Sample records for attitude tracking study

  1. Partnership Attitude Tracking Study, Teens 2002.

    ERIC Educational Resources Information Center

    2002

    The Partnership Attitude Tracking Study (PATS) is Partnership for a Drug Free America's (PDFA) unique contribution to the field of substance abuse prevention. An annual study that tracks the attitudes consumers have about illegal drugs, this research examines what PDFA's target audiences think and feel about various drugs. After a decade of rising…

  2. Partnership for a Drug-Free America: Partnership Attitude Tracking Study. Teens: Ethnic and Racial Trends, Spring 2002.

    ERIC Educational Resources Information Center

    Delaney, Barbara

    The annual Partnership Attitude Tracking Study (PATS) tracks consumers' attitudes about illegal drugs. PATS consists of two nationally projectable samples: a teen sample for students in grades 7-12 and a parent sample. The 2002 PATS, conducted in homes and schools, collected data using self-report surveys. Results indicate that after a decade of…

  3. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  4. Privacy and Trust Attitudes in the Intent to Volunteer for Data-Tracking Research

    ERIC Educational Resources Information Center

    Smith, Catherine L.

    2016-01-01

    Introduction: The analysis of detailed interaction records is fundamental to development of user-centred systems. Researchers seeking such data must recruit volunteers willing to allow tracking of their interactions. This study examines privacy and trust attitudes in the intent to volunteer for research requiring installation of tracking software.…

  5. Media Use Patterns of Young Men: Findings from the Youth Attitude Tracking Study 2

    DTIC Science & Technology

    1990-08-01

    advertising avenue for the Military. To use the media most effectively , however, requires knowledge of the attitudes and practices of youths regarding...OPP~ FILE COPY DEFENSE -MANPOWER DATA CENTER MEDIA USE PATTERNS OF YOUNG MEN FINDINGS FROM THE YOUTH ATTITUDE TRACKING STUDY If Market Research...cost- effective military advertising. Understanding media use patterns will provide information to aid in understanding how to target advertising

  6. An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation.

    DTIC Science & Technology

    1983-02-01

    Control with Active Compliance ....... 97 ( 5.5 Force Tracking .... ................. .... 97 5.6 Attitude Sensor Evaluation .. ........... . .101 6...93 5.7 OSU Hexapod Traversing Obstacle ............ ... 95 - 5.8 Vehicle Attitude Across Obstacle Using No Terrain- Adaptive ...Underspecified Gait Using Attitude Control and Active Compliance 100 5.12 Foot Force Tracking Using Active Compliance in an Underspecified Gait

  7. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  8. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  9. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors

    PubMed Central

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-01-01

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684

  10. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.

    PubMed

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-08-21

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

  11. Youth Attitude Tracking Study II Wave 16 - Fall 1985,

    DTIC Science & Technology

    1986-06-01

    AD-AI7I 517 YOUTH ATTITUDE TRACKING STUDY 11 NAVE 16 - FALL I9 M .’ (U) RESEARCH TRIANGLE INST RESEARCH TRIANGLE PARK NCELJN8 R136 /50F UNCL ASSIFIED...CATI System . .... ....................... .. 23 2. Phased Approach to Data Collection ........ .. 23 C. Survey Response Data and Performance Rates...Awareness of Military Advertising ......... 112 D. Computerized Career Information Systems ..... .......... 114 E. Informal Sources of Information

  12. Youth Attitude Tracking Study II Wave 18 -- Fall 1987

    DTIC Science & Technology

    1988-08-01

    positive and negative aspects. One of the major goals of military advertising is to increase knowledge about the advantages and benefits of military...Educational Benefits Can Be Used ........................... 102 7.4 Incremental Effects of Cash Bonus on Propensity to Enlist in Guard/Reserve... YOUTH ATTITUDE TRACKING STUDY Fall 1987 EXECUTIVE SWNARY Effective recruiting for the military requires reliable and timely recruit market data

  13. Reserve Component Attitude Study Wave V. 1982 Tracking Study. Volume 1. Major Findings and Implications.

    DTIC Science & Technology

    1983-05-01

    by block number) FIELD GROUP SUB-GROUP Military/Manpower/Reserve Force/Recruiting Market/ 05 09 Research / Non -prior service/Prior Service/Male/Female...7 RD-R149 32 RESERVE COMPONENT ATTITUDE STUDY WAVE V 1982 TRACKING L/~STUDY VOLUME ± MAJO..(U) AS OCIATES FOR RESEARCH INBEHAVIOR INC PHILADELPHIA PA... RESEARCH IN BEHAVIOR, INC.) PHILADELPHIA, PENNSYLVANIA .2A~* -ION4 STA~EMEwzw AK Apploved fat public telecoo, DiatiLi]tion Unlimited -- .- .. ..i- -- k

  14. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.

  15. Youth Attitude Tracking Study. Volume 1. Spring 1980.

    DTIC Science & Technology

    1980-08-01

    JobICharacteristics 11 Active Duty Positive Propensity Respondents Target Market Profile 13 Advertising Awareness 14 ’LIAttitudes Toward Enlistment Incentives...service advertising awareness. The fact that target market men value job characteristics that pertain to improving oneself suggests that this change in copy...W,0-R143 ii4 YOUTH ATTITUDE TRACKING STUDY VOLUME i SPRING i988(U) 1/3 MARKET FACTS INC CHICAGO IL PUBLIC SECTOR RESEARCH CORP J T HEISLER AUG 80

  16. Military Advertising Awareness and Effectiveness: Findings from the 1990 Youth Attitude Tracking Study

    DTIC Science & Technology

    1992-12-01

    AD-A265 479 F•DEFENSE MANPOWER DATA CENTER Military Advertising Awareness & Effectiveness Findings from the 1990 Youth Attitude Tracking Study Market...the Marine Corps. Few youth recalled responding to literature or other media messages encouraging a young person to call a toll-free number or mail a...may be an effective media vehicle, especially in a constrained budget environment. The data indicate that recruiters reach intended target audiences

  17. Global finite-time attitude consensus tracking control for a group of rigid spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Penghua

    2017-10-01

    The problem of finite-time attitude consensus for multiple rigid spacecraft with a leader-follower architecture is investigated in this paper. To achieve the finite-time attitude consensus, at the first step, a distributed finite-time convergent observer is proposed for each follower to estimate the leader's attitude in a finite time. Then based on the terminal sliding mode control method, a new finite-time attitude tracking controller is designed such that the leader's attitude can be tracked in a finite time. Finally, a finite-time observer-based distributed control strategy is proposed. It is shown that the attitude consensus can be achieved in a finite time under the proposed controller. Simulation results are given to show the effectiveness of the proposed method.

  18. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  19. Searching Online for Information About Vaccination: Assessing the Influence of User-Specific Cognitive Factors Using Eye-Tracking.

    PubMed

    Kessler, Sabrina Heike; Zillich, Arne Freya

    2018-04-20

    In Germany, the Internet is gaining increasing importance for laypeople as a source of health information, including information about vaccination. While previous research has focused on the characteristics of online information about vaccination, this study investigated the influence of relevant user-specific cognitive factors on users' search behavior for online information about vaccination. Additionally, it examined how searching online for information about vaccination influences users' attitudes toward vaccination. We conducted an experimental study with 56 undergraduate students from a German university that consisted of a survey and eye-tracking while browsing the Internet, followed by a content analysis of the eye-tracking data. The results show that the users exposed themselves to balanced and diverse online information about vaccination. However, none of the examined cognitive factors (attitude toward vaccination, attitude salience, prior knowledge about vaccination, need for cognition, and cognitive involvement) influenced the amount of time users spent searching the Internet for information about vaccination. Our study was not able to document any effects of attitude-consistent selective exposure to online information about vaccination. In addition, we found no effect on attitude change after having searched the Internet for vaccine-related information. Thus, users' search behavior regarding vaccination seems to be relatively stable.

  20. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  1. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies (model-based and adaptive) that simultaneously track a desired attitude trajectory and desired energy/power profile are presented. Both strategies ensure asymptotic tracking while the adaptive controller compensates for uncertain spacecraft inertia. In the final chapter, a control strategy is designed for a rotating, unbalanced disk. The control strategy, which is composed of a control torque and two control forces, regulates the disk displacement and ensures angular velocity tracking. The controller uses a desired compensation adaptation law and a gain adjusted forgetting factor to achieve exponential stability despite the lack of knowledge of the imbalance-related parameters, provided a mild persistency of excitation condition is satisfied.

  2. Attitude identification for SCOLE using two infrared cameras

    NASA Technical Reports Server (NTRS)

    Shenhar, Joram

    1991-01-01

    An algorithm is presented that incorporates real time data from two infrared cameras and computes the attitude parameters of the Spacecraft COntrol Lab Experiment (SCOLE), a lab apparatus representing an offset feed antenna attached to the Space Shuttle by a flexible mast. The algorithm uses camera position data of three miniature light emitting diodes (LEDs), mounted on the SCOLE platform, permitting arbitrary camera placement and an on-line attitude extraction. The continuous nature of the algorithm allows identification of the placement of the two cameras with respect to some initial position of the three reference LEDs, followed by on-line six degrees of freedom attitude tracking, regardless of the attitude time history. A description is provided of the algorithm in the camera identification mode as well as the mode of target tracking. Experimental data from a reduced size SCOLE-like lab model, reflecting the performance of the camera identification and the tracking processes, are presented. Computer code for camera placement identification and SCOLE attitude tracking is listed.

  3. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  4. How Tracking Structures Attitudes towards Ethnic Out-Groups and Interethnic Interactions in the Classroom: An Ethnographic Study in Belgium

    ERIC Educational Resources Information Center

    Van Praag, Lore; Boone, Simon; Stevens, Peter A. J.; Van Houtte, Mieke

    2015-01-01

    The influence of the ethnic composition of schools on interethnic relations and attitudes has been studied extensively and has received ample interest from policy makers. However, less attention has been paid to the structures and processes inside schools that organize interethnic relations and attitudes. In Flanders (Belgium), secondary education…

  5. Military Advertising Awareness and Effectiveness: Findings from the 1991 Youth Attitude Tracking Study

    DTIC Science & Technology

    1993-10-01

    I AD-A274 260 i DEFENSEI MANPOWER DATA CENTER I I Military Advertising Awareness and Effectiveness Finding from the 19I9I ~ Youth Attitude Tracking...34How effective is military advertising?" First, it examines YATS items that addressed the youth population’s reported awareness of military advertising...reporting more awareness of military advertising in those media . The 1991 I increase in TV awareness may be a residual effect of Operation Desert Storm

  6. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  7. Adaptive quaternion tracking with nonlinear extended state observer

    NASA Astrophysics Data System (ADS)

    Bai, Yu-liang; Wang, Xiao-gang; Xu, Jiang-tao; Cui, Nai-gang

    2017-10-01

    This paper addresses the problem of attitude tracking for spacecraft in the presence of uncertainties in moments of inertia and environmental disturbances. An adaptive quaternion tracking control is combined with a nonlinear extended state observer and the disturbances compensated for in each sampling period. The tracking controller is proved to asymptotically track a prescribed motion in the presence of these uncertainties. Simulations of a nano-spacecraft demonstrate a significant improvement in pointing accuracy and tracking error when compared to a conventional attitude controller. The proposed tracking control is completely deterministic, simple to implement, does not require knowledge of the uncertainties and does not suffer from chattering.

  8. Youth Attitude Tracking Study: Spring 1980.

    DTIC Science & Technology

    1980-08-01

    integral part of service adver- tising, especially for the Marine Corps. Slogans always have been an effective means of generating and sustaining brand ... awareness . Tracking the recognition of service advertising slogans, therefore, is another means of assessing the effective- ness of service advertising

  9. Attitude tracking control of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  10. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  11. Technical Report of Successful Deployment of Tandem Visual Tracking During Live Laparoscopic Cholecystectomy Between Novice and Expert Surgeon.

    PubMed

    Puckett, Yana; Baronia, Benedicto C

    2016-09-20

    With the recent advances in eye tracking technology, it is now possible to track surgeons' eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices and developed techniques to assess surgical skill on the basis of eye movement utilizing simulators and live surgery. None have evaluated simultaneous visual tracking between an expert and a novice during live surgery. Here, we describe a successful simultaneous deployment of visual tracking of an expert and a novice during live laparoscopic cholecystectomy. One expert surgeon and one chief surgical resident at an accredited surgical program in Lubbock, TX, USA performed a live laparoscopic cholecystectomy while simultaneously wearing the visual tracking devices. Their visual attitudes and movements were monitored via video recordings. The recordings were then analyzed for correlation between the expert and the novice. The visual attitudes and movements correlated approximately 85% between an expert surgeon and a chief surgical resident. The surgery was carried out uneventfully, and the data was abstracted with ease. We conclude that simultaneous deployment of visual tracking during live laparoscopic surgery is a possibility. More studies and subjects are needed to verify the success of our results and obtain data analysis.

  12. Velocity-free attitude coordinated tracking control for spacecraft formation flying.

    PubMed

    Hu, Qinglei; Zhang, Jian; Zhang, Youmin

    2018-02-01

    This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Youth Attitude Tracking Study; Fall 1979.

    DTIC Science & Technology

    1980-03-01

    II - KEY RESULTS BY TRACKING AREA 41 2.1 Positive Propensity by Tracking Area 43 2.2 Academic Achievement and Derived Quality Index 55 2.3 Recalled...Fall 1979 wave, a total of 5,187 interviews were completed. 40) Page 3 The survey employed telephone interviewing. Respondents were selected on the...area and allows computation of total U.S. estimates. The 26 tracking areas are as follows: New York City •Albany/Buf falo H larr isburg Washington

  14. Design study for LANDSAT D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.

    1976-01-01

    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed.

  15. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  16. Teachers' Attitudes towards Tracking: Testing the Socialization Hypothesis

    ERIC Educational Resources Information Center

    Mouralová, Magdalena; Paulus, Michal; Veselý, Arnošt

    2017-01-01

    The paper examines how teachers' attitudes towards tracking (separating pupils into groups with different curricula on the basis of their abilities and results) differ among various generations of teachers. Fundamental and quick changes in the educational system occurred in the Czech Republic after the Velvet Revolution in 1989 as a unified…

  17. The Impact of Instructor Pedagogy on College Calculus Students' Attitude toward Mathematics

    ERIC Educational Resources Information Center

    Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.

    2015-01-01

    College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students'…

  18. Using Marital Attitudes in Late Adolescence to Predict Later Union Transitions

    ERIC Educational Resources Information Center

    Willoughby, Brian J.

    2014-01-01

    Using a sample of 982 late adolescents and tracking them throughout young adulthood, this study investigated whether marital attitudes held during the last year of high school were predictive of union transitions to both cohabitation and marriage during young adulthood. Results using both logistic regression and discrete event history models found…

  19. Technical Report of Successful Deployment of Tandem Visual Tracking During Live Laparoscopic Cholecystectomy Between Novice and Expert Surgeon

    PubMed Central

    Baronia, Benedicto C

    2016-01-01

    With the recent advances in eye tracking technology, it is now possible to track surgeons’ eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices and developed techniques to assess surgical skill on the basis of eye movement utilizing simulators and live surgery. None have evaluated simultaneous visual tracking between an expert and a novice during live surgery. Here, we describe a successful simultaneous deployment of visual tracking of an expert and a novice during live laparoscopic cholecystectomy. One expert surgeon and one chief surgical resident at an accredited surgical program in Lubbock, TX, USA performed a live laparoscopic cholecystectomy while simultaneously wearing the visual tracking devices. Their visual attitudes and movements were monitored via video recordings. The recordings were then analyzed for correlation between the expert and the novice. The visual attitudes and movements correlated approximately 85% between an expert surgeon and a chief surgical resident. The surgery was carried out uneventfully, and the data was abstracted with ease. We conclude that simultaneous deployment of visual tracking during live laparoscopic surgery is a possibility. More studies and subjects are needed to verify the success of our results and obtain data analysis. PMID:27774359

  20. Peer Assessment of Webpage Design: Behavioral Sequential Analysis Based on Eye-Tracking Evidence

    ERIC Educational Resources Information Center

    Hsu, Ting-Chia; Chang, Shao-Chen; Liu, Nan-Cen

    2018-01-01

    This study employed an eye-tracking machine to record the process of peer assessment. Each web page was divided into several regions of interest (ROIs) based on the frame design and content. A total of 49 undergraduate students with a visual learning style participated in the experiment. This study investigated the peer assessment attitudes of the…

  1. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  2. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  3. Trajectory tracking control for underactuated stratospheric airship

    NASA Astrophysics Data System (ADS)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  4. Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance.

    PubMed

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yin, Zeyang; Wei, Xing; Yuan, Jianping

    2018-03-01

    In this paper, a robust inertia-free attitude takeover control scheme with guaranteed prescribed performance is investigated for postcapture combined spacecraft with consideration of unmeasurable states, unknown inertial property and external disturbance torque. Firstly, to estimate the unavailable angular velocity of combination accurately, a novel finite-time-convergent tracking differentiator is developed with a quite computationally achievable structure free from the unknown nonlinear dynamics of combined spacecraft. Then, a robust inertia-free prescribed performance control scheme is proposed, wherein, the transient and steady-state performance of combined spacecraft is first quantitatively studied by stabilizing the filtered attitude tracking errors. Compared with the existing works, the prominent advantage is that no parameter identifications and no neural or fuzzy nonlinear approximations are needed, which decreases the complexity of robust controller design dramatically. Moreover, the prescribed performance of combined spacecraft is guaranteed a priori without resorting to repeated regulations of the controller parameters. Finally, four illustrative examples are employed to validate the effectiveness of the proposed control scheme and tracking differentiator. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  6. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  7. Tracking Positions and Attitudes of Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled; vanelli, Charles; Biesiadecki, Jeffrey; Martin, Alejandro San; Maimone, Mark; Cheng, Yang; Alexander, James

    2006-01-01

    The Surface Attitude Position and Pointing (SAPP) software, which runs on computers aboard the Mars Exploration Rovers, tracks the positions and attitudes of the rovers on the surface of Mars. Each rover acquires data on attitude from a combination of accelerometer readings and images of the Sun acquired autonomously, using a pointable camera to search the sky for the Sun. Depending on the nature of movement commanded remotely by operators on Earth, the software propagates attitude and position by use of either (1) accelerometer and gyroscope readings or (2) gyroscope readings and wheel odometry. Where necessary, visual odometry is performed on images to fine-tune the position updates, particularly on high-wheel-slip terrain. The attitude data are used by other software and ground-based personnel for pointing a high-gain antenna, planning and execution of driving, and positioning and aiming scientific instruments.

  8. Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn

    2004-01-01

    Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.

  9. KENNEDY SPACE CENTER, FLA. - Workers calibrate a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers calibrate a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

  10. Standardizing Navigation Data: A Status Update

    NASA Technical Reports Server (NTRS)

    VanEepoel, John M.; Berry, David S.; Pallaschke, Siegmar; Foliard, Jacques; Kiehling, Reinhard; Ogawa, Mina; Showell, Avanaugh; Fertig, Juergen; Castronuovo, Marco

    2007-01-01

    This paper presents the work of the Navigation Working Group of the Consultative Committee for Space Data Systems (CCSDS) on development of standards addressing the transfer of orbit, attitude and tracking data for space objects. Much progress has been made since the initial presentation of the standards in 2004, including the progression of the orbit data standard to an accepted standard, and the near completion of the attitude and tracking data standards. The orbit, attitude and tracking standards attempt to address predominant parameterizations for their respective data, and create a message format that enables communication of the data across space agencies and other entities. The messages detailed in each standard are built upon a keyword = value paradigm, where a fixed list of keywords is provided in the standard where users specify information about their data, and also use keywords to encapsulate their data. The paper presents a primer on the CCSDS standardization process to put in context the state of the message standards, and the parameterizations supported in each standard, then shows examples of these standards for orbit, attitude and tracking data. Finalization of the standards is expected by the end of calendar year 2007.

  11. Tracking and the Effects of School-Related Attitudes on the Language Achievement of Boys and Girls

    ERIC Educational Resources Information Center

    Van de gaer, Eva; Pustjens, Heidi; Van Damme, Jan; De Munter, Agnes

    2006-01-01

    In this study we examined whether the underachievement of boys in language at the end of secondary education is related to school-related attitudes. Data were drawn from the LOSO project, a longitudinal research project in secondary education. The results showed that there were gender differences in language achievement in favour of girls in the…

  12. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  13. Assessing the potential to combine attitude tracking and health campaign evaluation surveys.

    PubMed

    Hollier, Lauren P; Pettigrew, Simone; Minto, Carolyn; Slevin, Terry; Strickland, Mark

    2016-04-06

    Issue addressed: Online surveys are becoming increasingly popular in health research because of the low cost and fast completion time. A large proportion of online survey costs are allocated to setup and administration expenses, which suggests that conducting fewer, longer surveys would be a cost-effective approach. The current study assessed whether the incorporation of a health campaign evaluation survey within a longitudinal attitudes and behaviours tracking survey produced different outcomes compared with the separate administration of the evaluation survey. Methods: Data were collected via an online panel, with 688 respondents completing the combined survey and 657 respondents completing the evaluation-only survey. Regression analyses were conducted to examine whether survey type was related to the campaign evaluation results. Results: Those who completed the combined survey perceived the campaign advertisement to be more personally relevant than those completing the evaluation-only survey. There were no differences in results relating to campaign awareness and reported behavioural change as a result of campaign exposure. Conclusions: There were minimal differences between results obtained from combining an attitude/behaviour tracking survey with a campaign evaluation survey. Any priming or order effects were limited to respondents' cognitive responses to the advertisement. So what?: The results suggest that health practitioners with limited resources available for tracking and evaluation research may be able to maximise outcomes by administering fewer, longer surveys.

  14. KENNEDY SPACE CENTER, FLA. - A worker calibrates a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - A worker calibrates a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

  15. Youth Attitude Tracking Study. Volume 2. Fall 1976.

    DTIC Science & Technology

    1976-01-01

    Advertising Copy Identification.......... . .......... ..... 15 Target Market Profile of :Reserve Components....... i5 Target Market Profile of Active...in the Tracking Areas to test such factors as -promotional materials, recruiting practices, and advertising strategy . A special feature included in the...8217 .. :~ . .’..;- .":, ,:,,.", . ’ .. €,. . . - .. " . " :" . . ". " . . .." ,"- .-- :-,, ". . ’ . -.-- . .: ’.-. :. -I MARKET FACTS " I age 15

  16. Momentum Biased Performance of LAPAN-A3 Satellite for Multispectral Pushbroom Imager Operation

    NASA Astrophysics Data System (ADS)

    Utama, S.; Saifudin, M. A.; Mukhayadi, M.

    2018-05-01

    One of LAPAN-A3 satellite’s missions is for earth observation using multispectral pushbroom imager. This mission needs a stable and accurate attitude to capture any area of interest. To accomplish the mission LAPAN-A3 satellite use momentum biased attitude control. The satellite use magnetic torquers to control the angular momentum vector and a reaction wheel to spin the satellite to remain nadir pointing. When the satellite spinning there are nutation and precession occurred. This paper observes attitude accuracy and stability due to nutation and precession of the satellite’s momentum and the effect to pushbroom imager operation. Nutation observed with 0.28° amplitude and 73 seconds period, and precession observed with 1° amplitude and 92 minutes period. This nutation and precession profile will lead to 2.6° attitude accuracy and maximum movement on ground track 0.055 km/s in along track direction and 0.259 km/s (0.026°/s) in cross track direction. Both of attitude accuracy and movement are outperformed the limitation. However due to satellite movement in orbit there is still blurring effect on the imager.

  17. Self-tracking for Mental Wellness: Understanding Expert Perspectives and Student Experiences

    PubMed Central

    Kelley, Christina; Lee, Bongshin; Wilcox, Lauren

    2017-01-01

    Previous research suggests an important role for self-tracking in promoting mental wellness. Recent studies with college student populations have examined the feasibility of collecting everyday mood, activity, and social data. However, these studies do not account for students’ experiences and challenges adopting self-tracking technologies to support mental wellness goals. We present two studies conducted to better understand self-tracking for stress management and mental wellness in student populations. First, focus groups and card sorting activities with 14 student health professionals reveal expert perspectives on the usefulness of tracking for three scenarios. Second, an online survey of 297 students examines personal experiences with self-tracking and attitudes toward sharing self-tracked data with others. We draw on findings from these studies to characterize students’ motivations, challenges, and preferences in collecting and viewing self-tracked data related to mental wellness, and we compare findings between students with diagnosed mental illnesses and those without. We conclude with a discussion of challenges and opportunities in leveraging self-tracking for mental wellness, highlighting several design considerations. PMID:28920106

  18. Youth Attitude Tracking Study. Volume 2. Fall 1980.

    DTIC Science & Technology

    1980-08-01

    Target Market Profile 17 Advertising Awareness-Males 19 Knowledge of Financial Benefits-Males 20 Draft Registration Attitudes-Males 21 Major...Characteristics-Females 25 Active Duty Positive Propensity Female Target Market Profile 26 Advertising Awareness-Females 27 Knowledge of Financial Benefits-Females...appears to be an obvious strategy for recruitment advertising . Fewer than one-third of the female respondents were aware that the military offers cash

  19. Spaceflight dynamics 1993; AAS/NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Teles, Jerome (Editor); Samii, Mina V. (Editor)

    1993-01-01

    A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.

  20. Integral sliding mode-based attitude coordinated tracking for spacecraft formation with communication delays

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Hu, Qinglei; Xie, Wenbo

    2017-11-01

    This paper investigates the attitude coordinated tracking control for a group of rigid spacecraft under directed communication topology, in which inertia uncertainties, external disturbances, input saturation and constant time-delays between the formation members are handled. Initially, the nominal system with communication delays is studied. A delay-dependent controller is proposed by using Lyapunov-Krasovskii function and sufficient condition for system stability is derived. Then, an integral sliding manifold is designed and adaptive control approach is employed to deal with the total perturbation. Meanwhile, the boundary layer method is introduced to alleviate the unexpected chattering as system trajectories cross the switching surface. Finally, numerical simulation results are presented to validate the effectiveness and robustness of the proposed control strategy.

  1. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  2. Application of inertial instruments for DSN antenna pointing and tracking

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.

    1990-01-01

    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.

  3. Singularity-free backstepping controller for model helicopters.

    PubMed

    Zou, Yao; Huo, Wei

    2016-11-01

    This paper develops a backstepping controller for model helicopters to achieve trajectory tracking without singularity, which occurs in the attitude representation when the roll or pitch reaches ±π2. Based on a simplified model with unmodeled dynamics, backstepping technique is introduced to exploit the controller and hyperbolic tangent functions are utilized to compensate the unmodeled dynamics. Firstly, a position loop controller is designed for the position tracking, where an auxiliary dynamic system with suitable parameters is introduced to warrant the singularity-free requirement for the extracted command attitude. Then, a novel attitude loop controller is proposed to obviate singularity. It is demonstrated that, based on the established criteria for selecting controller parameters and desired trajectories, the proposed controller realizes the singularity-free trajectory tracking of the model helicopter. Simulations confirm the theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  5. A Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  6. Homonegativity in the Technical and Vocational Track: A Survey of Secondary School Students in Flanders

    ERIC Educational Resources Information Center

    Aerts, Saskia; Dewaele, Alexis; Cox, Nele; Van Houtte, Mieke

    2014-01-01

    Students from the technical and vocational track in Flanders have more homonegative attitudes than other students. We investigate what explains this track difference and if the homonegativity is reflected in more bullying experiences by lesbian, gay, and bisexual (LGB) students in these tracks. The results show that sex-role ideology and religion…

  7. Parental Risk Attitudes and Children's Secondary School Track Choice

    ERIC Educational Resources Information Center

    Wolfel, Oliver; Heineck, Guido

    2012-01-01

    Although it is well-known that individuals' risk attitudes are related to behavioral outcomes such as smoking, portfolio decisions, and educational attainment, there is virtually no evidence of whether parental risk attitudes affect the educational attainment of their dependent children. We add to this literature and examine children's secondary…

  8. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  9. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, William H.

