Performance of On-Off Systems for Precise Satellite Attitude Control

    NASA Technical Reports Server (NTRS)

    Brown, Stuart C.

    1961-01-01

    An investigation has been made of the use of on-off reaction jets for precision attitude control of a satellite. Since a symmetrical vehicle is assumed, only single-axis control needs to be considered. The responses to initial disturbances and also limit-cycle characteristics for several systems have been evaluated. Calculated results indicate that realistic values of settling time and fuel consumption for the example considered can be obtained. The performance of a given system depends on the characteristics of the error detector used. In cases where the detector output was saturated for a relatively low error input, the settling time deteriorated when a lead network was used to provide damping. This deterioration could be eliminated if a separate rate signal to produce vehicle rate limiting were available. As an alternate approach, two systems were investigated which used a timed sequence of torques and could operate with a detector output of very small linear range. Although the performance of these systems was poorer than that of the lead network system without detector saturation, the performance was better than that of the lead network system with low values of detector saturation. The effects on limit-cycle characteristics of hysteresis, lead network constants, dead zone, and thrust time delays were also investigated.

  16. APPLICATION OF THE RATE DIAGRAM TECHNIQUE TO THE ANALYSIS AND DESIGN OF SPACE VEHICLE ON-OFF ATTITUDE CONTROL SYSTEMS

    DTIC Science & Technology

    Preliminary single axis analysis and design of a space vehicle control system, consisting of a torque producing device and a dead-band within which...method. Two characteristics of typical space vehicle attitude control problems which make this method effective are the undamped rigid body motion of

  17. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  18. Fault tolerant capabilities of the Cosmic Background Explorer attitude control system

    NASA Technical Reports Server (NTRS)

    Placanica, Samuel J.

    1992-01-01

    The Cosmic Background Explorer (COBE), which was launched November 18, 1989 from Vandenberg Air Force Base aboard a Delta rocket, has been classified by the scientific community as a major success with regards to the field of cosmology theory. Despite a number of anomalies which have occurred during the mission, the attitude control system (ACS) has performed remarkably well. This is due in large part to the fault tolerant capabilities that were designed into the ACS. A unique triaxial control system orientated in the spacecraft's transverse plane provides the ACS the ability to safely survive various sensor and actuator failures. Features that help to achieve this fail-operational system include component cross-strapping and autonomous control electronics switching. This design philosophy was of utmost importance because of the constraint placed upon the ACS to keep the spinning observatory and its cryogen-cooled science instruments pointing away from the sun. Even though the liquid helium was depleted within the expected twelve months from launch, it is still very much desirable to avoid any thermal disturbances upon the remaining functional instruments.

  19. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, M. S.

    2010-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  20. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    SciTech Connect

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  1. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Astrophysics Data System (ADS)

    Woronowicz, M. S.

    2011-05-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm3. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  2. Design and improvements of the Attitude Control System of the FIREBall balloon experiment

    NASA Astrophysics Data System (ADS)

    Montel, Johan; Mirc, Frédéri; Pérot, Etienne; Zenone, Isabelle; Nicot, Jean-Marc; Bray, Nicolas; Gomes, Albert; Evrard, Jean; Tapie, Pierre; Vola, Pascal; Milliard, Bruno; Grange, Robert; Schiminovich, David

    2016-07-01

    FIREBALL (the Faint Intergalactic Redshifted Emission Balloon, funded by CNES-NASA, PI C.Martin, Caltech) is a balloon-borne 1m telescope coupled to an ultraviolet Multi Object Spectrometer (MOS), designed to study the faint and diffuse emission of the circumgalactic medium. The third flight of the experiment is planned in summer 2017. The goal of this paper is to describe the accurate pointing system of the 5-metres high / 1500kg gondola - that has been designed to fulfill stringent pointing requirements: less than 1 arcsec in elevation and cross elevation, and about 1 arcmin in field rotation (around the line of sight axis), over long integration time (a few hours). The pointing system is based on a multi stage closed loop scheme (4 Degrees Of Freedom), relying on a 1DOF gondola azimuth controller, a 2DOF gimbal frame supporting a 1.2-meter plano siderostat, and a 1DOF field rotation control system. The attitude determination is based on the hybridization of two accurate sensors: a Fiber Optic Gyrometer measurement unit and a star sensor integrated inside the instrument. The manuscript presents the design of the ACS. We also focus on flight train stability issues - due to the pendulum and torsion modes -, on the geometric equations specific to a siderostat pointing system, and on the description of the tests facilities.

  3. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  4. Gain scheduling of aircraft pitch attitude and control of discrete, affine, linear parametrically varying systems

    NASA Astrophysics Data System (ADS)

    Lin, Zhe

    This research is motivated by gain scheduling, a technique which has been successfully applied to many nonlinear control problems. In flight controls, the wide variations in the characteristics of the aircraft dynamics throughout the flight envelope make gain scheduling a particularly suitable design strategy. This research consists of two parts: (1) aircraft pitch attitude scheduling scheme designs, and (2) control of a class of linear parametrically varying (LPV) systems. In the first part, the classical gain scheduling technique and the single quadratic Lyapunov function (SQLF) based LPV technique are investigated. In the classical gain scheduling design, the Hinfinity mixed sensitivity GS/T method is chosen for local linear time invariant (LTI) designs to provide robustness to unmodeled dynamics and parametric uncertainties. Following a model reduction procedure that exploits the optimal controller structure, LTI controllers designed at the selected equilibrium points are reduced to second order controllers and realized in a feedback path configuration. Such controllers are shown to retain the superior robust performance at each flight condition, while having a low order that is amenable to scheduling. A gain-scheduling law is developed and simulation results verify that the closed-loop performance specifications are met. In the LPV design, the mixed sensitivity S/KS/T design setup is used. An approximation to the original LPV controller using the linear fractional transformation (LFT) representation is constructed. Our design exhibits potential applications of the LPV technique to commercial aircraft gain scheduling designs. In the second part, we consider a class of discrete, affine, linear parametrically varying (DALPV) systems. For this type of systems, the parameters are assumed to vary in a polytope and the state space matrices are assumed to depend affinely on the varying parameters. A sufficient condition is derived to analyze the stability and the

  5. Study of Systems Using Inertia Wheels for Precise Attitude Control of a Satellite

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    Systems using inertia wheels are evaluated in this report to determine their suitability for precise attitude control of a satellite and to select superior system configurations. Various possible inertia wheel system configurations are first discussed in a general manner. Three of these systems which appear more promising than the others are analyzed in detail, using the Orbiting Astronomical Observatory as an example. The three systems differ from each other only by the method of damping, which is provided by either a rate gyro, an error-rate network, or a tachometer in series with a high-pass filter. An analytical investigation which consists of a generalized linear analysis, a nonlinear analysis using the switching-time method, and an analog computer study shows that all three systems are theoretically capable of producing adequate response and also of maintaining the required pointing accuracy for the Orbiting Astronomical Observatory of plus or minus 0.1 second of arc. Practical considerations and an experimental investigation show, however, that the system which uses an error-rate network to provide damping is superior to the other two systems. The system which uses a rate gyro is shown to be inferior because the threshold level causes a significant amount of limit-cycle operation, and the system which uses a tachometer with a filter is shown to be inferior because a device with the required dynamic range of operation does not appear to be available. The experimental laboratory apparatus used to investigate the dynamic performance of the systems is described, and experimental results are included to show that under laboratory conditions with relatively large extraneous disturbances, a dynamic tracking error of less than plus or minus 0.5 second of arc was obtained.

  6. Optimal magnetic attitude control of small spacecraft

    NASA Astrophysics Data System (ADS)

    Liang, Jinsong

    Spacecraft attitude control, using only magnetic coils, suffers from being unable to apply a torque about the axis defined by the magnetic field of the earth. This lack of controllability results in marginal stability, slow slew maneuvering and convergence to equilibrium positions. Currently available control schemes typically require one or more orbits to finish a large angle attitude maneuver, which severely restricts the application of magnetic control in projects requiring fast attitude maneuvers. In this dissertation, the open-loop time-optimal magnetic control is first presented to show the potential performance increase of the magnetic attitude control method. Nonlinear time-varying models with constrained inputs are considered instead of the linearized model generally used. The results show that time-optimal magnetic attitude control can be considerably faster, than the current available control schemes. The inherent weakness of the open-loop method is its lack of robustness; specifically, its response is sensitive to small changes in the system. Two methods, model predictive control and continuous optimization approach, are presented as closed-loop control strategies to increase the robustness of the time-optimal approach. Simulation results show that these two feedback control schemes effectively improve the robustness of the control system. Finally, magnetic attitude regulation after the time-optimal magnetic control is discussed. The main contribution of this work shows that magnetic attitude control is not necessarily slow, as commonly believed, as long as an appropriate control algorithm is applied. The different time-optimal controllers presented show considerable convergence time reduction for large angle attitude maneuvers; which enables magnetic attitude control to be applied to more time-critical applications.

  7. Attitude control system of the Delfi-n3Xt satellite

    NASA Astrophysics Data System (ADS)

    Reijneveld, J.; Choukroun, D.

    2013-12-01

    This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.

  8. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  9. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  10. Combined sun-acquisition and sun gate-sensor system for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1974-01-01

    Arrangement combines acquisition and gate functions and reduces sensitivity so that attitude control is effective regardless of changes in solar intensity. There are five photoconductive detectors all electrically interconnected. Detectors are so positioned that, regardless of spacecraft orientation at any instant of interest, at least one detector is illuminated.

  11. Multiagent Attitude Control System for Satellites Based in Momentum Wheels and Event-Driven Synchronization

    NASA Astrophysics Data System (ADS)

    Garcia, Juan L.; Moreno, Jose Sanchez

    2012-12-01

    Attitude control is a requirement always present in spacecraft design. Several kinds of actuators exist to accomplish this control, being momentum wheels one of the most employed. Usually satellites carry redundant momentum wheels to handle any possible single failure, but the controller remains as a single centralized element, posing problems in case of failures. In this work a decentralized agent-based event-driven algorithm for attitude control is presented as a possible solution. Several agents based in momentum wheels will interact among them to accomplish the satellite control. A simulation environment has been developed to analyze the behavior of this architecture. This environment has been made available through the web page http://www.dia.uned.es.

  12. Stellar tracking attitude reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1974-01-01

    A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.

  13. Spacecraft attitude dynamics and control

    NASA Astrophysics Data System (ADS)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  14. Adaptive Hierarchical Sliding Mode Control with Input Saturation for Attitude Regulation of Multi-satellite Tethered System

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2017-06-01

    This paper proposes a novel adaptive hierarchical sliding mode control for the attitude regulation of the multi-satellite inline tethered system, where the input saturation is taken into account. The governing equations for the attitude dynamics of the three-satellite inline tethered system are derived firstly by utilizing Lagrangian mechanics theory. Considering the fact that the attitude of the central satellite can be adjusted by using the simple exponential stabilization scheme, the decoupling of the central satellite and the terminal ones is presented, and in addition, the new adaptive sliding mode control law is applied to stabilize the attitude dynamics of the two terminal satellites based on the synchronization and partial contraction theory. In the adaptive hierarchical sliding mode control design, the input is modeled as saturated input due to the fact that the flywheel torque is bounded, and meanwhile, an adaptive update rate is introduced to eliminate the effect of the saturated input and the external perturbation. The proposed control scheme can be applied on the two-satellite system to achieve fixed-point rotation. Numerical results validate the effectiveness of the proposed method.

  15. Adaptive Hierarchical Sliding Mode Control with Input Saturation for Attitude Regulation of Multi-satellite Tethered System

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2016-11-01

    This paper proposes a novel adaptive hierarchical sliding mode control for the attitude regulation of the multi-satellite inline tethered system, where the input saturation is taken into account. The governing equations for the attitude dynamics of the three-satellite inline tethered system are derived firstly by utilizing Lagrangian mechanics theory. Considering the fact that the attitude of the central satellite can be adjusted by using the simple exponential stabilization scheme, the decoupling of the central satellite and the terminal ones is presented, and in addition, the new adaptive sliding mode control law is applied to stabilize the attitude dynamics of the two terminal satellites based on the synchronization and partial contraction theory. In the adaptive hierarchical sliding mode control design, the input is modeled as saturated input due to the fact that the flywheel torque is bounded, and meanwhile, an adaptive update rate is introduced to eliminate the effect of the saturated input and the external perturbation. The proposed control scheme can be applied on the two-satellite system to achieve fixed-point rotation. Numerical results validate the effectiveness of the proposed method.

  16. Attitude Control Propulsion Components, Volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Effort was made to include as much engineering information on each component as possible, consistent with usefulness and catalog size limitations. The contents of this catalog contain components which were qualified for use with spacecraft monopropellant hydrazine and inert gas attitude control systems. Thrust ranges up to 44.5 N (10.0 lbf) for hydrazine and inert gas sytems were considered. Additionally, some components qualified for uses other than spacecraft attitude control are included because they are suitable for use in attitude controls systems.

  17. Integrated Power and Attitude Control System Demonstrated With Flywheels G2 and D1

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.

    2005-01-01

    On September 14, 2004, NASA Glenn Research Center's Flywheel Development Team experimentally demonstrated a full-power, high-speed, two-flywheel system, simultaneously regulating a power bus and providing a commanded output torque. Operation- and power-mode transitions were demonstrated up to 2000 W in charge and 1100 W in discharge, while the output torque was simultaneously regulated between plus or minus 0.8 N-m. The G2 and D1 flywheels--magnetically levitated carbon-fiber wheels with permanent magnet motors--were used for the experiment. The units were mounted on an air bearing table in Glenn's High Energy Flywheel Facility. The operational speed range for these tests was between 20,000 and 60,000 rpm. The bus voltage was regulated at 125 V during charge and discharge, and charge-discharge and discharge-charge transitions were demonstrated by changing the amount of power that the power supply provided between 300 and 0 W. In a satellite system, this would be the equivalent of changing the amount of energy that the solar array provides to the spacecraft. In addition to regulating the bus voltage, we simultaneously controlled the net torque produced by the two flywheel modules. Both modules were mounted on an air table that was restrained by a load cell. The load cell measured the force on the table, and the torque produced by the two flywheels on the table could be calculated from that measurement. This method was used to measure the torque produced by the modules, yielding net torques from -0.8 to 0.8 N-m. This was the first Glenn demonstration of the Integrated Power and Attitude Control System (IPACS) at high power levels and speeds.

  18. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  19. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  20. Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System

    NASA Technical Reports Server (NTRS)

    Simpson, Jim; Badgley, Jason; McCaughey, Ken; Brown, Kristen; Calhoun, Philip; Davis, Edward; Garrick, Joseph; Gill, Nathaniel; Hsu, Oscar; Jones, Noble; Oritz-Cruz, Gerardo; Raymond, Juan; Roder, Russell; Shah, Neerav; Wilson, John

    2010-01-01

    Throughout the Lunar Reconnaissance Orbiter (LRO) Integration and Testing (I&T) phase of the project, the Attitude Control System (ACS) team completed numerous tests on each hardware component in ever more flight like environments. The ACS utilizes a select group of attitude sensors and actuators. This paper chronicles the evolutionary steps taken to verify each component was constantly ready for flight as well as providing invaluable trending experience with the actual hardware. The paper includes a discussion of each ACS hardware component, lessons learned of the various stages of I&T, a discussion of the challenges that are unique to the LRO project, as well as a discussion of work for future missions to consider as part of their I&T plan. LRO ACS sensors were carefully installed, tested, and maintained over the 18 month I&T and prelaunch timeline. Care was taken with the optics of the Adcole Coarse Sun Sensors (CSS) to ensure their critical role in the Safe Hold mode was fulfilled. The use of new CSS stimulators provided the means of testing each CSS sensor independently, in ambient and vacuum conditions as well as over a wide range of thermal temperatures. Extreme bright light sources were also used to test the CSS in ambient conditions. The integration of the two SELEX Galileo Star Trackers was carefully planned and executed. Optical ground support equipment was designed and used often to check the performance of the star trackers throughout I&T in ambient and thermal/vacuum conditions. A late discovery of potential contamination of the star tracker light shades is discussed in this paper. This paper reviews how each time the spacecraft was at a new location and orientation, the Honeywell Miniature Inertial Measurement Unit (MIMU) was checked for data output validity. This gyro compassing test was performed at several key testing points in the timeline as well as several times while LRO was on the launch pad. Sensor alignment tests were completed several

  1. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  2. Scout fourth stage attitude and velocity control (AVC) system feasibility study

    NASA Technical Reports Server (NTRS)

    Byars, L. B.

    1975-01-01

    The feasibility of incorporating a guidance system in the Scout fourth stage to achieve a significant improvement in expected payload delivery accuracy is studied. The technical investigations included the determination of the AVC equipment performance requirements, establishment of qualification and acceptance test levels, generation of layouts illustrating design approaches for the upper D and payload transition sections to incorporate the hardware, and the preparation of a vendor bid package. Correction concepts, utilizing inertial velocity and attitude, were identified and evaluated. Fourth stage attitude adjustments as determined from inertial velocity variation through the first three stages and a final velocity correction based upon the measured in-plane component errors at injection were employed. Results show radical reductions in apogee-perigee deviations.

  3. Design, analysis, implementation and testing of the thermal control, and attitude determination and control systems for the CanX-7 nanosatellite mission

    NASA Astrophysics Data System (ADS)

    Cotten, Bradley Scott

    In the context of space debris mitigation, a major challenge currently facing the space community is the removal of nano and microsatellites from orbit following the completion of their missions. To address this problem, the Space Flight Laboratory has developed the CanX-7 mission; a technology demonstration mission to validate the use of a mechanically deployed drag sail for de-orbiting satellites from low-Earth orbit. This thesis report describes the design, analysis, implementation, and testing of both the attitude determination and control system, and thermal control system for the CanX-7 mission. The attitude determination and control system uses an entirely magnetic solution to meet mission level pointing requirements with a limited set of hardware, and the thermal control system relies primarily on passive control measures to allow the spacecraft to survive the harsh thermal environment in space. Both subsystems are essential to the success of the CanX-7 mission.

  4. Predicted torque equilibrium attitude utilization for Space Station attitude control

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.

    1990-01-01

    An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.

  5. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  6. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  7. Auto Code Generation for Simulink-Based Attitude Determination Control System

    NASA Technical Reports Server (NTRS)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  8. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies

  9. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  10. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    NASA Technical Reports Server (NTRS)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  11. Geometric Attitude Controls And Estimations On The Special Orthogonal Group

    NASA Astrophysics Data System (ADS)

    Wu, Tse-Huai

    This dissertation is concerned with spacecraft attitude control and estimation problems from the point of view of geometric mechanics. The controllers and observers are built on the special orthogonal group without any parameterizations, where the attitude dynamics is treated in a global and unique manner. The dissertation is composed of three parts. A leader-follower attitude formation control scheme is reported such that the leader spacecraft control its absolute attitude with respect to the inertial reference frame and the follower spacecraft control relative attitude with respect to other spacecraft in the formation. The unique feature is that both the absolute attitude and the relative attitude control systems are developed directly in terms of the line-of-sight observations, where attitude determination and estimation processes are not required. Second, an angular velocity observer is developed such that the estimated angular velocity is guaranteed to converge to the true angular velocity asymptotically from almost all initial estimates. Then, the presented observer is integrated with a proportional-derivative attitude tracking controller to show a separation type property for attitude tracking in the absence of angular velocity measurements. A hybrid observer for the attitude dynamics of a rigid body is proposed to guarantee global asymptotic stability. By designing a set of attitude error functions, attitude estimates are expelled from undesired equilibria to achieve global asymptotic stability. To guarantee that the estimated attitudes evolve on the special orthogonal group, a numerical algorithm based on the Lie group method is presented.

  12. Attitude control and stabilization technology discipline

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.

    1990-01-01

    Viewgraphs on attitude control and stabilization technology discipline for the Space Station Freedom are presented. Topics covered include: attitude control technologies for multi-user accommodation; flexible dynamics and control; computational control techniques; and automatic proximity operations.

  13. Attitude Control by Localized Outgassing

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.; Croonquist, A.

    1983-01-01

    Attitude control of levitated object achieved by using laser to vaporize selectively sublimate coating. Laser heats material that will sublime or outgas. To obtain torque reaction force vector from subliming material must not pass through center-of-mass of object. Laser provides beam suitable for controlling objects in noncontact manufacturing processes in acoustic levitation chambers.