    1988-01-01

    This study explored application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues. The model was applied to two data bases: (1) a NASA ground based simulation of an air-to-air tracking task in which nonvisual cueing devices were explored, and (2) a ground based and inflight study performed by the Calspan Corporation to explore the effects of simulator delay on attitude tracking performance. The model predicted the major performance trends obtained in both studies. A combined analytical and experimental procedure for exploring simulator fidelity issues is outlined.

  10. Fuzzy attitude control of solar sail via linear matrix inequalities

    NASA Astrophysics Data System (ADS)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  11. Frogs Sell Beer: The Effects of Beer Advertisements on Adolescent Drinking Knowledge, Attitudes, and Behavior.

    ERIC Educational Resources Information Center

    Gentile, Douglas A.; Walsh, David A.; Bloomgren, Barry W., Jr.; Atti, Jule A.; Norman, Jessica A.

    This present research reveals how beer advertising affects adolescents' knowledge of beer brands, drinking attitudes, and drinking behaviors. In addition to traditional psychological approaches for measuring media effects on alcohol-related behaviors and attitudes, market research advertising tracking methods were included to permit a clearer and…

  12. The Effects of Two Types of Exposure on Attitudes toward Aspects of Juvenile Delinquency.

    ERIC Educational Resources Information Center

    LeUnes, Arnold; And Others

    1996-01-01

    Tracks the attitude changes of a group of abnormal psychology students following a tour of a juvenile correctional facility and a presentation by four of the inmates. A 25-item semantic differential scale revealed a noticeable improvement in the students' attitudes towards juvenile delinquents after the visit. (MJP)

  13. KENNEDY SPACE CENTER, FLA. - The master assembler, crane crew, removes a five-meter telescope in Cocoa Beach, Fla., for repair. The tracking telescope is part of the Distant Object Attitude Measurement System (DOAMS) that provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-08-25

    KENNEDY SPACE CENTER, FLA. - The master assembler, crane crew, removes a five-meter telescope in Cocoa Beach, Fla., for repair. The tracking telescope is part of the Distant Object Attitude Measurement System (DOAMS) that provides optical support for launches from KSC and Cape Canaveral.

  14. A novel body frame based approach to aerospacecraft attitude tracking.

    PubMed

    Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung

    2017-09-01

    In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. The effect of human image in B2C website design: an eye-tracking study

    NASA Astrophysics Data System (ADS)

    Wang, Qiuzhen; Yang, Yi; Wang, Qi; Ma, Qingguo

    2014-09-01

    On B2C shopping websites, effective visual designs can bring about consumers' positive emotional experience. From this perspective, this article developed a research model to explore the impact of human image as a visual element on consumers' online shopping emotions and subsequent attitudes towards websites. This study conducted an eye-tracking experiment to collect both eye movement data and questionnaire data to test the research model. Questionnaire data analysis showed that product pictures combined with human image induced positive emotions among participants, thus promoting their attitudes towards online shopping websites. Specifically, product pictures with human image first produced higher levels of image appeal and perceived social presence, thus stimulating higher levels of enjoyment and subsequent positive attitudes towards the websites. Moreover, a moderating effect of product type was demonstrated on the relationship between the presence of human image and the level of image appeal. Specifically, human image significantly increased the level of image appeal when integrated in entertainment product pictures while this relationship was not significant in terms of utilitarian products. Eye-tracking data analysis further supported these results and provided plausible explanations. The presence of human image significantly increased the pupil size of participants regardless of product types. For entertainment products, participants paid more attention to product pictures integrated with human image whereas for utilitarian products more attention was paid to functional information of products than to product pictures no matter whether or not integrated with human image.

  16. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    PubMed

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Use of an Online Game to Evaluate Health Professions Students' Attitudes toward People in Poverty.

    PubMed

    Richey Smith, Carriann E; Ryder, Priscilla; Bilodeau, Ann; Schultz, Michele

    2016-10-25

    Objective. To determine baseline attitudes of pharmacy, physician assistant studies, and communication science and disorders students toward people in poverty and to examine the effectiveness of using the online poverty simulation game SPENT to affect these attitudes. Methods. Students completed pre/postassessments using the validated Undergraduate Perceptions of Poverty Tracking Survey (UPPTS). Students played the online, open access, SPENT game alone and/or in pairs in a 50-minute class. Results. Significant improvements in scale scores were seen in students after playing SPENT. Quartile results by prescore indicated that students with the lowest attitudes towards patients in poverty improved the most. Results suggested that most students found the experience worthwhile for themselves and/or for their classmates. Conclusions. The results of this study suggest SPENT may improve perspectives of undergraduate pharmacy and other health professions students.

  18. 76 FR 64813 - Electronic Prescriptions for Controlled Substances Clarification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... employees' laptop computers and employee's mobile devices.\\9\\ Numerous recent news articles describe...,'' Office of Applied Studies, 2010 (NSDUH Series H-38A, HHS Publication No. SMA 10-4856), http://www.oas..., ``2009 Parents and Teens Attitude Tracking Study Report'' March 2, 2010. Increased Security Breaches...

  19. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.

    PubMed

    Song, Zhankui; Li, Hongxing; Sun, Kaibiao

    2014-01-01

    In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Active illuminated space object imaging and tracking simulation

    NASA Astrophysics Data System (ADS)

    Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu

    2016-10-01

    Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.

  1. 2010 driver attitudes and awareness survey.

    DOT National Transportation Integrated Search

    2010-08-01

    A basic of questions were developed that could be used in periodic surveys that track drivers attitudes and awareness concerning impaired driving, seat belt use, and speeding issues. The objective of the survey was to learn the knowledge, views, and ...

  2. Handling Qualities Evaluations of Unmanned Aircraft Systems

    DTIC Science & Technology

    2015-05-04

    attitude at rotation 5° ± 0.5° 5° ± 2° Airspeed Vclimb ± 2 KIAS Vclimb ± 3 KIAS Heading Control Runway Track ± 2° Runway Track ± 5° No observed roll...maintain pitch attitude to maintain a target climb speed ±2 KIAS during the initial climb out. This task is 4 appropriate especially for an aircraft with...then maintain a climb speed after rotation (±2 KIAS ) until 1000 feet (ft) AGL. In this scenario, the pilot would pull the stick back after rotation

  3. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.

  4. Assessment of programs that encourage students from diverse populations to consider transportation careers.

    DOT National Transportation Integrated Search

    2010-03-01

    The primary purpose of this study was to assess the attitudes, experiences, and awareness level of : students exposed to a specialized transportation curriculum and to track the progress of participants in a : series of summer transportation institut...

  5. Stellar Gyroscope for Determining Attitude of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey

    2005-01-01

    A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.

  6. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  7. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  8. Older Adults' Attitudes Toward Cohabitation: Two Decades of Change.

    PubMed

    Brown, Susan L; Wright, Matthew R

    2016-07-01

    Our study tracks cohort change in the attitudes of adults aged 50 and older toward cohabitation from 1994 to 2012. We used data from the 1994, 2002, and 2012 waves of the General Social Survey to examine the roles of cohort replacement and intracohort change in the trend toward favorable cohabitation attitudes and to examine sociodemographic variation in patterns of support for cohabitation. Support for cohabitation accelerated over time with nearly half (46%) of older adults reporting favorable attitudes toward cohabitation in 2012 versus just 20% in 1994. This shift in older adults' attitudes largely reflected cohort replacement rather than intracohort change. Some of the factors associated with later life cohabitation experience were linked to supportive attitudes. Cohort succession is fueling the growing acceptance of cohabitation among older adults and coincides with the rapid growth in later life cohabitation that has occurred in recent decades. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.

    1983-01-01

    A set of flight tests designed to evaluate the relative utility of candidate displays with advanced symbology for general aviation terminal area instrument flight rules operations are discussed. The symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a cathode ray tube (CRT) display along with the roll attitude, pitch attitude, localizer deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading, and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an instrument landing system capture and tracking task.

  10. Youth Attitude Tracking Study II Wave 17 -- Fall 1986.

    DTIC Science & Technology

    1987-06-01

    decision, unless so designated by other official documentation. TABLE OF CONTENTS Page PREFACE ................................................. xi...Segmentation Analyses .......................... 2-7 .3. METHODOLOGY OF YATS II....................................... 3-1 A. Sampling Design Overview...Sampling Design , Estimation Procedures and Estimated Sampling Errors ................................. A-i Appendix B: Data Collection Procedures

  11. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  12. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1980-01-01

    Methods of determining satellite orbit and attitude parameters are considered. The Goddard Trajectory Determination System, the Global Positioning System, and the Tracking and Data Relay Satellites are among the satellite navigation systems discussed. Satellite perturbation theory, orbit/attitude determination using landmark data, and star measurements are also covered.

  13. It All Depends on Your Attitude.

    ERIC Educational Resources Information Center

    Kastner, Bernice

    1992-01-01

    Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…

  14. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. High School Learning, Vocational Tracking, and What Then? Contractor Report.

    ERIC Educational Resources Information Center

    Wiley, David E.; Harnischfeger, Annegret

    The National Longitudinal Study of the High School Class of 1972 collected data on the backgrounds, experiences, attitudes, and plans of 16,683 students who were high school seniors at 1,044 schools in 1972. In addition, three followup studies focused on the work experiences, education and training, military service, family status, life…

  16. Lunar libration point flight dynamics study

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two satellite concepts, Halo and Hummingbird, for a lunar libration point satellite to be used as a tracking and communications link with the far side of the moon were evaluated. Study areas included flight dynamics, communications, attitude control, propulsion, and system integration. Both concepts were proved feasible, but Halo was shown to be the better concept.

  17. Tracking and data relay satellite system configuration and tradeoff study. Volume 1: Study summary

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1973-01-01

    A study was conducted to determine the configuration and tradeoffs of a tracking and data relay satellite. The study emphasized the design of a three axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft. Telecommunications support to low and high, or low medium, and high data rate users, considering launches with the Delta 2914, the Atlas/Centaur, and the space shuttle was also considered. The following subjects are presented: (1) launch and deployment profile, (2) spacecraft mechanical and structural design, (3) attitude stabilization and control subsystem, and (4) reliability analysis.

  18. The Impact of Problem-Based Learning on Non-Science Undergraduate Students' Attitudes towards Mathematics in an Egyptian Classroom

    NASA Astrophysics Data System (ADS)

    Rizkallah, Mohammed W.

    While Problem-based Learning (PBL) has been established in the literature in different contexts, there remains few studies on how PBL has an impact on students' attitude towards mathematics and their conceptual understanding of it in Egyptian classrooms. This study was conducted in an international university in Egypt, and the participants were non-science undergraduate students who took a course called "Fun with Problem-Solving" as a requirement core class. The study shows that students' attitude towards mathematics developed throughout the course, and this was tested using the Fennema-Sherman Mathematics Attitude Scale, where students had a pretest and posttest. While the sample size was small, there was statistical significance in the change of the means of how students perceived mathematics as a male domain, and how teachers perceived students' achievements. This notion was coupled with students' development of conceptual understanding, which was tracked throughout the semester by mapping students' work with the Lesh Translation Model.

  19. From Pump to Plug: Measuring the Public's Attitude about Plug-In Electric

    Science.gov Websites

    -National Benchmark Report, presents the findings of a study on the public's sentiments regarding PEVs, with February 2015, the study covered a 1,015-household sample designed to be representative of the U.S . population. NREL plans to repeat the study annually to track changing consumer perceptions. Consumer Views

  20. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  1. Power optimal single-axis articulating strategies

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.

    1991-01-01

    Power optimal single axis articulating PV array motion for Space Station Freedom is investigated. The motivation is to eliminate one of the articular joints to reduce Station costs. Optimal (maximum power) Beta tracking is addressed for local vertical local horizontal (LVLH) and non-LVLH attitudes. Effects of intra-array shadowing are also presented. Maximum power availability while Beta tracking is compared to full sun tracking and optimal alpha tracking. The results are quantified in orbital and yearly minimum, maximum, and average values of power availability.

  2. Aerodynamics of Tracked Ram Air Cushion Vehicles - Effects of Pitch Attitude and Upper Surface Flow

    DOT National Transportation Integrated Search

    1979-12-01

    Three types of experiments were conducted on geometrically similar model of a Tracked Ram Air Cushion Vehicle (TRACV). The first consisted of wind tunnel tests with the vehicle model positioned within a short segment of stationary guideway. In the se...

  3. Space based optical staring sensor LOS determination and calibration using GCPs observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao

    2016-10-01

    Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.

  4. Staggering Inflation To Stabilize Attitude of a Solar Sail

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; West, John

    2007-01-01

    A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.

  5. The Trouble with Teaching Ethics on Trolley Cars and Train Tracks

    ERIC Educational Resources Information Center

    Seider, Scott

    2009-01-01

    In this study, I investigate the beliefs of privileged adolescents about their obligations to those contending with hunger and poverty as well as the impact of "trolley problems" upon these adolescents' beliefs. To consider the attitudes of the young adults in this study, I draw upon their student writing from a course on social issues…

  6. Streaming, Tracking and Reading Achievement: A Multilevel Analysis of Students in 40 Countries

    ERIC Educational Resources Information Center

    Chiu, Ming Ming; Chow, Bonnie Wing-Yin; Joh, Sung Wook

    2017-01-01

    Grouping similar students together within schools ("streaming") or classrooms ("tracking") based on past literacy skills (reported by parents), family socioeconomic status (SES) or reading attitudes might affect their reading achievement. Our multilevel analysis of the reading tests of 208,057 fourth-grade students across 40…

  7. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  8. Classroom climate indicators and attitudes towards foreigners.

    PubMed

    Gniewosz, Burkhard; Noack, Peter

    2008-10-01

    The school has been described as an important socialization agent in the process of political development. But the mechanism concerning how school contributes to political development has rarely been investigated. In this study we focus on contextual variables, i.e., classroom climate indicators that are seen as important aspects of the context in which adolescent development takes place. The study was based on the total of 1312 German students. In multilevel analyses, we regressed students' reports on intolerant attitudes towards foreigners on background characteristics as well as on the perceived classroom climate. Fairness in the classroom as perceived by the individual student was found to be negatively related to intolerance and achievement pressure was positively related. Students attending the high college-bound track reported less antiforeigner attitudes as did students where parents had a more sophisticated educational background. The results are discussed proposing schools to provide an open climate as a contextual framework for the development of tolerant attitudes among adolescents.

  9. Position and attitude tracking control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Advanced Multipurpose Rendezvous Tracking System Study

    NASA Technical Reports Server (NTRS)

    Laurie, R. J.; Sterzer, F.

    1982-01-01

    Rendezvous and docking (R&D) sensors needed to support Earth orbital operations of vehicles were investigated to determine the form they should take. An R&D sensor must enable an interceptor vehicle to determine both the relative position and the relative attitude of a target vehicle. Relative position determination is fairly straightforward and places few constraints on the sensor. Relative attitude determination, however, is more difficult. The attitude is calculated based on relative position measurements of several reflectors placed in a known arrangement on the target vehicle. The constraints imposed on the sensor by the attitude determination method are severe. Narrow beamwidth, wide field of view (fov), high range accuracy, and fast random scan capability are all required to determine attitude by this method. A consideration of these constraints as well as others imposed by expected operating conditions and the available technology led to the conclusion that the sensor should be a cw optical radar employing a semiconductor laser transmitter and an image dissector receiver.

  11. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  12. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  13. Experiments study on attitude coupling control method for flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  14. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  15. Youth Attitude Tracking Study. Volume 1. Spring 1979.

    DTIC Science & Technology

    1979-08-01

    2.5 .3 + .5 no " Men with guns . 1 .2 + .1 no m Slogans (e.g., Navy Makes Boys Into Men) .1 .2 + .1 no Men with...survey. Thank you. TO HAKE THIS A VALID INTERVIEW, PLEASE RECORD THE TA, STATE AND COUNTY NUNBER FRON YOUR CALL RECORD PORN . (TA) (STATE

  16. Gendered Pathways in School Burnout among Adolescents

    ERIC Educational Resources Information Center

    Salmela-Aro, Katariina; Tynkkynen, Lotta

    2012-01-01

    The aim of this study is to examine differences in student burnout by gender, time status with two time points before and after an educational transition, and educational track (academic vs. vocational). The definition of burnout is based on three components: exhaustion due to school demands, a disengaged and cynical attitude toward school, and…

  17. Youth Attitude Tracking Study. Volume 1. Spring 1978.

    DTIC Science & Technology

    1978-08-01

    promotional materials, recruiting practices, and advertising strategy . Study Design In the present wave, interviewing was conducted on a monthly basis, with...Habits Since the first wave, this study has attempted to provide guidance in the development of advertising strategies . In an attempt to provide further...input to the creation of advertising strategies , respondents were * " . asked a series of questions dealing with magazine readership and television

  18. Attitudes of Select Music Performance Faculty toward Students Teaching Private Lessons after Graduation: A USA Pilot Study

    ERIC Educational Resources Information Center

    Fredrickson, William E.; Moore, Christopher; Gavin, Russell

    2013-01-01

    The present study was designed to pilot test an adjusted version of a questionnaire, used in earlier studies with college music students, to determine opinions of college music faculty on the topic of private lesson teaching. Full-time tenure-track college music faculty, with primary appointments in applied music at two universities in the United…

  19. Fast Quaternion Attitude Estimation from Two Vector Measurements

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. Existing closed-form attitude estimates based on Wahba's optimality criterion for two arbitrarily weighted observations are somewhat slow to evaluate. This paper presents two new fast quaternion attitude estimation algorithms using two vector observations, one optimal and one suboptimal. The suboptimal method gives the same estimate as the TRIAD algorithm, at reduced computational cost. Simulations show that the TRIAD estimate is almost as accurate as the optimal estimate in representative test scenarios.

  20. Validation of a Tool to Assess and Track Undergraduate Attitudes toward Those Living in Poverty

    ERIC Educational Resources Information Center

    Blair, Kevin D.; Brown, Marlo; Schoepflin, Todd; Taylor, David B.

    2014-01-01

    Purpose: This article describes the development and validation of the Undergraduate Perceptions of Poverty Tracking Survey (UPPTS). Method: Data were collected from 301 undergraduates at a small university in the Northeast and analyzed using exploratory factor analysis augmented by random qualitative validation. Results: The resulting survey…

  1. Calorie counting and fitness tracking technology: Associations with eating disorder symptomatology.

    PubMed

    Simpson, Courtney C; Mazzeo, Suzanne E

    2017-08-01

    The use of online calorie tracking applications and activity monitors is increasing exponentially. Anecdotal reports document the potential for these trackers to trigger, maintain, or exacerbate eating disorder symptomatology. Yet, research has not examined the relation between use of these devices and eating disorder-related attitudes and behaviors. This study explored associations between the use of calorie counting and fitness tracking devices and eating disorder symptomatology. Participants (N=493) were college students who reported their use of tracking technology and completed measures of eating disorder symptomatology. Individuals who reported using calorie trackers manifested higher levels of eating concern and dietary restraint, controlling for BMI. Additionally, fitness tracking was uniquely associated with ED symptomatology after adjusting for gender and bingeing and purging behavior within the past month. Findings highlight associations between use of calorie and fitness trackers and eating disorder symptomatology. Although preliminary, overall results suggest that for some individuals, these devices might do more harm than good. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Attitudes of Track and Field Throwers toward Performance Enhancing Drug Use and Drug Testing

    ERIC Educational Resources Information Center

    Judge, Lawrence W.; Bellar, David; Craig, Bruce; Gilreath, Erin

    2010-01-01

    The practice of enhancing athletic performance through the use of ergogenic aids or by extraneous artificial means is as old as competitive sport itself. Although the abuse of such substances has been historically problematic, very little research assessing the attitudes of strength/power athletes concerning ergogenic aids exists. As national…

  3. Tracking Language Attitudes in Postcolonial Hong Kong: An Interplay of Localization, Mainlandization, and Internationalization

    ERIC Educational Resources Information Center

    Lai, Ling Mee

    2012-01-01

    Four years after the sovereignty of Hong Kong was returned from Britain to China, a survey was conducted in 2001 to examine the attitudes of students toward Cantonese (the vernacular language), English (the colonizer's and international language), and Putonghua (the new ruler's language) in the early postcolonial era of Hong Kong. Eight years…

  4. An Exploration of the Potential Impact of the Integrated Experiential Learning Curriculum in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Campbell, Todd

    2012-05-01

    This study examines the effectiveness of the Integrated Experiential Learning Curriculum (IELC) in China. This curriculum was developed to engage Chinese elementary students in science to cultivate a scientifically literate society by focusing science instruction on practical applications of scientific knowledge. Cornerstones of the approach adopted are scientific inquiry and Science-Technology-Society instruction. An experimental IELC (n = 7 teachers; n = 201 students) group and control non-IELC (n = 6 teachers; n = 184 students) group of elementary teachers and students were studied to determine whether significant differences could be found over a one-year intervention period. Pre- and post-measures were used to track teachers' attitude about teaching science and student attitude about science as well as student citizenship beliefs. Additionally, post-measures of student attitude toward the learning environment and teacher quality classroom observations were made of both teacher groups. Sequential (or hierarchical) ordinary least-squares regression analyzes were conducted to investigate which factors influenced teacher attitudes about the initial three outcome measures investigated (i.e. teacher attitude about teaching science, student attitude about science, and student citizenship beliefs), an independent t-test was conducted to investigate differences in student attitude toward the learning environment, and descriptive statistics were used to investigate teacher quality across the two groups. Based on the findings, the IELC has shown promise for improving teachers' attitudes about teaching science and their teaching quality. When considering student measures, the IELC (1) improved students' attitude toward science, (2) their citizen beliefs, and (3) their attitudes about the learning environment.

  5. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  6. Attitude control challenges for earth orbiters of the 1980's

    NASA Technical Reports Server (NTRS)

    Hibbard, W.

    1980-01-01

    Experience gained in designing attitude control systems for orbiting spacecraft of the late 1980's is related. Implications for satellite attitude control design of the guidance capabilities, rendezvous and recovery requirements, use of multiple-use spacecraft and the development of large spacecraft associated with the advent of the Space Shuttle are considered. Attention is then given to satellite attitude control requirements posed by the Tracking and Data Relay Satellite System, the Global Positioning System, the NASA End-to-End Data System, and Shuttle-associated subsatellites. The anticipated completion and launch of the Space Telescope, which will provide one of the first experiences with the new generation of attitude control, is also pointed out.

  7. 2000 Military Recruiter Survey: Overview Report

    DTIC Science & Technology

    2002-08-01

    Market Research and Studies 4040 N. Fairfax Drive, Arlington, VA 22203-1613 ii ACKNOWLEDGMENTS This report was prepared for the Office of the Under...Secretary of Defense for Personnel and Readiness, Office of Accession Policy. The project officer for the study was Ms. Andrea Zucker, Defense Human...about military life.” Declining Interest in Military Enlistment Data from the Youth Attitude Tracking Study indicate that during the 1990s young

  8. A Case Study for Evaluating the Diffusion of Computing Technology in Teaching Undergraduates by a Faculty in a Journalism and Mass Communication Program.

    ERIC Educational Resources Information Center

    Terry, Janet L.; Geske, Joel

    A case study investigated how journalism and mass communication faculty members diffused and used computing technology in teaching. Subjects, 21 tenured and tenure-track faculty members in a mid-sized journalism and mass communication department, completed an indepth questionnaire designed to measure the general attitude of the faculty towards…

  9. Feasibility study of using the RoboEarth cloud engine for rapid mapping and tracking with small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2014-11-01

    This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.

  10. The impact of instructor pedagogy on college calculus students' attitude toward mathematics

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.

    2015-04-01

    College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students' attitudes toward mathematics during a 'mainstream' calculus course while controlling for student backgrounds. The attitude measure combines students' self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted 'good teaching' practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational 'technology' (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students' attitudes towards mathematics. (3) 'Ambitious teaching' (e.g. group work, word problems, 'flipped' reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional 'good teaching' practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do not appear to have a reliable, positive impact on student attitudes toward mathematics.

  11. Factors associated with educational aspirations among adolescents: cues to counteract socioeconomic differences?

    PubMed

    Madarasova Geckova, Andrea; Tavel, Peter; van Dijk, Jitse P; Abel, Thomas; Reijneveld, Sijmen A

    2010-03-24

    Our study aims to follow this effort and to explore the association between health, socioeconomic background, school-related factors, social support and adolescents' sense of coherence and educational aspirations among adolescents from different educational tracks and to contribute to the existing body of knowledge on the role of educational aspirations in the social reproduction of health inequalities. We expect that socioeconomic background will contribute to the development of educational aspirations, but this association will be modified by available social and individual resources, which may be particularly favourable for the group of adolescents who are on lower educational tracks, since for them such resources may lead to gaining a higher educational level. We collected data on the socioeconomic background (mother's and father's education and employment status, doubts about affordability of future study), school-related factors (school atmosphere, school conditions, attitudes towards school), perceived social support, sense of coherence (manageability, comprehensibility, meaningfulness) and the self-rated health of a national sample of Slovak adolescents (n = 1992, 53.5% females, mean age 16.9 years). We assessed the association of these factors with educational aspirations, overall and by educational tracks (grammar schools, specialised secondary schools, vocational schools). We found statistically significant associations with educational aspirations for the factors parental educational level, father's unemployment, doubts about the affordability of future study, school atmosphere, attitude towards school, social support from the father and a sense of coherence. Social support from the mother and friends was not associated with educational aspiration, nor was self-rated health. Besides affinity towards school, the determinants of educational aspirations differed among adolescents on different educational tracks. Educational aspirations of grammar school students were associated with father's education, while the aspirations of their peers on lower educational tracks had a stronger association with mother's education and perceived social support from father and friends. Moreover, a sense of coherence contributes to the reporting of educational aspiration by students on different educational tracks. Characteristics of the school environment, the family and the individual adolescent are all associated with the level of educational aspiration, but in a different way for different educational tracks. Interventions aimed at reducing socioeconomic inequalities in health via the educational system should, therefore, take this variation and the rather pivotal role of the father into account.

  12. Factors associated with educational aspirations among adolescents: cues to counteract socioeconomic differences?

    PubMed Central

    2010-01-01

    Background Our study aims to follow this effort and to explore the association between health, socioeconomic background, school-related factors, social support and adolescents' sense of coherence and educational aspirations among adolescents from different educational tracks and to contribute to the existing body of knowledge on the role of educational aspirations in the social reproduction of health inequalities. We expect that socioeconomic background will contribute to the development of educational aspirations, but this association will be modified by available social and individual resources, which may be particularly favourable for the group of adolescents who are on lower educational tracks, since for them such resources may lead to gaining a higher educational level. Methods We collected data on the socioeconomic background (mother's and father's education and employment status, doubts about affordability of future study), school-related factors (school atmosphere, school conditions, attitudes towards school), perceived social support, sense of coherence (manageability, comprehensibility, meaningfulness) and the self-rated health of a national sample of Slovak adolescents (n = 1992, 53.5% females, mean age 16.9 years). We assessed the association of these factors with educational aspirations, overall and by educational tracks (grammar schools, specialised secondary schools, vocational schools). Results We found statistically significant associations with educational aspirations for the factors parental educational level, father's unemployment, doubts about the affordability of future study, school atmosphere, attitude towards school, social support from the father and a sense of coherence. Social support from the mother and friends was not associated with educational aspiration, nor was self-rated health. Besides affinity towards school, the determinants of educational aspirations differed among adolescents on different educational tracks. Educational aspirations of grammar school students were associated with father's education, while the aspirations of their peers on lower educational tracks had a stronger association with mother's education and perceived social support from father and friends. Moreover, a sense of coherence contributes to the reporting of educational aspiration by students on different educational tracks. Conclusions Characteristics of the school environment, the family and the individual adolescent are all associated with the level of educational aspiration, but in a different way for different educational tracks. Interventions aimed at reducing socioeconomic inequalities in health via the educational system should, therefore, take this variation and the rather pivotal role of the father into account. PMID:20334644

  13. Youth Attitude Tracking Study. Fall 1981.

    DTIC Science & Technology

    1982-04-01

    development thus appears to be well grounded. New advertising highlighting income benefits and job satisfaction might also be successful strategies to...important feedback to the services for purposes of *developing effective recruitina strategies . Altogether the target market sample was asked about 15... advertising and recruiting opportunities, especially the latter two, since certain ptarget market segments (positive propensity males) have already been

  14. Information Seeking about the Military by Young Men: Findings from the 1989 Youth Attitude Tracking Study II

    DTIC Science & Technology

    1991-02-01

    its use of high technologies and its high-caliber tram- ing in a very demanding electronic environment. The Navy’s advertising strategy is similar to...element of their advertising strategy is the use of direct mail campaigns. The content of broadcast and direct mail advertising messages often

  15. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  16. A Conceptual Framework for Tactical Private Satellite Networks

    DTIC Science & Technology

    2008-09-01

    will be deployed on a controlled basis so as not to consume valuable bandwidth during critical time windows. Faults inside the network can be tracked ... attitude control , timing, and navigation - More precise station keeping - Optical LANs and inter-satellite links - Inter satellite links - New...Cluster operations, such as electromagnetic formation flying systems and remote attitude determination systems. • Distributed spacecraft computing

  17. National Survey of American Attitudes on Substance Abuse XV: Teens and Parents

    ERIC Educational Resources Information Center

    National Center on Addiction and Substance Abuse at Columbia University, 2010

    2010-01-01

    This 15th annual "back-to-school survey" continues the unique effort of The National Center on Addiction and Substance Abuse (CASA) at Columbia University to track attitudes of teens and those, like parents, who influence them. Over a decade and a half, through this survey the researchers have identified factors that increase or decrease the…

  18. Office of Spaceflight Standard Spaceborne Global Positioning System (GPS) user equipment project

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.

    1991-01-01

    The Global Positioning System (GPS) provides the following: (1) position and velocity determination to support vehicle GN&C, precise orbit determination, and payload pointing; (2) time reference to support onboard timing systems and data time tagging; (3) relative position and velocity determination to support cooperative vehicle tracking; and (4) attitude determination to support vehicle attitude control and payload pointing.

  19. Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, F. Landis

    1997-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  20. How do engineering attitudes vary by gender and motivation? Attractiveness of outreach science exhibitions in four countries

    NASA Astrophysics Data System (ADS)

    Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina

    2016-11-01

    Outreach activities, like mobile science exhibitions, give opportunities to hands-on experiences in an attractive learning environment. We analysed attitudes, motivation and learning during a science exhibition visit, their relations to gender and future educational plans in Finland, Estonia, Latvia and Belgium (N = 1210 sixth-graders). Pupils' performance in a knowledge test improved after the visit. Autonomous motivation and attitudes towards science predicted situation motivation awakened in the science exhibition. Interestingly, the scientist attitude and the societal attitude were clearly separate dimensions. The third dimension was manifested in the engineering attitude typical for boys, who were keener on working with appliances, designing computer games and animations. Scientist and societal attitudes correlated positively and engineering attitude correlated negatively with the future educational plans of choosing the academic track in secondary education. The societal perspective on science was connected to above average achievement. In the follow-up test, these attitudes showed to be quite stable.

  1. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.

    PubMed

    Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi

    2018-02-01

    The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Youth Attitude Tracking Study II, Fall 1983.

    DTIC Science & Technology

    1983-01-01

    one - group pretest - posttest design." In this, though a . "before" group of the same individuals is introduced...there is no control group that is not exposed to the event. S Both the one -shot case study and the one - group pretest - posttest design are subject to a...segmentation analysis -A identified five Recruiting Priority Groups on the basis of educational status and average grades earned in high school.

  3. Youth Attitude Tracking Study II, Wave 15 - Fall 1984.

    DTIC Science & Technology

    1985-04-01

    key component of the Joint Market Research Program which contributes to policy formation and the development of recruiting marketing strategies . The...unrelated to advertising awareness for young males, but positive propensity females have higher aware- ness of advertising . * Majorities in each market group... advertising programs * Examine the potential effect of enlistment incentives on propensity to enlist Develop further the market segmentation analysis

  4. Effect of gyro verticality error on lateral autoland tracking performance for an inertially smoothed control law

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1977-01-01

    The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.

  5. A view finder control system for an earth observation satellite

    NASA Astrophysics Data System (ADS)

    Steyn, H.

    2004-11-01

    A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.

  6. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    PubMed

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.

  7. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking

    PubMed Central

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657

  8. A nonlinear estimator for reconstructing the angular velocity of a spacecraft without rate gyros

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Lightsey, W. D.

    1991-01-01

    A scheme for estimating the angular velocity of a spacecraft without rate gyros is presented. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble Space Telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented for verification.

  9. Predicting High Quality AFQT with Youth Attitude Tracking Study Data

    DTIC Science & Technology

    1991-12-01

    for propensities. The history of the art of mental aptitude and psychological testing is long and convoluted. Names like Sir Francis Galton of England...Qualification Test . The explanatory variables reflect individual demographic, educational and labor market characteristics at the time of YATS interview. The...the fiftieth percentile on the Armed Forces Qualification Test . The explanatory variables reflect individual demographic, educational and labor market

  10. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.

  11. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.

    1989-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.

  12. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  13. Attitude Determination Using Two Vector Measurements

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1998-01-01

    Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily weighted observations. The solution of Wahba's problem is somewhat difficult in the general case, but there is a simple closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.

  14. A Lyapunov-Based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors

    DTIC Science & Technology

    2012-12-01

    presented in [10] as solutions for accommodating the nonlinear disturbances for outdoor altitude control . Finally, in [11] a trajectory- tracking ... control algorithm is formulated using the Special Orthogonal group SO(3) for attitude representation, leading to a simple and singularity-free solution for...the trajectory tracking problem. Cooperation between multiple unmanned vehicles has also received significant attention in the control community in

  15. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  16. Design and simulation of flight control system for man-portable micro reconnaissance quadcopter

    NASA Astrophysics Data System (ADS)

    Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng

    2017-10-01

    The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.

  17. Automatic AVHRR image navigation software

    NASA Technical Reports Server (NTRS)

    Baldwin, Dan; Emery, William

    1992-01-01

    This is the final report describing the work done on the project entitled Automatic AVHRR Image Navigation Software funded through NASA-Washington, award NAGW-3224, Account 153-7529. At the onset of this project, we had developed image navigation software capable of producing geo-registered images from AVHRR data. The registrations were highly accurate but required a priori knowledge of the spacecraft's axes alignment deviations, commonly known as attitude. The three angles needed to describe the attitude are called roll, pitch, and yaw, and are the components of the deviations in the along scan, along track and about center directions. The inclusion of the attitude corrections in the navigation software results in highly accurate georegistrations, however, the computation of the angles is very tedious and involves human interpretation for several steps. The technique also requires easily identifiable ground features which may not be available due to cloud cover or for ocean data. The current project was motivated by the need for a navigation system which was automatic and did not require human intervention or ground control points. The first step in creating such a system must be the ability to parameterize the spacecraft's attitude. The immediate goal of this project was to study the attitude fluctuations and determine if they displayed any systematic behavior which could be modeled or parameterized. We chose a period in 1991-1992 to study the attitude of the NOAA 11 spacecraft using data from the Tiros receiving station at the Colorado Center for Astrodynamic Research (CCAR) at the University of Colorado.

  18. Effects of the above the influence brand on adolescent drug use prevention normative beliefs.

    PubMed

    Evans, W Douglas; Holtz, Kristen; White, Tanya; Snider, Jeremy

    2014-01-01

    Health brands are based on the relations between individuals and health behaviors and lifestyles. Brands can be measured by the brand equity construct validated in previous studies. The National Youth Anti-Drug Media Campaign brands alternative, non-drug use behaviors as a behavior change strategy. This study goes beyond previous campaign evaluations, which did not include specific brand equity measurements. Using data from a nationally representative media tracking, this study examined the relation between antidrug campaign brand equity and adoption of targeted attitudes, beliefs, and behaviors. Data were gathered before the relaunch of the campaign, and follow-up data collected 3 months later. On the basis of factor analysis, the authors developed a higher order antidrug brand equity factor and regressed campaign outcomes on that factor in multivariable models. The authors observed significant effects of higher brand equity on higher levels of targeted antidrug attitudes and normative beliefs at follow-up. The authors also observed some counterintuitive relations (i.e., less positive attitudes at follow-up). They interpreted these results in light of the changing messages and campaign strategy. The authors conclude that antidrug brand equity is an important construct for understanding campaign effectiveness. The present campaign shows signs of changing targeted antidrug attitudes and beliefs among youth with brand equity.

  19. Effects of dynamic aeroelasticity on handling qualities and pilot rating

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.; Yen, W.-Y.

    1978-01-01

    Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments, were recorded and analyzed for a longitudinal pitch tracking task on a large, flexible aircraft. The tracking task was programmed on a fixed-base simulator with a CRT attitude director display of pitch angle command, pitch angle, and pitch angle error. Parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes were made to induce varying degrees of rigid body and elastic mode interaction. The results indicate that such mode interaction can drastically affect the handling qualities and pilot ratings of the task.

  20. Youth Attitude Tracking Study. Fall 1975.

    DTIC Science & Technology

    1976-02-01

    today’s youth . The positioning , as recorded in this study, reflects the .~ . cumulative effect of advertising and promotion, contacts, and influences by...The second wave of the survey is due to be conducted in A pril, 1 976. RKET FACTS Page 2 In order to compete effectively in the youth labor market, the...average scale value for the group (e.g., civi- lian advantage on freedom) or percent of the group falling into the category (e.g., Percent of positive

  1. Physiological and behavioral responses to an exposure of pitch illusion in the simulator.

    PubMed

    Cheung, Bob; Hofer, Kevin; Heskin, Raquel; Smith, Andrew

    2004-08-01

    It has been suggested that a pilot's physiological and behavioral responses during disorientation can provide a real-time model of pilot state in order to optimize performance. We investigated whether there were consistent behavioral or physiological "markers" that can be monitored during a single episode of disorientation. An Integrated Physiological Trainer with a closed loop interactive aircraft control and point of gaze/eye-tracking device was employed. There were 16 subjects proficient in maintaining straight and level flight and with procedures in changing attitude who were exposed to yaw rotation and a brief head roll to 35 +/- 2 degrees. On return to upright head position, subjects were required to initiate either an ascent or descent to a prescribed attitude. BP, HR, skin conductance, eye movements, and point of gaze were monitored throughout the onset, duration, and immediately after the disorientation insult. Simultaneously, airspeed and power settings were recorded. Compared with the control condition, a significant increase (p < 0.01) in HR, HR variability, and mean arterial BP was observed during the disorientation. Flight performance decrement was reflected by a significant delay in setting power for attitude change and deviation in maintaining airspeed (p < 0.01). Changes in cardiovascular responses appear to be correlated with the onset of disorientation. The correlation of changing eye-tracking behavior and flight performance decrement is consistent with our previous findings. Further study is required to determine whether these findings can be extrapolated to repeated exposures and to other disorientation scenarios.

  2. Youth Attitude Tracking Study. Volume 2. Fall 1977.

    DTIC Science & Technology

    1978-02-01

    promotional materials, recruiting practices, and advertising strategy . Beginning in January 1978, interviewing will be conducted on a monthly basis, with... advertising strategies . In an attempt to provide further input to the creation of advertising strategies , respondents were asked a series of new...Prepared by: The Public Sector Research Group of Market Facts, Inc. 100 South Wacker Drive Chicago, Illinois 60606 IJob No. J300 February, 1978 0MB

  3. Youth Attitude Tracking Study. Volume 1. Spring 1976.

    DTIC Science & Technology

    1976-07-01

    Service In the Spring wave the question as to when the positive youth would plan to enlist was split into active duty and National Guard/Reserve parts...In Table 5.6 it is shown that positive propensity respondents usually do not know more about the educational benefits than negative propensity respond...GI BILL EDUCATIONAL BENEFITS RELATED TO PROPENSITY Propensity Toward Each Service Significant Positive Negative Difference Difference Air Force 5.03

  4. Training Effectiveness Evaluation of Device A/F37A-T59

    DTIC Science & Technology

    1982-07-01

    selected airplane by manually setting track, crosstrack, and altitude on thE control panel. Posi ion is maintained by flying the attitude director...simulator’s other design capabilities includes full SKE airdrop simulation, radar simulation, manual or pre-programmed malfunctions, a library of...during IFS testing, this feature was not available for this study. Thus, the instructors had to manually program all mission profiles prior to each

  5. GLAS Spacecraft Pointing Study

    NASA Technical Reports Server (NTRS)

    Born, George H.; Gold, Kenn; Ondrey, Michael; Kubitschek, Dan; Axelrad, Penina; Komjathy, Attila

    1998-01-01

    Science requirements for the GLAS mission demand that the laser altimeter be pointed to within 50 m of the location of the previous repeat ground track. The satellite will be flown in a repeat orbit of 182 days. Operationally, the required pointing information will be determined on the ground using the nominal ground track, to which pointing is desired, and the current propagated orbit of the satellite as inputs to the roll computation algorithm developed by CCAR. The roll profile will be used to generate a set of fit coefficients which can be uploaded on a daily basis and used by the on-board attitude control system. In addition, an algorithm has been developed for computation of the associated command quaternions which will be necessary when pointing at targets of opportunity. It may be desirable in the future to perform the roll calculation in an autonomous real-time mode on-board the spacecraft. GPS can provide near real-time tracking of the satellite, and the nominal ground track can be stored in the on-board computer. It will be necessary to choose the spacing of this nominal ground track to meet storage requirements in the on-board environment. Several methods for generating the roll profile from a sparse reference ground track are presented.

  6. Attitude guidance and tracking for spacecraft with two reaction wheels

    NASA Astrophysics Data System (ADS)

    Biggs, James D.; Bai, Yuliang; Henninger, Helen

    2018-04-01

    This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.

  7. Multisatellite attitude determination/optical aspect bias determination (MSAD/OABIAS) system description and operating guide. Volume 3: Operating guide

    NASA Technical Reports Server (NTRS)

    Joseph, M.; Keat, J.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.

    1983-01-01

    The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination, is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.

  8. Multisatellite attitude determination/optical aspect bias determination (MSAD/OABIAS) system description and operating guide. Volume 1: Introduction and analysis

    NASA Technical Reports Server (NTRS)

    Joseph, M.; Ket, J. E.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.

    1983-01-01

    The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS System provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.

  9. Attitudes predict the use of physical punishment: a prospective study of the emergence of disciplinary practices.

    PubMed

    Vittrup, Brigitte; Holden, George W; Buck, Jeanell

    2006-06-01

    We sought to track the emergence of discipline techniques by mothers of young children and assess the predictive validity of spanking attitudes with subsequent reports of spanking. One hundred thirty-two mothers were surveyed every 6 months (beginning when their child was 12 months old until they were 4 years old) regarding how they disciplined their children. The discipline behaviors measured included physical punishment, noncoercive methods, and the use of time-outs and withdrawal of privileges. Attitudes toward spanking also were assessed several times. When their infants were 12 months old, mothers reported using 10 of the 12 discipline techniques assessed, and by the time the children were 24 months old, most mothers reported widespread use of the techniques. The frequency of use increased with age. Although the use of some discipline methods changed as the children got older, the mothers showed significant stability in their overall discipline strategy. Attitudes toward spanking (assessed when their children were 6 months old) were significantly correlated with subsequent spanking behavior, and the mothers' attitudes showed stability over time as well. By the time infants are 12 months old, discipline is a frequent occurrence in many families. A variety of techniques are used, and attitudes toward spanking predict subsequent spanking behavior. This information is useful for pediatricians, because it provides parents with anticipatory guidance about disciplining young children.

  10. Social inequality and smoking in young Swiss men: intergenerational transmission of cultural capital and health orientation.

    PubMed

    Schori, Dominik; Hofmann, Karen; Abel, Thomas

    2014-04-01

    Smoking is related to income and education and contributes to social inequality in morbidity and mortality. Socialisation theories focus on one's family of origin as regards acquisition of norms, attitudes and behaviours. Aim of this study is to assess associations of daily smoking with health orientation and academic track in young Swiss men. Further, to assess associations of health orientation and academic track with family healthy lifestyle, parents' cultural capital, and parents' economic capital. Cross-sectional data were collected during recruitment for compulsory military service in Switzerland during 2010 and 2011. A structural equation model was fitted to a sample of 18- to 25-year-old Swiss men (N = 10,546). Smoking in young adults was negatively associated with academic track and health orientation. Smoking was negatively associated with parents' cultural capital through academic track. Smoking was negatively associated with health orientation which in turn was positively associated with a healthy lifestyle in the family of origin. Results suggest two different mechanisms of intergenerational transmissions: first, the family transmission path of health-related dispositions, and secondly, the structural transmission path of educational inequality.

  11. Training future doctors to be patient-centred: efficacy of a communication skills training (CST) programme in a Malaysian medical institution.

    PubMed

    Lukman, H; Beevi, Z; Yeap, R

    2009-03-01

    This study evaluates the efficacy of the preclinical communication skills training (CST) programme at the International Medical University in Malaysia. Efficacy indicators include students' (1) perceived competency (2) attitude (3) conceptual knowledge, and (4) performance with regard to patient-centred communication. A longitudinal study with a before-after design tracked a preclinical cohort's progress on the aforementioned indicators as they advance through the training. Results indicate that following the CST, students perceived themselves to be more competent in interpersonal communication, had more positive attitude towards patient-centred communication, and developed a better conceptual knowledge of doctor-patient communication. In addition, those with good conceptual knowledge tend to demonstrate better communication skills performance at the Objective Structure Clinical Examination 12 months following the initial CST.

  12. Reserve Component Attitude Study Wave IV. 1981 Tracking Study. Volume 1. Major Findings and Implications.

    DTIC Science & Technology

    1982-05-01

    11’ 111 __--11 _L S1111 1 IIIIIL25 A1.25N 1111---1lu ’. . MICROCOPY RESOLUTION TEST CHART NATIONAL BUREA U OF STANDARDS- 163-A r p...Mental Category III or above by the tests current during their active duty (not renormed) to insure a sample composed of PS men desirable to the...proposals to increase the IRR, not including incentives are tested , the response is predominantly negative. Furthermore, PS males and females say that they

  13. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  14. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  15. True-sky demonstration of an autonomous star tracker

    NASA Astrophysics Data System (ADS)

    van Bezooijen, Roelof W.

    1994-07-01

    An autonomous star tracker (AST) is basically a `star field in, attitude out' device capable of determining its attitude without requiring any a priori attitude knowledge. In addition to this attitude acquisition capability, an AST can perform attitude updates autonomously and is able to provide its attitude `continuously' while tracking a star field. The Lockheed Palo Alto Research Laboratory is developing a reliable, low-cost, miniature AST that has a one arcsec overall accuracy, weighs less than 1.5 kg, consumes less than 7 watts of power, and is sufficiently sensitive to be used at all sky locations. The device performs attitude acquisition in a fraction of a second and outputs its attitude at a 10 Hz rate when operating in its tracking mode. Besides providing the functionality needed for future advanced attitude control and navigation systems, an AST also improves spacecraft reliability, mass, power, cost, and operating expenses. The AST comprises a-thermalized, refractive optics, a frame-transfer CCD with a sensitive area of 1024 by 1024 pixels, camera electronics implemented with application- specific integrated circuits, a compact single board computer with a radiation hard 32 bit RISC processor, and an all-sky guide star database. Star identification is performed by a memory- efficient and highly robust algorithm that finds the largest group of observed stars matching a group of guide stars. An important milestone has recently been achieved with the validation of the attitude acquisition capability through correct and rapid identification of all 704 true-sky star fields obtained at the Lick Observatory, using an uncalibrated prototype AST with a 512 by 1024 pixel frame-transfer CCD and a 50 mm f/1.2 lens that provided an effective 6.5 by 13.2 degree field of view. The overlapping fields cover 47% of the sky, including both rich and sparse areas. The paper contains a description of the AST, a summary of the functions enabled or improved by the device, an overview of the identification algorithm, results obtained with a realistic simulation program, a description of the true-sky star field identification method and a presentation of the results obtained. The AST tolerates the presence of bright objects as was demonstrated by a field that included Jupiter.

  16. Constrained dynamics approach for motion synchronization and consensus

    NASA Astrophysics Data System (ADS)

    Bhatia, Divya

    In this research we propose to develop constrained dynamical systems based stable attitude synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint potential energy functions that enforce communication constraints. Euler-Lagrange equations are employed to develop the non-linear constrained dynamics of multiple vehicle systems. The constraint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle communication. Constraint stabilization is achieved via Baumgarte's method. The performance of these constrained dynamics based formations is evaluated for bounded control authority. The above method has been applied to various cases and the results have been obtained using MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The first case corresponds to an N-pendulum formation without external disturbances, in which the springs and the dampers connected between the pendulums act as the communication constraints. The damper helps in stabilizing the system by damping the motion whereas the spring acts as a communication link relaying relative position information between two connected pendulums. Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude stabilization and boundedness. Various scenarios involving different values of springs and dampers are simulated and studied. Motivated by the first case study, we study the formation of N 2-link robotic manipulators. The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set of communication constraints are developed for this system using graph theory. The constraints are stabilized using Baumgarte's techniques. The attitude SCT is established for this system and the results are shown for the special case of three 2-link robotic manipulators. These methods are then applied to the formation of N-spacecraft. Modified Rodrigues Parameters (MRP) are used for attitude representation of the spacecraft because of their advantage of being a minimum parameter representation. Constrained non-linear equations of motion for this system are developed and stabilized using a Proportional-Derivative (PD) controller derived based on Baumgarte's method. A system of 3 spacecraft is simulated and the results for SCT are shown and analyzed. Another problem studied in this research is that of maintaining SCT under unknown external disturbances. We use an adaptive control algorithm to derive control laws for the actuator torques and develop an estimation law for the unknown disturbance parameters to achieve SCT. The estimate of the disturbance is added as a feed forward term in the actual control law to obtain the stabilization of a 3-spacecraft formation. The disturbance estimates are generated via a Lyapunov analysis of the closed loop system. In summary, the constrained dynamics method shows a lot of potential in formation control, achieving stabilization, synchronization, consensus and tracking of a set of dynamical systems.

  17. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  18. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  19. HEALTH AND DIET SURVEY (HDS)

    EPA Science Inventory

    The FDA conducts this periodic omnibus survey of American consumers to track consumer attitudes, knowledge, and reported behaviors related to diet and health issues including cholesterol awareness of diet-disease risk factors, food label use, dietary supplement use, and awarenes...

  20. Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis

    1999-01-01

    An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

  1. Military Advertising Exposure and Service Images: Findings from the 1988 Youth Attitude Tracking Study II

    DTIC Science & Technology

    1989-01-01

    Research Program which contributes to policy formulation and the development of recruiting marketing strategies . The Military Services provide comments and... market group reporting awareness of military advertising stayed the same or increased from 1986 to 1988 for all Services, but still remained below 1984... advertising awareness. All of the market groups show nearly identical patterns regarding order of mention on the first response, and even the 16 Figure

  2. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  3. Culture, Politeness and Directive Compliance: Does Saying Please Make a Difference?

    DTIC Science & Technology

    2008-01-01

    and which dinner fork to use—considerations of limited use in military applications. But politeness is a well-studied phenomenon in anthropology ...diamond), we intend to emphasize that attitudes exist prior to belief construction in our sense, and that they colour the intentions that result...Memory for stimuli  Difficult to discriminate perception from beliefs except via:  Eye tracking  Neurophysiological methods Cu ltu re -s pe ci fic

  4. Shuttle communication and tracking systems signal design and interface compatibility analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Various options for the Dedicated Payload Communication Link (DPCL) were evaluated. Specific subjects addressed include: payload to DPCL power transfer in the proximity of the payload, DPCL antenna pointing considerations, and DPCL transceiver implementations which can be mounted on the deployed antenna boom. Additional analysis of the Space Telescope performance was conducted. The feasibility of using the Global Positioning System (GPS) for attitude determination and control for large spacecraft was examined. The objective of the Shuttle Orbiter Radar Test and Evaluation (SORTE) program was to quantify the Ku-band radar tracking accuracy using White Sands Missile Range (WSMR) radar and optical tracking equipment, with helicopter and balloon targets.

  5. Quadrotor trajectory tracking using PID cascade control

    NASA Astrophysics Data System (ADS)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  6. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  7. A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2007-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  8. Stellar tracking attitude reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1974-01-01

    A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.

  9. Piloted studies of Enhanced or Synthetic Vision display parameters

    NASA Technical Reports Server (NTRS)

    Harris, Randall L., Sr.; Parrish, Russell V.

    1992-01-01

    This paper summarizes the results of several studies conducted at Langley Research Center over the past few years. The purposes of these studies were to investigate parameters of pictorial displays and imaging sensors that affect pilot approach and landing performance. Pictorial displays have demonstrated exceptional tracking performance and improved the pilots' spatial awareness. Stereopsis cueing improved pilot flight performance and reduced pilot stress. Sensor image parameters such as increased field-of-view. faster image update rate, and aiding symbology improved flare initiation. Finer image resolution and magnification improved attitude control performance parameters.

  10. A Lyapunov-based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors in SO(3)

    DTIC Science & Technology

    2012-12-10

    January 2006. [22] T. Lee, “ Robust adaptive geometric tracking controls on so(3) with an application to the attitude dynamicsof a quadrotor uav,” 2011...in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable n Quadrotors to track prede?ned...developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple Quadrotor UAVs in the presence of time-varying communication

  11. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  12. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    NASA Astrophysics Data System (ADS)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  13. Impact of a Pharmacy Education Concentration on Students' Teaching Knowledge and Attitudes

    PubMed Central

    Santanello, Cathy

    2010-01-01

    Objective To describe the introduction of an education concentration in a doctor of pharmacy (PharmD) program and to evaluate its impact on students' knowledge and attitudes about teaching. Design A concentration consisting of 3 elective 2-credit didactic courses and an advanced pharmacy practice experience with a teaching focus were developed and implemented into the PharmD curriculum. Assessment An attitudes survey instrument and knowledge test were administered to students enrolled in the education concentration track at baseline and after completing the 3 didactic education courses. Students' attitudes toward using various assessment tools and instructional strategies improved and knowledge about concepts in higher education and interest in pursuing a career in academia increased. Conclusion Pharmacy students completing an education concentration were more likely to consider a career in higher education. PMID:20414436

  14. Tracking Success: Outputs Versus Outcomes-A Comparison of Accredited and Non-Accredited Public Health Agencies' Community Health Improvement Plan objectives.

    PubMed

    Perrault, Evan K; Inderstrodt-Stephens, Jill; Hintz, Elizabeth A

    2018-06-01

    With funding for public health initiatives declining, creating measurable objectives that are focused on tracking and changing population outcomes (i.e., knowledge, attitudes, or behaviors), instead of those that are focused on health agencies' own outputs (e.g., promoting services, developing communication messages) have seen a renewed focus. This study analyzed 4094 objectives from the Community Health Improvement Plans (CHIPs) of 280 local PHAB-accredited and non-accredited public health agencies across the United States. Results revealed that accredited agencies were no more successful at creating outcomes-focused objectives (35% of those coded) compared to non-accredited agencies (33% of those coded; Z = 1.35, p = .18). The majority of objectives were focused on outputs (accredited: 61.2%; non-accredited: 63.3%; Z = 0.72, p = .47). Outcomes-focused objectives primarily sought to change behaviors (accredited: 85.43%; non-accredited: 80.6%), followed by changes in knowledge (accredited: 9.75%; non-accredited: 10.8%) and attitudes (accredited: 1.6%; non-accredited: 5.1%). Non-accredited agencies had more double-barreled objectives (49.9%) compared to accredited agencies (32%; Z = 11.43, p < .001). The authors recommend that accreditation procedures place a renewed focus on ensuring that public health agencies strive to achieve outcomes. It is also advocated that public health agencies work with interdisciplinary teams of Health Communicators who can help them develop procedures to effectively and efficiently measure outcomes of knowledge and attitudes that are influential drivers of behavioral changes.

  15. An empirical study of adopting mobile healthcare service: the family's perspective on the healthcare needs of their elderly members.