  14. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    NASA Technical Reports Server (NTRS)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  15. Aerodynamic effects of an attitude control vane on a tilt-nacelle V/STOL propulsion system

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Kita, R.

    1979-01-01

    One possible technique for obtaining longitudinal control on a tilt-nacelle V/STOL aircraft is the use of a variable attitude vane assembly mounted in the propulsion system exhaust. Deflecting the vane produces large forces and moments without depending on forward speed of the aircraft. Tests are carried out in the Ames 40 by 80 ft wind tunnel on a large-scale tilt-nacelle V/STOL propulsion system with and without a variable attitude control vane assembly. Aerodynamic characteristics are analyzed in terms of nacelle aerodynamics, vane aerodynamics, and vane-induced effects on the nacelle aerodynamics. It is shown that the aerodynamic forces due to the nacelle without the vane can be a significant part of the total forces produced by the propulsion system. The control vane effectively produces large changes in pitching moment which are accompanied by significant changes in total lift and drag. The vane has a substantial effect on the propulsion-system aerodynamics. Other pertinent results are also given.

  16. Development of a Hardware-in-the-Loop Simulator for Control Moment Gyroscope-Based Attitude Control Systems

    DTIC Science & Technology

    2015-12-01

    control system , and a pseudoinverse CMG steering law on a real-time controller. The modular design of the embedded flight computer software allows...controller. The modular design of the embedded flight computer software allows for various parameters (such as the spacecraft inertia tensor, CMG rate...CONTROL SOFTWARE DESIGN ..........................37 A. LABVIEW SYSTEM DESIGN SOFTWARE ......................................38 B. FLIGHT COMPUTER

  17. Chaotic satellite attitude control by adaptive approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping

    2014-06-01

    In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.

  18. Project of an attitude control system (three axis) of a satellite using the LQG/LTR methodology

    NASA Astrophysics Data System (ADS)

    Moscati, Ney Ricardo

    1992-02-01

    In Earth remote sensing satellites, an Attitude Control System (ACS) is necessary for stabilization, due to the fact that even if the vehicle is precisely oriented in launch, it can deviate from this orientation due the influence of ambiental torques, internal changes and coupling between attitude dynamics and a satellite's orbital and flexible dynamics. The configuration adopted for the ACS (a momentum wheel and two reaction wheels) exhibits a strong coupling between roll and yaw, hence it is a multivariable system, while the pitch axis is practically decoupled. The linear model for the attitude dynamics of this satellite exhibits uncertainties due to non-modeled dynamics of the flexible panels and giroscopic coupling variations, caused by momentum wheel velocity changes. The LQG/LTR methodology is used to project the ACS operating on the normal mode. This methodology is inherently a multivariable tool, where the compensator's structure is known as MBC, the same structure as LQG compensators. It is based on both time and frequency domain approaches, and has the great advantage of treating the robustness at project level. The frequency project specifications, usually used for SISO systems such as gain and phase margins, bandwidth, disturbance rejection characteristics and insensitivity to parameter variations are extended to the MIMO case through the singular value concept. The LQG/LTR methodology provides, basically, the recovery of the excellent robustness characteristics of systems with LQR regulators when the state is completely measured. On the other hand, specifications on the time domain are difficult to deal with. In view of the easy usage of the methodology and good simulations results obtained, it has been concluded that the LQG/LTR methodology is an attractive option to project ACS when the model is a MIMO type.

  19. Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control

    DTIC Science & Technology

    2016-08-16

    on a low-friction spherical air bearing. It is designed to test the behavior of integrated hardware and software for at- titude determination and...sensors and to validate attitude estimation performance. This paper describes the suite of software programs that has been developed to transmit...receive, log and analyze attitude and performance data. This software architecture makes it possible for the ACSPG’s ADCS to wirelessly receive inertial

  20. Electronic dietary recording system improves nutrition knowledge, eating attitudes and habitual physical activity: a randomised controlled trial.

    PubMed

    Chung, Louisa Ming Yan; Law, Queenie Pui Sze; Fong, Shirley Siu Ming; Chung, Joanne Wai Yee

    2014-08-01

    This study's objective was to investigate whether use of an electronic dietary recording system improves nutrition knowledge, eating attitudes and habitual physical activity levels compared to use of a food diary and no self-monitoring. Sixty adults aged 20-60 with a body mass index ≥25 were recruited and randomly assigned to one of three groups: a group using an electronic system (EG), a group using a food diary (FD) and a control group using nothing (CG) to record food intake. All participants took part in three 60-90 nutrition seminars and completed three questionnaires on general nutrition knowledge, habitual physical activity levels and eating attitudes at the beginning and end of the 12-week study. The pre- and post-test scores for each questionnaire were analysed using a paired sample t-test. Significant improvements in the domain of 'dietary recommendations' were found in the EG (p=0.009) and FD groups (p=0.046). Great improvements were found in 'sources of nutrients', 'choosing everyday foods' and 'diet-disease relationships' in EG and FD groups. EG group showed greater improvement in the work index and sport index. An electronic dietary recording system may improve eating and exercise behaviour in a self-monitoring process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Low Earth orbit satellite attitude control by fractional control laws

    NASA Astrophysics Data System (ADS)

    Kailil, A.; Mrani, N.; Abid, M.; Touati, M. Mliha; Choukri, S.; Elalami, N.

    2004-11-01

    Dans cet article, le controle d'attitude trois-axes d'un satellite par roues de reaction est etabli par les methodes fractionnaires. Dans le but d'expliquer les avantages de ces methodes, une etude comparative a etablie entre la methode lineaire quadratique (LQR) et la methode fractionnaire (FOC). Le but de cette etude est de realiser une loi de controle efficace satisfaisant des specifications donnees, et maintenant la stabilite et les performances requises meme en presence des incertitudes sur les parametres intrinsiques du systeme et sous l'effet des perturbations externes. Mots-cles : controle fractionnaire ; controle d'attitude trois-axes ; roues de reaction ; systeme quasi-bilineaire ; controle optimal. Abstract Fractional order control (FOC) methods are applied to the three-axis reaction wheels satellite attitude control. In order to show the advantages of this method, a comparative study between a Linear Quadratic Regulator (LQR) and a FOC is established through two principal fractional control laws. The aim of this paper is to establish an efficient control law which satisfies a given specifications, and maintains sufficient stability and accuracy even under the strong effects of intrinsic parameters uncertainties, and also external perturbations. Keywords: fractional control; 3-axis attitude control; reaction wheels; quasi-bilinear system; optimal control

  2. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal; Wette, Matthew R.

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near the second Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality needed for the TPF-I formation and that will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of FACS and discuss in detail its formation estimation, guidance and control architectures and algorithms. Since FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  3. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near a Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality associated with the TPF-I formation. This FACS will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of the FACS and discuss in detail its constituent formation estimation, guidance and control architectures and algorithms. Since the FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  4. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near a Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality associated with the TPF-I formation. This FACS will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of the FACS and discuss in detail its constituent formation estimation, guidance and control architectures and algorithms. Since the FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  5. Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Toms, David; Hadden, George D.; Harrington, Jim

    1990-01-01

    The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada.

  6. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  7. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  8. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    NASA Astrophysics Data System (ADS)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  9. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  10. Attitude control compensator for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.

  11. Attitude Dynamics and Control of Solar Sails

    NASA Astrophysics Data System (ADS)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  12. Robust and optimal attitude control of spacecraft with disturbances

    NASA Astrophysics Data System (ADS)

    Park, Yonmook

    2015-05-01

    In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.

  13. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  14. Attitude controls for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.

    1971-01-01

    Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.

  15. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  16. Satellite Attitude Control Using Atmospheric Drag

    DTIC Science & Technology

    2007-03-01

    Satellite Attitude Control Using Atmospheric Drag THESIS David B. Guettler, Captain, USAF AFIT/GA/ENY/07-M10 DEPARTMENT OF THE AIR FORCE AIR...U.S. Government. AFIT/GA/ENY/07-M10 Satellite Attitude Control Using Atmospheric Drag THESIS Presented to the Faculty Department of Aeronautics and...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GA/ENY/07-M10 Satellite Attitude Control Using Atmospheric Drag David B. Guettler, BS Captain

  17. Small Satellite Passive Magnetic Attitude Control

    NASA Astrophysics Data System (ADS)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  18. Lorentz Force Based Satellite Attitude Control

    NASA Astrophysics Data System (ADS)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  19. Model-reference attitude control and reaction control jet engine placement for space shuttle

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    Analytical studies on the theoretical aspects of thrust vector control of large space vehicles were conducted. A system for attitude control of the space shuttle vehicle was developed. Major accomplishments of the project are: (1) investigation of a model-reference adaptive control scheme for controlling the space shuttle attitude and (2) determination of optimum placement of reaction control jet engines on space shuttles.

  20. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  1. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  2. Attitude control system synthesis for the Hoop/Column antenna using the LQG/LTR method. [loop transfer recovery

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Joshi, S. M.; Armstrong, E. S.

    1986-01-01

    This paper investigates the application of the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method to the problem of synthesizing a fine-pointing control system for a large flexible space anenna. The study is based on an antenna, which consists of three rigid-body rotational modes and the first ten elastic modes. A robust compensator design for achieving the required pointing performance in the presence of modeling uncertainties is obtained using the LQG/LTR method. For the Hoop/Column antenna, a satisfactory controller design meeting a desired bandwidth of .1 rad/sec and ensuring stability with unmodelled high frequency modes is obtained using only a collocated pair of 3-axis attitude sensors and torque actuators. This study also indicates that to achieve the desired performance bandwidth of 0.1 rad/sec. and to ensure stability in the presence of higher frequency elastic modes, the design model should include at least the first three flexible modes together with the rigid body modes.

  3. Attitude Determination and Control System Design for a 6U Cube Sat for Proximity Operations and Rendezvous

    DTIC Science & Technology

    2014-08-04

    Disturbance force vector acting on the body-frame Fcmd Controller Force Command Hrw Reaction wheel angular momentum Jrw Reaction wheel moment of inertia matrix... angular momentum hsl,n Mechanical slosh model angular momentum k Solar panel joint spring constant ki,rw Reaction wheel controller integral gain kp,rw...directly to attitude destabilization. In the case of the ARAPAIMA mission, slosh can hinder mission completion by introducing unwanted angular momentum

  4. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  5. ISS Update: Attitude Determination and Control Officer

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot talks with Attitude Determination and Control Officer (ADCO) flight controller Ann Esbeck in the Mission Control Center at Johnson Space Center. They discuss th...

  6. TechSAT attitude control

    NASA Technical Reports Server (NTRS)

    Shachar, M.; Vansover, R.

    1992-01-01

    TechSAT is an academic program of the Technion - Israel Institute of Technology. Emphasizing new engineering solutions, it will be a low-cost, sun-synchronized, 3-axis stabilized, nadir-pointing 50-kg microsat, and will be launched by Arianne as a piggyback payload. The satellite is actually a gyrostat, based on a momentum wheel, a static horizon sensor, three magnetotorquers and a 3-axis magnetometer, all especially designed for TechSAT, with total power consumption of under 3 W. The satellite is designed to be released with unknown attitude and with zero stored momentum. The wheel is accelerated to its biased momentum and the body is slowly controlled to become stabilized, using algorithms that utilize magnetometer data only, to an accuracy of 5 deg, which is considered as coarse cruise. Next, fine cruise uses the static horizon sensor, and a final accuracy of 0.1 deg is achieved.

  7. The H(sub infinity) optimal controller design and reduction for the inertial hold mode of the attitude control system of the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling; Zhou, Gui AN

    1994-01-01

    The Inertial Hold Mode (IHM) is one mode of the attitude control system of the X-ray Timing Explorer spacecraft that is disturbed by both parametric uncertainties and external torque disturbance. The IHM model is modified into a typical H-infinity mixed-sensitivity problem through choosing suitable weighting functions W(sub 1)(s) and W(sub 3)(s). The controller is designed by the H-infinity optimization technique with the transformation of shifting the imaginary axis. It can stabilize the plant with uncertainties from the natural frequencies of the flexible body. The gain margin and phase margin of the system are 24.03 db and 55.04 deg, respectively. The step response attenuates to zero within 150 seconds. These show that the controller satisfies the specified requirements. Since the order of the controller appears high, it is reduced to fourth order one. The results show that the stability and the performance of the system with the reduced controller are retained perfectly.

  8. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  9. Precision attitude control for tethered satellites

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Powell, J. D.

    1993-01-01

    Tethered spacecraft are particularly well suited to serve as isolation platforms for space-borne observatories. It has previously been shown that, due to the relatively large tether force, conventional means of performing attitude control for tethered satellites are inefficient for any mission with pointing requirements more stringent than about 1 deg. A particularly effective method of implementing attitude control for tethered satellites is to use the tether tension force to generate control moments by moving the tether attach point relative to the subsatellite center of mass. This paper presents the development of a precision pointing control algorithm for tethered satellites and the simulation of the control system with laboratory hardware. The control algorithm consists of a linear quadratic regulator feedback law and a Kalman filter. The control algorithm has been shown to regulate the vehicle orientation to within 0.60 arcsec rms. This level of precision was achieved only after including a mass center estimator and accurately modeling the effects of the nonlinear attach point motion actuator.

  10. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  11. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU

  12. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU

  13. Design of an attitude control system for spin-axis control of a 3U CubeSat

    NASA Astrophysics Data System (ADS)

    Westfall, Alexander J.

    This paper describes the design process of developing a spin-axis control system for a 3U CubeSat, a relatively small satellite. Design requires the CubeSat to de-spin after deployment and direct its antenna to track Earth nadir position. The one degree of freedom controller is developed for the TechEdSat, which is a CubeSat with a payload that allows for the assumption that rotation pitch and yaw rates are sufficiently close to zero. Satellite torqueing disturbances are modeled with reaction wheel noise for a more complete system analysis. Sensor noise is unmodeled. Frequency domain and time domain analyses are presented; the entire system bandwidth operates at 0.08 hertz with 43.2 decibels of gain and 67.7° of phase margin. During nominal operations, pointing accuracy with perfect state knowledge assumption maintains position with steady state error of 13.7 arc seconds and oscillates by 16.7 arc seconds at a rate of 0.7 mHertz. Artificial wheel noise is injected into the model causing the pointing accuracy to drop to +/- 15 arc seconds. Environmental disturbances are modeled extensively; the magnetic field torque is the worst disturbance, at 4.2e-7 Newton-meters. A 0.2 Amp˙m2 magnetorquer dumps the excess momentum every 7.75 hours and require 1.5 hours to complete. In the deployment simulation, a 1 rotation per minute spin is arrested with no angular offset in 60 seconds. Future plans include utilizing the model to build and fly a prototype reaction wheel on a future TechEdSat mission to verify modeled expectations.

  14. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  15. On the Constrained Attitude Control Problem

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Kim, Yoonsoo; Mesbahi, Mehran; Singh, Gurkipal

    2004-01-01

    In this paper, we consider various classes of constrained attitude control (CAC) problem in single and multiple spacecraft settings. After categorizing attitude constraints into four distinct types, we provide an overview of the existing approaches to this problem. We then proceed to further expand on a recent algorithmic approach to the CAC problem. The paper concludes with an example demonstrating the viability of the proposed algorithm for a multiple spacecraft constrained attitude reconfiguration scenario.

  16. On the Constrained Attitude Control Problem

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Kim, Yoonsoo; Mesbahi, Mehran; Singh, Gurkipal

    2004-01-01

    In this paper, we consider various classes of constrained attitude control (CAC) problem in single and multiple spacecraft settings. After categorizing attitude constraints into four distinct types, we provide an overview of the existing approaches to this problem. We then proceed to further expand on a recent algorithmic approach to the CAC problem. The paper concludes with an example demonstrating the viability of the proposed algorithm for a multiple spacecraft constrained attitude reconfiguration scenario.

  17. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  18. Spherical Air Bearing testbed for nanosatellite attitude control development

    NASA Astrophysics Data System (ADS)

    Ustrzycki, Tyler

    Spherical Air Bearing systems have been used as a test bed for attitude control systems for many decades. With the advancements of nanosatellite technologies as a platform for scientific missions, there is an increased demand for comprehensive, pre-launch testing of nanosatellites. Several spherical air bearing systems have been developed for larger satellite applications and add too much parasitic mass to be applicable for nanosatellite applications. This thesis details the design and validation of a Nanosatellite Three Axis Attitude Control Testbed. The testbed consists of the physical design of the system, a complete electronics system, and validation of the testbed using low-cost reaction wheels as actuators. The design of the air bearing platform includes a manual balancing system to align the centre of gravity with the centre of rotation. The electronics system is intended to measure the attitude of the platform and control the actuator system. Validation is achieved through a controlled slew maneuver of the air bearing platform.

  19. Optimal periodic control for spacecraft pointing and attitude determination

    NASA Technical Reports Server (NTRS)

    Pittelkau, Mark E.

    1993-01-01

    A new approach to autonomous magnetic roll/yaw control of polar-orbiting, nadir-pointing momentum bias spacecraft is considered as the baseline attitude control system for the next Tiros series. It is shown that the roll/yaw dynamics with magnetic control are periodically time varying. An optimal periodic control law is then developed. The control design features a state estimator that estimates attitude, attitude rate, and environmental torque disturbances from Earth sensor and sun sensor measurements; no gyros are needed. The state estimator doubles as a dynamic attitude determination and prediction function. In addition to improved performance, the optimal controller allows a much smaller momentum bias than would otherwise be necessary. Simulation results are given.

  20. The OGO attitude control subsystem redesign as a result of OGO 3 experience. Volume 1: System analysis and design studies

    NASA Technical Reports Server (NTRS)

    Mckenna, K. J.

    1967-01-01

    An oscillation in the OGO-3 roll control channel, resulting from the EP-5 and EP-6 boom motion coupling into the control channel and causing loss of attitude control, is investigated. The study includes (1) an analysis of the OGO-3 and OGO-2 flight data to determine the nature and extent of the roll oscillation phenomena, (2) design analysis of the complete attitude control subsystem (ACS) to evolve changes which would prevent recurrences of the coupled ACS boom oscillation observed on OGO-3, and (3) analog simulations to verify the performance of the design changes selected. Portions of OGO-3 and OGO-2 flight data are illustrated and the major flexible body oscillation are identified. A model of the major flexible appendage dynamics is developed and is shown analytically and through analog simulations to reproduce the OGO-3 oscillation phenomena. The design changes which were found necessary are: a reversal delay logic for the roll reaction wheels, widening of the solar array dead zone from 0.5 to 1.0 deg, and modification of the OPEP control loop to include a filter and stabilizing feedback loops.

  1. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  2. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  3. Experiments with the KITE attitude control simulator

    NASA Technical Reports Server (NTRS)

    Powell, J. David; Kline-Schoder, Robert

    1989-01-01

    Simulation experiments are conducted to test an attitude control technique for tethered satellites using the tether tension force to generate control torques by moving the tether attach point relative to the satellite center of mass. A scaled, one-dimensional, air-bearing supported laboratory simulation of the Kinetic Isolation Tether Experiment shows that the attitude of the simulator can be regulated to within 0.75 arcsec with a bandwidth of about 0.1 Hz. The control design includes a state estimator to calculate the vehicle mass center and to calculate the effect of the stepper motor dynamics on the state estimate. Results are presented from closed-loop attitude control experiments to verify the attitude control technique.

  4. Model reference adaptive attitude control of spacecraft using reaction wheels

    NASA Technical Reports Server (NTRS)

    Singh, Sahjendra N.

    1986-01-01

    A nonlinear model reference adaptive control law for large angle rotational maneuvers of spacecraft using reaction wheels in the presence of uncertainty is presented. The derivation of control law does not require any information on the values of the system parameters and the disturbance torques acting on the spacecraft. The controller includes a dynamic system in the feedback path. The control law is a nonlinear function of the attitude error, the rate of the attitude error, and the compensator state. Simulation results are prsented to show that large angle rotational maneuvers can be performed in spite of the uncertainty in the system.

  5. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  6. Attitude Control Propulsion Components, Volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.

  7. Periodic attitude control of a slowly spinning spacecraft.

    NASA Technical Reports Server (NTRS)

    Todosiev, E. P.