    PubMed

    Jen, Wen-Yuan; Hung, Ming-Chien

    2010-01-01

    In an aging society, the issue of increased medical costs troubles both government agencies and families with aging parents. Many elderly people require long-term care, and the medical and financial problems associated with long-term care worry their entire family. Mobile healthcare service (MHS) has been widely applied by medical practitioners and researchers for years. Unfortunately, the elderly often fear both the technology and the cost its use incurs; hence, they seldom actively adopt MHS without the prompting and support of other family members. This study highlights this issue of long-term healthcare for the elderly and extracts the factors affecting their family's intentions in adopting MHS. Based on the integration of the Theory of Planned Behavior and the Technology Acceptance Model, the factors associated with the family's intention of the aging people toward MHS are explored. Data were collected from 200 students in the "Job Master" track in a local "Executive Master of Business Administration" program. Half of them had at least one immediate family member who was older than 65 years of age. A partial least squares (PLS) analysis shows that "attitude" significantly affected the behavioral intention of adopting MHS, and "perceived usefulness" and "perceived ease-of-use" had an indirect effect via "attitude." The PLS model explains the variance in intention (64.1%), attitude (58.1%), and perceived usefulness (33.8%). Overall, this study shows that attitude was an important determinant of MHS adoption. Gender also significantly affected the relationship between attitude and behavioral intention to adopt MHS.

  16. Attitudes toward working in rural areas of Thai medical, dental and pharmacy new graduates in 2012: a cross-sectional survey

    PubMed Central

    2013-01-01

    Background Inequity in health workforce distribution has been a national concern of the Thai health service for decades. The government has launched various policies to increase the distribution of health workforces to rural areas. However, little is known regarding the attitudes of health workers and the factors influencing their decision to work in rural areas. This study aimed to explore the current attitudes of new medical, dental and pharmacy graduates as well as determine the linkage between their characteristics and the preference for working in rural areas. Methods A cross-sectional survey was conducted, using self-administered questionnaires, with a total of 1,225 medical, dental and pharmacy graduates. They were participants of the meeting arranged by the Ministry of Public Health (MOPH) on 1–2 April 2012. Descriptive statistics using mean and percentage, and inferential statistics using logistic regression with marginal effects, were applied for data analysis. Results There were 754 doctors (44.4%), 203 dentists (42.6%) and 268 pharmacists (83.8%) enrolled in the survey. Graduates from all professions had positive views towards working in rural areas. Approximately 22% of doctors, 31% of dentists and 52% of pharmacists selected ‘close proximity to hometown’ as the most important reason for workplace selection. The multivariable analysis showed a variation in attributes associated with the tendency to work in rural areas across professions. In case of doctors, special track graduates had a 10% higher tendency to prefer rural work than those recruited through the national entrance examination. Conclusions The majority of graduates chose to work in community hospitals, and attitudes towards rural work were quite positive. In-depth analysis found that factors influencing their choice varied between professions. Special track recruitment positively influenced the selection of rural workplaces among new doctors attending the MOPH annual meeting for workplace selection. This policy innovation should be applied to dentists and pharmacists as well. However, implementing a single policy without supporting strategies, or failing to consider different characteristics between professions, might not be effective. Future study of attitudes and factors contributing to the selection of, and retention in, rural service of both new graduates and in-service professionals was recommended. PMID:24148109

  17. Deep Impact Autonomous Navigation : the trials of targeting the unknown

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Mastrodemos, Nickolaos; Werner, Robert A.; Kennedy, Brian M.; Synnott, Stephen P.; Null, George W.; Bhaskaran, Shyam; Riedel, Joseph E.; Vaughan, Andrew T.

    2006-01-01

    On July 4, 2005 at 05:44:34.2 UTC the Impactor Spacecraft (s/c) impacted comet Tempel 1 with a relative speed of 10.3 km/s capturing high-resolution images of the surface of a cometary nucleus just seconds before impact. Meanwhile, the Flyby s/c captured the impact event using both the Medium Resolution Imager (MRI) and the High Resolution Imager (HRI) and tracked the nucleus for the entire 800 sec period between impact and shield attitude transition. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and capture high-resolution context images of the impact site. This was accomplished by using autonomous navigation (AutoNav) algorithms and precise attitude information from the attitude determination and control subsystem (ADCS). The Flyby s/c had two primary objectives: 1) capture the impact event with the highest temporal resolution possible in order to observe the ejecta plume expansion dynamics; and 2) track the impact site for at least 800 sec to observe the crater formation and capture the highest resolution images possible of the fully developed crater. These two objectives were met by estimating the Flyby s/c trajectory relative to Tempel 1 using the same AutoNav algorithms along with precise attitude information from ADCS and independently selecting the best impact site. This paper describes the AutoNav system, what happened during the encounter with Tempel 1 and what could have happened.

  18. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  19. Is that disgust I see? Political ideology and biased visual attention.

    PubMed

    Oosterhoff, Benjamin; Shook, Natalie J; Ford, Cameron

    2018-01-15

    Considerable evidence suggests that political liberals and conservatives vary in the way they process and respond to valenced (i.e., negative versus positive) information, with conservatives generally displaying greater negativity biases than liberals. Less is known about whether liberals and conservatives differentially prioritize certain forms of negative information over others. Across two studies using eye-tracking methodology, we examined differences in visual attention to negative scenes and facial expressions based on self-reported political ideology. In Study 1, scenes rated high in fear, disgust, sadness, and neutrality were presented simultaneously. Greater endorsement of socially conservative political attitudes was associated with less attentional engagement (i.e., lower dwell time) of disgust scenes and more attentional engagement toward neutral scenes. Socially conservative political attitudes were not significantly associated with visual attention to fear or sad scenes. In Study 2, images depicting facial expressions of fear, disgust, sadness, and neutrality were presented simultaneously. Greater endorsement of socially conservative political attitudes was associated with greater attentional engagement with facial expressions depicting disgust and less attentional engagement toward neutral faces. Visual attention to fearful or sad faces was not related to social conservatism. Endorsement of economically conservative political attitudes was not consistently associated with biases in visual attention across both studies. These findings support disease-avoidance models and suggest that social conservatism may be rooted within a greater sensitivity to disgust-related information. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. TRMM On-Orbit Performance Re-Accessed After Control Change

    NASA Technical Reports Server (NTRS)

    Bilanow, Steve

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.

  1. Pilot-model analysis and simulation study of effect of control task desired control response

    NASA Technical Reports Server (NTRS)

    Adams, J. J.; Gera, J.; Jaudon, J. B.

    1978-01-01

    A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.

  2. Youth Attitude Tracking Study. Volume 1. Spring 1977.

    DTIC Science & Technology

    1977-08-01

    such factors as pc.nmotional materials, re- cruiting practices, and advertising strategy . MARKET FACTS Page 4 Study Design The survey involved 16-21 year...cr a Oa: C; C;1 <.- £ K M C, Ui. 00 U- Cd 0 M US MARKET FACTS Page 118 4.6 Advertising Content Recall In past waves respondents1 ability to i-dentify... Advertising Not At All Meaningful Source: Q u. 7e L MARKET FACTS Page 1Z2 Advertising by all services was rated on the average between "Somewhat

  3. DISTANT GOAL ORIENTATION IN BIRDS.

    DTIC Science & Technology

    homing to a Bowling Green , Ohio loft. Pigeons with one eye surgically removed were able to home. Helicopter tracking is suitable and efficient for...the observation of pigeon navigation behavior. The homeward path varies considerably from the straight line path, sudden attitude changes occur, very

  4. Women in the Military: Sexual Harassment

    DTIC Science & Technology

    1993-04-01

    male-dominated organizations, such as sports teams or fraternities.ŝ All services have reported that systems to track sexual harassment are in place...Link: The Feminization of America Military. Washington, D.C., Regnery Gateway Publishers, 1989. Moore, Molly. "Sexual Harassment: Attitudes of Male

  5. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors.

    PubMed

    Forrest, Lauren N; Smith, April R; Fussner, Lauren M; Dodd, Dorian R; Clerkin, Elise M

    2016-01-01

    "Fast" (i.e., implicit) processing is relatively automatic; "slow" (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence.

  6. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors

    PubMed Central

    Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.

    2015-01-01

    Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916

  7. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2005-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  8. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2004-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  9. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  10. Estimating on-orbit optical properties for GNSS satellites

    NASA Astrophysics Data System (ADS)

    Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter

    One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.

  11. Exploring the potential for a mass media campaign to influence support for a ban on tobacco promotion at the point of sale.

    PubMed

    Allen, Jane A; Davis, K C; Kamyab, K; Farrelly, M C

    2015-02-01

    This study explores whether exposure to advertisements that focus on the negative effects of tobacco industry advertising and promotion at the point of sale (anti-POS advertising) influence: (i) attitude toward POS advertising; (ii) perceived impact of POS advertising on youth smoking; and (iii) support for a ban on tobacco promotion at the POS among adult non-smokers in New York. Data are from a split-sample, experimental study, using an online media tracking survey with embedded TV, radio and print advertising. Exposure to anti-POS advertising was associated with higher odds of holding a negative attitude toward POS advertising (OR 2.43, P < 0.001) and support for a ban on tobacco promotion at the POS (OR 1.77, P < 0.05), but not with perceived impact of POS tobacco advertisements on youth smoking. Findings suggest the possibility that a mass media campaign could be used to influence public attitude toward POS advertising and support for a ban on tobacco promotion at the POS. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Youth Attitude Tracking Study 1991: Propensity and Advertising Report

    DTIC Science & Technology

    1993-04-23

    Service. 5 5-~30 WESTAT, INC 5 I Chapter SEX 6. TRENDS IN YOUTH ENLISTMENT PROPENSITY: 1984-1991 T he findings reported in Chapters to accommodate changes...34 Joint Sevice 7.0 (0.7) 5.4 (0.8) 5.0 (0.9) 6.1 (0.5) Army 13.3 (1.0) 11.5 (1.2) 12.3 (1.4) 12.3 (0.8) Navy 5.0 (0.6) 4.1 (0.8) 5.1 (0.9) 4.7 (0.5

  13. Media Habits of American Youth: Findings from the 1990 Youth Attitude Tracking Study

    DTIC Science & Technology

    1993-02-01

    NIGHT Q596. What types of radio programming do you usually listen to? 0 = NO MENTION 6 =SPORTS I I = NEWS 7 = TALK 2 = CLASSICAL 8 = CLASSIC /SOFT ROCK 3...by Program Category 3 Table 2.6 displays respondent radio listening habits by program category. " Classic /Soft Rock" generated the highest reach of all...section). _j Table 2.7 presents radio listening habits in terms of estimated listening hours by 3 program type. Rock ( Classic /Soft/Hard/Heavy Metal

  14. Media Habits of American Youth: Findings From the 1990 Youth Attitude Tracking Study

    DTIC Science & Technology

    1993-02-01

    you usually listen to’? U = NO MENTION 6 = SPORTS I = NEWS 7 = TALK I Ŗ = CLASSICAL 8 = CLASSIC /SOFT ROCK I = EASY LISTENING 9 = RAP = POP 10 = HARD...categoric, as des~rihd in the Table 2.7 presents radio listening habits in terms of estimated listening hours by I program type. Rock ( Classic /Soft/Hard...Heavy Metal) accounted for nearly half of all male 3 listening hours. Females listened to " Classic /Soft Rock" a nearly equivalent percentage of the

  15. Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking.

    PubMed

    Fan, Qigao; Wu, Yaheng; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Zhou, Lijuan

    2014-01-01

    In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem.

  16. Fast spacecraft adaptive attitude tracking control through immersion and invariance design

    NASA Astrophysics Data System (ADS)

    Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping

    2017-10-01

    This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.

  17. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    NASA Technical Reports Server (NTRS)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  18. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  19. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  20. The structure and strength of public attitudes towards wind farm development

    NASA Astrophysics Data System (ADS)

    Bidwell, David Charles

    A growing social science literature seeks to understand why, despite broad public support for wind energy, proposals for specific projects are often met with strong local opposition. This gap between general and specific attitudes is viewed as a significant obstacle to the deployment of wind energy technologies. This dissertation applies theoretical perspectives and methodological tools from social psychology to provide insights on the structure and strength of attitudes towards the potential development of commercial wind farm in three coastal areas of Michigan. A survey of attitudes was completed by 375 residents in these communities and structural equation modeling was used to explore the relationship among variables. The analysis found that attitudes towards wind farm development are shaped by anticipated economic benefits to the community, but expectations of economic benefit are driven by personal values. Social psychology has long recognized that all attitudes are not created equal. Weak attitudes are fleeting and prone to change, while strong attitudes are stable over time and resistant to change. There are two fundamental paths to strong attitudes: repeated experience with an attitude object or the application of deeply held principles or values to that object. Structural equation models were also used to understand the strength of attitudes among the survey respondents. Both the anticipated effects of wind farm development and personal values were found to influence the strength of attitudes towards wind farms. However, while expectations that wind farm development will have positive effects on the economy bolster two measures of attitude strength (collective identity and importance), these expectations are associated with a decline in a third measure (confidence). A follow-up survey asking identical questions was completed by completed by 187 respondents to the initial survey. Linear regressions models were used to determine the effects of attitude strength on the stability of attitudes towards wind farms. In this study, attitude strength did not have a major effect on the stability of attitudes. Perceived importance of the issue of wind farm development did result in slightly more stable attitudes towards renewable energy. These survey results were compared to responses provided by 28 residents who completed surveys before and after participating in an informational session about commercial wind farm development. A regression analysis found that participation in an informational event changed the substance and quality of participants' attitudes. Attitudes towards wind farm development became more positive, and confidence in those attitudes grew stronger. These findings suggest that the gap between general attitudes towards wind energy and attitudes towards specific wind farm proposals could be narrowed by providing information and opportunities for discussion in communities with potential for commercial wind farm development. Future research is needed to track local attitudes and attitude strength throughout a proposal and development process.

  1. Surgical navigation in urology: European perspective.

    PubMed

    Rassweiler, Jens; Rassweiler, Marie-Claire; Müller, Michael; Kenngott, Hannes; Meinzer, Hans-Peter; Teber, Dogu

    2014-01-01

    Use of virtual reality to navigate open and endoscopic surgery has significantly evolved during the last decade. Current status of seven most interesting projects inside the European Association of Urology section of uro-technology is summarized with review of literature. Marker-based endoscopic tracking during laparoscopic radical prostatectomy using high-definition technology reduces positive margins. Marker-based endoscopic tracking during laparoscopic partial nephrectomy by mechanical overlay of three-dimensional-segmented virtual anatomy is helpful during planning of trocar placement and dissection of renal hilum. Marker-based, iPAD-assisted puncture of renal collecting system shows more benefit for trainees with reduction of radiation exposure. Three-dimensional laser-assisted puncture of renal collecting system using Uro-Dyna-CT realized in an ex-vivo model enables minimal radiation time. Electromagnetic tracking for puncture of renal collecting system using a sensor at the tip of ureteral catheter worked in an in-vivo model of porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces the puncture error from 4.7 to 1.8 mm. Feasibility of electromagnetic and optical tracking with the da Vinci telemanipulator was shown in vitro as well as using in-vivo model of oesophagectomy. Target registration error was 11.2 mm because of soft-tissue deformation. Intraoperative navigation is helpful during percutaneous puncture collecting system and biopsy of renal tumour using various tracking techniques. Early clinical studies demonstrate advantages of marker-based navigation during laparoscopic radical prostatectomy and partial nephrectomy. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.

  2. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    PubMed

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  3. Attitudes of medical students to medical leadership and management: a systematic review to inform curriculum development.

    PubMed

    Abbas, Mark R; Quince, Thelma A; Wood, Diana F; Benson, John A

    2011-11-14

    There is a growing acknowledgement that doctors need to develop leadership and management competences to become more actively involved in the planning, delivery and transformation of patient services. We undertook a systematic review of what is known concerning the knowledge, skills and attitudes of medical students regarding leadership and management. Here we report the results pertaining to the attitudes of students to provide evidence to inform curriculum development in this developing field of medical education. We searched major electronic databases and citation indexes within the disciplines of medicine, education, social science and management. We undertook hand searching of major journals, and reference and citation tracking. We accessed websites of UK medical institutions and contacted individuals working within the field. 26 studies were included. Most were conducted in the USA, using mainly quantitative methods. We used inductive analysis of the topics addressed by each study to identity five main content areas: Quality Improvement; Managed Care, Use of Resources and Costs; General Leadership and Management; Role of the Doctor, and Patient Safety. Students have positive attitudes to clinical practice guidelines, quality improvement techniques and multidisciplinary teamwork, but mixed attitudes to managed care, cost containment and medical error. Education interventions had variable effects on students' attitudes. Medical students perceive a need for leadership and management education but identified lack of curriculum time and disinterest in some activities as potential barriers to implementation. The findings from our review may reflect the relatively little emphasis given to leadership and management in medical curricula. However, students recognise a need to develop leadership and management competences. Although further work needs to be undertaken, using rigorous methods, to identify the most effective and cost-effective curriculum innovations, this review offers the only currently available summary of work examining the attitudes of students to this important area of development for future doctors.

  4. Attitudes of medical students to medical leadership and management: a systematic review to inform curriculum development

    PubMed Central

    2011-01-01

    Background There is a growing acknowledgement that doctors need to develop leadership and management competences to become more actively involved in the planning, delivery and transformation of patient services. We undertook a systematic review of what is known concerning the knowledge, skills and attitudes of medical students regarding leadership and management. Here we report the results pertaining to the attitudes of students to provide evidence to inform curriculum development in this developing field of medical education. Methods We searched major electronic databases and citation indexes within the disciplines of medicine, education, social science and management. We undertook hand searching of major journals, and reference and citation tracking. We accessed websites of UK medical institutions and contacted individuals working within the field. Results 26 studies were included. Most were conducted in the USA, using mainly quantitative methods. We used inductive analysis of the topics addressed by each study to identity five main content areas: Quality Improvement; Managed Care, Use of Resources and Costs; General Leadership and Management; Role of the Doctor, and Patient Safety. Students have positive attitudes to clinical practice guidelines, quality improvement techniques and multidisciplinary teamwork, but mixed attitudes to managed care, cost containment and medical error. Education interventions had variable effects on students' attitudes. Medical students perceive a need for leadership and management education but identified lack of curriculum time and disinterest in some activities as potential barriers to implementation. Conclusions The findings from our review may reflect the relatively little emphasis given to leadership and management in medical curricula. However, students recognise a need to develop leadership and management competences. Although further work needs to be undertaken, using rigorous methods, to identify the most effective and cost-effective curriculum innovations, this review offers the only currently available summary of work examining the attitudes of students to this important area of development for future doctors. PMID:22082174

  5. An exploratory risk perception study of attitudes toward homeland security systems.

    PubMed

    Sanquist, Thomas F; Mahy, Heidi; Morris, Frederic

    2008-08-01

    Understanding the issues surrounding public acceptance of homeland security systems is important for balancing security needs and potential civil liberties infringements. A psychometric survey was used in an exploratory study of attitudes regarding homeland security systems. Psychometric rating data were obtained from 182 respondents on psychological attributes associated with 12 distinct types of homeland security systems. An inverse relationship was observed for the overall rating attributes of acceptability and risk of civil liberties infringement. Principal components analysis (PCA) yielded a two-factor solution with the rating scale loading pattern suggesting factors of perceived effectiveness and perceived intrusiveness. These factors also showed an inverse relationship. The 12 different homeland security systems showed significantly different scores on the rating scales and PCA factors. Of the 12 systems studied, airport screening, canine detectors, and radiation monitoring at borders were found to be the most acceptable, while email monitoring, data mining, and global positioning satellite (GPS) tracking were found to be least acceptable. Students rated several systems as more effective than professionals, but the overall pattern of results for both types of subjects was similar. The data suggest that risk perception research and the psychometric paradigm are useful approaches for quantifying attitudes regarding homeland security systems and policies and can be used to anticipate potentially significant public acceptance issues.

  6. Knowledge, Attitudes, and Practices for Respiratory and Hearing Health among Midwestern Farmers.

    PubMed

    Cramer, Mary E; Wendl, Mary J; Sayles, Harlan; Duysen, Ellen; Achutan, Chandran

    2017-07-01

    The purpose of this study was to assess knowledge, attitudes, and practices for hearing and respiratory health/safety among farmers in seven Midwestern states served by a federally funded Agricultural Center. Findings provided a baseline to longitudinally track the Agricultural Center's program outcomes and to design community education to improve safety and health among farmers. This was a cross-sectional study using a 30 item mailed survey to describe farmers' operations, demographics, health conditions, related information sources, and knowledge/attitude/practices for personal protective equipment (PPE) (i.e., ear plugs/muffs and dust masks/respirators). Frequencies and percentages were calculated for each item and according to responses from younger versus older farmers. The unit of study was farm operators (N = 280) randomly selected from a publicly available database of corn/soybean and hog farmers in seven Midwestern states. Findings revealed important knowledge gaps among respondents regarding (1) hazardous exposure sources; (2) long-term health consequences of noise/dust exposure; (3) proper selection/fitting of PPE. Public health nurses and primary care providers in rural communities should address specific knowledge gaps in order to enhance farmers' perceived understanding of their susceptibility to hazardous exposures. Increasing farmers' knowledge through preferred venues may help to improve PPE effectiveness. © 2016 Wiley Periodicals, Inc.

  7. Attitudes of truck drivers and carriers on the use of electronic logging devices (ELDs) and harassment : [research brief

    DOT National Transportation Integrated Search

    2014-11-01

    Truck drivers and carrier personnel were interviewed on the use of electronic logging devices (ELDs) for keeping track of driving hours and whether these devices were used to harass drivers. This research examined the following issues: : Whether ...

  8. KSC-03PD-2681

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. This storyboard shows a diagram of the telescope design and photos for a new five-meter focal length scope. The tracking telescope is part of the Distant Object Attitude Measurement System (DOAMS) in Cocoa Beach, Fla., that provides optical support for launches from KSC and Cape Canaveral.

  9. Spacecraft 2000

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.

  10. A piloted-simulation evaluation of two electronic display formats for approach and landing

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Morello, S. A.; Knox, C. E.; Person, L. H., Jr.

    1976-01-01

    The results of a piloted-simulation evaluation of the benefits of adding runway symbology and track information to a baseline electronic-attitude-director-indicator (EADI) format for the approach-to-landing task were presented. The evaluation was conducted for the baseline format and for the baseline format with the added symbology during 3 deg straight-in approaches with calm, cross-wind, and turbulence conditions. Flight-path performance data and pilot subjective comments were examined with regard to the pilot's tracking performance and mental workload for both display formats. The results show that the addition of a perspective runway image and relative track information to a basic situation-information EADI format improve the tracking performance both laterally and vertically during an approach-to-landing task and that the mental workload required to assess the approach situation was thus reduced as a result of integration of information.

  11. Bar and restaurant workers' attitudes towards Norway's comprehensive smoking ban: a growth curve analysis.

    PubMed

    Braverman, Marc T; Aarø, Leif Edvard; Bontempo, Daniel E; Hetland, Jørn

    2010-06-01

    Norway passed legislation banning smoking in restaurants, bars and other public spaces in 2004. This study tracks changes in hospitality workers' attitudes towards Norway's ban over three time points, using growth modelling analysis to examine predictors of attitude change. Participants were a national sample of 1525 bar and restaurant workers. Surveys were conducted, by phone or internet, one month before the ban's implementation and at 4 and 12 months thereafter. Exploratory principal components analysis of nine survey items revealed one primary attitude component. A latent growth model was fitted to the data to examine trajectories of attitude change and individual differences in rate of change. Respondents supported the ban before implementation and increased support at 4 months (p=0.021) and again at 12 months (p=0.001). Concern for one's job followed a quadratic trend, increasing at 4 months and decreasing at 12 months (p<0.001). All demographic categories were associated with attitude increase; rate of increase was greater for females than males. Two within-person variables--change in smoking status and change in job concern--strongly predicted (p<0.001) respondents' deviations from their predicted group trajectories, explaining over 70% of residual between-person slope variance. Norway's hospitality workers increased their support of the ban over its first year. The strong influence of the within-person variables leads to two primary policy recommendations. First, support should be provided to assist cessation efforts and prevent relapse. Second, informational campaigns should inform hospitality workers about evidence that smoking bans are not economic threats to the industry.

  12. Tracking of parents' attitudes to their children's oral health-related behavior-Oslo, Norway, 2002-04.

    PubMed

    Skeie, Marit S; Klock, Kristin S; Haugejorden, Ola; Riordan, Paul J; Espelid, Ivar

    2010-01-01

    To investigate dental beliefs and attitudes of a diverse group of parents from their children when they were aged 3 and 5 years old and to identify possible mediators for a group composed of the parents with the most negative dental attitudes. Data were collected by parental questionnaire when the children were aged 3 years in 2002 and again 2 years later. The inclusion criteria were children with mothers from Norway (N group) or non-Western countries (IM(1) group). Questionnaires were extensive and had previously been used in a multicenter study. Three composite attitudinal variables relating to oral hygiene, diet and parental indulgence were calculated and an "attitudinal risk group" identified. The association between those variables and the assignment to the group was measured by odds ratio (bivariate and multiple logistic regression). The N parents' dental attitudes were significantly more positive in 2004 when their children were 5 years old than when they were 3 years old (p < 0.0001), but this was not the case among immigrant parents. "Education" and "Immigrant status" [odds ratio (OR) 3.3, 95% confidence interval (CI) 1.6-7.0; and OR 2.8, CI 1.1-7.3, respectively] were significantly associated with the defined "attitudinal risk group". Only dental attitudes among N parents were significantly more positive in 2004 than in 2002. Not having higher education and being of non-Western background were associated with belonging to the "attitudinal risk group". Culturally tailored programs of dental health education are needed to promote more positive attitudes to oral health.

  13. Development and psychometric evaluation of the Military Suicide Attitudes Questionnaire (MSAQ).

    PubMed

    VanSickle, Marcus; Tucker, Jennifer; Daruwala, Samantha; Ghahramanlou-Holloway, Marjan

    2016-10-01

    To date, a culturally-sensitive psychological instrument has not been developed to evaluate military attitudes toward suicide. Understanding these attitudes can inform suicide prevention research, clinical practice, and policy. We aimed to develop such an instrument and to evaluate its psychometric properties using an active-duty military sample. A team of military personnel, suicidologists, and researchers assisted with item development. A cross-sectional design was used to evaluate the psychometric properties of the Military Suicide Attitudes Questionnaire (MSAQ) via an online survey battery. Exploratory and confirmatory factor analyses were conducted. A total of 317 military service members met eligibility criteria and completed the online surveys. A four-factor model that explained 46.4% of the variance was identified: (1) Individual-Based Rejection versus Acceptance; (2) Psychache versus Pathological; (3) Unit-Based Rejection versus Acceptance; (4) Moral versus Immoral. The MSAQ demonstrated high partial validity and test-retest reliability. The study used a convenience sample and did not control for social desirability. The newly developed MSAQ is a promising measure that fills a notable gap in the assessment of suicide attitudes within the United States military. The MSAQ has the potential for future use in evaluating suicide prevention and stigma reduction programs within the Department of Defense. Additionally, the MSAQ may serve as a useful tool for leadership in the evaluation of command climates. In clinical settings, the MSAQ could be used along with other cognitive and attitudinal measures to track suicidal patients' attitude towards suicide over the course of treatment. Published by Elsevier B.V.

  14. Position and Acceleration for Airborne Gravity; the Impact of IMU Data

    NASA Astrophysics Data System (ADS)

    Preaux, S. A.; Diehl, T. M.; Holmes, S. A.; Weil, C.

    2012-12-01

    Accurate measurements in airborne gravimetry require high quality position and acceleration information in order to remove the effects of aircraft motion from the gravimeter signal. This study examines the impact of including Inertial Measurement Unit (IMU) data in position and acceleration determination for high altitude gravimetry as part of NGS's GRAV-D project. Processing with the IMU data provides a higher rate position solution that includes aircraft attitude information. The IMU can also be a source for velocity and acceleration information but these must be used with care as they contain the aircraft motion and the gravity signal. Results from the GRAV-D project's 2008 survey season in Alaska are used as a test case for this study. The use of a tightly coupled IMU+GPS solution reduced the survey RMS and standard deviation with respect to EGM08 by an average of 0.23 mGal per data track and improved the correlation between the data tracks and EGM08 by 0.04%. While these improvements appear small they represent approximately 10% of the discrepancy. Turbulent tracks showed the biggest improvement with localized improvements larger than 5 mGal in some cases. The measured gravity processed with either a GPS only position solution or a tightly coupled GPS+IMU position solution compared with EGM08 for one data track from the GRAV-D AK08 survey.

  15. Measurement of student attitudes in first year engineering - A mixed methods approach

    NASA Astrophysics Data System (ADS)

    Malik, Qaiser Hameed

    This research study focused on freshman attitudes towards engineering in a newly implemented cornerstone sequence that emphasized holistic design experiences. The students' initial attitudes and changes in these attitudes were examined with the explanatory mixed methods approach that allows a sequential examination of the target population with two methods, using two sets of data, to investigate the treatment effects. In the quantitative phase, the study compared changes in freshman attitude towards engineering, between the new 'design sequence' group (composed of freshmen in the cornerstone sequence) and the prior 'traditional sequence' group (composed of all other freshmen), over the course of one semester. The data were collected in fall 2008 at two time intervals and changes in the two groups' attitudes were examined with repeated measures analysis of covariance models. The analyses reported here include data from 389 students out of the total population of 722 freshmen. The analyses revealed that engineering freshmen joined the program with positive or strongly positive attitudes towards engineering. Those strong attitudes were durable and resistant to change. Students in the design sequence group had higher ACT scores, enjoyed math and science the most, and did not believe engineering to be an exact science. However, no appreciable time-group interaction was observed. To validate the quantitative results, an interview protocol was developed to investigate initial freshman attitudes and changes, if any, that took place as a result of the new cornerstone sequence. One-on-one interviews with a sample of ten students out of the population of 272 freshmen revealed that freshmen in the cornerstone sequence entered the program full of enthusiasm and idealism, and with strongly positive attitudes towards engineering. The strong motivational factors included parental/teacher influences, childhood motivations, and high school extra-curricular experiences. The participants appreciated the team work and problem solving aspects of engineering; however, they reported negative experiences in the cornerstone sequence. Interestingly, their overall perception about engineering was not affected by any of the negative experiences. The qualitative phase substantiated the belief that strong attitudes are harder to change; they are durable, they have impact, and they are not significantly affected by a short treatment. The results of this mixed methods study indicate that changing student attitudes may not be an easy task. One must develop a better understanding of student attitudes in order to improve understanding of the fine-grained details of curriculum and its implementation to be able to develop more effective cornerstone design courses. Clearly, tight and focused quantitative studies complemented with a qualitative component provide a much broader and deeper insight into the learning that takes place in freshman courses. This research also documents the use of a longitudinal study to track the design sequence group and observe their performance in their junior and senior years. This would provide a better understanding of the long term effects of the new sequence.

  16. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  17. Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS

    NASA Technical Reports Server (NTRS)

    Bell, J.

    1980-01-01

    Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules.

  18. Examining Progress across Time with Practical Assessments in Ensemble Settings

    ERIC Educational Resources Information Center

    Crochet, Lorrie S.; Green, Susan K.

    2012-01-01

    This article provides the rationale for effective music assessment that tracks individual progress across time and offers examples to illustrate assessment of a range of music-learning goals. Gauging progress across time helps students become more mastery-oriented, while showing more effort and positive attitudes. As instruction and assessment…

  19. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  20. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  1. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    NASA Astrophysics Data System (ADS)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  2. Attention to Physical Activity-Equivalent Calorie Information on Nutrition Facts Labels: An Eye-Tracking Investigation.

    PubMed

    Wolfson, Julia A; Graham, Dan J; Bleich, Sara N

    2017-01-01

    Investigate attention to Nutrition Facts Labels (NFLs) with numeric only vs both numeric and activity-equivalent calorie information, and attitudes toward activity-equivalent calories. An eye-tracking camera monitored participants' viewing of NFLs for 64 packaged foods with either standard NFLs or modified NFLs. Participants self-reported demographic information and diet-related attitudes and behaviors. Participants came to the Behavioral Medicine Lab at Colorado State University in spring, 2015. The researchers randomized 234 participants to view NFLs with numeric calorie information only (n = 108) or numeric and activity-equivalent calorie information (n = 126). Attention to and attitudes about activity-equivalent calorie information. Differences by experimental condition and weight loss intention (overall and within experimental condition) were assessed using t tests and Pearson's chi-square tests of independence. Overall, participants viewed numeric calorie information on 20% of NFLs for 249 ms. Participants in the modified NFL condition viewed activity-equivalent information on 17% of NFLs for 231 ms. Most participants indicated that activity-equivalent calorie information would help them decide whether to eat a food (69%) and that they preferred both numeric and activity-equivalent calorie information on NFLs (70%). Participants used activity-equivalent calorie information on NFLs and found this information helpful for making food decisions. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  3. A 1 cm space debris impact onto the Sentinel-1A solar array

    NASA Astrophysics Data System (ADS)

    Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.

    2017-08-01

    Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.

  4. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  5. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  6. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  7. Satellite Attitude Control Utilizing the Earth's Magnetic Field

    NASA Technical Reports Server (NTRS)

    White, John S.; Shigemoto, Fred H.; Bourquin, Kent

    1961-01-01

    A study was conducted to determine the feasibility of a satellite attitude fine-control system using the interaction of the earth's magnetic field with current-carrying coils to produce torque. The approximate intensity of the earth's magnetic field was determined as a function of the satellite coordinates. Components of the magnetic field were found to vary essentially sinusoidally at approximately twice orbital frequency. Amplitude and distortion of the sinusoidal components were a function of satellite orbit. Two systems for two-axis attitude control evolved from this study, one using three coils and the other using two coils. The torques developed by the two systems differ only when the component of magnetic field along the tracking line is zero. For this case the two-coil system develops no torque whereas the three-coil system develops some effective torque which allows partial control. The equations which describe the three-coil system are complex in comparison to those of the two-coil system and require the measurement of all three components of the magnetic field as compared with only one for the two-coil case. Intermittent three-axis torquing can also be achieved. This torquing can be used for coarse attitude control, or for dumping the stored momentum of inertia reaction wheels. Such a system has the advantage of requiring no fuel aboard the satellite. For any of these magnetic torquing schemes the power required to produce the magnetic moment and the weight of the coil seem reasonable.

  8. Science-related Aspirations Across the Primary-Secondary Divide: Evidence from two surveys in England

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Archer, Louise; Osborne, Jonathan

    2014-07-01

    Students' engagement with science and the numbers pursuing further study of science continue to be a concern among policy-makers, particularly in Western countries. Previous research reflects that most children have positive attitudes to science at age 10 but that, by age 14, attitudes towards and interest in further pursuit of science have declined. The Science Aspirations and Career Choice (ASPIRES) project, a 5-year longitudinal study, seeks to trace and track changes in students' interest in science and in scientific careers over the key period of ages 10-14. Building on an initial survey (consisting primarily of Likert-type items) of over 9,000 children in their last year of primary school, we explore shifts in attitudes and aspirations in science as reflected in a second survey of students from this cohort (over 5,600 students), completed when children were in their second year of secondary school (ages 12-13). Survey findings are supplemented by longitudinal interview data from 85 children. Contrary to previous research, descriptive, multivariate and multi-level modelling (MLM) analyses of the data indicate that the majority of our sample enjoy school science in secondary school and hold positive views of scientists. However, as with the primary school data, these positive attitudes also continue not to translate into an interest in 'being' a scientist. Attention is drawn to the importance of families and student experiences of school science in helping to explain this gap.

  9. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  10. The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission

    NASA Astrophysics Data System (ADS)

    Jianguo, Yan; Jingsong, Ping; Fei, Li

    During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission

  11. Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft.

    PubMed

    Mazinan, A H; Pasand, M; Soltani, B

    2015-09-01

    In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  13. VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.

    2012-01-01

    VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.

  14. Issues Related to Recruitment of Enlisted Personnel for the Reserve Components. Major Findings and Recommendations, 1979 Tracking Study. Volume I.

    DTIC Science & Technology

    1980-09-01

    sity and attitudes of these persons, if appropriate advertising and promotion of Guard/Reserve opportunities is to be communicated to that market . .1...job attainment repr, sents an early effect of the downturn in the general economy in an age group that is higihy involved in the labor market (as...opposed to the age segment tapped in the NPS samples). The effects of recruiter contact may be a se ’.ondary effect of changes in the labor market , or

  15. Veterans Attitude Tracking Study 1983. Wave I. Volume I. Major Findings and Implications.

    DTIC Science & Technology

    1984-06-01

    are available. (Such data are usually good P indicators of important cultural , economic, attitudinal and motivational factors.) Some ways in which the...pleased?" Responses to these second and third questions are shown in Table 7-9. TABLE 7-9: INFLUENCE OF SPOUSE OR "FRIEND BEING VERY PLEASED ABOUT...BACK TO TIE TOP OF T1E LIST IF THE FIRST STAIIEhT IS NOT ST. (ALWAYS KUD LAST:) I Current plans for a civilian job .. 11 1 2( 3( 4( 9( 0 )-43 2U. I’d

  16. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence.

    PubMed

    Dong, Hongyang; Hu, Qinglei; Ma, Guangfu

    2016-03-01

    Study results of developing control system for spacecraft formation proximity operations between a target and a chaser are presented. In particular, a coupled model using dual quaternion is employed to describe the proximity problem of spacecraft formation, and a nonlinear adaptive fault-tolerant feedback control law is developed to enable the chaser spacecraft to track the position and attitude of the target even though its actuator occurs fault. Multiple-task capability of the proposed control system is further demonstrated in the presence of disturbances and parametric uncertainties as well. In addition, the practical finite-time stability feature of the closed-loop system is guaranteed theoretically under the designed control law. Numerical simulation of the proposed method is presented to demonstrate the advantages with respect to interference suppression, fast tracking, fault tolerant and practical finite-time stability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Attitude control/momentum management and payload pointing in advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.

  18. Evidence for truth®: the young adult response to a youth-focused anti-smoking media campaign.

    PubMed

    Richardson, Amanda Kalaydjian; Green, Molly; Xiao, Haijun; Sokol, Natasha; Vallone, Donna

    2010-12-01

    Previous studies have shown that exposure to truth® and similar countermarketing campaigns is associated with an increase in anti-smoking attitudes and beliefs in those aged 12-17 years and a decrease in youth smoking. However, it is unclear how such campaigns influence young adults aged 18-24 years. To examine levels of awareness and the effect of the national truth campaign on smoking-related attitudes, beliefs, and intentions in young adults. Data on respondents, aged 18-24 years, from the Legacy Media Tracking Surveys-eight cross-sectional nationally representative telephone surveys administered from 2000 to 2004-were combined and analyzed in 2009. Logistic regression analyses were used to examine the associations between confirmed awareness of the truth campaign and smoking-related attitudes, beliefs, and intentions. A second set of models was used to examine the association of attitudes and beliefs targeted by the campaign with smoking intentions. A majority of young adults showed confirmed awareness of the truth campaign. Awareness was associated with roughly half of the anti-smoking attitudes and beliefs, and it was associated marginally with the intention to quit among smokers (p=0.06). Several of the attitudes and beliefs targeted by the campaign were associated with the intention to not smoke (among nonsmokers) and to quit (among smokers). Messages contained in youth-focused anti-smoking campaigns may promote attitudinal and behavioral change in young adults. Young adults are at risk for both initiation and establishment of smoking, while also being targeted specifically by the tobacco industry, so it is critical to consider this audience when developing and implementing anti-smoking interventions. Copyright © 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Nasmyth Telescope

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    An altazimuth reflecting telescope with relatively stable platforms for mounting heavy, large, delicate or developmental equipment which cannot be, or has not been, engineered to cope with attitude changes during the tracking of a star. The optical configuration is the Cassegrain type, with a primary and secondary mirror, and an additional third flat mirror mounted at the intersection of the alti...

  20. Introducing Pocket PCs in Schools: Attitudes and Beliefs in the First Year

    ERIC Educational Resources Information Center

    Ng, Wan; Nicholas, Howard

    2009-01-01

    As more schools adopt the use of handheld computers in their classrooms, research that systematically tracks their introduction is essential in order to develop a model for successful implementation leading to improved classroom teaching. This research report seeks to explore the realities of introducing and integrating handheld computers into…

  1. Gimbal Control Algorithms for the Global Precipitation Measurement Core Observatory

    NASA Technical Reports Server (NTRS)

    Welter, Gary L.; Liu, Kuo Chia; Blaurock, Carl

    2012-01-01

    There are two gimbaled systems on the Global Precipitation Measurement Core Observatory: two single-degree-of-freedom solar arrays (SAs) and one two-degree-of-freedom high gain antenna (HGA). The guidance, navigation, and control analysis team was presented with the following challenges regarding SA orientation control during periods of normal mission science: (1) maximize solar flux on the SAs during orbit day, subject to battery charging limits, (2) minimize atmospheric drag during orbit night to reduce frequency of orbit maintenance thruster usage, (3) minimize atmospheric drag during orbits for which solar flux is nearly independent of SA orientation, and (4) keep array-induced spacecraft attitude disturbances within allocated tolerances. The team was presented with the following challenges regarding HGA control during mission science periods: (1) while tracking a ground-selected Tracking Data and Relay Satellite (TDRS), keep HGA control error below about 4', (2) keep array-induced spacecraft attitude disturbances small, and (3) minimize transition time between TDRSs subject to constraints imposed by item 2. This paper describes the control algorithms developed to achieve these goals and certain analysis done as part of that work.

  2. Development of the polarization tracking scheme for free-space quantum cryptography

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takayama, Yoshihisa; Kunimori, Hiroo; Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide

    2008-04-01

    Quantum cryptography is a new technique for transmitting quantum information. The information is securely transmitted due to the laws of physics. In such systems, the vehicle that transfers quantum information is a single photon. The problem with using photons is that the transmission distance is limited by the absorption of the photons by the optical fiber along which they pass. The maximum demonstrated range so far is approximately 100 km. Using free-space quantum cryptography between a ground station and a satellite is a possible way of sending quantum information farther than is possible with optical fibers. This is because there is no birefringence effect in the atmosphere. However, there is a complication in that the directions of the polarization basis between the transmitter and the receiver must coincide with each other. This polarization changes because the mobile terminals for free-space transmission continuously change their attitudes. If the transmission protocol is based on polarization, it is necessary to compensate for the change in attitude between the mobile terminals. We are developing a scheme to track the polarization basis between the transceivers. The preliminary result is presented.

  3. Local Attitudes Towards AN International Project: a Study of Residents' Attitudes Towards a Future High Speed Rail Line in General and Towards Annoyance in Particular

    NASA Astrophysics Data System (ADS)

    Schaap, D.

    1996-05-01

    Plans for a high speed rail line in Holland generate concerns about the impact on the living environment. Residents living near the planned track have an extremely negative attitude towards the high speed rail line. Most of them do not see the need for the line and they expect a great deal of noise annoyance. There is a disparity between the expectations of the residents and those of the government: the residents expect much more noise that the government does, on the basis of scientific research. The image that residents have of the noise of a high speed train is probably too negative. Therefore the government should supply the residents with better and more detailed information about the noise and the possible annoyance. Furthermore, for a positive attitude, it is important that residents not only recognize the disadvantages of the rail line, but that they recognize some local advantages too. For instances, the government can guarantee compensation for the affected green space, or that other noise sources will be removed. Finally, the residents have the feeling they cannot influence the decision-making process. To reduce this feeling of powerlessness, the government can involve the residents; for example, in the decision-making about the local plans for the high speed rail line.

  4. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  5. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  6. An Imaging And Graphics Workstation For Image Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  7. On the deep structure of social affect: Attitudes, emotions, sentiments, and the case of "contempt".

    PubMed

    Gervais, Matthew M; Fessler, Daniel M T

    2017-01-01

    Contempt is typically studied as a uniquely human moral emotion. However, this approach has yielded inconclusive results. We argue this is because the folk affect concept "contempt" has been inaccurately mapped onto basic affect systems. "Contempt" has features that are inconsistent with a basic emotion, especially its protracted duration and frequently cold phenomenology. Yet other features are inconsistent with a basic attitude. Nonetheless, the features of "contempt" functionally cohere. To account for this, we revive and reconfigure the sentiment construct using the notion of evolved functional specialization. We develop the Attitude-Scenario-Emotion (ASE) model of sentiments, in which enduring attitudes represent others' social-relational value and moderate discrete emotions across scenarios. Sentiments are functional networks of attitudes and emotions. Distinct sentiments, including love, respect, like, hate, and fear, track distinct relational affordances, and each is emotionally pluripotent, thereby serving both bookkeeping and commitment functions within relationships. The sentiment contempt is an absence of respect; from cues to others' low efficacy, it represents them as worthless and small, muting compassion, guilt, and shame and potentiating anger, disgust, and mirth. This sentiment is ancient yet implicated in the ratcheting evolution of human ultrasocialty. The manifolds of the contempt network, differentially engaged across individuals and populations, explain the features of "contempt," its translatability, and its variable experience as "hot" or "cold," occurrent or enduring, and anger-like or disgust-like. This rapprochement between psychological anthropology and evolutionary psychology contributes both methodological and empirical insights, with broad implications for understanding the functional and cultural organization of social affect.

  8. ICESat's First Year of Measurements Over the Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to targets of interest. ICESat was designed to operate for 3 to 5 years but laser lifetime is uncertain and may not achieve this goal based on a detailed review following the failure of Laser 1. However, the results from the first full year of ICESat operations demonstrate that the GLAS instrument can measure ice sheet elevations with unprecedented accuracy. This presentation will show ice sheet results using crossover and exact repeat track analyses. Additional data using the remaining lasers will further demonstrate the capability to measure ice sheet elevation changes and improve mass balance assessments of the great polar ice sheets.

  9. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    PubMed

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  10. Voyager 2 Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Hill, M.

    1982-01-01

    A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.

  11. Analysis and Quality Assurance of the SKYMAP 4.0 Guidance and Tracking Star Catalog: The NASA SKY2000 Spacecraft Attitude Determination Star Catalog

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    2001-01-01

    An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.

  12. Female genital mutilation/cutting: changes and trends in knowledge, attitudes, and practices among health care professionals in The Gambia

    PubMed Central

    Kaplan Marcusán, Adriana; Riba Singla, Laura; Laye, Mass; Secka, Dodou M; Utzet, Mireia; Le Charles, Marie-Alix

    2016-01-01

    Background Female genital mutilation/cutting (FGM/C) is a harmful traditional practice that affects two out of three girls in The Gambia, seriously threatening their life and well-being with severe health consequences. By tracking the reference values established in former research conducted between 2009 and 2011, the objectives of this study are to explore trends and to measure and assess changes in knowledge, attitudes, and practices regarding FGM/C among health care professionals (HCPs) in The Gambia. Methods A cross-sectional descriptive study was designed to collect and analyze data from an overall stratified sample consisting of 1,288 HCPs including health professionals and students throughout the six regions of The Gambia. Data were collected by the implementation of a self-administered written knowledge, attitudes, and practices questionnaire between 2012 and 2014. Results The results of this study showed that 76.4% of HCPs are eager to abandon FGM/C, and 71.6% of them regard it as a harmful practice with negative consequences on life and health. HCPs reported more knowledge and favorable attitudes towards FGM/C abandonment, being better able to identify the practice, more aware of its health complications, and more concerned in their essential role as social agents of change. However, 25.4% of HCPs still embraced the continuation of the practice, 24.4% expressed intention of subjecting their own daughters to it, and 10.5% declared to have performed it within their professional praxis. Conclusion Findings confirm progress in knowledge and attitudes regarding FGM/C among HCPs, who are better skilled to understand and manage the consequences. Nevertheless, discrepancies between information, intention, and behavior unveil resistance in practice and proves that FGM/C medicalization is increasing. Thus, there is an urgent need to support HCPs in the integration of FGM/C preventive interventions within the public health system, to address arguments favoring medicalization, and to use data to design appropriate strategies. PMID:27110140

  13. Stigma in response to mental disorders: a comparison of Australia and Japan

    PubMed Central

    Griffiths, Kathleen M; Nakane, Yoshibumi; Christensen, Helen; Yoshioka, Kumiko; Jorm, Anthony F; Nakane, Hideyuki

    2006-01-01

    Background There are few national or cross-cultural studies of the stigma associated with mental disorders. Australia and Japan have different systems of psychiatric health care, and distinct differences in cultural values, but enjoy similar standards of living. This study seeks to compare the nature and extent of stigma among the public in the two countries. Methods A household survey of the public was conducted in each country using similar methodologies. The Australian study comprised a national survey of 3998 adults aged over 18 years. The Japanese survey involved 2000 adults aged 20 to 69 from 25 regional sites distributed across the country. Interviewees reported their personal attitudes (personal stigma, social distance) and perceptions of the attitudes of others (perceived stigma, perceived discrimination) in the community with respect to four case vignettes. These vignettes described a person with: depression; depression with suicidal ideation; early schizophrenia; and chronic schizophrenia. Results Personal stigma and social distance were typically greater among the Japanese than the Australian public whereas the reverse was true with respect to the perception of the attitudes and discriminatory behaviour of others. In both countries, personal stigma was significantly greater than perceived stigma. The public in both countries showed evidence of greater social distance, greater personal stigma and greater perceived stigma for schizophrenia (particularly in its chronic form) than for depression. There was little evidence of a difference in stigma for depression with and without suicide for either country. However, social distance was greater for chronic compared to early schizophrenia for the Australian public. Conclusion Stigmatising attitudes were common in both countries, but negative attitudes were greater among the Japanese than the Australian public. The results suggest that there is a need to implement national public awareness interventions tailored to the needs of each country. The current results provide a baseline for future tracking of national stigma levels in each country. PMID:16716231

  14. Flight data file: STS-4 crew activity plan

    NASA Technical Reports Server (NTRS)

    Pippert, E. B., Jr.

    1982-01-01

    The STS-4 Crew Activity Plan contains the on-orbit timeline, which is a flight data file article. Various time scales such as Mission Elapsed Time (MET), Greenwich Mean Time (GMT), and time until deorbit ignition as well as crew activities, day/night, orbit position, ground tracking, communication coverage, attitude, and maneuvers are presented in chart form.

  15. STS-26 Discovery, OV-103, artwork showing TDRS-C deployment

    NASA Image and Video Library

    1987-11-16

    STS-26 Discovery, Orbiter Vehicle (OV) 103, artwork depicts tracking and data relay satellite C (TDRS-C) deployment. OV-103 orbits above Earth in bottom-to-sun attitude, moments after TDRS-C's release into space. TDRS-C is seen just below open payload bay (PLB). Artwork was done by Pat Rawlings of Eagle Engineering.

  16. Tracking Professional Development of Novice Teachers When Integrating Technology in Teaching Mathematics

    ERIC Educational Resources Information Center

    Gurevich, Irina; Stein, Hana; Gorev, Dvora

    2017-01-01

    This research traced changes in choices of technological tools and attitudes toward technology use among novice mathematics teachers at three stages of their professional development: as pre-service teachers, a year later, and in their work as novice teachers. At each stage, the participants were required to evaluate the benefits of technology use…

  17. Gender differences in academic advancement: patterns, causes, and potential solutions in one US College of Medicine.

    PubMed

    Wright, Anne L; Schwindt, Leslie A; Bassford, Tamsen L; Reyna, Valerie F; Shisslak, Catherine M; St Germain, Patricia A; Reed, Kathryn L

    2003-05-01

    The influx of women into academic medicine has not been accompanied by equality for male and female faculty. Women earn less than men in comparable positions, progress more slowly through academic ranks, and have not attained important leadership roles. This study tested hypotheses about why gender disparities exist in salary, rank, track, leadership, and perceptions of campus climate at one academic center, the University of Arizona College of Medicine, Tucson. Salary, rank, and track data were obtained from institutional databases for the 1999-2000 fiscal year. A structured, online questionnaire was made available to 418 faculty members to collect information about their goals, attitudes, and experiences. A total of 198 faculty members completed the questionnaire. The data showed significant gender differences in faculty salaries, ranks, tracks, leadership positions, resources, and perceptions of academic climate. On average, women earned US dollars 12777 or 11% less than men, after adjusting for rank, track, degree, specialty, years in rank, and administrative positions (p <.0003). Of female faculty, 62% were assistant professors (49% of women were non-tenure-eligible assistant professors), while 55% of male faculty were promoted and tenured. Almost a third of women reported being discriminated against, compared with only 5% of men (p <.00001). Substantial gender differences in the rewards and opportunities of academic medicine remain, that can not be attributed to differences in productivity or commitment between women and men.

  18. Evidence-based use of electronic clinical tracking systems in advanced practice registered nurse education: an integrative review.

    PubMed

    Branstetter, M Laurie; Smith, Lynette S; Brooks, Andrea F

    2014-07-01

    Over the past decade, the federal government has mandated healthcare providers to incorporate electronic health records into practice by 2015. This technological update in healthcare documentation has generated a need for advanced practice RN programs to incorporate information technology into education. The National Organization of Nurse Practitioner Faculties created core competencies to guide program standards for advanced practice RN education. One core competency is Technology and Information Literacy. Educational programs are moving toward the utilization of electronic clinical tracking systems to capture students' clinical encounter data. The purpose of this integrative review was to evaluate current research on advanced practice RN students' documentation of clinical encounters utilizing electronic clinical tracking systems to meet advanced practice RN curriculum outcome goals in information technology as defined by the National Organization of Nurse Practitioner Faculties. The state of the science depicts student' and faculty attitudes, preferences, opinions, and data collections of students' clinical encounters. Although electronic clinical tracking systems were utilized to track students' clinical encounters, these systems have not been evaluated for meeting information technology core competency standards. Educational programs are utilizing electronic clinical tracking systems with limited evidence-based literature evaluating the ability of these systems to meet the core competencies in advanced practice RN programs.

  19. Upper Atmosphere Research Satellite attitude disturbances during shadow entry and exit

    NASA Technical Reports Server (NTRS)

    Lambertson, M.; Underwood, S.; Woodruff, C.; Garber, A.

    1993-01-01

    The Upper Atmosphere Research Satellite (UARS), as with the Landsat-4 and Landsat-5 spacecraft, experiences large attitude disturbances when entering and exiting the Earth's shadow. Previous investigations have provided some evidence linking these disturbances to rapid bending of the solar array but have also raised questions. For example, the magnitudes of the roll attitude disturbances have shown an unmolested asymmetry, and the timing of the disturbances at sunrise appears to disagree with the modeled timing. A better understanding of this phenomenon is important in assessing the implications for UARS science gathering and for future mission design analysis. To this end, UARS attitude, sensor, and actuator data are used to evaluate the disturbances as they vary with solar beta angle and solar array drive angle. The attitude data are examined during specific periods of interest, such as the month in which the solar array was parked in its high-noon position, and are also tracked from the beginning of the mission to determine any trends that may result from changing mass properties due to cryogen boiloff and propellant usage. Attitude rate and torque profiles are derived from inertial reference until data and related to the disturbances seen in the attitude data. The timing of the disturbances with respect to spacecraft sunset and sunrise is characterized to allow event predictions. Stability during the disturbances is discussed in terms of science instrument requirements. Finally, the results are compared with the behavior predicted by models that are based on solar array bending.

  20. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS). KEYWORDS: Small Satellites, Attitude Determination, Egomotion Estimation, RANSAC, Image Processing.

  1. Role of Information in Consumer Selection of Health Plans

    PubMed Central

    Sainfort, François; Booske, Bridget C.

    1996-01-01

    Considerable efforts are underway in the public and private sectors to increase the amount of information available to consumers when making health plan choices. The objective of this study was to examine the role of information in consumer health plan decisionmaking. A computer system was developed which provides different plan descriptions with the option of accessing varying types and levels of information. The system tracked the information search processes and recorded the hypothetical plan choices of 202 subjects. Results are reported showing the relationship between information and problem perception, preference structure, choice of plan, and attitude towards the decision. PMID:10165036

  2. Shuttle GPS R/PA configuration and specification study

    NASA Technical Reports Server (NTRS)

    Booth, R. W. D.