    1973-01-01

    A periodic attitude control system is presented which permits control of secular errors of a slowly spinning spacecraft operating in a high disturbance environment. Attitude errors of the spin-axis are detected by sun sensors (or rate gyros) and are controlled by a periodic control law which modulates external control torques generated by mass expulsion torquers. Attitude stability during the uncontrolled periods is obtained passively via the vehicle spin momentum. Equations of motion, a system block diagram, and design parameters are presented for a typical spacecraft application. Simulation results are included which demonstrate the feasibility of the novel control concept. Salient features of the periodic control approach are implementation simplicity, excellent response, and a propellant utilization efficiency greater than 75 percent.

  8. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  9. Attitude control of a spinning flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Patel, J. S.; Schweitzer, G.

    1973-01-01

    The dynamics of rotational motion of a spinning orbiting spacecraft consisting of two rigid bodies connected by a flexible joint and arbitrary number of flexible appendages (two of which are flexible massless booms having masses on their tips) is analyzed. Active attitude control is provided by momentum exchange devices (e.g. control moment gyroscopes) or a mass expulsion system. The linearized equations of motion describing the vehicle are presented, and a large scale digital simulation that has been developed at the Marshall Space Flight Center is presented. A simplified model of the geometrically complex vehicle is selected to make it analytically tractable. The simplified model consists of a single rigid core body with two attached flexible massless booms having tip masses. The states of the vehicle are defined as small perturbations about its steady-state spin. An analysis is performed to determine the domain of stability.

  10. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  11. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  12. Comparison of low-Earth-orbit satellite attitude controllers submitted to controllability constraints

    NASA Astrophysics Data System (ADS)

    Steyn, Willem H.

    1994-07-01

    A rule-based fuzzy controller is presented and compared with an adaptive MIMO LQR controller in a low-earth-orbit small satellite attitude control system. The attitude is passively gravity gradient stabilized and actively three-axis magnetorquer controlled. This method insures an earth-pointing satellite making use of a nondepletable and nonmechanical means of control. A realistic simulation environment, using a nonlinear satellite dynamic model with linear attitude estimators plus sensor measurement noise and external disturbance torques, was used to evaluate the different control techniques.

  13. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  14. The development and demonstration of hybrid programmable attitude control electronics

    NASA Technical Reports Server (NTRS)

    Smith, L. S.; Kopf, E. H., Jr.

    1973-01-01

    In the course of extended life attitude control system (ELACS) research sponsored by NASA a hybrid programable attitude control electronics (HYPACE) concept was developed and demonstrated. The wide variety of future planetary missions demanded a new control approach to accommodate the automatic fault tolerance and long the life requirements of such missions. HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, and spacecraft changes, through programing. This enabled broad multimission flexibility of application in a cost effective manner. Previously, flight control computers have not been not flown on planetary missions because of weight and power problems. These problems were resolved in the design of HYPACE. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs.

  15. The development and demonstration of hybrid programmable attitude control electronics

    NASA Technical Reports Server (NTRS)

    Smith, L. S.; Kopf, E. H., Jr.

    1973-01-01

    In the course of extended life attitude control system (ELACS) research sponsored by NASA a hybrid programable attitude control electronics (HYPACE) concept was developed and demonstrated. The wide variety of future planetary missions demanded a new control approach to accommodate the automatic fault tolerance and long the life requirements of such missions. HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, and spacecraft changes, through programing. This enabled broad multimission flexibility of application in a cost effective manner. Previously, flight control computers have not been not flown on planetary missions because of weight and power problems. These problems were resolved in the design of HYPACE. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs.

  16. Attitude Control Performance of IRVE-3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  17. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  18. Low drag attitude control for Skylab orbital lifetime extension

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1981-01-01

    In the fall of 1977 it was determined that Skylab had started to tumble and that the original orbit lifetime predictions were much too optimistic. A decision had to be made whether to accept an early uncontrolled reentry with its inherent risks or try to attempt to control Skylab to a lower drag attitude in the hope that there was enough time to develop a Teleoperator Retrieval System, bring it up on the Space Shuttle and then decide whether to boost Skylab to a higher longer life orbit or to reenter it in a controlled fashion. The end-on-velocity (EOVV) control method is documented, which was successfully applied for about half a year to keep Skylab in a low drag attitude with the aid of the control moment gyros and a minimal expenditure of attitude control gas.

  19. Improved satellite attitude control using a disturbance compensator

    NASA Astrophysics Data System (ADS)

    Yamashita, Toshiaki; Ogura, Naoto; Kurii, Toshihiro; Hashimoto, Tatsuaki

    2004-07-01

    An attitude control algorithm using a disturbance compensator has been developed for three-axis-controlled satellites with flexible appendages. It consists of a compensator to stabilize the system (e.g., PD control), a filter to prevent excitation of the neglected higher flexible-mode vibration (e.g., a low-pass filter), and a compensator to suppress the effect of disturbances on the satellite attitude. This disturbance compensator can be designed in the frequency-domain in terms of the robust model matching design method, and also, in the time-domain in terms of the observer/estimator approach. The designed compensator can easily be implemented for a conventional attitude control system. Theoretically, the disturbance compensator makes it possible to assure arbitrarily low sensitivity over any frequency range for disturbances due not only to the environment but also to structural flexibility with keeping the control performance for reference inputs. Thus, the control algorithm can improve the control performance of satellites with the flexible structures. It is applied for the attitude control system of the Japanese VLBI satellite, "HALCA", launched on February 12, 1997.

  20. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  1. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  2. Robust attitude tracking control of small-scale unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Wang, Xiafu; Chen, You; Lu, Geng; Zhong, Yisheng

    2015-06-01

    Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.

  3. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  4. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  5. Integrated Design Of Space Telescope Vibration isolation And Attitude Control

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Zheng, Gangtie

    2012-07-01

    An integrated design methodology for telescope vibration isolation and attitude control is proposed and demonstrated through an example problem. It is shown that ultra-low frequency vibration isolation can be realized without significantly degrade the control performance with the integrated design method. It is also shown that although active damping can be added to the flexible mode through proper control algorithm modification, passive damping of isolator is still important to the control system performance by improving the stability margin and robustness.

  6. Novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1996-12-31

    The authors are developing extremely simple yet quite capable analog pulse-coded neural networks for smaller-faster-cheaper spacecraft attitude and control systems. They will demonstrate a prototype microsatellite that uses the novel control system to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source.

  7. Development of a reaction wheel attitude control system for sounding rocket experiments and small Shuttle-based free flyers

    NASA Technical Reports Server (NTRS)

    Ward, P. R.

    1986-01-01

    A three-axis reaction wheel control system is currently under development. Initial emphasis is on a magnetic field reference, although the system is easily adaptable to other positional references, e.g., the gyroscopic. The system is housed in a skin section 17.25 inches in diameter and approximately 10 inches long. Current weight estimate is 75 pounds. An orthogonal triad of dc motors forms the basis of the system. Power is provided by silver-zinc cells and controlled by an 8-bit microprocessor. The control law is presented and the dynamical equations derived. Simulation results show that a payload with a roll MOI of 4.1 sl/sq ft and a transverse MOI of 20.3 sl/sq ft can typically be reoriented 90 degrees in 20-35 seconds, depending upon the initial body rates.

  8. Development of a reaction wheel attitude control system for sounding rocket experiments and small Shuttle-based free flyers

    NASA Technical Reports Server (NTRS)

    Ward, P. R.

    1986-01-01

    A three-axis reaction wheel control system is currently under development. Initial emphasis is on a magnetic field reference, although the system is easily adaptable to other positional references, e.g., the gyroscopic. The system is housed in a skin section 17.25 inches in diameter and approximately 10 inches long. Current weight estimate is 75 pounds. An orthogonal triad of dc motors forms the basis of the system. Power is provided by silver-zinc cells and controlled by an 8-bit microprocessor. The control law is presented and the dynamical equations derived. Simulation results show that a payload with a roll MOI of 4.1 sl/sq ft and a transverse MOI of 20.3 sl/sq ft can typically be reoriented 90 degrees in 20-35 seconds, depending upon the initial body rates.

  9. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1992-08-01

    Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  10. Mariner Mars 1971 attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1974-01-01

    The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.

  11. Attitude control of spacecraft using neural networks

    NASA Technical Reports Server (NTRS)

    Vadali, Srinivas R.; Krishnan, S.; Singh, T.

    1993-01-01

    This paper investigates the use of radial basis function neural networks for adaptive attitude control and momentum management of spacecraft. In the first part of the paper, neural networks are trained to learn from a family of open-loop optimal controls parameterized by the initial states and times-to-go. The trained is then used for closed-loop control. In the second part of the paper, neural networks are used for direct adaptive control in the presence of unmodeled effects and parameter uncertainty. The control and learning laws are derived using the method of Lyapunov.

  12. Inversion Of Dynamical Equations For Control Of Attitude

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1995-01-01

    Method of inverting nonlinear equations of rotational dynamics of rigid body used to design feedback control of orientation of body. Applicable to both direction-cosine and quaternion formulations suitable for large-angle maneuvers. Exploiting some apparently little-known properties of direction cosine and quaternion formulations, method leads to equations for model-follower control system that exhibits exactly linear attitude-error dynamics. Quarternion system more robust in responding to large roll-angle commands.

  13. Inversion Of Dynamical Equations For Control Of Attitude

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1995-01-01

    Method of inverting nonlinear equations of rotational dynamics of rigid body used to design feedback control of orientation of body. Applicable to both direction-cosine and quaternion formulations suitable for large-angle maneuvers. Exploiting some apparently little-known properties of direction cosine and quaternion formulations, method leads to equations for model-follower control system that exhibits exactly linear attitude-error dynamics. Quarternion system more robust in responding to large roll-angle commands.

  14. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  15. Attitude tracking control of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-08-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  16. Multibody system applications and simulations at the Jet Propulsion Laboratory. [emphasizing attitude and science platform articulation control

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1978-01-01

    The historical development of the Jet Propulsion Laboratory (JPL) of generic computer programs for solving the H-M-H equations of motion of point-connected sets of rigid bodies in a topological tree is traced, as well as the application of these programs and the multibody modelling approach to the design of spacecraft control systems. These include thrust vector control and science instrument articulation on such vehicles as Mariner 9, Mariner 10, Viking Orbiter, and Voyager.

  17. Multibody system applications and simulations at the Jet Propulsion Laboratory. [emphasizing attitude and science platform articulation control

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1978-01-01

    The historical development of the Jet Propulsion Laboratory (JPL) of generic computer programs for solving the H-M-H equations of motion of point-connected sets of rigid bodies in a topological tree is traced, as well as the application of these programs and the multibody modelling approach to the design of spacecraft control systems. These include thrust vector control and science instrument articulation on such vehicles as Mariner 9, Mariner 10, Viking Orbiter, and Voyager.

  18. Attitude stabilization of a rigid spacecraft using two control torques: A nonlinear control approach based on the spacecraft attitude dynamics

    NASA Astrophysics Data System (ADS)

    Krishnan, Hariharan; Reyhanoglu, Mahmut; McClamroch, Harris

    1994-06-01

    The attitude stabilization problem of a rigid spacecraft using control torques supplied by gas jet actuators about only two of its principal axes is considered. If the uncontrolled principal axis of the spacecraft is not an axis of symmetry, then the complete spacecraft dynamics are small time locally controllable. However, the spacecraft cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback. A discontinuous stabilizing feedback control strategy is constructed which stabilizes the spacecraft to any equilibrium attitude. If the uncontrolled principal axis of the spacecraft is an axis of symmetry, the complete spacecraft dynamics are not even assessible. However, the spacecraft dynamics are strongly accessible and small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy is constructed. In both cases, the discontinuous feedback controllers are constructed by switching between several feedback functions which are selected to accomplish a sequence of spacecraft maneuvers. The results of the paper show that although standard nonlinear control techniques are not applicable, it is possible to construct a nonlinear discontinuous control law based on the dynamics of the particular physical system.

  19. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  20. Fuzzy control of attitude of four - rotor UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Zexiang; Hu, Shengbin

    2017-08-01

    The four - rotor unmanned aerial vehicle (UAV) is the object of study, in this paper. In order to solve the problem of poor robustness and low control precision of the four-rotor unmanned aerial vehicle (UAV) control system, and realized the stability control problem of the four-rotor UAV attitude. First, the dynamic model of the four-rotor unmanned aerial vehicle is established. And on this basis, a fuzzy controller is designed, and used to control the channel. Then, the simulation platform is built by Matlab / Simulink simulation software, and the performance of the designed fuzzy controller is analyzed comprehensively. It is also determined whether the algorithm can control the attitude of the four rotor unmanned aerial vehicle. The simulation results fully verify the accuracy of the model, and proved fuzzy controller has better dynamic performance and robustness under appropriate parameters so that UAVs can fly stable. The algorithm can improve the anti-jamming performance and control accuracy of the system, it has a certain significance for the actual four-rotor aircraft attitude control.

  1. RTSJ Memory Areas and Their Affects on the Performance of a Flight-Like Attitude Control System

    NASA Technical Reports Server (NTRS)

    Niessner, Albert F.; Benowitz, Edward G.

    2003-01-01

    The two most important factors in improving performance in any software system, but especially a real-time, embedded system, are knowing which components are the low performers and knowing what can be done to improve their performance. The word performance with respect to a real-time, embedded system does not necessarily mean fast execution, which is the common definition when discussing non real-time systems. It also includes meeting all of the specified execution dead-lines and executing at the correct time without sacrificing non real-time performance. Using a Java prototype of an existing control system used on Deep Space 1[1], the effects from adding memory areas are measured and evaluated with respect to improving performance.

  2. Attitude control of a spinning Skylab.

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Schweitzer, G.; Asner, B., Jr.

    1972-01-01

    Active attitude control of a spinning Skylab is analyzed to determine a simple control law that will provide a satisfactory response, considering the dynamics of attached flexible appendages. A simplified model of the complex Skylab vehicle is selected to make it analytically tractable. The vehicle is modeled as a single rigid-core body with two attached flexible massless booms having masses on their tips. The equations of motion describing the attitude dynamics of the model are presented as a linear matrix-differential equation. The states of the vehicle are small perturbations about its steady-state spin. An analysis is performed to determine the domain of stability. Next, attitude dynamics are analyzed; both frequency domain (parameter plane) and time domain (an optimal linear quadratic loss program) techniques are compared. An analysis of the nonlinear effect of control torque saturation of Skylab's control moment gyroscopes is discussed. The results of the analysis compare favorably with a large-scale digital simulation of the Skylab.

  3. Autonomous Attitude Determination System (AADS). Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Saralkar, K.; Frenkel, Y.; Klitsch, G.; Liu, K. S.; Lefferts, E.; Tasaki, K.; Snow, F.; Garrahan, J.

    1982-01-01

    Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution.

  4. The use of real-time, hardware-in-the-loop simulation in the design and development of the new Hughes HS601 spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Slafer, Loren I.

    1989-01-01

    Realtime simulation and hardware-in-the-loop testing is being used extensively in all phases of the design, development, and testing of the attitude control system (ACS) for the new Hughes HS601 satellite bus. Realtime, hardware-in-the-loop simulation, integrated with traditional analysis and pure simulation activities is shown to provide a highly efficient and productive overall development program. Implementation of high fidelity simulations of the satellite dynamics and control system algorithms, capable of real-time execution (using applied Dynamics International's System 100), provides a tool which is capable of being integrated with the critical flight microprocessor to create a mixed simulation test (MST). The MST creates a highly accurate, detailed simulated on-orbit test environment, capable of open and closed loop ACS testing, in which the ACS design can be validated. The MST is shown to provide a valuable extension of traditional test methods. A description of the MST configuration is presented, including the spacecraft dynamics simulation model, sensor and actuator emulators, and the test support system. Overall system performance parameters are presented. MST applications are discussed; supporting ACS design, developing on-orbit system performance predictions, flight software development and qualification testing (augmenting the traditional software-based testing), mission planning, and a cost-effective subsystem-level acceptance test. The MST is shown to provide an ideal tool in which the ACS designer can fly the spacecraft on the ground.

  5. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  6. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  7. Aircraft pitch attitude adaptive control via singular perturbation technique

    NASA Astrophysics Data System (ADS)

    Yurkevich, V. D.

    2013-12-01

    The problem of aircraft pitch attitude control is treated in the presence of uncertain aerodynamics. The proposed design methodology guarantees desired pitch attitude transient performance indices by inducing of two-time-scale motions in the closed-loop system where the controller dynamics is a singular perturbation with respect to the system dynamics. The singular perturbation method is used in order to get explicit expressions for evaluation of the controller parameters. Stability of fast-motion transients for a large range of aerodynamic characteristics variations is maintained due to a high-frequency-gain online identification and gain tuning that are incorporated in the control loop. Numerical example and simulation results are presented.

  8. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  9. Aircraft Attitude Control by Fuzzy Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Matsuba, Takashi

    The fuzzy control law to improve dutch roll characteristics of aircraft was designed and its control performance was evaluated. First, the control law was designed for a small-high speed aircraft at low altitude and low-speed flight conditions. The control law was then applied to flight conditions from minimum speed to supersonic speed and from sea level to high altitude. The control performance for these conditions was evaluated. Furthermore, this control law was adapted to a large transport aircraft with no parameter changes. The evaluation showed good control performance to improve the dutch roll characteristics under all flight conditions for both small high-speed aircraft and large transport aircraft without the parameter changes. This means that the fuzzy control proved to provide effective flexible application to aircraft stability augmentation. If an aircraft in actual flight is in strong air turbulence, inputs to the fuzzy controller may exceed the limit of its effective range. To cope with this problem, the countermeasures were introduced, their methods tested, and their effectiveness proved.

  10. SSS-A attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  11. Pulsed plasma thrusters for small spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed Plasma Thrusters (PPTS) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LERC) currently has a contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October 1997. The PPT systems in this study are based upon the work being done under the NASA LERC program. Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though rapid slewing power requirements may present an issue.

  12. Force and moment data from a wind-tunnel test of a tilt-nacelle V/STOL propulsion system with an attitude control vane. [conducted in Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.

    1979-01-01

    A large scale, tilt nacelle V/STOL propulsion system, with an attitude control vane assembly mounted in the exhaust, was tested. The effectiveness of the control vane as well as the aerodynamic characteristics of the entire propulsion system were determined. The results, in the form of tabulated coefficients, for both the vane forces and moments and the total forces and moments produced by the propulsion system are presented.

  13. Preliminary Attitude Control Studies for the ASTER Mission

    NASA Astrophysics Data System (ADS)

    Victorino Sarli, Bruno; Luís da Silva, André; Paglione, Pedro

    2013-10-01

    This work discusses an attitude control study for the ASTER mission, the first Brazilian mission to the deep space. The study is part of a larger scenario that is the development of optimal trajectories to navigate in the 2001 SN263 asteroid system, together with the generation of orbit and attitude controllers for autonomous operation. The spacecraft attitude is defined from the orientation of the body reference system to the Local Vertical Local Horizontal (LVLH) of a circular orbit around the Alpha asteroid. The rotational equations of motion involve the dynamic equations, where the three angular speeds are generated from a set of three reaction wheels and the gravitational torque. The rotational kinematics is represented in the Euler angles format. The controller is developed via the linear quadratic regulator approach with output feedback. It involves the generation of a stability augmentation (SAS) loop and a tracking outer loop, with a compensator of desired structure. It was chosen the feedback of the p, q and r angular speeds in the SAS, one for each reaction wheel. In the outer loop, it was chosen a proportional integral compensator. The parameters are tuned using a numerical minimization that represents a linear quadratic cost, with weightings in the tracking error and controls. Simulations are performed with the nonlinear model. For small angle manoeuvres, the linear results with reaction wheels or thrusters are reasonable, but, for larger manoeuvres, nonlinear control techniques shall be applied, for example, the sliding mode control.

  14. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  15. Application of model following control and estimation techniques to attitude control of maneuvering spacecraft. Part 1: Theory and simulation results

    NASA Astrophysics Data System (ADS)

    Zwartbol, T.; Terpstra, A. P.; Vanwoerkom, P. T. L. M.; Vandendam, R. F.