    1979-01-01

    Changes in the technical specifications for a global positioning system (GPS) receiving system dedicated to space shuttle use are presented. Various hardware functions including acquisition, tracking, and measurement are emphasized. The anti-jam performance of the baseline GPS systems are evaluated. Other topics addressed include: the impact on R/PA design of the use of ground based transmitters; problems involved with the use of single channel tests sets; utility of various R/PA antenna interconnections topologies; the choice of the averaging interval for delta range measurements; and the use of interferometry techniques for the computation of orbiter attitude were undertaken.

  3. Public attitudes regarding individual and structural discrimination: two sides of the same coin?

    PubMed

    Angermeyer, Matthias C; Matschinger, Herbert; Link, Bruce G; Schomerus, Georg

    2014-02-01

    Public attitudes and beliefs are relevant to both individual and structural discrimination. They are a reflection of cultural conceptions of mental illness that form a reality that people must take into account when they enact behavior and policy makers must confront when making decisions. Understanding and keeping track of these attitudes is critical to understanding individual and structural discrimination. Theories of stigma posit that both forms of discrimination are distinct phenomena. Practically nothing is known about how attitudes regarding individual and structural discrimination relate. Our study addresses this gap by examining how attitudes toward allocating financial resources to the care of people with depression (structural discrimination) have developed over the last decade in Germany, compared to the public's desire for social distance from these people (individual discrimination). Previous studies have shown the public being more ready to accept cutbacks for the care for mentally ill persons than for medically ill persons. These preferences could have changed with regard to depression, since there is a growing awareness among the German public of an "epidemic of depression". The idea of a high prevalence of depression may have led to a heightened perception of personal susceptibility for this disorder, making the public become more reluctant to accept cutbacks for the care of people with depression. On the other hand, there is reason to assume that the growing awareness of high prevalence of depression among the general public has not affected individual discrimination of persons suffering from this disorder. The two assumptions were tested comparing data from population surveys conducted in Germany in 2001 and 2011. Within ten years, the proportion of respondents who opposed cutting money from depression treatment tripled from 6% to 21%. In contrast, the public's desire for social distance from persons with depression remained unchanged. Moreover, both trends proved to be independent from each other. Our findings suggest that attitudes relevant to structural and individual discrimination are not necessarily linked together and may lead to divergent results. This means that a comprehensive understanding of stigma must consider both forms of discriminating attitudes together. Studying both simultaneously may deepen our understanding of each and point to novel ways to produce change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of a digital guidance and control law for steep approach automatic landings using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1979-01-01

    The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.

  5. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  6. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  7. An adaptive trajectory tracking control of four rotor hover vehicle using extended normalized radial basis function network

    NASA Astrophysics Data System (ADS)

    ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin

    2017-01-01

    In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.

  8. CASA: tracking the past and plotting the future.

    PubMed

    Gallagher, M T; Smith, D J; Kirkman-Brown, J C

    2018-05-29

    The human semen sample carries a wealth of information of varying degrees of accessibility ranging from the traditional visual measures of count and motility to those that need a more computational approach, such as tracking the flagellar waveform. Although computer-aided sperm analysis (CASA) options are becoming more widespread, the gold standard for clinical semen analysis requires trained laboratory staff. In this review we characterise the key attitudes towards the use of CASA and set out areas in which CASA should, and should not, be used and improved. We provide an overview of the current CASA landscape, discussing clinical uses as well as potential areas for the clinical translation of existing research technologies. Finally, we discuss where we see potential for the future of CASA, and how the integration of mathematical modelling and new technologies, such as automated flagellar tracking, may open new doors in clinical semen analysis.

  9. Postgraduate nursing student knowledge, attitudes, skills, and confidence in appropriately referencing academic work.

    PubMed

    Greenwood, Melanie; Walkem, Kerrie; Smith, Lindsay Mervyn; Shearer, Toniele; Stirling, Christine

    2014-08-01

    Preventing plagiarism is an ongoing issue for higher education institutions. Although plagiarism has been traditionally seen as cheating, it is increasingly thought to be the result of poor referencing, with students reporting difficulties citing and referencing bibliographic sources. This study examined the academic knowledge, attitude, skills, and confidence of students in a school of nursing to understand poor referencing. A cross-sectional quantitative and qualitative survey was distributed to postgraduate (N = 1,000) certificate, diploma, and master's students. Quantitative data gathered demographics, cultural and linguistic background, and use of technology. Thematic analysis discovered patterns and themes. Results showed participants understood requirements for referencing; half indicated poor referencing was due to difficulty referencing Internet sources or losing track of sources, and many lacked confidence in key referencing tasks. Despite this, 50% did not make use of referencing resources. Overall, these data suggest incorrect referencing is rarely intentional and predominantly caused by skills deficit. Copyright 2014, SLACK Incorporated.

  10. Measuring smoking knowledge, attitudes and services (S-KAS) among clients in addiction treatment

    PubMed Central

    Guydish, Joseph; Tajima, Barbara; Chan, Mable; Delucchi, Kevin L.; Ziedonis, Douglas

    2010-01-01

    Background Addiction treatment programs are increasingly working to address prevalent and comorbid tobacco dependence in their service populations. However at present there are few published measurement tools, with known psychometric properties, that can be used to assess client-level constructs related to tobacco dependence in addiction treatment settings. Following on previous work that developed a staff-level survey instrument, this report describes the development and measurement characteristics of the Smoking Knowledge, Attitudes and Services (S-KAS) for use with clients in addiction treatment settings. Method 250 clients enrolled in residential drug abuse treatment programs were surveyed. Summary statistics were used to characterize both the participants and their responses, and exploratory factor analysis (EFA) was used to examine the underlying factor structure. Results Examination of the rotated factor pattern indicated that the latent structure was formed by one Knowledge factor, one Attitude factor, and two “service” factors reflecting Program Services and Clinician Services related to tobacco dependence. Standardized Cronbach’s alpha coefficients for the four scales were, respectively, .57, .75, .82 and .82. Conclusions The proposed scales have reasonably good psychometric characteristics, although the knowledge scale leaves room for improvement, and will allow researchers to quantify client knowledge, attitudes and services regarding tobacco dependence treatment. Researchers, program administrators, and clinicians may find the S-KAS useful in changing organizational culture and clinical practices related to tobacco addiction, help in program evaluation studies, and in tracking and improving client motivation. PMID:21055884

  11. Alt-Energy Grand Prix Inspires an "I Can" Attitude

    ERIC Educational Resources Information Center

    Tessmer, Al; Trzeciak, Mark

    2010-01-01

    This article describes how a team comprised largely of high school students builds and races an E85-fueled car and takes first place at the Bowling Green (Ohio) State University (BGSU) Grand Prix. Free and open to the public, the event features student drivers and crews, racing go-karts powered by renewable, ethanol-based E85 fuel. The track is a…

  12. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    ERIC Educational Resources Information Center

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  13. 2009 Center for Army Leadership Annual Survey of Army Leadership (CASAL): Army Education

    DTIC Science & Technology

    2010-06-11

    right time, handling pre- education attitudes, and tracking performance gains and career advantages related to academics.  Developing current, relevant...Army Leadership Technical Report 2010-2 2009 CENTER FOR ARMY LEADERSHIP ANNUAL SURVEY OF ARMY LEADERSHIP (CASAL): ARMY EDUCATION ...Joshua Hatfield ICF International John P. Steele Center for Army Leadership June 2010 The Center for Army Leadership An

  14. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  15. Robust fault-tolerant tracking control design for spacecraft under control input saturation.

    PubMed

    Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini

    2014-07-01

    In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications

    NASA Astrophysics Data System (ADS)

    Wei, Caisheng; Luo, Jianjun; Dai, Honghua; Bian, Zilin; Yuan, Jianping

    2018-05-01

    In this paper, a novel learning-based adaptive attitude takeover control method is investigated for the postcapture space robot-target combination with guaranteed prescribed performance in the presence of unknown inertial properties and external disturbance. First, a new static prescribed performance controller is developed to guarantee that all the involved attitude tracking errors are uniformly ultimately bounded by quantitatively characterizing the transient and steady-state performance of the combination. Then, a learning-based supplementary adaptive strategy based on adaptive dynamic programming is introduced to improve the tracking performance of static controller in terms of robustness and adaptiveness only utilizing the input/output data of the combination. Compared with the existing works, the prominent advantage is that the unknown inertial properties are not required to identify in the development of learning-based adaptive control law, which dramatically decreases the complexity and difficulty of the relevant controller design. Moreover, the transient and steady-state performance is guaranteed a priori by designer-specialized performance functions without resorting to repeated regulations of the controller parameters. Finally, the three groups of illustrative examples are employed to verify the effectiveness of the proposed control method.

  17. Using Visual Odometry to Estimate Position and Attitude

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Cheng, Yang; Matthies, Larry; Schoppers, Marcel; Olson, Clark

    2007-01-01

    A computer program in the guidance system of a mobile robot generates estimates of the position and attitude of the robot, using features of the terrain on which the robot is moving, by processing digitized images acquired by a stereoscopic pair of electronic cameras mounted rigidly on the robot. Developed for use in localizing the Mars Exploration Rover (MER) vehicles on Martian terrain, the program can also be used for similar purposes on terrestrial robots moving in sufficiently visually textured environments: examples include low-flying robotic aircraft and wheeled robots moving on rocky terrain or inside buildings. In simplified terms, the program automatically detects visual features and tracks them across stereoscopic pairs of images acquired by the cameras. The 3D locations of the tracked features are then robustly processed into an estimate of overall vehicle motion. Testing has shown that by use of this software, the error in the estimate of the position of the robot can be limited to no more than 2 percent of the distance traveled, provided that the terrain is sufficiently rich in features. This software has proven extremely useful on the MER vehicles during driving on sandy and highly sloped terrains on Mars.

  18. Formation flying for electric sails in displaced orbits. Part II: Distributed coordinated control

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We analyze a cooperative control framework for electric sail formation flying around a heliocentric displaced orbit, aiming at observing the polar region of a celestial body. The chief spacecraft is assumed to move along an elliptic displaced orbit, while each deputy spacecraft adjusts its thrust vector (that is, both its sail attitude and characteristic acceleration) in order to track a prescribed relative trajectory. The relative motion of the electric sail formation system is formulated in the chief rotating frame, where the control inputs of each deputy are the relative sail attitude angles and the relative lightness number with respect to those of the chief. The information exchange among the spacecraft, characterized by the communication topology, is represented by a weighted graph. Two typical cases, according to whether the communication graph is directed or undirected, are discussed. For each case, a distributed coordinated control law is designed in such a way that each deputy not only tracks the chief state, but also makes full use of information from its neighbors, thus increasing the redundancy and robustness of the formation system in case of failure among the communication links. Illustrative examples show the effectiveness of the proposed approach.

  19. Consumers' perceptions about and use of the internet for personal health records and health information exchange: analysis of the 2007 Health Information National Trends Survey.

    PubMed

    Wen, Kuang-Yi; Kreps, Gary; Zhu, Fang; Miller, Suzanne

    2010-12-18

    Personal health records (PHRs) and the sharing of health information through health information exchange (HIE) have been advocated as key new components in the effective delivery of modern health care. It is important to understand consumer attitudes toward utilization of PHRs and HIE to evaluate the public's willingness to adopt these new health care tools. The purpose of this study was to examine consumer attitudes toward PHRs and their health care providers' use of HIE, as well as to evaluate consumer use of the Internet for tracking PHRs. Analysis of data from the 2007 iteration of the Health Information National Trends Study (HINTS, N=7674) was conducted using multivariate logistic regression to identify predictors of consumer (1) appraisal of PHRs, (2) appraisal of health care provider use of HIE, and (3) use of the Internet for tracking PHRs. Approximately 86% of US adults rated electronic access to their PHRs as important. However, only 9% of them used the Internet for tracking PHRs. Those who rated electronic access to their PHRs as important were more likely to be Hispanic (odds ratio [OR] = 1.34, 95% confidence interval [CI] 1.04 - 1.72) and Internet users (OR = 1.27, 95% CI = 1.02 - 1.57) and less likely to be age 65 and above (OR = 0.50, 95% CI = 0.38 - 0.67) or individuals whose doctors always ensured their understanding of their health (OR = 0.62, 95% CI = 0.49 - 0.78). Those who rated HIE as important were more likely to be 45 to 54 years of age (OR = 1.46, 95% CI = 1.03 - 2.08), 55 to 64 years of age (OR = 1.83, 95% CI = 1.32 - 2.53), or 65 and above (OR = 1.76, 95% CI = 1.27 - 2.43) and less likely to be women (OR = 0.80, 95% CI = 0.68 - 0.95) or individuals who perceive their health information as not safely guarded by their doctors (OR = 0.53, 95% CI = 0.40 - 0.69). Among Internet users, those who used the Internet to track their PHRs were more likely to be college graduates (OR = 1.84, 95% = 1.32 - 2.59) or to have completed some college courses (OR = 1.46, 95% CI = 1.02 - 2.11), to be Hispanic (OR = 1.92, 95% CI = 1.23 - 2.98), or to be individuals with health care provider access (OR = 1.90, 95% CI = 1.21 - 2.97). Women were less likely to use the Internet for tracking PHRs than men (OR = 0.78, 95% CI = 0.61 - 1.00). Despite widespread positive appraisal of electronic access to PHRs as important, Internet use for tracking PHRs remains uncommon. To promote PHR adoption, the digital divide associated with the gap in health literacy must be improved, and cultural issues and the doctor-patient relationship need to be studied. Further work also needs to address consumer concerns regarding the security of HIE.

  20. Consumers’ Perceptions About and Use of the Internet for Personal Health Records and Health Information Exchange: Analysis of the 2007 Health Information National Trends Survey

    PubMed Central

    Kreps, Gary; Zhu, Fang; Miller, Suzanne

    2010-01-01

    Background Personal health records (PHRs) and the sharing of health information through health information exchange (HIE) have been advocated as key new components in the effective delivery of modern health care. It is important to understand consumer attitudes toward utilization of PHRs and HIE to evaluate the public’s willingness to adopt these new health care tools. Objective The purpose of this study was to examine consumer attitudes toward PHRs and their health care providers’ use of HIE, as well as to evaluate consumer use of the Internet for tracking PHRs. Methods Analysis of data from the 2007 iteration of the Health Information National Trends Study (HINTS, N=7674) was conducted using multivariate logistic regression to identify predictors of consumer (1) appraisal of PHRs, (2) appraisal of health care provider use of HIE, and (3) use of the Internet for tracking PHRs. Results : Approximately 86% of US adults rated electronic access to their PHRs as important. However, only 9% of them used the Internet for tracking PHRs. Those who rated electronic access to their PHRs as important were more likely to be Hispanic (odds ratio [OR] = 1.34, 95% confidence interval [CI] 1.04 - 1.72) and Internet users (OR = 1.27, 95% CI = 1.02 - 1.57) and less likely to be age 65 and above (OR = 0.50, 95% CI = 0.38 - 0.67) or individuals whose doctors always ensured their understanding of their health (OR = 0.62, 95% CI = 0.49 – 0.78). Those who rated HIE as important were more likely to be 45 to 54 years of age (OR = 1.46, 95% CI = 1.03 - 2.08), 55 to 64 years of age (OR = 1.83, 95% CI = 1.32 - 2.53), or 65 and above (OR = 1.76, 95% CI = 1.27 - 2.43) and less likely to be women (OR = 0.80, 95% CI = 0.68 - 0.95) or individuals who perceive their health information as not safely guarded by their doctors (OR = 0.53, 95% CI = 0.40 - 0.69). Among Internet users, those who used the Internet to track their PHRs were more likely to be college graduates (OR = 1.84, 95% = 1.32 - 2.59) or to have completed some college courses (OR = 1.46, 95% CI = 1.02 - 2.11), to be Hispanic (OR = 1.92, 95% CI = 1.23 - 2.98), or to be individuals with health care provider access (OR = 1.90, 95% CI = 1.21 - 2.97). Women were less likely to use the Internet for tracking PHRs than men (OR = 0.78, 95% CI = 0.61 - 1.00). Conclusions Despite widespread positive appraisal of electronic access to PHRs as important, Internet use for tracking PHRs remains uncommon. To promote PHR adoption, the digital divide associated with the gap in health literacy must be improved, and cultural issues and the doctor-patient relationship need to be studied. Further work also needs to address consumer concerns regarding the security of HIE. PMID:21169163

  1. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  2. Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2011-01-01

    An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.

  3. Synchronous response modelling and control of an annular momentum control device

    NASA Astrophysics Data System (ADS)

    Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen

    1988-08-01

    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.

  4. Synchronous response modelling and control of an annular momentum control device

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen

    1988-01-01

    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.

  5. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  6. The star identification, pointing and tracking system of UVSTAR, an attached payload instrument system for the Shuttle Hitchhiker-M platform

    NASA Technical Reports Server (NTRS)

    Decarlo, Francesco; Stalio, Roberto; Trampus, Paolo; Broadfoot, A. Lyle; Sandel, Bill R.; Sicuranza, Giovanni

    1993-01-01

    We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second.

  7. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    PubMed Central

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-01-01

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318

  8. Attitudes of nurses towards the use of physical restraints in geriatric care: a systematic review of qualitative and quantitative studies.

    PubMed

    Möhler, Ralph; Meyer, Gabriele

    2014-02-01

    To examine nurses' attitudes towards the use of physical restraints in geriatric care. Systematic review and synthesis of qualitative and quantitative studies. The following databases were searched: Medline, CINAHL, EMBASE, Psyndex, PsychInfo, Social SciSearch, SciSearch, Forum Qualitative Social Research (1/1990 to 8/2013). We performed backward and forward citation tracking to all of the included studies. We included in the present review all qualitative and quantitative studies in English and German that investigated nurses' attitudes towards the use of physical restraints in geriatric care. Two independent reviewers selected the studies for inclusion and assessed the study quality. We performed a thematic synthesis for the qualitative studies and a content analysis of the questionnaires' items as well as a narrative synthesis for the quantitative surveys. We included 31 publications in the review: 20 quantitative surveys, 10 qualitative and 1 mixed-method study. In the qualitative studies, nurses' attitudes towards the use of physical restraints in geriatric care were predominately characterised by negative feelings towards the use of restraints; however, the nurses also described a perceived need for using restraints in clinical practice. This discrepancy led to moral conflicts, and nurses described several strategies for coping with these conflicts when restraints were used. When nurses were in doubt regarding the use of restraints, they decided predominantly in favour of using restraints. The results of the quantitative surveys were inconsistent regarding nurses' feelings towards the use of restraints in geriatric care. Prevention of falls was identified as a primary reason for using restraints. However, the items of the questionnaires focussed primarily on the reasons for the use of restraints rather than on the attitudes of nurses. Despite the lack of evidence regarding the benefits of restraints and the evidence on the adverse effects, nurses often decided in favour of using restraints when in doubt and they used strategies to cope with negative feelings when they used restraints. A clear policy change in geriatric care institutions towards restraint-free care seems to be warranted to change clinical practice. The results of this review should also be considered in the development of interventions aimed at reducing the use of restraints. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  10. Preliminary Results of the GPS Flight Experiment on the High Earth Orbit AMSAT-OSCAR 40 Spacecraft

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.; Bauer, Frank H.; Carpenter, J. Russell; Davis, Edward P.; Davis, George W.; Jackson, Larry A.

    2002-01-01

    The GPS flight experiment on the High Earth Orbit (HEO) AMSAT-OSCAR 40 (AO-40) spacecraft was activated for a period of approximately six weeks between 25 September and 2 November, 2001, and the initial results have exciting implications for using GPS as a low-cost orbit determination sensor for future HEO missions. AO-40, an amateur radio satellite launched November 16, 2000, is currently in a low inclination, 1000 by 58,800 km altitude orbit. Although the GPS receiver was not initialized in any way, it regularly returned GPS observations from points all around the orbit. Raw signal to noise levels as high as 9 AMUs (Trimble Amplitude Measurement Units) or approximately 48 dB-Hz have been recorded at apogee, when the spacecraft was close to 60,000 km in altitude. On several occasions when the receiver was below the GPS constellation (below 20,000 krn altitude), observations were reported for GPS satellites tracked through side lobe transmissions. Although the receiver has not returned any point solutions, there has been at least one occasion when four satellites were tracked simultaneously, and this short arc of data was used to compute point solutions after the fact. These results are encouraging, especially considering the spacecraft is currently in a spin-stabilized attitude mode that narrows the effective field of view of the receiving antennas and adversely affects GPS tracking. Already AO-40 has demonstrated the feasibility of recording GPS observations in HEO using an unaided receiver. Furthermore, it is providing important information about the characteristics of GPS signals received by a spacecraft in a HEO, which has long been of interest to many in the GPS community. Based on the data returned so far, the tracking performance is expected to improve when the spacecraft is transitioned to a three axis stabilized, nadir pointing attitude in Summer, 2002.

  11. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  12. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  13. Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Baker, Kenneth

    2011-01-01

    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.

  14. Overview of the ICESat Mission and Results

    NASA Astrophysics Data System (ADS)

    Zwally, H.

    2004-12-01

    NASA's Ice, Cloud, and Land Elevation Satellite (ICESat), launched in January, 2003, has been measuring surface elevations of ice and land, vertical distributions of clouds and aerosols, vegetation-canopy heights, and other features with unprecedented accuracy and sensitivity. The ICESat mission, which was designed to operate continuously for 3 to 5 years, has so far acquired science data during five periods of laser operation ranging from 33 to 54 days each. The primary purpose of ICESat has been to acquire time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and improve estimates of the present and future contributions to global sea level rise. ICEsat's atmospheric measurements are providing fundamentally new information on the precise vertical structure of clouds and aerosols. In particular, cloud heights are important for understanding radiation balance and their effects on climate change. Other applications include mapping of polar sea-ice freeboard and thickness, high-resolution mapping of ocean eddies, glacier topography, and lake and river levels. ICESat has a 1064 nm laser channel for near-surface altimetry with a designed range precision of 10 cm that is actually 2 cm on-orbit. Vertical distributions of clouds and aerosols are obtained with 75 m resolution from both the 1064 nm channel and the more sensitive 532 nm channel. The laser footprints are about 70 m spaced at 170 m along-track. The accuracy of the satellite-orbital heights is about 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibration is completed. The spacecraft attitude is controlled to point the laser beam to within 100 m (35 m goal) of reference surface tracks at high latitudes and to point off-nadir up to 5 degrees to targets of interest. The remaining laser lifetime will be used for approximately 33-day periods at 3 to 6 month-intervals to optimize the science return. The first ICESat was intended to be followed by successive missions to measure changes over 15 years, and has clearly proven the unique capability of laser measurements to meet multi-disciplinary science objectives. An example of continuing requirements is: "Continued observations with satellite altimeters, including . the laser altimeter on ICESat . should be continued for at least 15 years . to establish the climate sensitivities of the ice mass balance and decadal-scale trends" (Climate Change 2001, IPCC, 2001).

  15. A new scheme for processing noisy startracker measurements in spacecraft attitude determination systems

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1991-01-01

    This paper presents a new approach to processing noisy startracker measurements in spacecraft attitude determination systems. It takes N measurements in each T-second interval and combines them to produce tracker outputs that are estimates of star position at the end of each interval, when the tracker outputs become available. This is an improvement over the standard method, measurement averaging, which generates outputs that are estimates of the average position of the star over each interval. This new scheme is superior to measurement averaging when the spacecraft has some rotation rate as in target tracking or earth pointing. Also, it is not just limited to startracker, but has potential application wherever measurement averaging of sensor outputs is used.

  16. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  17. Approaching control for tethered space robot based on disturbance observer using super twisting law

    NASA Astrophysics Data System (ADS)

    Hu, Yongxin; Huang, Panfeng; Meng, Zhongjie; Wang, Dongke; Lu, Yingbo

    2018-05-01

    Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.

  18. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.

  19. Interest in and perceived barriers to flexible-track residencies in general surgery: a national survey of residents and program directors.

    PubMed

    Abbett, Sarah K; Hevelone, Nathanael D; Breen, Elizabeth M; Lipsitz, Stuart R; Peyre, Sarah E; Ashley, Stanley W; Smink, Douglas S

    2011-01-01

    The American Board of Surgery now permits general surgery residents to complete their clinical training over a 6-year period. Despite this new policy, the level of interest in flexible scheduling remains undefined. We sought to determine why residents and program directors (PDs) are interested in flexible tracks and to understand implementation barriers. National survey. All United States general surgery residency programs that participate in the Association of Program Directors in Surgery listserv. PDs and categorical general surgery residents in the United States. Attitudes about flexible tracks in surgery training. A flexible track was defined as a schedule that allows residents to pursue nonclinical time during residency with resulting delay in residency completion. Of the 748 residents and 81 PDs who responded, 505 residents and 45 PDs were supportive of flexible tracks (68% vs 56%, p = 0.03). Residents and PDs both were interested in flexible tracks to pursue research (86% vs 82%, p = 0.47) and child bearing (69% vs 58%, p = 0.13), but residents were more interested in pursuing international work (74% vs 53%, p = 0.004) and child rearing (63% vs 44%, p = 0.02). Although 71% of residents believe that flexible-track residents would not be respected as the equal of other residents, only 17% of PDs indicated they would not respect flexible-track residents (p < 0.001). Most residents and PDs support flexible tracks, although they differ in their motivation and perceived barriers. This finding lends support to the new policy of the American Board of Surgery. Copyright © 2011 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Observations on the State of NASA's GN&C Engineering Discipline: Results of an Independent Non-Advocate Study

    NASA Technical Reports Server (NTRS)

    Pawlikowski, Gerald J.; Dennehy, Cornelius J.

    2010-01-01

    The NASA Technical Fellows periodically conduct State-of-the-Discipline assessments. The GN&C Technical Fellow contracted Harlan Brown & Company in 2007 and 2009 to conduct independent, third party studies to gain unbiased insight and understanding into the attitudes and beliefs of NASA's GN&C Community of Practice (CoP). The paper first outlines the background, objectives and methodology of the studies. The paper then summarizes key study results of the 2007 baseline study, as well as the 2009 update. The update was then used to track and monitor perceptions, identify performance trends, identify areas where further improvement needs to be made in NASA's GN&C discipline. It also generated feedback on the recently developed GN&C CoP online knowledge capture and learning site.

  1. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Diprinzio, Marc D.; Tolson, Robert H.

    1994-01-01

    The use of the Global Positioning System for position and attitude determination is evaluated for an automated rendezvous and docking mission. The typical mission scenario involves the chaser docking with the target for resupply or repair purposes, and is divided into three sections. During the homing phase, the chaser utilizes coarse acquisition pseudorange data to approach the target; guidance laws for this stage are investigated. In the second phase, differential carrier phase positioning is utilized. The chaser must maintain a quasiconstant distance from the target, in order to resolve the initial integer ambiguities. Once the ambiguities are determined, the terminal phase is entered, and the rendezvous is completed with continuous carrier phase tracking. Attitude knowledge is maintained in all phases through the use of the carrier phase observable. A Kalman filter is utilized to estimate all states from the noisy measurement data. The effects of selective availability and cycle slips are also investigated.

  2. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  3. Commercial Experiment Transporter: COMET

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C.; Robinson, Michael; Martinez, Ramiro S.; Gallimore, Thomas; Combs, Nick

    1994-09-01

    A launch system consisting of ground-support equipment, a four-stage rocket, a service module, a recovery system and a recovery site, and an orbital operations center is being assembled. The system is designed to launch 818 kg (1800 lb) to a 552-km (300-n.mi.) low earth orbit at a 40-deg inclination. Experiment space exists in both the service module and the recovery system. The service module provides space for 68 kg (150 lb) of experiments plus telemetry services, attitude control, and power and uses no consumables to maintain attitude. Consequently, the service module can maintain orbit attitude for years. Power of 400 W is supplied by solar cells and batteries for both experiment operation and housekeeping. The recovery system houses an experiment carrier for 136 kg (300 lb) of experiments, a retro rocket, a heat shield, and a parachute. An orbital operations control center provides tracking, telemetry, and commanding for the satellite. The payloads are also briefly described. The first launch was scheduled for 1995.