    1982-10-01

    An approach to on-board sampled data estimation and control of the attitude motion of maneuvering spacecraft is presented. Algorithms for model following control of attitude maneuvers; estimation of spacecraft state (attitude, angular velocity, disturbance, torque); and optical-inertial attitude determination, with estimation of gyro parameters (drift rate bias, scale factor error) were developed. The algorithms were validated in single-axis software simulations of an attitude control system of the type used in the Infrared Astronomical Satellite. The control system comprises a strapdown rate-integrating gyro and a slit-type star sensor for optical-inertial attitude sensing, a reaction wheel actuator, and a digital on-board computer. The truth models for simulation of the hardware components are discussed.

  16. Attitude Dynamics and Controls for Large Solar Sails

    NASA Astrophysics Data System (ADS)

    Fu, Bo

    This dissertation enriches our knowledge of attitude control methodologies that are suitable for solar sails, and in particularly large solar sails. In chapter 1, the fundamental physics of solar sails and existing solar sail attitude control methodologies are reviewed. In chapter 2, an attitude control methodology (Tip Displacement Method) that is suitable for large solar sail is presented. In the proposed method, the sail wing-boom attachment points are allowed to move, and under solar radiation pressure, the sail membrane sags into a curved profile. A mathematical model of this curved profile is built, and analytical solutions of solar radiation body torque based on the curved wing is derived. It is shown that this methodology along can generate enough body toque in all three body axis directions for attitude control of large solar sails. In chapter 3, the propose method is further investigated, and the effect of incident solar radiation direction on solar radiation pressure body torque generation is studied. The effect of sail shape is also studied a step further, mainly by relaxing previously made cylindrical assumption on the shape of the wing. Based on an optimization process, algorithms for determining the shape of the wing are given, and solar radiation body torques are developed for the shape of the wing. One finding is that for small tip displacements, the cylindrical sail wing model is sufficient in estimating the solar radiation body torque. In chapters 2 and 3, the analyses are carried out based on the assumption that the wing shape is of a generalized cylinder. In chapter 4 a theoretical basis is provided for this assumption. Using the mathematical model of the single wing for the proposed tip displacement attitude control strategy, in chapter 5 a whole square solar sail model is built, and the system controllability is studied for linearized system states. The system is found to be robust because of the many actuators used, and is controllable even

  17. Skylab attitude control and angular momentum desaturation with one double-gimbaled control moment gyro

    NASA Technical Reports Server (NTRS)

    Kennel, H. F.

    1973-01-01

    In case two control moment gyros fail, attitude control of Skylab can be maintained with the thruster attitude control system. This results, however, in a severely increased fuel consumption, depleting the fuel in a few days. Therefore, an alternate concept was developed which does not have large fuel consumption under any circumstances. In this concept the attitude reference is commanded to oscillate in the orbital plane with twice the orbital frequency and the remaining control moment gyro controls about orbital north and about the minimum moment-of-inertia axis, while the thruster attitude control system controls rate only about the remaining axis. This rate control in conjunction with the restoring torque due to the gravity gradient will keep bounded the excursion of the minimum moment-of-inertia axis out of the orbital plane. This alternate concept has the additional advantage that it needs no information on the principal moment-of-inertia axes misalignment and is completely insensitive to star tracker failure. Proper phasing of the attitude reference oscillation even allows angular momentum desaturation, which is responsible for the insensitivity of the thruster fuel consumption to unknown disturbances, like vent torques and magnetic torques.

  18. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    NASA Technical Reports Server (NTRS)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  19. Attitude-Control Algorithm for Minimizing Maneuver Execution Errors

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet

    2008-01-01

    A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.

  20. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  1. Fault tolerant programmable digital attitude control electronics study

    NASA Technical Reports Server (NTRS)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  2. The attitude control of fixed-wing MAVS in turbulent environments

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdulghani; Massey, Kevin; Watkins, Simon; Clothier, Reece

    2014-04-01

    The small scale and portability of fixed-wing Micro Aerial Vehicles lend them to many unique applications, however their utility is often limited by ineffective attitude control in turbulent environments. The performance of attitude control systems themselves are affected by a variety of factors. Assessment of this system’s performance needs to be viewed in relation to the MAVs’ unique constraints. Certain aspects and limitations of MAV attitude control related issues are addressed in the literature, but to fully address the degradation of utility, the entire system must be examined. These issues can only be fully addressed when considering them concurrently. There is no framework for defining the attitude control problem explicitly for MAVs. This paper attempts to (1) Define the MAV attitude control problem with respect to the unique constraints imposed by this class of Unmanned Aircraft; (2) Review current design trends of MAVs with respect to vulnerability to atmospheric turbulence.

  3. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1995-01-01

    Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  4. Nonlinear H∞ based underactuated attitude control for small satellites with two reaction wheels

    NASA Astrophysics Data System (ADS)

    Han, Congying; Guo, Jian; Pechev, Alexandre

    2014-11-01

    Underactuated attitude control is supposed to be used on spacecraft when failure happens with onboard actuators. One main problem with existing underactuated attitude control designs is their limited capabilities against disturbances. In order to solve this problem, an approach based on the theory of H∞ is proposed in this paper. Two propositions are derived from the H∞ theory to improve the robustness of one popular underactuated attitude control design, which was presented by Tsiotras et al. It is proved mathematically that the controller satisfying these two propositions respectively can stabilize the underactuated attitude system locally or globally. The numerical simulations show that the improved controllers based on the H∞ theory could provide higher pointing accuracy for small satellites against disturbances. This validates the effectiveness of the proposed H∞ based approach to improve existing underactuated attitude control designs.

  5. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim

    2003-01-01

    Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.

  6. Pulsed Plasma Thrusters for Small Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed plasma thrusters (PPT's) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft configuration to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Reserach Center (LeRC) currently has a contracted flight PPT system development program in place with Olin Aerospace and a delivery date of October 1997. The PPT system in this study are based upon the work being done under the NASA LeRC program. Analysis of the use of PPT's for ACS showed that the replacement of the standard momentum wheels and torque rods systems with a PTT system to perform the altitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75 percent with no increase in required power level over comparable wheel-based systems.

  7. Attitude control of a rigid spacecraft with one variable-speed control moment gyro

    NASA Astrophysics Data System (ADS)

    Gui, Hai-Chao; Jin, Lei; Xu, Shi-Jie

    2013-10-01

    Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilibrium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and derivative controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI controller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude stabilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.

  8. Attitude dynamics and control of a spacecraft using shifting mass distribution

    NASA Astrophysics Data System (ADS)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  9. Attitude and vibration control of a large flexible space-based antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1982-01-01

    Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.

  10. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  11. IMP-J attitude control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.

    1973-01-01

    A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.

  12. Mariner Mars 1971 attitude control subsystem flight performance

    NASA Technical Reports Server (NTRS)

    Schumacher, L.

    1973-01-01

    The flight performance of the Mariner 71 attitude control subsystem is discussed. Each phase of the mission is delineated and the attitude control subsystem is evaluated within the observed operational environment. Performance anomalies are introduced and discussed within the context of general performance. Problems such as the sun sensor interface incompatibility, gas valve leaks, and scan platform dynamic coupling effects are given analytical considerations.

  13. Variable-structure control of spacecraft attitude maneuvers

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas A. W., III; Sira-Ramirez, Hebertt

    1988-01-01

    A variable-structure control approach is presented for multiaxial spacecraft attitude maneuvers. Nonlinear sliding surfaces are proposed that result in asymptotically stable, ideal linear decoupled sliding motions of Cayley-Rodrigues attitude parameters, as well as of angular velocities. The resulting control laws are interpreted as more easily implemented and more robust versions of those previously obtained by feedback linearization.

  14. Trend recognition and failure prediction of the attitude determination and control system of the Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle S.; Hadden, George D.

    An approach to automated trend recognition and failure prediction in the health parameter data of spacecraft is described. The approach, State-Based Feature Recognition (SBER), combines intelligent data filtering with state machines to detect the presence of features (trends and impending failures) in the health parameter data of spacecraft. SBFR, when implemented in a space-based or ground-based monitoring system, can increase spacecraft autonomy and decrease technician workload. An implemented, prototype Space Station Freedom (SSF) Maintenance and Diagnostic System (SSFMDS) that demonstrates the applicability of SBFR to trend detection and failure prediction will be described. SBFR allows features to be tracked, using specialized state machines, as they develop in a time-independent manner, allowing both short term and long term features to be detected. Each state machine operates independently of the other machines, making simultaneous feature tracking possible.

  15. Single Axis Attitude Control and DC Bus Regulation with Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.

    2002-01-01

    A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.

  16. New attitude penalty functions for spacecraft optimal control problems

    SciTech Connect

    Schaub, H.; Junkins, J.L.; Robinett, R.D.

    1996-03-01

    A solution of a spacecraft optimal control problem, whose cost function relies on an attitude description, usually depends on the choice of attitude coordinates used. A problem could be solved using 3-2-1 Euler angles or using classical Rodriguez parameters and yield two different ``optimal`` solutions, unless the performance index in invariant with respect to the attitude coordinate choice. Another problem arising with many attitude coordinates is that they have no sense of when a body has tumbled beyond 180{degrees} from the reference attitude. In many such cases it would be easier (i.e. cost less) to let the body complete the revolution than to force it to reverse the rotation and return to the desired attitude. This paper develops a universal attitude penalty function g() whose value is independent of the attitude coordinates chosen to represent it. Furthermore, this function will achieve its maximum value only when a principal rotation of {plus_minus}180{degrees} from the target state is performed. This will implicitly permit the g() function to sense the shortest rotational distance back to the reference state. An attitude penalty function which depends on the Modified Rodriguez Parameters (MRP) will also be presented. These recently discovered MRPs are a non-singular three-parameter set which can describe any three-attitude. This MRP penalty function is simpler than the attitude coordinate independent g() function, but retains the useful property of avoiding lengthy principal rotations of more than {plus_minus}180{degrees}.

  17. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  18. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  19. Effects of the implementation of the web-based patient support system on staff's attitudes towards computers and IT use: a randomised controlled trial.

    PubMed

    Koivunen, Marita; Välimäki, Maritta; Patel, Anita; Knapp, Martin; Hätönen, Heli; Kuosmanen, Lauri; Pitkänen, Anneli; Anttila, Minna; Katajisto, Jouko

    2010-09-01

    Utilisation of information technology (IT) in the treatment of people with severe mental health problems is an unknown area in Europe. Use of IT and guiding patients to relevant sources of health information requires that nursing staff have positive attitudes toward computers and accept IT use as a part of daily practises. The aim of the study was to assess the effects of the implementation of a web-based patient support system on staff's attitudes towards computers and IT use on psychiatric wards. Hundred and forty-nine nurses in two psychiatric hospitals in Finland were randomised to two groups to deliver patient education for patients with schizophrenia and psychosis with a web-based system (n = 76) or leaflets (n = 73). After baseline nurses were followed-up for 18 months after the introduction of the system. The primary outcome was nurses' motivation to utilise computers, and the secondary outcomes were nurses' beliefs in and satisfaction with computers, and use of computer and internet. There were no statistically significant differences between study groups in attitudes towards computers (motivation p = 0.936, beliefs p = 0.270, satisfaction p = 0.462) and internet use (p = 0.276). However, nurses' general computer use (p = 0.029) increased more in the leaflet group than in the IT intervention group. We can conclude that IT has promise as an alternative method in patient education, as the implementation of the web-based patient support system in daily basis did not have a negative effect on nurses' attitudes towards IT.

  20. Attitude determination and control subsystem for the TOPEX satellite

    NASA Technical Reports Server (NTRS)

    Dennehy, C. J.; Welch, R. V.; Kia, T.

    1988-01-01

    The Ocean Topography Experiment satellite will carry a modular Attitude Determination and Control Subsystem (ADCS) which contains all equipment required for attitude determination, stabilization, and control, as well as hydrazine thruster firing control, during all mission phases. Attention is presently given to the ADCS's architecture, constituent hardware components, performance requirements, and predicted on-orbit performance compliance, with emphasis on the design and analysis of the Normal Mission Mode control algorithm furnishing the primary scientific data-acquisition operational mode. This mode's attitude determination and control of on-orbit performance is predicted to better than 43 arcsec.

  1. Attitude determination and control subsystem for the TOPEX satellite

    NASA Technical Reports Server (NTRS)

    Dennehy, C. J.; Welch, R. V.; Kia, T.

    1988-01-01

    The Ocean Topography Experiment satellite will carry a modular Attitude Determination and Control Subsystem (ADCS) which contains all equipment required for attitude determination, stabilization, and control, as well as hydrazine thruster firing control, during all mission phases. Attention is presently given to the ADCS's architecture, constituent hardware components, performance requirements, and predicted on-orbit performance compliance, with emphasis on the design and analysis of the Normal Mission Mode control algorithm furnishing the primary scientific data-acquisition operational mode. This mode's attitude determination and control of on-orbit performance is predicted to better than 43 arcsec.

  2. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.

    2017-03-01

    Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.

  3. Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam

    2013-01-01

    A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin

  4. Farmer and Public Attitudes Toward Lamb Finishing Systems.

    PubMed

    Coleman, Grahame; Jongman, Ellen; Greenfield, L; Hemsworth, Paul

    2016-01-01

    To develop research and policy on the welfare of lambs in intensive finishing systems, it is important to understand public and sheep farmers' attitudes. The aim of this research was to identify and compare farmer and community attitudes relevant to the intensification of lamb finishing. The majority of respondents in the community sample expressed concern about all listed welfare issues, but particularly about feedlotting of lambs and the associated confinement. These attitudes correlated with community views on the importance of welfare issues including social contact and freedom to roam. Farmers expressed much lower levels of concern than did the general public except with regard to the health of lambs, disease control, access to shade, and lack of access to clean water.

  5. Locus of control and attitudes toward large carnivores.

    PubMed

    Bjerke, T; Vittersø, J; Kaltenborn, B P

    2000-02-01

    It has been hypothesized tha the negative attitudes toward carnivores found among rural groups is only one element embedded in a larger sociopolitical complex of disputes over resource use and rural development. Negative attitudes may reflect a protest against increased control of land use by central political authorities. In a survey among sheep farmers, wildlife managers, and research biologists in Norway we found that the sheep farmers expressed an external locus of control, indicating a belief that external forces control events, relative to the two other groups. Among sheep farmers and research biologists a positive association was found between an external locus of control and negative attitudes toward large carnivores.

  6. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  7. Attitude towards Responsibility and Teacher Locus of Control: Predicting Teacher Stress and Attitudes. Research Paper ERU-2-88.

    ERIC Educational Resources Information Center

    Soh, Kay-cheng

    The relationships between teachers' attitudes toward responsibility and locus of control and other characteristics such as stress, educational attitudes, and attitudes toward change were studied in 54 (35 female and 19 male) experienced primary and secondary school teachers taking a course on classroom-based research. Attitude toward…

  8. Attitude and translation control of a low-altitude Gravsat

    NASA Technical Reports Server (NTRS)

    Ray, J. C.; Jenkins, R. E.; Debra, D. B.; Van Patten, R. A.; Junkins, J. L.

    1982-01-01

    Dynamic simulation of the Gravsat's attitude and translation control system is used to provide an upper bound for the fuel supply and test the feasibility of the preliminary design. A preliminary design is made for the disturbance compensation system (DISCOS) sensor, the thruster control laws, reaction wheel control laws, and the onboard state estimators. The sensor analysis and noise measurements show no problems in scaling the Triad navigation satellite sensor design up to meet the Gravsat requirements, except for proof mass center-of-mass offset. A promising technique is proposed to measure and eliminate this error. The covariance analysis confirms that a sophisticated post-flight data fit will be necessary to reconstruct a scientifically useful proof mass state. The DISCOS sensor will have to be continuously calibrated from the inflight data to achieve this reconstruction.

  9. Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft

    NASA Technical Reports Server (NTRS)

    deGroot, W. A.

    1998-01-01

    Order of magnitude decreases in the size of scientific satellites and spacecraft could provide concurrent decreases in mission costs because of lower launch and fabrication costs. Although many subsystems are amenable to dramatic size reductions, miniaturization of the propulsion subsystems is not straightforward. There are a range of requirements for both primary and attitude control propulsion, dictated by mission requirements, satellite size, and power restrictions. Many of the established propulsion technologies can not currently be applied to microspacecraft. Because of this, micro-electromechanical systems (MEMS) fabrication technology is being explored as a path for miniaturization.

  10. Implementation of orbital attitude control laws on a nonholonomic platform

    NASA Astrophysics Data System (ADS)

    Karimpour, Hossein; Keshmiri, Mehdi; Mahzoon, Mojtaba

    2012-12-01

    Equations of motion for a special system, intended to provide an experimental facility for application of spatial attitude control schemes, are studied in the modern setting of geometric mechanics. Imposed constraints and inherited symmetry existing in the system's dynamics structure help to resolve the Lagrange-D'Alembert principle into a set of reduced-order equations of motion. On-orbit conditions are mimicked, permitting to evaluate feedback control algorithms for precise satellite manoeuvres in a laboratory situ but also to investigate stability issues due to complex rotational dynamics and interactions with flexible components. It is demonstrated that the same implications concerning gyro stability of the spatial system can be replicated as well on this prototype.

  11. Students' Attitudes towards Control Methods in Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Hintze, Hanne; And Others

    1988-01-01

    Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…

  12. Students' Attitudes towards Control Methods in Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Hintze, Hanne; And Others

    1988-01-01

    Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…

  13. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  14. Symmetric stereographic orientation parameters applied to constrained spacecraft attitude control

    NASA Astrophysics Data System (ADS)

    Southward, Charles M.; Ellis, Joshua R.; Schaub, Hanspeter

    2007-09-01

    The full kinematic properties of a minimal set of rigid body attitude coordinates called Symmetric Stereographic Orientation Parameters (SSOPs) are developed. These coordinates result from a stereographic projection of the Euler parameter constraint hypersphere onto a three-dimensional hyper-plane. As discussed in previous work [5], this family contains the well-known classical and modified Rodrigues parameters. Considering general SSOP projection points, transformations to the Euler parameters and the direction cosine matrix are discussed. The set of three SSOP coordinates have the unique feature that the associated singularity can be placed at a desired principal rotation angle by adjusting the projection point. In contrast to the Rodrigues parameters, the SSOP coordinates do not represent a unique orientation. The impact of this non-uniqueness on the constrained spacecraft attitude control problem is discussed. An attitude feedback control law in terms of SSOPs will inherently avoid reaching this singular attitude description, and thus constrain the attitude error response to be within a well-defined cone. Lyapunov's direct method is used to illustrate how a SSOP-based control law can be derived to drive the spacecraft attitude away from the singularity and towards a desired orientation. This control law generalizes the previously developed classical and modified Rodrigues parameter-based attitude control laws for general stereographic projection points.

  15. On-orbit attitude control of the Cosmic Background Explorer (COBE)

    NASA Technical Reports Server (NTRS)

    Bramberg, B.; Croft, J.

    1985-01-01

    The way in which COBE (launched by the SS in late 1982) performs its attitude control is described, along with the design of its on-orbit system. COBE, to be situated in a 900 km high, sun-synchronous orbit, contains two unique control features: (1) the orientation of the spinning satellite is controlled to a sun-normal attitude in the sun/local vertical plane; and (2) pitch and roll control is maintained by a unique triaxial arrangement of reaction wheels, magnetic torque bars and sensors, located in the body's tranverse plane. Inherent in this triaxial configuration concept is a built-in redundancy that will maintain attitude control in the event of any single-point sensor/actuator component failure. Each of the three control drive electronics operates independently and directly of a system of dedicated sensors. This system functions independently of a computer or an ephemeris communication link, leading to greater reliability.

  16. On-orbit experience with the HEAO attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  17. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  18. An investigation of quasi-inertial attitude control for a solar power satellite

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Wang, S. J.

    1982-01-01

    An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.

  19. An investigation of quasi-inertial attitude control for a solar power satellite

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Wang, S. J.

    1982-01-01

    An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.

  20. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  1. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  2. Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics

    NASA Astrophysics Data System (ADS)

    Pukdeboon, Chutiphon

    2015-10-01

    This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H∞ inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H∞ state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.

  3. A Coupled Nonlinear Spacecraft Attitude Controller/Observer With an Unknown Constant Gyro Bias

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias. The closed loop system is proven to be globally stable, with zero tracking error, thus proving a separation principle for the given system. The nonlinear observer incorporates persistency of excitation, resulting in exponential convergence of the gyro bias error.

  4. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    NASA Astrophysics Data System (ADS)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  5. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  6. Attitude Control Optimization for ROCSAT-2 Operation

    NASA Astrophysics Data System (ADS)

    Chern, Jeng-Shing; Wu, A.-M.

    one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.

  7. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  8. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  9. Attitude control/momentum management and payload pointing in advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.

  10. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    NASA Technical Reports Server (NTRS)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  11. CMC 20N thruster for hermes attitude control

    NASA Astrophysics Data System (ADS)

    Mathieu, A. C.

    Ceramic Matrix Composite materials (CMC) have been developped by SEP Solid Propulsion an Composite Materials Division in Le Haillan since the seventies for solid propulsion applications. In the race to create a new generation of small high performance bipropellant engines, SEP has opted for Ceramic Matrix Composite (CMC) such as SEPCARBINOX (R) or CERASEP (R), as combustion chamber and nozzle material. The main advantage of these composites is enabling increase of maximum combustion temperature to 1600°C without requiring anti-oxydation coatings, and with improved resistance to thermal cycles. SEP's Defense and Space group started preliminary work on choosing the composite materials best adapted to liquid bipropellant engines in 1983. Based on some 30 5N thrust combustion chambers, about 20 different materials were evaluated during firing tests. Next, using different combustion chambers sizes, SEP implemented a program designed to demonstrate the endurance of this material, and initiated a study on producing larger size parts including large area ratio nozzles. This program comprised the production and testing of combustion chambers rated at 200N and 6000N, associated with injectors derived from other applications. Finaly, in order to simulate the operating conditions experienced by certain motors on HERMES spaceplane, tests of the 200N motor were also carried out with an external thermal protection system. As of end 1987, designers had set the thrust level required for the HERMES attitude control system at between 10 and 30N. SEP therefore decided to focus further work on 20N-thrust engines, a choice which took into consideration the potential applications of this thrust level for satellite attitude control systems. Starting in mid-1988 and continuing until fall 1990, this program is designed to validate before going into final qualification all technologies required for the two planned applications: - the HERMES spaceplane, which has several thrusters integrated

  12. High-Stability Attitude Control of Satellites by Magnetic Bearing Wheels

    NASA Astrophysics Data System (ADS)

    Sawada, Hideyuki; Hashimoto, Tatsuaki; Ninomiya, Keiken

    This paper presents an attitude control law for astronomy or earth-observation satellites, which require highly stable attitude-pointing for observation and large-angle attitude maneuverability between successive observations. In the control law, magnetic bearing wheels (MBWs) are used instead of conventional ball bearing wheels (BBWs). MBWs, whose rotors are magnetically suspended and thus have no mechanical contact, are low “microvibration” actuators for spacecraft attitude control systems. “All-axes-actively-controlled” MBWs, just as in a control-moment gyro (CMG), provide the capability of tilting the rotational axis besides the rotor-speed control, whose allowable tilt angle, however, is small (typically less than 3 degrees or so). In the proposed control law, multiple MBWs (which represent at least three for three axes control and preferably four for increased performance and hardware redundancy) of this type are adopted as actuators of attitude control. The capability of rotor tilting is applied for broadening control bandwidth to improve the pointing performances while maintaining stability of the control system. The rotational control of the wheels are used for the purpose of 1) accommodating for the excessive angular momentum (=rotor-tilt-angle increments) that may otherwise result in too much tilting of the rotor to cause rotor touchdown, and also 2) large-angle maneuvers of spacecraft attitude. Moreover, the increased degrees of control freedom of MBWs are advantageously used for a further decrement of rotor-tilt angle. The mathematical formulation of our proposed control law is presented, and the results of the numerical simulation on the control performance are also shown.

  13. Concept design, modeling and station-keeping attitude control of an earth observation platform

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2012-11-01

    The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.

  14. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2010-01-01

    This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two

  15. Attitude control/momentum management of the Space Station Freedom for large angle torque-equilibrium-attitude configurations

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Sunkel, John W.

    1990-01-01

    An attitude-control and momentum-management (ACMM) system for the Space Station in a large-angle torque-equilibrium-attitude (TEA) configuration is developed analytically and demonstrated by means of numerical simulations. The equations of motion for a rigid-body Space Station model are outlined; linearized equations for an arbitrary TEA (resulting from misalignment of control and body axes) are derived; the general requirements for an ACMM are summarized; and a pole-placement linear-quadratic regulator solution based on scheduled gains is proposed. Results are presented in graphs for (1) simulations based on configuration MB3 (showing the importance of accounting for the cross-inertia terms in the TEA estimate) and (2) simulations of a stepwise change from configuration MB3 to the 'assembly complete' stage over 130 orbits (indicating that the present ACCM scheme maintains sufficient control over slowly varying Space Station dynamics).

  16. Tetrahedron array of reaction wheels for attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Flatley, T. W.

    1985-01-01

    A spacecraft subsystem, working in conjunction with a solar array, which provides 3-axis attitude control as well as some power system functions is described. Four flywheels, driven by variable-field d.c. motors and arranged in a tetrahedron configuration, are employed. In sunlight, the system provides voltage regulation while the wheels are accelerated to some maximum speed. In the dark, the motors become flywheel-driven generators which provide regulated power to other spacecraft electrical loads. A microprocessor is used to compute field current levels for each of the 4 motor/generators, based on measurements of the system voltage level, the flywheel speeds, and the attitude control torques desired.

  17. Tetrahedron array of reaction wheels for attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Flatley, T. W.

    1985-01-01

    A spacecraft subsystem, working in conjunction with a solar array, which provides 3-axis attitude control as well as some power system functions is described. Four flywheels, driven by variable-field d.c. motors and arranged in a tetrahedron configuration, are employed. In sunlight, the system provides voltage regulation while the wheels are accelerated to some maximum speed. In the dark, the motors become flywheel-driven generators which provide regulated power to other spacecraft electrical loads. A microprocessor is used to compute field current levels for each of the 4 motor/generators, based on measurements of the system voltage level, the flywheel speeds, and the attitude control torques desired.

  18. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  19. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  20. Spacecraft attitude control using direct model reference adaptive control

    NASA Astrophysics Data System (ADS)

    Harvey, Seth A.

    This research began in the summer of 2006. During that summer a method was developed to estimate the gravity gradient as well as the nadir vector of a Plug-and-Play [PNP] satellite. This was done based on the assumptions that there were perturbations in the satellite model that kept the satellite from knowing this information a priori. An indirect adaptive estimation scheme was used to accomplish this goal. However it is impractical to do this for each perturbation in the plant. By the very nature of PNP Satellites, there could be errors in among other things, reaction wheel mounting/orientation, star tracker location/orientation, satellite center of mass (COM), and payload location/orientation. An adaptive scheme to estimate each error is not efficient and ultimately is not the goal. The goal is to accurately control the satellite despite the numerous and possibly large errors inherent in PNP Satellite models. Instead of using indirect adaptive methods to gain precise knowledge of the plant, direct adaptive control methods will be used to overcome the errors of the plant and gain precise control of the satellite. One way of overcoming the inaccuracies of the model is to assume the spacecraft dynamics are largely unknown. A shift in philosophy was then taken from indirect adaptive methods to direct methods. Direct Reference and Model Reference Adaptive Controller [DRAC & DMRAC] are then developed that will precisely and robustly control the attitude of a PNP satellite. The benefits demonstrated by the DMRAC methodologies extend well past plug and play satellites and could be utilized in any space application.

  1. GPS IIF yaw attitude control during eclipse season

    NASA Astrophysics Data System (ADS)

    Dilssner, F.; Springer, T.; Enderle, W.

    2011-12-01

    On May 27, 2010, the first satellite of the Block II "follow-on" (Block IIF) series, the fourth generation of Global Positioning System (GPS) spacecraft, has been successfully placed into orbit. GPS IIF-1, also referred to as space vehicle number (SVN) 62, has been injected into orbital plane B, slot position 2 of the GPS constellation. After completing three months of comprehensive in-orbit testing, the satellite entered service for the US Air Force (USAF) on August 26, 2010. A little over a year after the inaugural launch of GPS IIF-1, the USAF has now launched the second spacecraft of the IIF series (SVN-63). The IIF series includes a total of 12 satellites: SVN-62 through SVN-73. Despite having many technical advances over their predecessors such as enhanced rubidium frequency standards, more precise and powerful signals and an extended design life, the three-axis stabilized Block IIF satellites follow a completely different yaw attitude scheme, when passing through the Earth's shadow, to the Block IIA and IIR spacecraft. We will describe how high-rate carrier phase and pseudo-range measurements from a global GPS tracking network can be exploited to precisely monitor the yaw attitude behavior of SVN-62 and SVN-63 during their solar eclipse phases. The insights gained from this study have led to the development of a new GPS Block IIF yaw attitude model. We will show that the yaw rate of a Block IIF space vehicle is kept constant to the value needed to get the satellite back to near its nominal attitude when leaving the Earth's shadow and that a IIF satellite being in deep eclipse therefore needs to yaw significantly faster than an eclipsing IIF space vehicle passing only partly through the Earth's shadow. How the satellites' attitude control system (ACS) exactly computes this dynamical yaw rate parameter will be discussed here as well. Moreover, we will report on yaw attitude anomalies occurring when the GPS Block IIF satellites are shaded from the Sun by the

  2. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  3. Analysis of the relative attitude estimation and control problem for satellite inspection and orbital rendezvous

    NASA Astrophysics Data System (ADS)

    Geller, D.

    2007-06-01

    A key component of satellite inspection and orbital rendezvous missions is relative attitude estimation and control. This paper analyzes a specific angles-only relative attitude estimation concept where it is assumed that a chaser spacecraft is capable of processing onboard imagery of a resident space object (RSO) and identifying the pixel locations of preselected RSO features. The pixel measurements along with chaser gyro and star camera data are processed by an extended Kalman filter to provide continuous estimates of the relative position and attitude. A novel linear covariance program is used to evaluate the effects of feature-tracking camera errors, gyro errors, star camera errors, measurement rates, and translation and rotational disturbances on relative navigation performance. Linear covariance techniques are further employed to evaluate the closed-loop performance of a relative attitude and position control system.

  4. Passification based simple adaptive control of quadrotor attitude: Algorithms and testbed results

    NASA Astrophysics Data System (ADS)

    Tomashevich, Stanislav; Belyavskyi, Andrey; Andrievsky, Boris

    2017-01-01

    In the paper, the results of the Passification Method with the Implicit Reference Model (IRM) approach are applied for designing the simple adaptive controller for quadrotor attitude. The IRM design technique makes it possible to relax the matching condition, known for habitual MRAC systems, and leads to simple adaptive controllers, ensuring fast tuning the controller gains, high robustness with respect to nonlinearities in the control loop, to the external disturbances and the unmodeled plant dynamics. For experimental evaluation of the adaptive systems performance, the 2DOF laboratory setup has been created. The testbed allows to safely test new control algorithms in the laboratory area with a small space and promptly make changes in cases of failure. The testing results of simple adaptive control of quadrotor attitude are presented, demonstrating efficacy of the applied simple adaptive control method. The experiments demonstrate good performance quality and high adaptation rate of the simple adaptive control system.

  5. Factors That Affect Patient Attitudes toward Infection Control Measures.

    ERIC Educational Resources Information Center

    Jones, Daniel J.; And Others

    1991-01-01

    A study investigated patient attitudes toward different disease control measures taken in dental school clinics (n=272 patients) and private practices (n=107 patients). Variables examined included sex, age, educational background, and knowledge of infectious diseases. Patients tended to accept the control measures being used in each context. (MSE)

  6. Weight Control: Attitudes of Dieters and Change Agents.

    ERIC Educational Resources Information Center

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  7. Weight Control: Attitudes of Dieters and Change Agents.

    ERIC Educational Resources Information Center

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  8. Attitudes and opinions of nursing and medical staff regarding the supply and storage of medicinal products before and after the installation of a drawer-based automated stock-control system.

    PubMed

    Ardern-Jones, Joanne; Hughes, Donald K; Rowe, Philip H; Mottram, David R; Green, Christopher F

    2009-04-01

    This study assessed the attitudes of Emergency Department (ED) staff regarding the introduction of an automated stock-control system. The objectives were to determine attitudes to stock control and replenishment, speed of access to the system, ease of use and the potential for future uses of the system. The study was carried out in the Countess of Chester Hospital NHS Foundation Trust (COCH) ED, which is attended by over 65,000 patients each year. All 68 ED staff were sent pre-piloted, semi-structured questionnaires and reminders, before and after automation of medicines stock control. Pre-implementation, 35 staff (66.1% of respondents) reported that problems occurred with access to medicine storage keys 'very frequently' or 'frequently'. Twenty-eight (52.8%) respondents 'agreed' or 'strongly agreed' that medicines were quickly accessed, which rose to 41 (77%) post-automation (P < 0.001). Improvement was reported in stock replenishment and storage of stock injections and oral medicines, but there were mixed opinions regarding storage of bulk fluids and refrigerated items. Twenty-seven (51.9%) staff reported access to the system within 1 min and 17 (32.7%) staff reported access within 1-2 min. The majority of staff found the system 'easy' or 'very easy' to use and there was a non-significant relationship between previous use of information technology and acceptance of the system. From a staff satisfaction perspective, automation improved medicines storage, security and stock control, and addressed the problem of searching for keys to storage areas. Concerns over familiarity with computers, queuing, speed of access and an improved audit trail do not appear to have been issues, when compared with the previous manual storage of medicines.

  9. Attitude Dynamics and Control of Solar Sails with Articulated Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, A. Behcet; Ploen, Scott R.

    2005-01-01

    In this paper we develop a robust nonlinear algorithm for the attitude control of a solar sailcraft with M single degree-of-freedom articulated control vanes. A general attitude controller that tracks an admissible trajectory while rejecting disturbances such as torques due to center-of-mass to center-of-pressure offsets is applied to this problem. We then describe a methodology based on nonlinear programming to allocate the required control torques among the control vanes. A simplified allocation strategy is then applied to a solar sail with four articulated control vanes, and simulation results are given. The performance of the control algorithm and possible limitations of vane-only control are then discussed.

  10. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  11. Attitude Control of Quad Rotors QTW-UAV with Tilt Wing Mechanism

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Zhijia, Ren; Horita, Yoshikazu; Nonami, Kenzo; Kimura, Gaku; Bando, Toshio; Hirabayashi, Daisuke; Furuya, Mituhiro; Yasuda, Kenta

    In this paper, we propose an autonomous attitude control of a quad tilt wing-unmanned aerial vehicle (QTW-UAV). A QTW-UAV can achieve vertical takeoff and landing; further, hovering flight, which are characteristic of rotary-wing aircraft such as helicopter. And high cruising speeds, which is a characteristic of fixed-wing aircraft, can be also achieved by changing the angle of the rotors and wings by a tilt mechanism. First, we construct an attitude model of the QTW-UAV by using the identification method. We then design the attitude control system with a Kalman filter-based linear quadratic integral (LQI) control method; the experiment results show that a model-based control design is very useful for the autonomous control of a QTW-UAV.

  12. HEAO attitude reference design. [for satellite attitude control and determination subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Mcelroy, T. T.

    1978-01-01

    The paper deals with the precision onboard attitude reference implemented as part of the attitude control and determination subsystem for the three High Energy Astronomy Observatories (HEAO-A, HEAO-B, and HEAO-C) in the HEAO scientific spacecraft program. The first observatory (HEAO-A, designated HEAO-1 when in orbit) was launched successfully into near-earth orbit on August 12, 1977. The HEAO attitude reference, analysis techniques for performance prediction, and flight results from the HEAO-1 observatory during its first months of operation. The HEAO-B design is specifically described and analyzed in terms of gyro processing, kinematic integration, ground update algorithm, and star tracker update algorithm. Attitude reference performance estimates are also discussed. It is shown that the orbital performance of the attitude reference correlates very well with the developmental predictions, thereby validating the analytical techniques used during the development. This validation provides a firm basis from which to extrapolate to other applications and related design concepts.

  13. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  14. Attitudes toward population control in Santiago, Chile.

    PubMed

    Hall, M F

    1975-01-01

    This article explores Chilean attitudes toward the national population's size and rate of growth, as indicated by a special survey conducted for this purpose. The survey sample consisted of 1,410 men 20 to 54 years of age in urban Santiago, who were separated into six categories on the basis of their education and socioeconomic status. The subjects were interviewed by 36 students from the University of Chile who utilized a prepared questionnaire including both open-ended and multiple-choice questions. The results clearly indicate that men in the lower socioeconomic categories tended to know less about the population's size and growth than their better-off counterparts. Nevertheless, they more often felt that Chile had "too many" inhabitants, that recent population growth had been rapid, and that this rate of growth should be reduced.

  15. A novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1998-02-01

    The authors are researching extremely simple yet quite capable analog pulse-coded neural networks for ``smaller-faster-cheaper`` spacecraft attitude and control systems. The will demonstrate a prototype microsatellite that uses their novel control method to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source. Though still in design infancy, the ``Nervous Net`` controllers described could allow for space missions not currently possible given conventional satellite hardware. Result, prospects and details are presented.

  16. Attitude and vibration control of a large flexible space-based antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Goglia, G. L.

    1982-01-01

    The problem of control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear quadratic Gaussian (LQG) control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.

  17. Precise attitude control of the Stanford relativity satellite.

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Debra, D. B.

    1973-01-01

    A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.

  18. Application of square-root filtering for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  19. Combined control of fast attitude maneuver and stabilization for large complex spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Jing-Rui

    2013-12-01

    In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and stabilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are separately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's requirement of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.

  20. Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing; Sun, Changyin; Qian, Chengshan; Wang, Li

    2015-12-01

    This paper deals with the problem of linear parameter varying (LPV) switching attitude control for a near space hypersonic vehicle (NSHV) with parametric uncertainties. First, due to the enormous complexity of the NSHV nonlinear attitude dynamics, a slow-fast loop polytopic LPV attitude model is developed by using Jacobian linearisation and the tensor product model transformation approach. Second, for the purpose of less conservative attitude controller design, the flight envelope is divided into four subregions. For each parameter subregion, slow-loop and fast-loop LPV controllers are designed. By the defined switching character function, these slow-fast loop LPV controllers are then switched in order to guarantee the closed-loop NSHV system to be asymptotically stable and satisfy a specified tracking performance criterion. The condition of LPV switching attitude controller synthesis is given in terms of linear matrix inequalities, which can be readily solved via standard numerical software, and the robust stability analysis of the closed-loop NSHV system is verified based on multiple Lypapunov functions. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.

  1. Prospects of Relative Attitude Control Using Coulomb Actuation

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Stevenson, Daan

    2013-12-01

    The relative attitude is studied between two charge controlled spacecraft being held at a fixed separation distance. While one body has a spherical shape, the 2nd body is assumed to be non-spherical and tumbling. The attitude control goal is to arrest the rotation of the 2nd body. While prior work has identified the existence of torques between charged bodies, this is the first analytical study on a charged feedback attitude control. Using the recently developed multi-sphere method to provide a simplified electrostatic force and torque model between non-spherical shapes, Lyapunov theory is used to develop a stabilizing attitude control using spacecraft potential as the control variable. Zero and non-zero equilibrium potentials are considered, with the later suitable for the electrostatic tug concept. With a pulling configuration, the cylinder will come to rest with the long axis aligned with the inter-vehicle axis in a stable configuration. For a pusher, the cylinder will settle 90 degrees rotated from this axis. Numerical simulations illustrate the control performance.

  2. Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School

    ERIC Educational Resources Information Center

    Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.

    2008-01-01

    This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…

  3. Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School

    ERIC Educational Resources Information Center

    Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.

    2008-01-01

    This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…

  4. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.

  5. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  6. High precision and convenient extension simulation platform for satellite attitude and orbit system

    NASA Astrophysics Data System (ADS)

    Cui, Hongzheng; Han, Chao; Chen, Pei; Luo, Qinqin

    2012-01-01

    In this paper, a high precision and convenient extension simulation platform for satellite attitude and orbit system is developed, to demonstrate the satellite attitude and orbit system for given space mission, and test the new underdeveloped algorithms for attitude/orbit dynamics, attitude determination, orbit navigation, and attitude/orbit control. The simulation platform is based on Matlab/Simulink software, using the technique of Simulink modeling, importing C/Fortran code in Matlab/Simulink, and embedded Matlab function, with beautiful reusability, inheritability and expansibility. The paper orderly presents the background behind the development of the platform, the platform design architecture and capability, the validity of the platform, the inheritability and expansibility of the platform, the platform implementation example for Chinese weather satellite (FY-3), and the future development for the platform.