  4. Apollo 13 Guidance, Navigation, and Control Challenges

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2009-01-01

    Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.

  5. Inertial attitude control of a bat-like morphing-wing air vehicle.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  6. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  7. Youth Attitude Tracking Study II Wave 16 -- Fall 1985. Supplementary Tabulations,

    DTIC Science & Technology

    1986-02-01

    W ~0) _.j- to b CD in fa C v N S Sw w < I-. . .. < .J4- 00 CL C4 V N 5 I 0) .~ 4 0 0 0 o m) a N I ZWI 4-C P. . . m -.. -u 0 1- 0; 1.:5 5 5 I ɜ 0 . .4...i 0. cc4 I at > ~ aiI- U . 281 * I I W 2 00 CL 5 gL *~ ~ U) (l J ton an a S C I ’ I--. I- I.av -C 2 WI-. . - >a- I- mW w v 1 0 0 0 5 44 o z o I.- U

  8. Multipurpose active pixel sensor (APS)-based microtracker

    NASA Astrophysics Data System (ADS)

    Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.

    1998-12-01

    A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.

  9. Impact of the media on adolescent sexual attitudes and behaviors.

    PubMed

    Escobar-Chaves, S Liliana; Tortolero, Susan R; Markham, Christine M; Low, Barbara J; Eitel, Patricia; Thickstun, Patricia

    2005-07-01

    Adolescents in the United States are engaging in sexual activity at early ages and with multiple partners. The mass media have been shown to affect a broad range of adolescent health-related attitudes and behaviors including violence, eating disorders, and tobacco and alcohol use. One largely unexplored factor that may contribute to adolescents' sexual activity is their exposure to mass media. We sought to determine of what is and is not known on a scientific basis of the effects of mass media on adolescent sexual attitudes and behaviors. Method. We performed an extensive, systematic review of the relevant biomedical and social science literature and other sources on the sexual content of various mass media, the exposure of adolescents to that media, the effects of that exposure on the adolescents' sexual attitudes and behaviors, and ways to mitigate those effects. Inclusion criteria were: published in 1983-2004, inclusive; published in English; peer-reviewed (for effects) or otherwise authoritative (for content and exposure); and a study population of American adolescents 11 to 19 years old or comparable groups in other postindustrial English-speaking countries. Excluded from the study were populations drawn from college students. Although television is subject to ongoing tracking of its sexual content, other media are terra incognita. Data regarding adolescent exposure to various media are, for the most part, severely dated. Few studies have examined the effects of mass media on adolescent sexual attitudes and behaviors: only 12 of 2522 research-related documents (<1%) involving media and youth addressed effects, 10 of which were peer reviewed. None can serve as the grounding for evidence-based public policy. These studies are limited in their generalizability by their cross-sectional study designs, limited sampling designs, and small sample sizes. In addition, we do not know the long-term effectiveness of various social-cultural, technologic, and media approaches to minimizing that exposure (eg, V-Chips on television, Internet-filtering-software, parental supervision, rating systems) or minimizing the effects of that exposure (eg, media-literacy programs). Research needs to include development of well-specified and robust research measures and methodologies; ongoing national surveillance of the sexual content of media and the exposure of various demographic subgroups of adolescents to that content; and longitudinal studies of the effects of that exposure on the sexual decision-making, attitudes, and behaviors of those subgroups. Additional specific research foci involve the success of various types of controls in limiting exposure and the mitigative effects of, for example, parental influence and best-practice media-literacy programs.

  10. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  11. Did the pandemic have an impact on influenza vaccination attitude? A survey among health care workers.

    PubMed

    Arda, Bilgin; Durusoy, Raika; Yamazhan, Tansu; Sipahi, Oğuz Reşat; Taşbakan, Meltem; Pullukçu, Hüsnü; Erdem, Esra; Ulusoy, Sercan

    2011-04-07

    Health care workers' (HCWs) influenza vaccination attitude is known to be negative. The H1N1 epidemic had started in mid 2009 and made a peak in October-November in Turkey. A national vaccination campaign began on November 2nd, 2009. Despite the diligent efforts of the Ministry of Health and NGOs, the attitudes of the media and politicians were mostly negative. The aim of this study was to evaluate whether HCWs' vaccination attitudes improved during the pandemic and to assess the related factors. This cross-sectional survey was carried out at the largest university hospital of the Aegean Region-Turkey. A self-administered questionnaire with 12 structured questions was applied to 807 HCWs (sample coverage 91.3%) before the onset of the vaccination programme. Their final vaccination status was tracked one week afterwards, using immunization records. Factors influencing vaccination rates were analyzed using ANOVA, t-test, chi-square test and logistic regression. Among 807 participants, 363 (45.3%) were doctors and 293 (36.6%) nurses. A total of 153 (19.0%) had been vaccinated against seasonal influenza in the 2008-2009 season. Regarding H1N1 vaccination, 143 (17.7%) were willing to be vaccinated vs. 357 (44.2%) unwilling. The number of indecisive HCWs was 307 (38.0%) one week prior to vaccination. Only 53 (11.1%) stated that they would vaccinate their children. Possible side effects (78%, n = 519) and lack of comprehensive field evaluation before marketing (77%, n = 508) were the most common reasons underlying unwillingness or hesitation.Among the 749 staff whose vaccination status could be tracked, 228 (30.4%) actually received the H1N1 vaccine. Some of the 'decided' staff members had changed their mind one week later. Only 82 (60%) of those willing, 108 (37%) of those indecisive and 38 (12%) of those unwilling were vaccinated.Indecisive HCWs were significantly younger (p = 0.017). Females, nurses, and HCWs working in surgical departments were more likely to reject vaccination (p < 0.05). Doctors, HCWs working in medical departments, and HCWs previously vaccinated against seasonal influenza were more likely to accept vaccination (p < 0.05). Being younger than 50 and having been vaccinated in the previous season were important predictors of attitude towards pandemic influenza vaccination. Vaccination rates increased substantially in comparison to the previous influenza season. However, vaccination rates could have been even higher since hesitation to be vaccinated increased dramatically within one week (only 60% of those willing and the minority of those indecisive were finally vaccinated). We speculate that this may be connected with negative media at the time.

  12. Did the pandemic have an impact on influenza vaccination attitude? a survey among health care workers

    PubMed Central

    2011-01-01

    Background Health care workers' (HCWs) influenza vaccination attitude is known to be negative. The H1N1 epidemic had started in mid 2009 and made a peak in October-November in Turkey. A national vaccination campaign began on November 2nd, 2009. Despite the diligent efforts of the Ministry of Health and NGOs, the attitudes of the media and politicians were mostly negative. The aim of this study was to evaluate whether HCWs' vaccination attitudes improved during the pandemic and to assess the related factors. Methods This cross-sectional survey was carried out at the largest university hospital of the Aegean Region-Turkey. A self-administered questionnaire with 12 structured questions was applied to 807 HCWs (sample coverage 91.3%) before the onset of the vaccination programme. Their final vaccination status was tracked one week afterwards, using immunization records. Factors influencing vaccination rates were analyzed using ANOVA, t-test, chi-square test and logistic regression. Results Among 807 participants, 363 (45.3%) were doctors and 293 (36.6%) nurses. A total of 153 (19.0%) had been vaccinated against seasonal influenza in the 2008-2009 season. Regarding H1N1 vaccination, 143 (17.7%) were willing to be vaccinated vs. 357 (44.2%) unwilling. The number of indecisive HCWs was 307 (38.0%) one week prior to vaccination. Only 53 (11.1%) stated that they would vaccinate their children. Possible side effects (78%, n = 519) and lack of comprehensive field evaluation before marketing (77%, n = 508) were the most common reasons underlying unwillingness or hesitation. Among the 749 staff whose vaccination status could be tracked, 228 (30.4%) actually received the H1N1 vaccine. Some of the 'decided' staff members had changed their mind one week later. Only 82 (60%) of those willing, 108 (37%) of those indecisive and 38 (12%) of those unwilling were vaccinated. Indecisive HCWs were significantly younger (p = 0.017). Females, nurses, and HCWs working in surgical departments were more likely to reject vaccination (p < 0.05). Doctors, HCWs working in medical departments, and HCWs previously vaccinated against seasonal influenza were more likely to accept vaccination (p < 0.05). Being younger than 50 and having been vaccinated in the previous season were important predictors of attitude towards pandemic influenza vaccination. Conclusions Vaccination rates increased substantially in comparison to the previous influenza season. However, vaccination rates could have been even higher since hesitation to be vaccinated increased dramatically within one week (only 60% of those willing and the minority of those indecisive were finally vaccinated). We speculate that this may be connected with negative media at the time. PMID:21473763

  13. Patient-perceived acceptability and behaviour change benefits of inhaler reminders and adherence feedback: A qualitative study.

    PubMed

    Foster, Juliet M; Reddel, Helen K; Usherwood, Tim; Sawyer, Susan M; Smith, Lorraine

    2017-08-01

    Little is known about patients' perceptions of electronic inhaler reminders, which have emerged in recent years as adherence promotion aids. This study explored asthma patients' attitudes toward the acceptability and utility of inhaler reminders. Participants from a 6-month cluster randomized controlled trial who received reminders for missed doses via SmartTrack adherence monitors (Adherium Ltd) were interviewed to explore their perceptions; interviews were audio-recorded, transcribed and analysed thematically. 18 participants (50% male, mean age 39 years [range 17-68]) were interviewed. Three themes were identified. Acceptability and Feasibility: Interviewees found the monitor easy to use. For some, concerns about the monitor itself affected adherence, e.g. leaving it at home to avoid breakage. Positive features included that reminders played only for missed doses, and the choice of reminder tunes. Utility and Behavioural Impact: Interviewees described reminders as an effective "training" tool for adherence, encouraging habit-formation, behaviour change and attitude change. Reminders were considered less acceptable or useful by participants who preferred taking medication only when symptomatic or who doubted the necessity or safety of their medication. Sustainability: Some interviewees reported sustained behaviour change, supported by reminders, through the establishment of routine or via experiential learning that good adherence improved their asthma. Other interviewees wanted ongoing support (i.e. reminders or substitute adherence cues) after study end. Patients with asthma found 6-months' use of reminders and adherence feedback acceptable and useful for improving their adherence attitudes, adherence behaviours and confidence in asthma self-management. Some patients may benefit from ongoing adherence support. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Voyager Spacecraft. [Jupiter-Saturn mission investigations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration of the Voyager spacecraft is described as well as the subsystems for power, temperature control, attitude control, and propulsion. Major features of Jupiter and Saturn including their atmospheres, surfaces, and natural satellites are discussed. The 13 onboard experiments and their scientific objectives are explained. Other aspects covered include tracking, data acquisition, and the mission control and computing center. Members of the Voyager team and subcontractors are listed.

  15. The 1984 ARI Survey of Army Recruits: User’s Manual

    DTIC Science & Technology

    1986-05-01

    KCEY WOROS (Caiu.a on toaa.. aide linaloiiaial ai .,, Ida &r bloog naea Army Recruiting, New Recruit Survey Enlistment Motivations . -’Recruit...designed in 1982 to answer questions concerning the demo- graphics and enlistment motivations of new Army recruits. In addition to the ability to track...SURVIY OF ARMY RECRUITS: USER’S MANUAL EXECUTIVE SUMMArY ~Reguirement: To obtain information on the characteristics, enlistment motivations , attitudes

  16. Improvements to the FATOLA computer program including nosewheel steering: Supplemental instruction manual

    NASA Technical Reports Server (NTRS)

    Carden, H. D.; Mcgehee, J. R.

    1978-01-01

    Modifications to a multidegree of freedom flexible aircraft take-off and landing analysis (FATOLA) computer program, which improved its simulation capabilities, are discussed, and supplemental instructions for use of the program are included. Sample analytical results which illustrate the capabilities of an added nosewheel steering option indicate consistent behavior of the airplane tracking, attitude, motions, and loads for the landing cases and steering situations which were investigated.

  17. Predicting Student Grade Based on Free-Style Comments Using Word2Vec and ANN by Considering Prediction Results Obtained in Consecutive Lessons

    ERIC Educational Resources Information Center

    Luo, Jingyi; Sorour, Shaymaa E.; Goda, Kazumasa; Mine, Tsunenori

    2015-01-01

    Continuously tracking students during a whole semester plays a vital role to enable a teacher to grasp their learning situation, attitude and motivation. It also helps to give correct assessment and useful feedback to them. To this end, we ask students to write their comments just after each lesson, because student comments reflect their learning…

  18. Understanding Satellite Characterization Knowledge Gained from Radiometric Data

    DTIC Science & Technology

    2011-09-01

    observation model, the time - resolved pose of a satellite can be estimated autonomously through each pass from non- resolved radiometry. The benefits of...and we assume the satellite can achieve both the set attitude and the necessary maneuver to change its orientation from one time -step to the next...Observation Model The UKF observation model uses the Time domain Analysis Simulation for Advanced Tracking (TASAT) software to provide high-fidelity satellite

  19. PiVoT GPS Receiver

    NASA Technical Reports Server (NTRS)

    Wennersten, Miriam Dvorak; Banes, Anthony Vince; Boegner, Gregory J.; Dougherty, Lamar; Edwards, Bernard L.; Roman, Joseph; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center has built an open architecture, 24 channel space flight GPS receiver. The CompactPCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder-2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card will track a weaker signal than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Plessey Builder 2 software ported to the Linux operating system. The software is POSIX complaint and can easily be converted to other POSIX operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened CompactPCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation. PiVoT was flown successfully on a balloon in July, 2001, for its first non-simulated flight.

  20. Restructured Freedom configuration characteristics

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.

    1991-01-01

    In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.

  1. Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.

    2001-07-01

    The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.

  2. Exchange of Standardized Flight Dynamics Data

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Berry, David; Flores-Amaya, Felipe; Folliard, J.; Kiehling, R.; Ogawa, M.; Pallaschke, S.

    2004-01-01

    Spacecraft operations require the knowledge of the vehicle trajectory and attitude and also that of other spacecraft or natural bodies. This knowledge is normally provided by the Flight Dynamics teams of the different space organizations and, as very often spacecraft operations involve more than one organization, this information needs to be exchanged between Agencies. This is why the Navigation Working Group within the CCSDS (Consultative Committee for Space Data Systems), has been instituted with the task of establishing standards for the exchange of Flight Dynamics data. This exchange encompasses trajectory data, attitude data, and tracking data. The Navigation Working Group includes regular members and observers representing the participating Space Agencies. Currently the group includes representatives from CNES, DLR, ESA, NASA and JAXA. This Working Group meets twice per year in order to devise standardized language, methods, and formats for the description and exchange of Navigation data. Early versions of some of these standards have been used to support mutual tracking of ESA and NASA interplanetary spacecraft, especially during the arrival of the 2003 missions to Mars. This paper provides a summary of the activities carried out by the group, briefly outlines the current and envisioned standards, describes the tests and operational activities that have been performed using the standards, and lists and discusses the lessons learned from these activities.

  3. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  4. The influence of HIV disease events/stages on smoking attitudes and behaviors: project STATE (Study of Tobacco Attitudes and Teachable Events).

    PubMed

    Vidrine, Damon J; Fletcher, Faith E; Buchberg, Meredith K; Li, Yisheng; Arduino, Roberto C; Gritz, Ellen R

    2014-02-11

    Given the increase in life expectancy among HIV-positive individuals attributable to antiretroviral therapies, cigarette smoking now represents one of the most salient health risks confronting the HIV-positive population. Despite this risk, very few efforts to date have been made to target persons living with HIV for smoking cessation treatment, and no efforts have been made to explore the role of cognitions and HIV disease events/stages on smoking outcomes. The purpose of the study, Project STATE (Study of Tobacco Attitudes and Teachable Events), is to prospectively examine the relationship between HIV events/stages, perceived impact of HIV disease, attitudes about cigarette smoking, and smoking behaviors. This study employs a prospective design. Patients are recruited at the time of their first physician visit at a large inner city HIV-clinic--Thomas Street Health Center (TSHC). Consenting participants then complete a baseline assessment. All participants are offered standard care smoking cessation treatment. Follow-up assessments are completed on four subsequent occasions: 3, 6, 9, and 12 months post-baseline. These follow-up assessments are scheduled to coincide with routine clinic appointments with their TSHC physicians. In addition, each participant is given a prepaid cell phone at the time of enrollment and asked to complete brief phone assessments weekly for the first three months of the study period. By evaluating events/stages of HIV disease as potential teaching moments for smoking cessation, findings from this study could be used to develop treatments tailored to an individual's stage of HIV disease. This study design will enable us to carefully track changes in smoking behavior over time, and to link these changes to both the course of HIV disease and/or to the participant's' perceived impact of HIV. By identifying optimal time points for intervention, the findings from this study will have the potential to maximize the efficiency and efficacy of cessation treatments delivered in resource-limited settings. In addition, the findings will be instrumental in identifying specific constructs that should be targeted for intervention and will provide a strong foundation for the development of future cessation interventions targeting smokers living with HIV/AIDS.

  5. Field-of-View Guiding Camera on the HISAKI (SPRINT-A) Satellite

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Tsuchiya, F.; Sakanoi, T.; Uemizu, K.; Yoshioka, K.; Murakami, G.; Kagitani, M.; Kasaba, Y.; Yoshikawa, I.; Terada, N.; Kimura, T.; Sakai, S.; Nakaya, K.; Fukuda, S.; Sawai, S.

    2014-11-01

    HISAKI (SPRINT-A) satellite is an earth-orbiting Extreme UltraViolet (EUV) spectroscopic mission and launched on 14 Sep. 2013 by the launch vehicle Epsilon-1. Extreme ultraviolet spectroscope (EXCEED) onboard the satellite will investigate plasma dynamics in Jupiter's inner magnetosphere and atmospheric escape from Venus and Mars. EUV spectroscopy is useful to measure electron density and temperature and ion composition in plasma environment. EXCEED also has an advantage to measure spatial distribution of plasmas around the planets. To measure radial plasma distribution in the Jovian inner magnetosphere and plasma emissions from ionosphere, exosphere and tail separately (for Venus and Mars), the pointing accuracy of the spectroscope should be smaller than spatial structures of interest (20 arc-seconds). For satellites in the low earth orbit (LEO), the pointing displacement is generally caused by change of alignment between the satellite bus module and the telescope due to the changing thermal inputs from the Sun and Earth. The HISAKI satellite is designed to compensate the displacement by tracking the target with using a Field-Of-View (FOV) guiding camera. Initial checkout of the attitude control for the EXCEED observation shows that pointing accuracy kept within 2 arc-seconds in a case of "track mode" which is used for Jupiter observation. For observations of Mercury, Venus, Mars, and Saturn, the entire disk will be guided inside slit to observe plasma around the planets. Since the FOV camera does not capture the disk in this case, the satellite uses a star tracker (STT) to hold the attitude ("hold mode"). Pointing accuracy during this mode has been 20-25 arc-seconds. It has been confirmed that the attitude control works well as designed.

  6. Polarized-interferometer feasibility study

    NASA Technical Reports Server (NTRS)

    Raab, F. H.

    1983-01-01

    The feasibility of using a polarized-interferometer system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized interferometer is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized interferometer concept are verified by simulation.

  7. Evaluating a community saturation model of abstinence education: an application of social marketing strategies.

    PubMed

    Tanner, John F; Anne Raymond, Mary; Ladd, Stacey D

    2009-01-01

    This study examines a community saturation program, a social marketing strategy, promoting abstinence education and evaluates the effects of this strategy on adolescents' attitudes and sexual behaviors. The study also examines components of the strategy to determine which program element was most influential. The Worth the Wait program was implemented in five counties in Texas beginning in 1999 for the first county and in 2000 and 2001 for the other four counties. A total of 2007 students in grades 7 through 12 were tracked and answered an end-of-the-year post-program survey after varying time periods of school program participation. Results indicate that a saturation program can be effective in reducing teen pregnancy.

  8. A COTS-Based Attitude Dependent Contact Scheduling System

    NASA Technical Reports Server (NTRS)

    DeGumbia, Jonathan D.; Stezelberger, Shane T.; Woodard, Mark

    2006-01-01

    The mission architecture of the Gamma-ray Large Area Space Telescope (GLAST) requires a sophisticated ground system component for scheduling the downlink of science data. Contacts between the ````````````````` satellite and the Tracking and Data Relay Satellite System (TDRSS) are restricted by the limited field-of-view of the science data downlink antenna. In addition, contacts must be scheduled when permitted by the satellite s complex and non-repeating attitude profile. Complicating the matter further, the long lead-time required to schedule TDRSS services, combined with the short duration of the downlink contact opportunities, mandates accurate GLAST orbit and attitude modeling. These circumstances require the development of a scheduling system that is capable of predictively and accurately modeling not only the orbital position of GLAST but also its attitude. This paper details the methods used in the design of a Commercial Off The Shelf (COTS)-based attitude-dependent. TDRSS contact Scheduling system that meets the unique scheduling requirements of the GLAST mission, and it suggests a COTS-based scheduling approach to support future missions. The scheduling system applies filtering and smoothing algorithms to telemetered GPS data to produce high-accuracy predictive GLAST orbit ephemerides. Next, bus pointing commands from the GLAST Science Support Center are used to model the complexities of the two dynamic science gathering attitude modes. Attitude-dependent view periods are then generated between GLAST and each of the supporting TDRSs. Numerous scheduling constraints are then applied to account for various mission specific resource limitations. Next, an optimization engine is used to produce an optimized TDRSS contact schedule request which is sent to TDRSS scheduling for confirmation. Lastly, the confirmed TDRSS contact schedule is rectified with an updated ephemeris and adjusted bus pointing commands to produce a final science downlink contact schedule.

  9. Ground Testing Strategies for Verifying the Slew Rate Tolerance of Star Trackers

    PubMed Central

    Dzamba, Tom; Enright, John

    2014-01-01

    The performance of a star tracker is largely based on the availability of its attitude solution. Several methods exist to assess star tracker availability under both static and dynamic imaging conditions. However, these methods typically make various idealizations that can limit the accuracy of these results. This study aims to increase the fidelity of star tracker availability modeling by accounting for the effects of detection logic and pixel saturation on star detection. We achieve this by developing an analytical model for the focal plane intensity distribution of a star in the presence of sensor slew. Using the developed model, we examine the effects of slew rate on star detection using simulations and lab tests. The developed approach allows us to determine the maximum slew rate for which a star of a given stellar magnitude can still be detected. This information can then be used to describe the availability of a star tracker attitude solution as a function of slew rate, both spatially, across the entire celestial sphere, or locally, along a specified orientation track. PMID:24577522

  10. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  11. SED16 autonomous star tracker night sky testing

    NASA Astrophysics Data System (ADS)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  12. Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect

    NASA Astrophysics Data System (ADS)

    Chao, Chia-Chun George

    2009-03-01

    The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.

  13. Concepts of Interface Usability and the Enhancement of Design through Eye Tracking and Psychophysiology

    DTIC Science & Technology

    2008-09-01

    attention. Heart rate (HR) and heart rate variability ( HRV ) are biometrics that can be used to identify periods of high mental effort and high stress...HR is known to increase when a person is exposed to mental stressors; HRV will decrease in the same situation. HRV is a much more sensitive measure...mistakes, the display is cluttered, meaningfulness. Measuring specific attitudes Annoyance, anxiety , complexity control, engagement, flexibility, fun

  14. Pre-launch Optical Characteristics of the Oculus-ASR Nanosatellite for Attitude and Shape Recognition Experiments

    DTIC Science & Technology

    2011-12-02

    construction and validation of predictive computer models such as those used in Time-domain Analysis Simulation for Advanced Tracking (TASAT), a...characterization data, successful construction and validation of predictive computer models was accomplished. And an investigation in pose determination from...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES

  15. Veterans Attitude Tracking Study -- 1983, Wave I. Data Tables. Supplement 1,

    DTIC Science & Technology

    1984-05-01

    5.6 9.9 6.8 8.2 Admini strative 18.5 20.4 13.U 17.2 Medical 3.6 0.7 0.7 1.3 Other 0.4 0.7 0.0 0.9 Dont know .b 4.6 4.1 3.4 1) Asked only of respondents...toward Guard/ Reserve participation, -- Talked with their co-workers about enlisting in the Guard/Reserve, or -- Seen notices, posters , or other...A N/A 72.9 9 17 Total N/A N/A N/A N/A 100% (11.6%) (23.5%) Seen any notices, posters , or other literature at workplace(’Q R-35b) Yes N/A N/A N/A N/A

  16. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  17. Characterization of Inactive Rocket Bodies Via Non-Resolved Photometric Data

    NASA Astrophysics Data System (ADS)

    Linares, R.; Palmer, D.; Thompson, D.; Klimenko, A.

    2014-09-01

    Recent events in space, including the collision of Russias Cosmos 2251 satellite with Iridium 33 and Chinas Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of Space Surveillance Network (SSN) and its ability to provide accurate and actionable impact probability estimates. The SSN network has the unique challenge of tracking more than 18,000 resident space objects (RSOs) and providing critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large number of RSOs and the limited number of sensors available to track them, it is impossible to maintain persistent surveillance. Observation gaps result in large propagation intervals between measurements and close approaches. Coupled with nonlinear RSO dynamics this results in difficulty in modeling the probability distribution functions (pdfs) of the RSO. In particular low-Earth orbiting (LEO) satellites are heavily influenced by atmospheric drag, which is very difficult to model accurately. A number of atmospheric models exist which can be classified as either empirical or physics-based models. The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical model based on observation of calibration satellites. These satellite observations are used to determine model parameters based on their orbit determination solutions. Atmospheric orbits are perturbed by a number of factors including drag coefficient, attitude, and shape of the space object. The satellites used for the HASDM model calibration process are chosen because of their relatively simple shapes, to minimize errors introduced due to shape miss-modeling. Under this requirement the number of calibration satellites that can be used for calibrating the atmospheric models is limited. Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve impact assessment via improved physics-based modeling. As part of this effort calibration satellite observations are used to dynamically calibrate the physics-based model and to improve its forecasting capability. The observations are collected from a variety of sources, including from LANLs own Raven-class optical telescope. This system collects both astrometric and photometric data on space objects. The photometric data will be used to estimate the space objects attitude and shape. Non-resolved photometric data have been studied by many as a mechanism for space object characterization. Photometry is the measurement of an objects flux or apparent brightness measured over a wavelength band. The temporal variation of photometric measurements is referred to as photometric signature. The photometric optical signature of an object contains information about shape, attitude, size and material composition. This work focuses on the processing of the data collected with LANLs telescope in an effort to use photometric data to expand the number of space objects that can be used as calibration satellites. A nonlinear least squares is used to estimate the attitude and angular velocity of the space object; a number of real data examples are shown. Inactive space objects are used for the real data examples and good estimation results are shown.

  18. Photometric Data from Non-Resolved Objects for Space Object Characterization and Improved Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Linares, R.; Palmer, D.; Thompson, D.; Koller, J.

    2013-09-01

    Recent events in space, including the collision of Russia's Cosmos 2251 satellite with Iridium 33 and China's Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of Space Surveillance Network (SSN) and its ability to provide accurate and actionable impact probability estimates. The SSN network has the unique challenge of tracking more than 18,000 resident space objects (RSOs) and providing critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large number of RSOs and the limited number of sensors available to track them, it is impossible to maintain persistent surveillance. Observation gaps result in large propagation intervals between measurements and close approaches. Coupled with nonlinear RSO dynamics this results in difficulty in modeling the probability distribution functions (pdfs) of the RSO. In particular low-Earth orbiting (LEO) satellites are heavily influenced by atmospheric drag, which is very difficult to model accurately. A number of atmospheric models exist which can be classified as either empirical or physics-based models. The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical model based on observation of calibration satellites. These satellite observations are used to determine model parameters based on their orbit determination solutions. Atmospheric orbits are perturbed by a number of factors including drag coefficient, attitude, and shape of the space object. The satellites used for the HASDM model calibration process are chosen because of their relatively simple shapes, to minimize errors introduced due to shape miss-modeling. Under this requirement the number of calibration satellites that can be used for calibrating the atmospheric models is limited. Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve impact assessment via improved physics-based modeling. As part of this effort calibration satellite observations are used to dynamically calibrate the physics-based model and to improve its forecasting capability. The observations are collected from a variety of sources, including from LANL's own Raven-class optical telescope. This system collects both astrometric and photometric data on space objects. The photometric data will be used to estimate the space objects' attitude and shape. Non-resolved photometric data have been studied by many as a mechanism for space object characterization. Photometry is the measurement of an object's flux or apparent brightness measured over a wavelength band. The temporal variation of photometric measurements is referred to as photometric signature. The photometric optical signature of an object contains information about shape, attitude, size and material composition. This work focuses on the processing of the data collected with LANL's telescope in an effort to use photometric data to expand the number of space objects that can be used as calibration satellites. An Unscented Kalman filter is used to estimate the attitude and angular velocity of the space object; both real data and simulated data scenarios are shown. A number of inactive space objects are used for the real data examples and good estimation results are shown.