  7. High precision and convenient extension simulation platform for satellite attitude and orbit system

    NASA Astrophysics Data System (ADS)

    Cui, Hongzheng; Han, Chao; Chen, Pei; Luo, Qinqin

    2011-12-01

    In this paper, a high precision and convenient extension simulation platform for satellite attitude and orbit system is developed, to demonstrate the satellite attitude and orbit system for given space mission, and test the new underdeveloped algorithms for attitude/orbit dynamics, attitude determination, orbit navigation, and attitude/orbit control. The simulation platform is based on Matlab/Simulink software, using the technique of Simulink modeling, importing C/Fortran code in Matlab/Simulink, and embedded Matlab function, with beautiful reusability, inheritability and expansibility. The paper orderly presents the background behind the development of the platform, the platform design architecture and capability, the validity of the platform, the inheritability and expansibility of the platform, the platform implementation example for Chinese weather satellite (FY-3), and the future development for the platform.

  8. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    NASA Astrophysics Data System (ADS)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

  9. Precision tethered satellite attitude control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  10. Spin-stabilized satellite magnetic attitude control scheme without initial detumbling

    NASA Astrophysics Data System (ADS)

    Roldugin, D. S.; Testani, P.

    2014-01-01

    The angular motion of an axisymmetrical satellite equipped with an active magnetic attitude control system is considered. The dynamics of the satellite are analytically studied on the whole control loop. The control loop is as follows: preliminary reorientation along with nutation damping, spinning about the axis of symmetry, then precise reorientation of the axis of symmetry in inertial space. Reorientation starts right after separation from the launch vehicle. Active magnetic attitude control system time-response with respect to its parameters is analyzed. It is proven that low-inclined orbit forces low control system time-response. Comparison with the common control scheme shows the time-response gain. Numerical analysis of the disturbances effect is carried out and good pointing accuracy is proved.

  11. Long-term stability of GOES-8 and -9 attitude control

    NASA Astrophysics Data System (ADS)

    Carr, James L.

    1996-10-01

    An independent audit of the in-orbit behavior of the GOES-8 and GOES-9 satellites has been conducted for the NASA/GSFC. This audit utilized star and landmark observations from the GOES imager to determine long-term histories for spacecraft attitude, orbital position, and instrument internal misalignments. The paper presents results from this audit. Long-term drifts are found in the attitude histories, whereas the misalignment histories are shown to be diurnally stable. The GOES image navigation and registration system is designed to compensate for instrument internal misalignments, and both the diurnally repeatable and drift components of the attitude. Correlations between GOES-8 and GOES-9 long-term roll and pitch drifts implicate the Earth sensor as the origin of these observed drifts. This results clearly demonstrates the enhanced registration stability to be obtained with stellar inertial attitude determination replacing or supplementing Earth sensor control on future GOES missions.

  12. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  13. Attitudes toward Nutrition, Locus of Control and Smoking Behavior.

    ERIC Educational Resources Information Center

    Corfield, V. Kilian; And Others

    Research has shown that many behaviors previously thought to be purely psychological in origin do, in fact, have a physiological basis. To examine the relationship of smoking behavior to locus of control, and to attitudes toward, knowledge about, and behavior with respect to nutrition, 116 Canadian undergraduate students completed the Nutrition…

  14. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  15. Attitudes toward Nutrition, Locus of Control and Smoking Behavior.

    ERIC Educational Resources Information Center

    Corfield, V. Kilian; And Others

    Research has shown that many behaviors previously thought to be purely psychological in origin do, in fact, have a physiological basis. To examine the relationship of smoking behavior to locus of control, and to attitudes toward, knowledge about, and behavior with respect to nutrition, 116 Canadian undergraduate students completed the Nutrition…

  16. Attitudes about Arms Control and Effects of "The Day After."

    ERIC Educational Resources Information Center

    Nelson, Linden L.; Slem, Charles M.

    An 18-item questionnaire was designed to investigate relationships between attitude towards arms control and beliefs about nuclear weapon effects, probability of war, Soviet goals, and the importance of nuclear arms superiority. Effects of the television movie, "The Day After," were also assessed by administering the questionnaire eight…

  17. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  18. Robust spacecraft attitude tracking control using hybrid actuators with uncertainties

    NASA Astrophysics Data System (ADS)

    Cao, Xibin; Wu, Baolin

    2017-07-01

    The problem of spacecraft attitude tracking using hybrid actuators with uncertainties is addressed in this paper. A hybrid actuators configuration that combines reaction wheels for fine pointing and single gimbal control moment gyros for rapid maneuvering is employed for agile spacecraft. A robust control algorithm for the spacecraft attitude tracking problem when the torque axis direction and/or input scaling of the actuators are uncertain is developed. Furthermore, a torque allocation method is proposed for the hybrid actuator configuration to allow a smooth switch between single gimbal control moment gyros and reaction wheels. With this method, single gimbal control moment gyros are used for the phase of rapid maneuvering, while reaction wheels are used for the phase of fine pointing. Simulation results demonstrate the effectiveness of the proposed control scheme.

  19. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  20. Multivariable control theory applied to hierarchial attitude control for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Russell, D. W.

    1972-01-01

    Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.

  1. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.

  2. Federated nonlinear predictive filtering for the gyroless attitude determination system

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong

    2016-11-01

    This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.

  3. Method and apparatus for rate integration supplement for attitude referencing with quaternion differencing

    NASA Technical Reports Server (NTRS)

    Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)

    2002-01-01

    A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.

  4. Locus of Control and Computer Attitude: The Effect of User Involvement.

    ERIC Educational Resources Information Center

    Hawk, Stephen R.

    1989-01-01

    Describes study that was conducted to investigate the relationship between locus of control and user attitude toward computer based information systems (CBIS) used at work. The impact of user involvement is examined, the hypotheses tested are described, and implications for introducing CBIS into organizations are discussed. (14 references) (LRW)

  5. Guidance and adaptive-robust attitude & orbit control of a small information satellite

    NASA Astrophysics Data System (ADS)

    Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.

    2017-01-01

    We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.

  6. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  7. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  8. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  9. Advanced Control and Power System (ACAPS) technology program

    SciTech Connect

    Keckler, C.R.; Groom, N.J.

    1983-12-01

    The Advanced Control and Power System (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  10. Advanced Control and Power System (ACAPS) Technology Program

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1983-01-01

    The advanced control and power system (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  11. Attitude control of a spinning rocket via thrust vectoring

    SciTech Connect

    White, J.E.

    1990-12-19

    Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

  12. Exploring hypotheses in attitude control fault diagnosis

    NASA Technical Reports Server (NTRS)

    Bell, Benjamin

    1987-01-01

    A system which analyzes telemetry and evaluates hypotheses to explain any anomalies that are observed is described. Results achieved from a sample set of failure cases are presented, followed by a brief discussion of the benefits derived from this approach.

  13. Elizabethan birth control and Puritan attitudes.

    PubMed

    Schnucker, R V

    1975-01-01

    During the Elizabethan era there was a considerable body of knowledge concerning birth control techniques including coitus interruptus, penis ointments, pessaries, purgatives, genital baths and bloodletting. Works were available describing the symptons and causes of abortion and reporting some abortifacients. The Puritans were aware of birth control techniques, but were opposed to them for several reasons: 1) it would go against the biblical injunction to be fruitful and multiply; 2) birth control frustrated the creation of what was in the image of God; 3) fecundity was a blessing and should not be thwarted; 4) the society of the elect should be increased; and 5) through childbirth a woman could atone for Eve's original sin. Although some Puritans recognized that marriage was for comfort and solace as well as for the bearing of progeny, birth control was frowned upon, the the Puritan clergy practiced what it preached. In a random sample of Puritan clergy there was an average of 6.8 children born per family, which was higher than the average to be found among English nobility of the same period.

  14. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2016-07-01

    This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Flexible Dynamics and Attitude Control of a Square Solar Sail

    NASA Astrophysics Data System (ADS)

    Choi, Mirue

    This thesis presents a comprehensive analysis of attitude and structural dynamics of a square solar sail. In particular, this research examines the use of corner-attached reflective vanes to control the attitude of the spacecraft. An introduction to known solar sail designs is given, then the mathematics involved in calculating solar radiation pressure forces are presented. A detailed derivation and implementation of the unconstrained nonlinear flexible structural dynamics with Finite Element Method (FEM) models are explored, with several sample simulations of published large deflection experiments used as verification measures. To simulate the inability of a thin membrane to resist compression, the sail membrane elements are augmented with a method that approximates the wrinkling and the slacking dynamics, which is followed by a simulation of another well-known experiment as a verification measure. Once the structural dynamics are established, the usage of the tip vanes is explored. Specifically, a control allocation problem formed by having two degrees of freedom for each tip vane is defined and an efficient solution to this problem is presented, allowing desired control torques to be converted to appropriate vane angles. A randomized testing mechanism is implemented to show the efficacy of this algorithm. The sail shadowing problem is explored as well, where a component of the spacecraft casts shadow upon the sail and prevents solar radiation pressure force from being produced. A method to calculate the region of shadow is presented, and two different shadowing examples are examined --- due to the spacecraft bus, and due to the sail itself. Combining all of the above, an attitude control simulation of the sail model is presented. A simple PD controller combined with the control allocation scheme is used to provide the control torque for the sail, with which the spacecraft must orient towards a number of pre-specified attitude targets. Several attitude

  17. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring

    NASA Astrophysics Data System (ADS)

    Nobari, Nona A.; Misra, Arun K.

    2014-01-01

    In this paper, a novel hybrid actuation system for satellite attitude stabilization is proposed along with its feasibility analysis. The system considered consists of two magnetic torque rods and one fluid ring to produce the control torque required in the direction in which magnetic torque rods cannot produce torque. A mathematical model of the system dynamics is derived first. Then a controller is developed to stabilize the attitude angles of a satellite equipped with the abovementioned set of actuators. The effect of failure of the fluid ring or a magnetic torque rod is examined as well. It is noted that the case of failure of the magnetic torque rod whose torque is along the pitch axis is the most critical, since the coupling between the roll or yaw motion and the pitch motion is quite weak. The simulation results show that the control system proposed is quite fault tolerant.

  18. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  19. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  20. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  1. Satellite Attitude Dynamics Simulation and Control,

    DTIC Science & Technology

    2007-11-02

    done using a dual actuator system of a reaction wheel and gas jet thrusters. Tachometers and an absolute optical encoder will provide sensing...capabilities of satellite position and satellite and reaction wheel velocities. This paper describes in detail the procedures used during design from

  2. The attitude control of a solar electric propulsion /SEP/ spacecraft for an out-of-the-ecliptic mission

    NASA Technical Reports Server (NTRS)

    Marsh, E. L.

    1975-01-01

    A computer-controlled attitude and articulation control system is proposed for a spacecraft of extremely soft structure that uses two 8-kW solar arrays with an area of nearly 100 sq m each to power six electric propulsion thrusters. The purpose of the articulation control is to point the scientific instruments, to orient the antenna toward the earth, and to reorient the thrust vector as required for trajectory control. The attitude control system provides control both during the low-thrust phase of the mission and during long-term spinning modes.

  3. A computer simulation of Skylab dynamics and attitude control for performance verification and operational support

    NASA Technical Reports Server (NTRS)

    Buchanan, H.; Nixon, D.; Joyce, R.

    1974-01-01

    A simulation of the Skylab attitude and pointing control system (APCS) is outlined and discussed. Implementation is via a large hybrid computer and includes those factors affecting system momentum management, propellant consumption, and overall vehicle performance. The important features of the flight system are discussed; the mathematical models necessary for this treatment are outlined; and the decisions involved in implementation are discussed. A brief summary of the goals and capabilities of this tool is also included.

  4. Attitude coordination of multi-HUG formation based on multibody system theory

    NASA Astrophysics Data System (ADS)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  5. A study of interceptor attitude control based on adaptive wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  6. School teachers' attitude toward population control.

    PubMed

    Vaswani, N V; Kapoor, I

    1977-01-01

    A report on a study of 412 school teachers in the Bombay area of India. 82 of the teachers were tested initially, and found to have unclear ideas about the meaning of "population control." As a result, the definition of the term adopted by UNESCO in 1970 was incorporated into the questionnaire, and translated into Hindi/Marathi and Gujarti. The 1st 82 teachers were considered as a pretest group, and the remaining teachers were given a 3-part questionnaire. This included identification data, questions on their opinions and reactions toward teaching population education, and their own views on age of marriage and family size. Tables break down the results in several ways. The main conclusions are that a majority of the teachers responding were still unclear about the meaning of population education, and felt that they were unqualified to teach the subject, while they believed in its importance.

  7. Optimal spacecraft attitude control using collocation and nonlinear programming

    NASA Astrophysics Data System (ADS)

    Herman, A. L.; Conway, B. A.

    1992-10-01

    Direct collocation with nonlinear programming (DCNLP) is employed to find the optimal open-loop control histories for detumbling a disabled satellite. The controls are torques and forces applied to the docking arm and joint and torques applied about the body axes of the OMV. Solutions are obtained for cases in which various constraints are placed on the controls and in which the number of controls is reduced or increased from that considered in Conway and Widhalm (1986). DCLNP works well when applied to the optimal control problem of satellite attitude control. The formulation is straightforward and produces good results in a relatively small amount of time on a Cray X/MP with no a priori information about the optimal solution. The addition of joint acceleration to the controls significantly reduces the control magnitudes and optimal cost. In all cases, the torques and acclerations are modest and the optimal cost is very modest.

  8. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  9. Attitude and Translation Control of a Solar Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  10. Angular Rate Estimation for Gyroless Satellite Attitude Control

    DTIC Science & Technology

    2002-08-01

    momentum of the spacecraft by neglecting the contribution by the relative motion of the receive telescope and reaction wheels with respect to transmit...momentum due to relative motion of the reaction wheels . The next step in the derivation is to determine these angular momentums. Inertia Let IT be...spacecraft attitude control, reaction wheels are used as actuators with magnetic torque rods to desaturate the reaction wheels . The primary sensors are

  11. Magnetic bearing reaction wheel. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sabnis, A.; Schmitt, F.; Smith, L.

    1976-01-01

    The results of a program for the development, fabrication and functional test of an engineering model magnetically suspended reaction wheel are described. The reaction wheel develops an angular momentum of + or - 0.5 foot-pound-second and is intended for eventual application in the attitude control of long-life interplanetary and orbiting spacecraft. A description of the wheel design and its major performance characteristics is presented. Recommendations for flight prototype development are made.

  12. Entry Attitude Controller for the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; SanMartin, A. Miguel; Wong, Edward C.

    2007-01-01

    This paper describes the preliminary concept for the RCS 3-axis attitude controller for the exo-atmospheric and guided entry phases of the Mars Science Laboratory Entry, Descend and Landing. The entry controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via simulation.

  13. Entry Attitude Controller for the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; SanMartin, A. Miguel; Wong, Edward C.

    2007-01-01

    This paper describes the preliminary concept for the RCS 3-axis attitude controller for the exo-atmospheric and guided entry phases of the Mars Science Laboratory Entry, Descend and Landing. The entry controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via simulation.

  14. Predictive Attitude Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn; Ketchum, Eleanor

    1997-01-01

    In this paper, a new algorithm is developed for attitude estimation using Global Positioning System (GPS) signals. The new algorithm is based on a predictive filtering scheme designed for spacecraft without rate measuring devices. The major advantage of this new algorithm over traditional Kalman filter approaches is that the model error is not assumed to represented by an unbiased Gaussian noise process with known covariance, but instead is determined during the estimation process. This is achieved by simultaneously solving system optimality conditions and an output error constraint. This approach is well suited for GPS attitude estimation since some error sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-Gaussian processes. Also, the predictive filter scheme can use either GPS signals or vector observations or a combination of both for attitude estimation, so that performance characteristics can be maintained during periods of GPS attitude sensor outage. The performance of the new algorithm is tested using flight data from the REX-2 spacecraft. Results are shown using the predictive filter to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that solution to a magnetometer-only based solution. Results using the new estimation algorithm indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-check for the REX-2 spacecraft. GPS attitude accuracy of better than 1 degree is expected per axis, but cannot be reliably proven due to inaccuracies in the magnetic field model.

  15. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  16. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  17. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels

    NASA Astrophysics Data System (ADS)

    Kim, Yeonkyu

    2003-10-01

    A system of differential equations governing the translational and rotational motion of a system model consisting of a rigid satellite and multiple MB suspended rigid flywheels in general configuration is developed. Flywheel modules are contained in a housing rigidly mounted on the satellite and floated by an active MB suspension system, therefore each flywheel module has six degrees of freedom (DOF) as well as the satellite module. Equations of motion for the satellite and flywheels are naturally coupled and the satellite rotational motion and translational motion are coupled. A nonlinear state feedback tracking control law, which is globally asymptotically stable, is developed following a Lyapunov stability theory for integrated power and attitude control using the MB suspended flywheels. The stability, robustness, and tracking and disturbance rejection performance of the present control law with respect to initial attitude error, system modeling error, an imbalance disturbance, is demonstrated by case studies. The satellite departure motion equation derived from the definition of the angular velocity error and the system dynamics equations is presented. Application study of existing power tracking algorithm with this control law shows perfect power tracking for both power charging from and power delivery to the satellite operations and the power tracking can be performed simultaneously with and independent of the attitude control function.

  18. Position and attitude tracking control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  20. Appendage modal coordinate truncation criteria in hybrid coordinate dynamic analysis. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Likins, P.; Ohkami, Y.; Wong, C.

    1976-01-01

    The paper examines the validity of the assumption that certain appendage-distributed (modal) coordinates can be truncated from a system model without unacceptable degradation of fidelity in hybrid coordinate dynamic analysis for attitude control of spacecraft with flexible appendages. Alternative truncation criteria are proposed and their interrelationships defined. Particular attention is given to truncation criteria based on eigenvalues, eigenvectors, and controllability and observability. No definitive resolution of the problem is advanced, and exhaustive study is required to obtain ultimate truncation criteria.

  1. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Technical Reports Server (NTRS)

    Knapp, Roger G.; Adams, Neil J.

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  2. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  3. Attitudes and the Self as Self-Organizing Systems

    NASA Astrophysics Data System (ADS)

    Eiser, J. Richard

    This paper considers how conventional theories of attitudes and the self may be reconceptualized from the perspective of chaos theory and work on self-organization. Within attitude theory, there has been a long tradition of research that has treated attitudes as single points on a bipolar evaluative continuum. More recent approaches to attitudes treat attitudes as structures of evaluative associations stored in memory (Fazio, 1990). This work can be linked to chaos theory by regarding attitudes as attractors (Eiser, 1994) within a phase space whose dimensions correspond broadly to features of the attitude object and its context and which is contoured by previous and concurrent associative learning Specifically, it is proposed that attractors are laid down through processes of association. such as may be simulated through connectionist, or parallel distributed processing, systems. Associative learning and memory processes also are implicated in our concept of self, linking with the philosophy of Hume and contemporary research on interactive models of personality (Mischel & Shoda, 1995). Speculatively, it is suggested that consciousness involves representation of the self within a patterned (i.e. self-organized) environment.

  4. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  5. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2012-08-01

    The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or "-Bdot" without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.

  6. Asymptotic stability of a satellite with electrodynamic attitude control in the orbital frame

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Tikhonov, A. A.

    2017-10-01

    A satellite in a circular near-Earth orbit is under consideration. The three-axis stabilization of the satellite in the orbital coordinate system with the use of electrodynamic attitude control system is studied. No constraints are imposed on the Earth's magnetic field approximation. The gravity gradient disturbing torque acting on the satellite attitude dynamics is taken into account as the largest disturbing torque. With the use of the Lyapunov direct method, conditions under which electrodynamic control solves the problem are obtained. The restrictions on the control parameter values for which one can guarantee the asymptotic stability of the programmed satellite motion are found and represented in an explicit form. Comparison of the results of numerical simulation and analytical investigation demonstrate effectiveness of the proposed approach.

  7. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  8. Space construction base control system

    NASA Technical Reports Server (NTRS)

    Kaczynski, R. F.

    1979-01-01

    Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.

  9. An integrated GPS attitude determination system for small satellites

    NASA Astrophysics Data System (ADS)

    Chesley, Bruce Carl

    1995-07-01

    This dissertation develops attitude determination methods based on the Global Positioning System (GPS) for small satellites. A GPS attitude receiver is used in combination with other sensors planned for a small, three-axis stabilized satellite called JAWS AT. The other attitude sensors include fiber optic gyros and digital sun sensors. The development of integrated attitude determination systems contributes to critical national technological objectives identified for small spacecraft. A recent study by the National Research Council addresses key technologies for small satellite programs. One of their principal recommendations was that, 'GPS in various combinations with other guidance components can determine position and attitude very accurately, probably at significantly reduced weight and cost.' The report also identifies specific potential benefits of integrating OPS with other sensors on small spacecraft. 'Combining GPS and an inertial measurement unit (with gyroscopes, accelerometers, or trackers) offers major advantages by bounding errors of the inertial set, providing exceptionally good long-term references and thereby ensuring precise, on-board navigation and, with appropriate complimentary techniques, providing a higher level of redundancy and/or accuracy for position, velocity, and attitude.' This dissertation develops algorithms that result in improved accuracy and redundancy through the development of complimentary techniques for combining GPS measurements with gyroscopes and sun sensors.

  10. A Dynamic Attitude Measurement System Based on LINS

    PubMed Central

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  11. Attitude and Heading Reference System for Small Unmanned Aircraft Collision Avoidance Maneuvers

    NASA Astrophysics Data System (ADS)

    Murrant, Kevin

    This thesis describes the development of an Attitude and Heading Reference System (AHRS) to sense three-dimensional orientation for collision avoidance control in small unmanned aircraft. Unmanned aircraft are currently restricted to flight in designated airspace due to safety concerns of collision with manned aircraft. Therefore, collision avoidance is necessary to ensure the safety of both aircraft. Technical challenges, mainly in sensor limitations, restrict AHRS performance in attitude estimation during high-g maneuvers. Using sensor filtering techniques and a robust attitude representation, an AHRS suitable for collision avoidance is developed. Acceleration disturbances are reduced using estimates of non-gravitational accelerations including centripetal acceleration and model-based acceleration to improve gravity vector measurement during aircraft maneuvers. Simulation results with a variety of maneuvers deemed challenging for most AHRS are given showing accurate attitude estimates. Flight data from an existing commercial autopilot is compared with the results of the AHRS to demonstrate the validity of the solution with real flight data.

  12. Development of an Integrated Low-Cost GPS/Rate Gyro System for Attitude Determination

    NASA Astrophysics Data System (ADS)

    Wang, Chaochao; Lachapelle, Gérard; Cannon, M. Elizabeth

    2004-01-01

    The use of low-cost GPS receivers and antennas for attitude determination can significantly reduce the overall hardware system cost. Compared to the use of high performance GPS receivers, the carrier phase measurements from low-cost equipment are subject to additional carrier phase measurement errors, such as multipath, antenna phase centre variation and noise. These error sources, together with more frequent cycle slip occurrences, severely deteriorate attitude determination availability, reliability and accuracy performance. This paper presents the investigation of a low-cost GPS/gyro integration system for attitude determination. By employing the dead reckoning sensor type, the ambiguity search region can be specifically defined as a small cube to enhance the ambiguity resolution process. A Kalman filter is implemented to fuse the rate gyro data with GPS carrier phase measurements. The quality control system based on innovation sequences is used to identify cycle slip occurrences and incorrect inter-antenna vector solutions. The availability of the integrated system also improves with respect to the GPS standalone system since the attitude parameters can be estimated using the angular rate measurements from rate gyros during GPS outages. The low-cost hardware used to design and test the integrated system consists of CMC Allstar receivers with the OEM AT575-70 antennas and Murata ENV-05D-52 piezoelectric vibrating rate gyroscopes. Tests in the urban area demonstrated that the introduction of rate gyros in a GPS-based attitude determination system not only effectively decreased the noise level in the estimated attitude parameters but coasted the attitude output during GPS outages and also significantly improved the system reliability.

  13. attitude control design for the solar polar orbit radio telesope

    NASA Astrophysics Data System (ADS)

    Gao, D.; Zheng, J.

    This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same

  14. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  15. A robust nonlinear attitude control law for space stations with flexible structural components

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1985-01-01

    In this paper, a nonlinear attitude control law for space stations with flexible structural components is derived using a rigid-body model. This control law, depending on the Cayley-Rodriguez parameters, globally stabilizes the equilibrium of the rigid-body model. The effect of elastic deformations of the flexible structural components on the resulting feedback system dynamics is analyzed. It is found that the system's stability property is highly robust with respect to structural vibrations and inertial variations. The time-domain behavior of the feedback system is studied numerically using a model of a typical space station with flexible solar panels.

  16. Fuzzy attitude control of solar sail via linear matrix inequalities

    NASA Astrophysics Data System (ADS)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  17. Pitch attitude, flight path, and airspeed control during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.

  18. Rotating Space Debris Tracking Based on The Orbit-Attitude Coordinated Control

    NASA Astrophysics Data System (ADS)

    Wang, Shuquan; Zhu, Lingchao

    2016-07-01

    This paper investigates the rotating space debris tracking problem. Active capturing and removal of space debris are challenging because the space debris is noncoorperating. The scenario considered is that a rotating space debris is the target to be captured by a spacecraft with a robotic arm. One rough approach is to capture the space debris with a strong arm then detumble the rotation of the whole system using the attitude control system on board. In this way the arm and the spacecraft have to be strong enough to withstand the impact caused by the relative orbital and attitude motions. Another way is to at first track the motion of the characterized surface, which should be easier to capture, of the debris. Then the robotic arm is engaged to capture the debris. In this way, the impact applied on the robotic arm is greatly reduced such that the possibility of causing new debris is also reduced. The orbit-attitude coordinated controller is developed to track the motion of the space debris. The controller is assymptotically stable without considering the boundness of the control efforts. The stability in the situation of bounded control inputs is analyzed. Analytical criterion for a successful tracking is obtained in the situation that rotational motion of the space debris is percession.

  19. The attitude determination system of the RAX satellite

    NASA Astrophysics Data System (ADS)

    Springmann, John C.; Sloboda, Alexander J.; Klesh, Andrew T.; Bennett, Matthew W.; Cutler, James W.

    2012-06-01

    The Radio Aurora Explorer (RAX) is a triple CubeSat that launched on November 19, 2010. RAX was designed to study plasma irregularities in the polar lower ionosphere (80-300 km), and is the first CubeSat mission funded by the United States National Science Foundation. The scientific mission requires attitude knowledge within 5° (1-σ), and a custom attitude determination subsystem was developed for the mission. The subsystem utilizes rate gyros, magnetometers, coarse sun sensors, and an extended Kalman filter, and was designed to be a simple, low cost solution to meet the attitude determination requirements. In this paper, we describe the design, implementation, and testing of the RAX attitude determination subsystem, including derivation of the determination requirements, sensor selection, the integrated hardware design, pre-flight sensor calibration, and attitude estimation algorithms. The paper is meant to serve as a resource for others in the small satellite and nanosatellite communities, as well as a critical reference for those analyzing RAX data. Lessons learned from the design and performance of the RAX determination subsystem will be used in future designs of attitude determination systems for small satellites and similar platforms, such as high altitude balloons and autonomous aerial vehicles.

  20. Attitudes toward the metric system 15 years later.

    PubMed

    Gayton, W F; Hearns, J F; Elgee, L; Harvey, C

    2001-04-01

    This follow-up study investigated whether attitudes toward the metric system have changed over the last 15 years. 132 subjects ranging in age from 18 to 45 years participated by filling out a 7-item survey designed to measure attitudes toward the metric system. Each survey item was scored using a 5-point rating, e.g., "the change to the metric system will create more problems than it solves," 1: strongly agree and 5: strongly disagree. Scores were compared to those obtained for a similar sample in 1983. Comparisons using t tests indicated no significant differences between attitude scores from 1983 to 1998 for either men (t64 = .95) or women (t133 = .06).

  1. An Attitude Control of Flexible Spacecraft Using Fuzzy-PID Controller

    NASA Astrophysics Data System (ADS)

    Park, Jong-Oh; Im, Young-Do

    This primary objective of this study is to demonstrate simulation and ground-based experiment for the attitude control of flexible spacecraft. A typical spacecraft structure consists of the rigid body and flexible appendages which are large flexible solar panels, parabolic antennas built from light materials in order to reduce their weight. Therefore the attitude control has a big problem because these appendages induce structural vibration under the excitation of external forces. A single-axis rotational simulator with a flexible arm is constructed with on-off air thrusters and reaction wheel as actuation. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The experiment of flexible spacecraft attitude control is performed using only the reaction wheel. Using the reaction wheel the performance of the fuzzy-PID controller is illustrated by simulation and experimental results for a single-axis rotational simulator.

  2. Controlled comparison of attitudes of psychiatrists, general practitioners, homosexual doctors and homosexual men to male homosexuality.

    PubMed Central

    Bhugra, D; King, M

    1989-01-01

    A controlled analysis of the attitudes of doctors and homosexual men to male homosexuality is reported. Not surprisingly the homosexual men held the most liberal attitudes which served as a yard-stick against which the doctors' attitudes could be assessed. The implications of these data, collected before the AIDS era, are discussed in terms of the current needs of homosexual patients. PMID:2810298

  3. Finite time attitude takeover control for combination via tethered space robot

    NASA Astrophysics Data System (ADS)

    Lu, Yingbo; Huang, Panfeng; Meng, Zhongjie; Hu, Yongxin; Zhang, Fan; Zhang, Yizhai

    2017-07-01

    Up to April 6, 2016, there are 17,385 large debris in orbit around the Earth, which poses a serious hazard to near-Earth space activities. As a promising on-orbit debris capture strategy, tethered space robots (TSRs) have wide applications in future on-orbit service owing to its flexibility and great workspace. However, lots of problems may arise in the Tethered Space Robots (TSRs) system from the approaching, capturing, postcapturing and towing phases. The postcapture combination attitude takeover control by the TSR is studied in this paper. Taking control constraints, tether oscillations and external disturbances into consideration, a fast terminal sliding mode control (FTSMC) methodology with dual closed loops for the flexible combination attitude takeover control is designed. The unknown upper bounds of the uncertainties, external disturbances are estimated through adaptive techniques. Stability of the dual closed loop control system and finite time convergence of system states are proved via Lyapunov stability theory. Besides, null space intersection control allocation was adopted to distribute the required control moment over TSR's redundant thrusters. Simulation studies have been conducted to demonstrate the effectiveness of the proposed controller with the conventional sliding mode control(SMC).

  4. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  5. A COTS-Based Attitude Dependent Contact Scheduling System

    NASA Technical Reports Server (NTRS)

    DeGumbia, Jonathan D.; Stezelberger, Shane T.; Woodard, Mark

    2006-01-01

    The mission architecture of the Gamma-ray Large Area Space Telescope (GLAST) requires a sophisticated ground system component for scheduling the downlink of science data. Contacts between the ````````````````` satellite and the Tracking and Data Relay Satellite System (TDRSS) are restricted by the limited field-of-view of the science data downlink antenna. In addition, contacts must be scheduled when permitted by the satellite s complex and non-repeating attitude profile. Complicating the matter further, the long lead-time required to schedule TDRSS services, combined with the short duration of the downlink contact opportunities, mandates accurate GLAST orbit and attitude modeling. These circumstances require the development of a scheduling system that is capable of predictively and accurately modeling not only the orbital position of GLAST but also its attitude. This paper details the methods used in the design of a Commercial Off The Shelf (COTS)-based attitude-dependent. TDRSS contact Scheduling system that meets the unique scheduling requirements of the GLAST mission, and it suggests a COTS-based scheduling approach to support future missions. The scheduling system applies filtering and smoothing algorithms to telemetered GPS data to produce high-accuracy predictive GLAST orbit ephemerides. Next, bus pointing commands from the GLAST Science Support Center are used to model the complexities of the two dynamic science gathering attitude modes. Attitude-dependent view periods are then generated between GLAST and each of the supporting TDRSs. Numerous scheduling constraints are then applied to account for various mission specific resource limitations. Next, an optimization engine is used to produce an optimized TDRSS contact schedule request which is sent to TDRSS scheduling for confirmation. Lastly, the confirmed TDRSS contact schedule is rectified with an updated ephemeris and adjusted bus pointing commands to produce a final science downlink contact schedule.

  6. Attitude control of an underactuated spacecraft using quaternion feedback regulator and tube-based MPC

    NASA Astrophysics Data System (ADS)

    Mirshams, M.; Khosrojerdi, M.

    2017-03-01

    Feasibility of achieving 3-axis stabilization of an asymmetric spacecraft for cases where there is no control available in one axis (underactuated spacecraft) is explored in this paper. A novel control design methodology is presented which can stabilize the underactuated spacecraft and steer it to the origin. A passive fault tolerant control (FTC) is defined which controls and maintains the attitude of the spacecraft near the desired point in presence of uncertainties, disturbances, control constraints and actuator faults. Considering the general conditions of the underactuated spacecraft, a hybrid controller combining a quaternion feedback regulator (QFR) with a tube-based model predictive controller (MPC) is developed based on the nonlinear kinematic and dynamic equations of the spacecraft motion. The hybrid controller is composed of two control stages. At the first stage, QFR decreases the angular velocities and brings the state vector to an acceptable region for the next stage. Then, tube-based MPC solves two optimal control problems, a standard problem for the nominal system to define a central guide path, and an ancillary problem to steer the state vector towards the central path with semi-optimal control effort. Numerical simulation results obtained for the underactuated spacecraft merely indicate effectiveness of the proposed attitude control method.

  7. Flight Test of Attitude Determination System using Multiple GPS Antennae

    NASA Astrophysics Data System (ADS)

    Jang, Jaegyu; Kee, Changdon

    2006-01-01

    Small Unmanned Aerial Vehicles (UAVs) or inexpensive airplanes, such as a Cessna single engine aircraft, require a navigation system with a cheap, compact and precise sensor. Over the past ten years, GPS receivers have begun to be used as primary or alternative navigation sensors, because their use can significantly reduce the overall system cost. This paper describes a navigation system incorporating a velocity-based attitude estimation system with an attitude determination system using multiple antennae, which was implemented and tested using a UAV. The main objective was to obtain precise attitude information using low cost GPS OEM boards and antennae. Attitude boundaries are derived from the relationship between the body frame and the wind coordinates, which are used to validate the resolved cycle ambiguity in an Euler angle domain. Angular rate based on Doppler measurements was used to exclude the degenerate pseudo-roll angle information during severe uncoordinated flight. Searching for cycle ambiguity at every epoch of the flight showed that the developed system gave reliable cycle integer solutions, although the carrier phase measurement was subject to additional errors, such as multipath, external interference, and phase centre variation. A flight test was performed using a 1/4-scale Piper J3 Cub model, CMC Allstar OEM boards, OEM AT575-70 antennae, and 700 MHz PC104 board.

  8. Fine attitude control by reaction wheels using variable-structure controller

    NASA Astrophysics Data System (ADS)

    Wang, Bingquan; Gong, Ke; Yang, Di; Li, Junfeng

    2003-04-01

    This paper presents a method for decreasing the disturbance of reaction wheels static friction to the attitude of a three-axis stabilized small spacecraft. Based upon variable-structure control theory, this method is independent of static friction model of reaction wheels, so that the difficulty of getting an accurate model is avoided. Meanwhile, the disturbance of friction to attitude is analyzed and experimentally verified in order to understand its physical mechanism. The real time simulation is made using MATRIXx RealSim Tools. The simulated vehicle response to wheel speed reversal shows that the variable controller is effective, and the attitude error could be reduced by 10:1 in comparison to PID controller.

  9. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  10. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  11. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  12. Attitude sensor

    NASA Technical Reports Server (NTRS)

    Newcomb, A. L., Jr.; Price, A. G. (Inventor)

    1973-01-01

    A device for controlling the attitude of a spacecraft is described. The device consists of two light sensors on a spacecraft that are mounted beneath a baffle which divides the light from a light source such as the sun or a star. The divided light reflects off of two reflective surfaces onto the two light sensors. When the spacecraft assumes its normal attitude, the baffle divides the light source into two equal parts, causing the two light sensors to produce equal outputs. When the light is equally detected, the stabilizing system is disconnected. Deviations from the normal attitude cause unequal distribution of the light source and energize the stabilizing system.

  13. Health literacy and parent attitudes about weight control for children.

    PubMed

    Liechty, Janet M; Saltzman, Jaclyn A; Musaad, Salma M

    2015-08-01

    The purpose of this study was to examine associations between parental health literacy and parent attitudes about weight control strategies for young children. Parental low health literacy has been associated with poor child health outcomes, yet little is known about its relationship to child weight control and weight-related health information-seeking preferences. Data were drawn from the STRONG Kids Study, a Midwest panel survey among parents of preschool aged children (n = 497). Parents endorsed an average of 4.3 (SD =2.8) weight loss strategies, 53% endorsed all three recommended weight loss strategies for children, and fewer than 1% of parents endorsed any unsafe strategies. Parents were most likely to seek child weight loss information from healthcare professionals but those with low (vs. adequate) health literacy were significantly less likely to use the Internet or books and more likely to use minister/clergy as sources. Poisson and logistic regressions showed that higher health literacy was associated with endorsement of more strategies overall, more recommended strategies, and greater odds of endorsing each specific recommended strategy for child weight control, after adjusting for parent age, education, race/ethnicity, income, marital status, weight concern, and child BMI percentile. Findings suggest that health literacy impacts parental views about child weight loss strategies and health information-seeking preferences. Pediatric weight loss advice to parents should include assessment of parent attitudes and prior knowledge about child weight control and facilitate parent access to reliable sources of evidence-informed child weight control information.

  14. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  15. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Astrophysics Data System (ADS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-05-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  16. Spacecraft Attitude and Reaction Wheel Desaturation Combined Control Method

    NASA Astrophysics Data System (ADS)

    Yang, Yaguang

    2017-02-01

    Two popular types of spacecraft actuators are reaction wheels and magnetic torque coils. Magnetic torque coils are particularly interesting because they can be used for both attitude control and reaction wheel momentum management (desaturation control). Although these two tasks are performed at the same time using the same set of actuators, most design methods deal with only one of the these tasks or consider these two tasks separately. In this paper, a design with these two tasks in mind is formulated as a single problem. A periodic time-varying linear quadratic regulator design method is then proposed to solve this problem. A simulation example is provided to describe the benefit of the new strategy.

  17. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  18. Attitude tracking control for spacecraft formation with time-varying delays and switching topology

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; You, Xiu; Hua, Changchun

    2016-09-01

    This paper investigates attitude dynamic tracking control for spacecraft formation in the presence of unmeasurable velocity information with time-varying delays and switching topology. Based on an extended state observer, a nonlinear attitude tracking control approach is developed for spacecraft attitude model formulated by Euler-Lagrangian equations. The attitude tracking controller allows for external disturbances and absence of angular velocity information. Both auto-stable region techniques and a Lyapunov function approach are developed to prove ultimately bounded tracking. Simulation results demonstrate effectiveness of the nonlinear control techniques proposed in this paper.

  19. Visual attitude orientation and alignment system

    NASA Technical Reports Server (NTRS)

    Beam, R. A.; Morris, D. B.

    1967-01-01

    Active vehicle optical alignment aid and a passive vehicle three-dimensional alignment target ensure proper orientation and alignment plus control of the closure range and rate between two bodies, one in controlled motion and one at rest.

  20. The Magsat three axis arc second precision attitude transfer system

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Heins, R. J.

    1981-01-01

    The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.

  1. Report of the Attitude Control and Attitude Determination Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Failures and deficiencies in flight programs are reviewed and suggestions are made for avoiding them. The technology development problem areas considered are control configured vehicle design, gyros, solid state star sensors, control instrumentation, tolerant/accomodating control systems, large momentum exchange devices, and autonomous rendezvous and docking.

  2. Air-bearing-based satellite attitude dynamics simulator for control software research and development

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij N.; Rasmussen, Richard E.

    2001-08-01

    A Satellite Attitude Dynamics Simulator (SADS) has been developed to facilitate the research and development of spacecraft flight attitude control software at the Naval Postgraduate School in Monterey, CA. The simulator provides a real-time 3 degree of freedom (3DOF) synthetic spacecraft hardware-in-the-loop environment, that includes realistic angular motions, sensor-effector delays, and control torque profiles. Control software, entered into a notebook PC mounted on the equipment platform, is input as high level object oriented code, allowing rapid code development and thorough post-test analysis. Three flight-like reaction wheels and eight cold-gas thrusters that are mounted to the SADS equipment platform provide motion simulation torque. The equipment platform is suspended in air by a spherical segment air bearing. This virtually frictionless suspension allows free rotation of the equipment platform about any rotation axis. Three separate sets of sensors, three single-axis rate gyros, a three-axis magnetometer, and a two-axis sun sensor monitor SADS platform motion. This paper discusses the SADS design, and the practical uses of this simulator for satellite attitude control system software research and development.

  3. Control of antenna-feed attitude and reflector vibrations in large spaceborne antennas by mechanical decoupling and movable dampers

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Hong, E. C.; Sarina, J. S.

    1983-01-01

    Simple, practical methods for damping reflector vibrations and designing antenna-feed attitude control systems in large deployable spaceborne antennas are proposed. The former involves a movable damper which is positioned so that the rate-of-change of total vibrational energy is minimized. The latter introduces a mechanical decoupler between the flexible boom and the antenna-feed, whereby the feed-attitude control system can be designed independent of boom dynamics. The validity of these approaches are substantiated by analytical studies, computer simulation, and experimental studies.

  4. Control of antenna-feed attitude and reflector vibrations in large spaceborne antennas by mechanical decoupling and movable dampers

    NASA Astrophysics Data System (ADS)

    Wang, P. K. C.; Hong, E. C.; Sarina, J. S.

    1983-07-01

    Simple, practical methods for damping reflector vibrations and designing antenna-feed attitude control systems in large deployable spaceborne antennas are proposed. The former involves a movable damper which is positioned so that the rate-of-change of total vibrational energy is minimized. The latter introduces a mechanical decoupler between the flexible boom and the antenna-feed, whereby the feed-attitude control system can be designed independent of boom dynamics. The validity of these approaches are substantiated by analytical studies, computer simulation, and experimental studies.

  5. Design and Test of an Attitude Determination and Control System for a 6U CubeSat using AFIT’s CubeSat Testbed

    DTIC Science & Technology

    2015-03-01

    orientation relative to another object. Typical examples include the Hubble Space Telescope ADCS which points to a region of the universe to take high...2 SSRC Space Systems Research Center...2 AFIT Air Force Institute of Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CSRA Center for Space Research and Assurance

  6. Attitude control of an object commonly held by multiple robot arms - A Lyapunov approach

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth; Wen, John T.

    1988-01-01

    Multiple robot arms moving a commonly held object can be viewed as complex actuators whose purpose is to provide net forces and moments to the object. These forces and moments can be used to control the orientation, or attitude, of the object via the Euler equation describing attitude evolution in response to applied moments at the mass center. In contrast to the common approach that feedback-linearizes the attitude dynamics to a double integrator form with respect to some three-parameter local representation of orientation, the authors control the object using a globally nonsingular representation. Using an energy-motivated Liapunov function, globally stable control of attitude is shown.

  7. Attitude control of an object commonly held by multiple robot arms - A Lyapunov approach

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth; Wen, John T.

    1988-01-01

    Multiple robot arms moving a commonly held object can be viewed as complex actuators whose purpose is to provide net forces and moments to the object. These forces and moments can be used to control the orientation, or attitude, of the object via the Euler equation describing attitude evolution in response to applied moments at the mass center. In contrast to the common approach that feedback-linearizes the attitude dynamics to a double integrator form with respect to some three-parameter local representation of orientation, the authors control the object using a globally nonsingular representation. Using an energy-motivated Liapunov function, globally stable control of attitude is shown.

  8. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume contains papers on analysis and control system techniques for electric power systems. Topics include: modeling and control of electric power systems, dynamic state estimation techniques, optimal power flow algorithms, and neural networks in power systems.

  9. Chinese attitudes, norms, behavioral control and gambling involvement in Macao.

    PubMed

    Wu, Anise M S; Lai, Mark H C; Tong, Kowk Kit; Tao, Vivienne Y K

    2013-12-01

    This study tested the applicability of the theory of planned behavior (TPB) on gambling intention and involvement in a representative Chinese sample in Macao, recruited by a random residential number dialing method. We successfully interviewed 685 respondents, with about one-third of them reporting that they had participated in gambling activities during the 12 months prior to the interview. The results of structural equation modeling suggested that favorable attitudes toward superstition and techniques, poor sense of perceived behavioral control over gambling refusal, and high gambling intention increased vulnerability to excessive gambling involvement. These findings generally support the efficacy of the TPB in explaining gambling intention and involvement among both Chinese gamblers and non-gamblers. Some practical implications of the findings are discussed within the Chinese context.

  10. Gyroless yaw control system for a three axis stabilized, zero-momentum spacecraft

    NASA Technical Reports Server (NTRS)

    Stetson, Jr., John B. (Inventor)

    1993-01-01

    A satellite attitude control system is usable in the absence of any inertial yaw attitude reference, such as a gyroscope, and in the absence of a pitch bias momentum. Both the roll-yaw rigid body dynamics and the roll-yaw orbit kinematics are modelled. Pitch and roll attitude control are conventional. The model receives inputs from a roll sensor, and roll and yaw torques from reaction wheel monitors. The model produces estimated yaw which controls the spacecraft yaw attitude.

  11. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume covers topics pertaining to analysis and control system techniques for electric power systems. Topics include: computer relaying in power systems, power system generation expansion, expert systems for power systems, and power flow algorithms.

  12. Recovery of FUSE Attitude Control With Two Reaction Wheels and Magnetic Torquer Bars

    NASA Astrophysics Data System (ADS)

    Ake, T. B.; Class, B. F.; Roberts, B. A.; Kruk, J. W.; Blair, W. P.; Moos, H. W.; FUSE Operations Team

    2002-05-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was at the peak of its scientific productivity when attitude control hardware problems began to surface two years after launch. On November 25 and December 10, 2001, FUSE lost use of two of its four reaction wheels required for slewing and pointing control. The pitch and yaw wheels despun due to excessive friction between the rotors and wheel housings. The remaining roll and skew wheels were inadequate for three-axis control. Since then, several innovative techniques have been developed using the magnetic torquer bars (MTBs), which were installed for momentum management, for attitude control. The first flight software update, made within 10 days of the December failure, constrained the skew wheel to control pitch and directed yaw torque requests to the wheel unloading routine, causing the software to respond as if addition momentum needed to be removed by the MTBs. This achieved enough pointing stability to allow work to proceed on developing a new control law fully integrating the MTBs in the control loop. This software was loaded on January 25, 2002 and immediately reestablished fine pointing capability. The concepts and development of this system are unique in astronomical space observatories and demonstrates the feasibility of using the geomagnetic field for pointing control without the use of reaction wheels for near-earth orbit astronomy missions. This work is supported by NASA Contract NAS5-32985 to the Johns Hopkins University.

  13. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Special Committee 219: Attitude and Heading Reference Systems (AHRS) AGENCY: Federal Aviation...: Attitude and Heading Reference Systems (AHRS). SUMMARY: The FAA is issuing this notice to advise the public of the eighth meeting of RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS...

  14. FUSE in-orbit attitude control with two reaction wheels and no gyroscopes

    NASA Astrophysics Data System (ADS)

    Kruk, Jeffrey W.; Class, Brian F.; Rovner, Dan; Westphal, Jason; Ake, Thomas B.; Moos, H. W.; Roberts, Bryce A.; Fisher, Landis

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA Origins mission launched in June 1999 to obtain high-resolution spectra of astronomical sources at far-ultraviolet wavelengths. The science objectives require the satellite to provide inertial pointing at arbitrary positions on the sky with sub-arcsecond accuracy and stability. The requirements were met using a combination of ring-laser gyroscopes, three-axis magnetometers, and a fine error sensor for attitude knowledge, and reaction wheels for attitude control. Magnetic torquer bars are used for momentum management of the reaction wheels, and coarse sun sensors for safe mode pointing. The gyroscopes are packaged as two coaligned inertial reference units of three orthogonal gyroscopes each. There are four reaction wheels: three oriented along orthogonal axes, the fourth skewed at equal angles (54.7°) with respect to the others. Early in the mission the gyroscopes began showing signs of aging more rapidly than expected, and one failed after two years of operation. In addition, two of the orthogonal wheels failed in late 2001. The flight software has been modified to employ the torquer bars in conjunction with the two remaining wheels to provide fine pointing control. Additional new flight software is under development to provide attitude control if both gyroscopes fail on one or more axes. Simulations indicate that the pointing requirements will still be met, though with some decrease in observing efficiency. We will describe the new attitude control system, compare performance characteristics before and after the reaction wheel failures, and present predicted performance without gyroscopes.

  15. Attitude and articulation control for CRAF/Cassini

    NASA Technical Reports Server (NTRS)

    Bell, C. E.; Bernard, D. E.; Rasmussen, R. D.

    1991-01-01

    The Comet Rendezvous/Asteroid Flyby (CRAF) and Cassini planetary missions provide exciting pointing and control challenges. The mission and science objectives, and an attitude and articulation control concept designed to meet these challenges, are described. CRAF/Cassini mission characteristics which drive pointing and control include: close range flybys of asteroids and icy satellites; Huygens probe guidance and communication; Saturn orbit insertion; comet rendezvous and orbit insertion; closed loop target tracking from a comet orbit perturbed by gas and dust pressure; fine spacecraft pointing for Titan radar mapping and Earth communications; requirements for autonomous failure detection; isolation; recovery; and 13.5 year lifetime. The philosophy and approach chosen to meet these challenges and the overall control architecture are addressed, including operational and autonomous safe modes. Critical functions are highlighted, such as charge coupled device imaging of stars and extended bodies which provide references for inertial and target referenced pointing respectively. Tradeoffs and rationale for the selection and location of sensors and actuators are reviewed.

  16. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  17. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  18. Design and Simulation of a Nano-Satellite Attitude Determination System

    DTIC Science & Technology

    2009-12-01

    4 D. SURVEY OF CUBESAT ATTITUDE DETERMINATION SYSTEMS... 6 1. Pumpkin IMI ADCS...this is the nearly complete lack of a pre-packaged ADS. Until August of 2009, there was only one ADS available on the market. It was the Pumpkin ...determination and control of about one degree. They differ in included equipment and performance. 1. Pumpkin IMI ADCS Pumpkin , Inc. sells this system as a

  19. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  20. Attitude angular measurement system based on MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Luo, Lei

    2014-09-01

    For the purpose of monitoring the attitude of aircraft, an angular measurement system using a MEMS heat convection accelerometer is presented in this study. A double layers conditioning circuit that center around the single chip processor is designed and built. Professional display software with the RS232 standard is used to communicate between the sensor and the computer. Calibration experiments were carried out to characterize the measuring system with the range of - 90°to +90°. The curves keep good linearity with the practical angle. The maximum deviation occurs at the 90°where the value is 2.8°.The maximum error is 1.6% and the repeatability is measured to be 2.1%. Experiments proved that the developed measurement system is capable of measuring attitude angle.

  1. Electric propulsion. [pulsed plasma thruster and electron bombardment ion engine for MSAT attitude control and stationkeeping

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An alternative propulsion subsystem for MSAT is presented which has a potential of reducing the satellite weight by more than 15%. The characteristics of pulsed plasma and ion engines are described and used to estimate of the mass of the propellant and thrusters for attitude control and stationkeeping functions for MSAT. Preliminary estimates indicate that the electric propulsion systems could also replace the large momentum wheels necessary to counteract the solar pressure; however, the fine pointing wheels would be retained. Estimates also show that either electric propulsion system can save approximately 18% to 20% of the initial 4,000 kg mass. The issues that require further experimentation are mentioned.

  2. AE-C attitude determination and control prelaunch analysis and operations plan

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  3. Dynamic attitude command and control of the TOPEX/Poseidon spacecraft

    NASA Technical Reports Server (NTRS)

    Zimbelman, D. F.; Lee, B. B.; Welch, R. V.

    1991-01-01

    The dynamic control laws utilized by the TOPEX/Poseidon (T/P) spacecraft attitude determination and control subsystem to command and maneuver the satellite during normal mission mode (NMM) laws are described. Results show that the vehicle is able to respond to the dynamic attitude commands while at the same time providing ample disturbance rejection capability.

  4. Dynamic modeling and optimal control of spacecraft with flexible structures undergoing general attitude maneuvers

    NASA Astrophysics Data System (ADS)

    Lin, Yiing-Yuh; Lin, Gern-Liang

    1992-08-01

    In this research, the dynamics and control of a rigid spacecraft with flexible structures were studied for the case of optimal simultaneous multiaxis reorientation. A model spacecraft consisting of a rigid hub in the middle and two solid bodies symmetrically connected to either side of the hub through uniformly distributed flexible beams is considered for the dynamic analysis and control simulation. To optimally reorienting the spacecraft, an optimal nominal control trajectory is found first through an iterative procedure. Linear flexural deformations are assumed for the beam structures and the assumed modes method is applied to find the vibration control law of the beams. The system overall optimal attitude control is achieved by following the open loop optimal reference control trajectory with an stabilizing guidance law.

  5. An investigation into the milliarcsecond attitude control errors of Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Bradley, A. J.; Chapman, R. D.; Kalinowski, J. K.; Kimmer, E.; Welter, G.; Whittier, W.

    1997-01-01

    An analysis of the fine pointing errors of the Hubble Space Telescope (HST), in the range from 1 to 15 milliarcsecs, is reported on. The emphasis is on the study of the performance characteristics of the pointing control system, fine guidance sensors and the optical telescope assembly, which produce relative attitude and astrometric measurement errors. Since the first servicing mission in December 1993, the HST relative short term position stability is of the order of 3 milliarcsecs RMS when averaged over 1 min intervals. At this level of accuracy, longer term systematic attitude errors in this range can have a noticeable impact on the telescope's observations. The various error sources are described, including: internal temperature effects; spacecraft structure temperature effects; calibration procedures, and computational inaccuracies.

  6. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  7. Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo

    2017-08-01

    In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.

  8. Flight results of a low-cost attitude determination system

    NASA Astrophysics Data System (ADS)

    Springmann, John C.; Cutler, James W.

    2014-06-01

    This paper presents flight results of the attitude determination system (ADS) flown on the Radio Aurora Explorer (RAX) satellites, RAX-1 and RAX-2, which are CubeSats developed to study space weather. The ADS sensors include commercial-off-the-shelf magnetometers, coarse sun sensors (photodiodes), and a MEMs rate gyroscope. A multiplicative extended Kalman filter is used for attitude estimation. On-orbit calibration was developed and applied to compensate for sensor and alignment errors, and attitude determination accuracies of 0.5° 1-σ have been demonstrated on-orbit. The approach of using low-cost sensors in conjunction with on-orbit calibration, which mitigates the need for pre-flight calibration and high-tolerance alignment during spacecraft assembly, reduces the time and cost associated with the subsystem development, and provides a low-cost solution for modest attitude determination requirements. Although the flight results presented in this paper are from a specific mission, the methods used and lessons learned can be used to maximize the performance of the ADS of any vehicle while minimizing the pre-flight calibration and alignment requirements.

  9. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  10. Investigation of propellant flow control system

    NASA Technical Reports Server (NTRS)

    Liebman, A. A.

    1973-01-01

    Mechanical, electromechanical, and fluidic concepts were studied as propellant flow control system for oxygen/hydrogen attitude control thrusters. A mechanical flow controller was designed, fabricated, and tested with hydrogen, oxygen, and nitrogen over a range of inlet pressures and temperatures. Results of these tests are presented along with a discussion of a flight-weight design. Also presented are recommendations for further design and development. A detailed coverage of the fluidics investigation is included.

  11. Multivariable Control Systems

    DTIC Science & Technology

    1968-01-01

    one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).

  12. Changing Student Attitudes using Andes, An Intelligent Homework System

    NASA Astrophysics Data System (ADS)

    van de Sande, Brett; Vanlehn, Kurt; Treacy, Don; Shelby, Bob; Wintersgill, Mary

    2007-03-01

    The size of introductory physics lectures often inhibits personal homework assistance and timely corrective feedback. Andes, an intelligent homework help system designed for two semesters of introductory physics, can fill this need by encouraging students to use sound problem solving techniques and providing immediate feedback on each step of a solution. On request, Andes provides principles-based hints based on previous student actions. A multi-year study at the U.S. Naval Academy demonstrates that students using Andes perform better than students working the same problems as graded pencil and paper homeworks. In addition, student attitude surveys show that Andes is preferred over other homework systems. These findings have implications for student attitudes toward, and mastery of, physics. See http://www.andes.pitt.edu for more information.

  13. 76 FR 50810 - Seventh Meeting: RTCA Special Committee 219: Attitude and Heading Reference System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Federal Aviation Administration Seventh Meeting: RTCA Special Committee 219: Attitude and Heading... Committee 219 meeting: Attitude and Heading Reference System. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 219: Attitude and Heading Reference System...

  14. System of Attitudes in Parents of Young People Having Sensory Disorders

    ERIC Educational Resources Information Center

    Posokhova, Svetlana; Konovalova, Natalia; Sorokin, Victor; Demyanov, Yuri; Kolosova, Tatyana; Didenko, Elena

    2016-01-01

    The objective of the research was to identify the system of attitudes in parents of young people having sensory disorders. The survey covered parents of children aged 17 and older having hearing disorders, visual disorders, and no sensory disorders. The parents' system of attitudes united the attitude of the parents to themselves, to the child and…

  15. IMU/GPS System Provides Position and Attitude Data

    NASA Technical Reports Server (NTRS)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  16. [Development of knowledge, attitude and practice questionnaire on prevention and control of occupational diseases].

    PubMed

    Gao, Yuan; Feng, Yuchao; Wang, Min; Su, Yiwei; Li, Yanhua; Wang, Zhi; Tang, Shihao

    2015-04-01

    To develop the knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups, and to provide a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect. The initial questionnaire which was evaluated by the experts was used to carry out a pre-survey in Guangzhou, China. The survey results were statistically analyzed by t test, identification index method, correlation analysis, and Cronbach's a coefficient method. And then the questionnaire was further modified, and the content of the questionnaire was determined finally. After modification, there were 18 items on knowledge, 16 items on attitude, and 12 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for enterprise managers"; there were 19 items on knowledge, 10 items on attitude, and 11 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for workers". The knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups is developed successfully, and it is a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect.

  17. Output feedback control for rigid-body attitude with constant disturbances

    NASA Astrophysics Data System (ADS)

    Hu, Jinchang; Zhang, Honghua

    2015-03-01

    In this article, the control problem of rigid-body attitude under constant disturbances without angular-velocity measurement is solved by the combination of the immersion and invariance methodology and the dynamic scaling technique. Two observers, which are respectively for estimating the angular velocity and the disturbance, are constructed by utilising the immersion and invariance method. The mismatched term arising from the observers is dominated by the high-gain injection. The control law is a simple proportional-derivative controller plus a disturbance compensation term, where the estimates of the angular velocity and the disturbance from observers are used for feedback directly. The overall closed-loop system is shown to be almost globally asymptotically stable under easy choices of some control parameters. Finally, simulations are conducted to demonstrate the effectiveness of the proposed control scheme.

  18. Multiple simultaneous specification attitude control of a mini flying-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Markin, Shael

    The Multiple Simultaneous Specification controller design method is an elegant means of designing a single controller to satisfy multiple convex closed loop performance specifications. In this thesis, the method is used to design pitch and roll attitude controllers for a Zagi flying-wing unmanned aerial vehicle from Procerus Technologies. A linear model of the aircraft is developed, in which the lateral and longitudinal motions of the aircraft are decoupled. The controllers are designed for this decoupled state space model. Linear simulations are performed in Simulink, and all performance specifications are satisfied by the closed loop system. Nonlinear, hardware-in-the-loop simulations are carried out using the aircraft, on-board computer, and ground station software. Flight tests are also executed to test the performance of the designed controllers. The closed loop aircraft behaviour is generally as expected, however the desired performance specifications are not strictly met in the nonlinear simulations or in the flight tests.

  19. Relative attitude dynamics and control for a satellite inspection mission

    NASA Astrophysics Data System (ADS)

    Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark

    2012-02-01

    The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.

  20. Wisdom Appliance Control System

    NASA Astrophysics Data System (ADS)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.