  19. Nurturing 21st century physician knowledge, skills and attitudes with medical home innovations: the Wright Center for Graduate Medical Education teaching health center curriculum experience

    PubMed Central

    Palamaner Subash Shantha, Ghanshyam; Gollamudi, Lakshmi Rani; Sheth, Jignesh; Ebersole, Brian; Gardner, Katlyn J.; Nardella, Julie; Ruddy, Meaghan P.; Meade, Lauren

    2015-01-01

    Purpose. The effect of patient centered medical home (PCMH) curriculum interventions on residents’ self-reported and demonstrated knowledge, skills and attitudes in PCMH competency arenas (KSA) is lacking in the literature. This study aimed to assess the impact of PCMH curricular innovations on the KSA of Internal Medicine residents. Methods. Twenty four (24) Internal Medicine residents—12 Traditional (TR) track residents and 12 Teaching Health Center (THC) track residents—began training in Academic Year (AY) 2011 at the Wright Center for Graduate Medical Education (WCGME). They were followed through AY2013, covering three years of training. PCMH curricular innovations were focally applied July 2011 until May 2012 to THC residents. These curricular innovations were spread program-wide in May 2012. Semi-annual, validated PCMH Clinician Assessments assessing KSA were started in AY2011 and were completed by all residents. Results. Mean KSA scores of TR residents were similar to those of THC residents at baseline for all PCMH competencies. In May 2012, mean scores of THC residents were significantly higher than TR residents for most KSA. After program-wide implementation of PCMH innovations, mean scores of TR residents for all KSA improved and most became equalized to those of THC residents. Globally improved KSA scores of THC and TR residents were maintained through May 2014, with the majority of improvements above baseline and reaching statistical significance. Conclusions. PCMH curricular innovations inspired by Health Resources and Services Administration (HRSA’s) Teaching Health Center funded residency program expansion quickly and consistently improved the KSA of Internal Medicine residents. PMID:25699213

  20. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body velocity tracking case, gamma = 107:2043 for the exible body altitude tracking case, and gamma = 97:7403 for the rigid body altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. The results of this analysis show that there is a larger difference in the response of the Hinfinity LPV controller and the Hinfinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the Hinfinity LPV controller was applied to the exible nonlinear plant model. The rigid body controllers were applied to the exible plant model to see if the exible nature of the vehicle could be treated as a perturbation to the system. Additionally, there were simulations run both with and without sensor noise and parametric uncertainty. The results of simulation show that the rigid body controller is able to successfully apply to the exible body model for the velocity tracking case, but is unable to stabilize the altitude tracking case. It was also seen that the system is able to track the command signal while minimizing the variations seen in the altitude for the velocity tracking case and in the velocity during the altitude tracking case. Additionally, there was no obvious effect of perturbations in the system on the tracking state or secondary regulation state. There were high frequency responses associated with the other perturbed states.

  1. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  2. Inverse free steering law for small satellite attitude control and power tracking with VSCMGs

    NASA Astrophysics Data System (ADS)

    Malik, M. S. I.; Asghar, Sajjad

    2014-01-01

    Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.

  3. Performance Testing of a Magnetically Suspended Double Gimbal Control Moment Gyro Based on the Single Axis Air Bearing Table

    PubMed Central

    Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng

    2012-01-01

    Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536

  4. Error analysis and experiments of attitude measurement using laser gyroscope

    NASA Astrophysics Data System (ADS)

    Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao

    2018-03-01

    The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.

  5. Attitude and Translation Control of a Solar Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  6. Findings from the Families on Track Intervention Pilot Trial for Children with Fetal Alcohol Spectrum Disorders and Their Families.

    PubMed

    Petrenko, Christie L M; Pandolfino, Mary E; Robinson, Luther K

    2017-07-01

    Individuals with fetal alcohol spectrum disorders (FASD) are at high risk for costly, debilitating mental health problems and secondary conditions, such as school disruption, trouble with the law, and substance use. The study objective was to pilot a multicomponent intervention designed to prevent secondary conditions in children with FASD and improve family adaptation. Thirty children with FASD or prenatal alcohol exposure (PAE) (ages 4 to 8) and their primary caregivers were enrolled. Families were randomized to either the Families on Track Integrated Preventive Intervention or an active control of neuropsychological assessment and personalized community referrals. The 30-week intervention integrates scientifically validated bimonthly, in-home parent behavioral consultation, and weekly child skills groups. Outcomes measured at baseline and follow-up postintervention included intervention satisfaction, child emotional and behavioral functioning, child self-esteem, caregiver knowledge of FASD and advocacy, caregiver attitudes, use of targeted parenting practices, perceived family needs met, social support, and self-care. Data analysis emphasized calculation of effect sizes and was supplemented with analysis of variance techniques. Analyses indicated that families participating in the intervention reported high program satisfaction. Relative to comparison group outcomes, the intervention was associated with medium-to-large effects for child emotion regulation, self-esteem, and anxiety. Medium-sized improvements in disruptive behavior were observed for both groups. Medium and large effects were seen for important caregiver outcomes: knowledge of FASD and advocacy, attributions of behavior, use of antecedent strategies, parenting efficacy, family needs met, social support, and self-care. This pilot study yielded promising findings from the multicomponent Families on Track Integrated Preventive Intervention for child and caregiver outcomes. An important next step is to complete a randomized control trial of the Families on Track Program with a larger sample fully representative of this underserved clinical population with built-in study of implementation parameters. Copyright © 2017 by the Research Society on Alcoholism.

  7. Effectiveness of cross-cultural education for medical residents caring for burmese refugees.

    PubMed

    McHenry, Megan Song; Nutakki, Kavitha; Swigonski, Nancy L

    2016-01-01

    Limited resources are available to educate health professionals on cultural considerations and specific healthcare needs of Burmese refugees. The objective of this study was to determine the effectiveness of a module focused on cross-cultural considerations when caring for Burmese refugees. A brief educational module using anonymously tracked pre- and post-intervention, self-administered surveys was developed and studied. The surveys measured pediatric and family medicine residents' knowledge, attitudes, and comfort in caring for Burmese refugees. Paired t-tests for continuous variables and Fisher's exact tests for categorical variables were used to test pre- and post-intervention differences. We included open-ended questions for residents to describe their experiences with the Burmese population. The survey was available to 173 residents. Forty-four pre- and post-intervention surveys were completed (response rate of 25%). Resident comfort in caring for Burmese increased significantly after the module (P = 0.04). Resident knowledge of population-specific cultural information increased regarding ethnic groups (P = 0.004), appropriate laboratory use (P = 0.04), and history gathering (P = 0.001). Areas of improved resident attitudes included comprehension of information from families (P = 0.03) and length of time required with interpreter (P = 0.01). Thematic evaluation of qualitative data highlighted four themes: access to interpreter and resources, verbal communication, nonverbal communication, and relationship building with cultural considerations. A brief intervention for residents has the potential to improve knowledge, attitudes, and comfort in caring for Burmese patients. Interventions focused on cultural considerations in medical care may improve cultural competency when caring for vulnerable patient populations.

  8. Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32

    NASA Technical Reports Server (NTRS)

    Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.

    1990-01-01

    The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.

  9. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  10. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  11. Wallops waveform analysis of SEASAT-1 radar altimeter data

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1980-01-01

    Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.

  12. Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions

    DTIC Science & Technology

    2005-01-01

    C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller

  13. High-Resolution Mapping of Mines and Ripples at the Martha’s Vineyard Coastal Observatory

    DTIC Science & Technology

    2007-01-01

    time positioning and vessel motion were tracked using a POS-MV v.3 ( Applanix Corp., Richmond Hill, ON, Canada) inertial mo- tion sensor with two...outfitted with a hull-mounted Reson 8125, an Applanix POS-MV attitude sensor and positioning system, and a Brooke Ocean Technology, Dartmouth, NS...reported are referenced to mean low lower water (MLLW). For the October 2003 survey, positioning data were postpro- cessed by Applanix for kinematic

  14. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology.

    PubMed

    Xia, Dunzhu; Yao, Yanhong; Cheng, Limei

    2017-06-15

    In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.

  15. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology

    PubMed Central

    Xia, Dunzhu; Yao, Yanhong; Cheng, Limei

    2017-01-01

    In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338

  16. Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.

    PubMed

    Lu, Xiaodong; Xie, Yuting; Zhou, Jun

    2018-05-27

    Inspired by the problem that the current spatial registration methods are unsuitable for three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for the registration errors of cooperative missiles and motion states of maneuvering target. There are two types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate the deviations mentioned above, from which the outcomes are furtherly compensated to the error terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of filtering results are monitored by a position-judgement logic, and a low-pass first order filter is selectively introduced before compensation to inhibit the jitter of estimations. In the simulation, the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space alignment, while the conditional-compensation-based PLKF method is demonstrated to be the optimal performance in target tracking.

  17. Space Shuttle orbit determination using empirical force modeling of attitude maneuvers for the German MOMS-02/D2 mission

    NASA Technical Reports Server (NTRS)

    Vonbraun, C.; Reigber, Christoph

    1994-01-01

    In the spring of 1993, the MOMS-02 (modular Optoelectronic Multispectral Scanner) camera, as part of the second German Spacelab mission aboard STS-55, successfully took digital threefold stereo images of the surface of the Earth. While the mission is experimental in nature, its primary goals are to produce high quality maps and three-dimensional digital terrain models of the Earth's surface. Considerable improvement in the quality of the terrain model can be attained if information about the position and attitude of the camera is included during the adjustment of the image data. One of the primary sources of error in the Shuttle's position is due to the significant attitude maneuvers conducted during the course of the mission. Various arcs, using actual Tracking and Data Relay Satellite (TDRSS) Doppler data of STS-55, were processed to determine how effectively empirical force modeling could be used to solve for the radial, transverse, and normal components of the orbit perturbations caused by these routine maneuvers. Results are presented in terms of overlap-orbit differences in the three components. Comparisons of these differences, before and after the maneuvers are estimated, show that the quality of an orbit can be greatly enhanced with this technique, even if several maneuvers are present. Finally, a discussion is made of some of the difficulties encountered with this approach, and some ideas for future studies are presented.

  18. Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.

    2004-01-01

    Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.

  19. Geometric Corrections for Topographic Distortion from Side Scan Sonar Data Obtained by ANKOU System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Fujio; Kato, Yukihiro; Ogasawara, Shohei

    The ANKOU is a newly developed, full ocean depth, long-range vector side scan sonar system. The system provides real time vector side scan sonar data to produce backscattering images and bathymetric maps for seafloor swaths up to 10 km on either side of ship's centerline. Complete geometric corrections are made using towfish attitude and cross-track distortions known as foreshortening and layover caused by violation of the flat bottom assumption. Foreshortening and layover refers to pixels which have been placed at an incorrect cross-track distance. Our correction of this topographic distortion is accomplished by interpolating a bathymetric profile and ANKOU phase data. We applied these processing techniques to ANKOU backscattering data obtained from off Boso Peninsula, and confirmed their efficiency and utility for making geometric corrections of side scan sonar data.

  20. Willingness to Participate in a National Precision Medicine Cohort: Attitudes of Chronic Kidney Disease Patients at a Cleveland Public Hospital.

    PubMed

    Cooke Bailey, Jessica N; Crawford, Dana C; Goldenberg, Aaron; Slaven, Anne; Pencak, Julie; Schachere, Marleen; Bush, William S; Sedor, John R; O'Toole, John F

    2018-06-26

    Multiple ongoing, government-funded national efforts longitudinally collect health data and biospecimens for precision medicine research with ascertainment strategies increasingly emphasizing underrepresented groups in biomedical research. We surveyed chronic kidney disease patients from an academic, public integrated tertiary care system in Cleveland, Ohio, to examine local attitudes toward participation in large-scale government-funded studies. Responses ( n = 103) indicate the majority (71%) would participate in a hypothetical national precision medicine cohort and were willing to send biospecimens to a national repository and share de-identified data, but <50% of respondents were willing to install a phone app to track personal data. The majority of participants (62%) indicated that return of research results was very important, and the majority (54%) also wanted all of their research-collected health and genetic data returned. Response patterns did not differ by race/ethnicity. Overall, we found high willingness to participate among this Cleveland patient population already participating in a local genetic study. These data suggest that despite common perceptions, subjects from communities traditionally underrepresented in genetic research will participate and agree to store samples and health data in repositories. Furthermore, most participants want return of research results, which will require a plan to provide these data in a secure, accessible, and understandable manner.

  1. The effectiveness of student team-achievement division (STAD) for teaching high school chemistry in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Balfakih, Nagib M. A.

    2003-05-01

    Education in the United Arab Emirates (UAE) faces major problems which may hinder its future development. These include low achievement in science and a negative attitude toward science subjects, which have resulted in a high number of student dropouts from the science track in high school. It is believed among UAE educators that the main reason is the way science that has been taught in its schools. A solution to this problem depends on finding effective teaching methods, which maintain student achievement, improve students' attitude and provide opportunities to develop essential scientific skills. The effectiveness of Student Team-Achievement Division (STAD) for teaching science to high school classes in the UAE was investigated. The sample was selected randomly. A representative group of UAE high school students was chosen from the northern province, which includes urban areas, and from the eastern province, which includes rural areas. The study involved sixteen tenth grade classes. During the second semester of the academic year 1998/1999, three units in the chemistry curriculum were covered. This study was designed to investigate the effectiveness of STAD in teaching high school chemistry in the UAE and to find out which groups, gender, area, and ability benefitted most.

  2. Tracking and Data Relay Satellite (TDRS-3) Range Biases and Momentum Unload Modeling for Terra (EOS-AMI)

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.

    2001-01-01

    The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a momentum unload can improve delta-V optimization and prediction accuracy over 1.5 days.

  3. The influence of HIV disease events/stages on smoking attitudes and behaviors: project STATE (Study of Tobacco Attitudes and Teachable Events)

    PubMed Central

    2014-01-01

    Background Given the increase in life expectancy among HIV-positive individuals attributable to antiretroviral therapies, cigarette smoking now represents one of the most salient health risks confronting the HIV-positive population. Despite this risk, very few efforts to date have been made to target persons living with HIV for smoking cessation treatment, and no efforts have been made to explore the role of cognitions and HIV disease events/stages on smoking outcomes. The purpose of the study, Project STATE (Study of Tobacco Attitudes and Teachable Events), is to prospectively examine the relationship between HIV events/stages, perceived impact of HIV disease, attitudes about cigarette smoking, and smoking behaviors. Methods/Design This study employs a prospective design. Patients are recruited at the time of their first physician visit at a large inner city HIV-clinic – Thomas Street Health Center (TSHC). Consenting participants then complete a baseline assessment. All participants are offered standard care smoking cessation treatment. Follow-up assessments are completed on four subsequent occasions: 3, 6, 9, and 12 months post-baseline. These follow-up assessments are scheduled to coincide with routine clinic appointments with their TSHC physicians. In addition, each participant is given a prepaid cell phone at the time of enrollment and asked to complete brief phone assessments weekly for the first three months of the study period. Discussion By evaluating events/stages of HIV disease as potential teaching moments for smoking cessation, findings from this study could be used to develop treatments tailored to an individual’s stage of HIV disease. This study design will enable us to carefully track changes in smoking behavior over time, and to link these changes to both the course of HIV disease and/or to the participant’s’ perceived impact of HIV. By identifying optimal time points for intervention, the findings from this study will have the potential to maximize the efficiency and efficacy of cessation treatments delivered in resource-limited settings. In addition, the findings will be instrumental in identifying specific constructs that should be targeted for intervention and will provide a strong foundation for the development of future cessation interventions targeting smokers living with HIV/AIDS. PMID:24517853

  4. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru

    PubMed Central

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-01

    Background New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results Forty-three participants enrolled in the course – 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1–5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success. PMID:18194533

  5. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    PubMed

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  6. Integrated Positioning for Coal Mining Machinery in Enclosed Underground Mine Based on SINS/WSN

    PubMed Central

    Hui, Jing; Wu, Lei; Yan, Wenxu; Zhou, Lijuan

    2014-01-01

    To realize dynamic positioning of the shearer, a new method based on SINS/WSN is studied in this paper. Firstly, the shearer movement model is built and running regularity of the shearer in coal mining face has been mastered. Secondly, as external calibration of SINS using GPS is infeasible in enclosed underground mine, WSN positioning strategy is proposed to eliminate accumulative error produced by SINS; then the corresponding coupling model is established. Finally, positioning performance is analyzed by simulation and experiment. Results show that attitude angle and position of the shearer can be real-timely tracked by integrated positioning strategy based on SINS/WSN, and positioning precision meet the demand of actual working condition. PMID:24574891

  7. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  8. Inertial-space disturbance rejection for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Holt, Kevin

    1992-01-01

    The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.

  9. Twenty-First Century Strategic Stability: A U.S.-Russia Track II Dialogue

    DTIC Science & Technology

    2014-10-01

    approach to Russia. Until March 2014, the U.S. approach to Russia was a laissez -­‐ faire strategy with regard to developments in Russia’s strategic...treaties. There are also subjective factors, such as the attitude of the Russian leadership to BMD systems that are neither nuclear nor, for the most...the speaker continued, brands as destabilizing any weapon or system that its political-­‐military leadership does not like, be it PGMs, BMD, or

  10. Recent advances in the development and transfer of machine vision technologies for space

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  11. Transceiver for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M.; Bruno, R.

    1990-01-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  12. Transceiver for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, M.; Bruno, R.

    1990-07-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  13. Dim star fringe stabilization demonstration using pathlength feed-forward on the SIM testbed 3 (STB3)

    NASA Astrophysics Data System (ADS)

    Goullioud, Renaud; Alvarez-Salazar, Oscar S.; Nemati, Bijan

    2003-02-01

    Future space-based optical interferometers such as the Space Interferometer Mission require fringe stabilization to the level of nanometers in order to produce astrometric data at the micro-arc-second level. Even the best attitude control system available to date will not be able to stabilize the attitude of a several thousand pound spacecraft to a few milli-arc-seconds. Active pathlength control is usually implemented to compensate for attitude drift of the spacecraft. This issue has been addressed in previous experiments while tracking bright stars. In the case of dim stars, as the sensor bandwidth falls below one hertz, feedback control will not provide sufficient rejection. However, stabilization of the fringes from a dim-star down to the nanometer level can be done open loop using information from additional interferometers looking at bright guide stars. The STB3 testbed developed at the Jet Propulsion Laboratory features three optical interferometers sharing a common baseline, dynamically representative to the SIM interferometer. An artificial star feeding the interferometers is installed on a separate optics bench. Voice coils are used to simulate the attitude motion of the spacecraft by moving the entire bench. Data measured on STB3 show that fringe motion of a dim star due to spacecraft attitude changes can be attenuated by 80 dB at 0.1Hz without feedback control, using only information from two guide stars. This paper describes the STB3 setup, the pathlength feed-forward architecture, implementation issues and data collected with the system.

  14. A modal analysis of flexible aircraft dynamics with handling qualities implications

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.

  15. A Nonlinear, Six-Degree of Freedom Precision Formation Control Algorithm, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.

    2003-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.

  16. I "hear" what you're "saying": Auditory perceptual simulation, reading speed, and reading comprehension.

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-01-01

    Auditory perceptual simulation (APS) during silent reading refers to situations in which the reader actively simulates the voice of a character or other person depicted in a text. In three eye-tracking experiments, APS effects were investigated as people read utterances attributed to a native English speaker, a non-native English speaker, or no speaker at all. APS effects were measured via online eye movements and offline comprehension probes. Results demonstrated that inducing APS during silent reading resulted in observable differences in reading speed when readers simulated the speech of faster compared to slower speakers and compared to silent reading without APS. Social attitude survey results indicated that readers' attitudes towards the native and non-native speech did not consistently influence APS-related effects. APS of both native speech and non-native speech increased reading speed, facilitated deeper, less good-enough sentence processing, and improved comprehension compared to normal silent reading.

  17. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Wu, Hu; Schubert, Christian; Müller, Jürgen; Pereira dos Santos, Franck

    2018-03-01

    The prospects of future satellite gravimetry missions to sustain a continuous and improved observation of the gravitational field have stimulated studies of new concepts of space inertial sensors with potentially improved precision and stability. This is in particular the case for cold-atom interferometry (CAI) gradiometry which is the object of this paper. The performance of a specific CAI gradiometer design is studied here in terms of quality of the recovered gravity field through a closed-loop numerical simulation of the measurement and processing workflow. First we show that mapping the time-variable field on a monthly basis would require a noise level below 5mE /√{Hz } . The mission scenarios are therefore focused on the static field, like GOCE. Second, the stringent requirement on the angular velocity of a one-arm gradiometer, which must not exceed 10-6 rad/s, leads to two possible modes of operation of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir mode, which corresponds to the usual Earth-pointing satellite attitude, only the gradient Vyy , along the cross-track direction, is measured. In the quasi-inertial mode, the satellite attitude is approximately constant in the inertial reference frame and the 3 diagonal gradients Vxx,Vyy and Vzz are measured. Both modes are successively simulated for a 239 km altitude orbit and the error on the recovered gravity models eventually compared to GOCE solutions. We conclude that for the specific CAI gradiometer design assumed in this paper, only the quasi-inertial mode scenario would be able to significantly outperform GOCE results at the cost of technically challenging requirements on the orbit and attitude control.

  18. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  19. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  20. Orbital and attitude evolution of SCD-1 and SCD-2 Brazilian satellites

    NASA Astrophysics Data System (ADS)

    Murcia, J. O.; Carrara, V.; Kuga, H. K.

    2017-10-01

    The SCD-1 and SCD-2 satellites were launched in 1993 and 1998, respectively, with use of the Launcher “Pegasus” of the OSC (Orbital Sciences Corporation). 21 and 16 years later, the satellites are still in orbit around the Earth and providing data for users. Mission and Operational data from Satellite Tracking Center Network are stored in mission files in the Satellite Control Center (SCC) and made available to the users. The SCC also stores history files of the satellite orbit and attitude ephemeris, besides the on-board telemetry, temperatures, equipment status, etc. This work will present some analysis of the orbit ephemeris evolution based upon the Two-Line Elements sets (TLE’s) obtained from NORAD (North American Aerospace Defense Command). Attitude evolution along time is also presented for both satellites from SCC data. The orbit decay will be explained as resulting mainly due to the solar activity during the satellite lifetime. This work aims to report the history of more than 20 years of continuous operation of SCD-1 and SCD-2. At the end, an estimation of the orbital decay is forecast with the use of NASA’s DAS software.

  1. Efficacy of a post-secondary environmental science education program on the attitude toward science of a group of Mississippi National Guard Youth ChalleNGe Program students

    NASA Astrophysics Data System (ADS)

    Smith, William Bradford, Jr.

    The National Guard Youth ChalleNGe Program (ChalleNGe) is a 17 month quasi-military training program authorized by Congress in the 1993 Defense Authorization Bill designed to improve life skills, education levels, and employment potential of 16--18 year old youth who drop out of high school. ChalleNGe is currently operational in 27 states/territories with the focus of this study on the Mississippi National Guard Program operated at Camp Shelby, Mississippi. During the five month residential portion of the program students are guided through an eight step process designed to meet the goals of improving life skills, education levels, and employment potential while ultimately leading to completion of high school equivalency credentials followed by a 12 month mentoring phase to encourage and track progress toward goals. The purpose of this study was to investigate the attitude toward science of a group of students enrolled in the ChalleNGe Program at Camp Shelby (ChalleNGe). The GED test is administered approximately two months into the residential phase of the program. While the program boasts an overall GED pass rate of nearly 80%, approximately 30--35% of students successfully complete the initial offering of the GED. As high school graduates, these students are offered college courses through William Carey College in Hattiesburg, Mississippi. Twenty four students elected to take the Introduction to Environmental Science course and formed the experimental group while 24 other students who passed the GED comprised the control group. Each group was administered the Scientific Attitude Inventory II, a 40 statement instrument with Likert Scale responses, as a pretest. Paired samples t-tests indicated no significant difference in attitude toward science between the experimental and control groups on the pretest. Following the two week Introduction to Environmental Science course for the experimental group, both groups were post tested. As predicted, the attitude toward science of the experimental group was significantly higher than that of the control group. Further investigation into correlation between the length of time students were away from the traditional school prior to starting ChalleNGe, the number of science classes previously taken, and reading scores on the Test of Adult Basic Education revealed no significant relationship. Responses provided by students to each of these three factors was significantly different between the experimental and control groups. In summary, attitude toward science can be positively impacted by short term interventions such as the environmental science course described herein. While the positive impact on attitude toward science caused by this course was the desired outcome of this project, appropriate emphasis should be placed on prevention of dropouts and the accompanying social issues.

  2. Nudging Resisters Toward Change: Self-Persuasion Interventions for Reducing Attitude Certainty.

    PubMed

    Greenberg, Spencer; Brand, Danielle; Pluta, Aislinn; Moore, Douglas; DeConti, Kirsten

    2018-05-01

    To identify effective self-persuasion protocols that could easily be adapted to face-to-face clinical sessions or health-related computer applications as a first step in breaking patient resistance. Two self-persuasion interventions were tested against 2 controls in a between-subject randomized control experiment. GuidedTrack-a web-based platform for social science experiments. Six hundred seventeen adult participants recruited via Mechanical Turk. The experimental interventions prompted participants for self-referenced pro- and counterattitudinal arguments to elicit attitude-related thought (ART) and subsequent doubt about the attitude. The hypothesis was that the self-persuasion interventions would elicit larger and more frequent attitude certainty decreases than the controls. In the experimental groups, we also predicted a correlation between the amount of ART and attitude certainty decreases. Changes in attitude certainty were measured by participants' pre- and post-ratio scale ratings; ART was measured by the number of words participants used to respond to the interventions. Analysis of variance (ANOVA), χ 2 , and correlation. A goodness-of-fit χ 2 showed that the number of participants who decreased their attitude certainty was not equally distributed between the combined experimental groups (n = 104) and the combined control groups (n = 39), χ 2 (1, n = 143) = 28.64, P < .001. Within each intervention, goodness-of-fit χ 2 with a Bonferroni correction ( P = .01 or .05/4) indicated there were significantly more "decreasers" than "increasers" in intervention 1, χ 2 (1, n = 86) = 6.16, P = .01, but not intervention 2, χ 2 (1, n = 84) = 2.02, P = .16, the nonsense control, χ 2 (1, n = 42) = .22, P = .64), or the distraction control, χ 2 (1, n = 34) = .02, P = .89. A 1-way ANOVA revealed a significant main effect for intervention on mean certainty change ( F 3,613 = 4.62, P = .003). Five post hoc comparisons using Tukey's honest significant difference (HSD) test indicated that the mean decrease in attitude certainty resulting from intervention 1 (M = -3.29) was significantly larger than the mean decrease in attitude certainty resulting from the nonsense control (M = -0.62, t = -2.72, P = .03), the distraction control (M = 0.11, t = 3.48, P = .003), but not intervention 2 (M = -0.87, t = -2.54, P = .06). Attitude-related thought was significantly correlated with attitude certainty change in intervention 1, r(158) = -.17, t = -4.28, P = .02, but not intervention 2, r(161) = -.002, t = -.03, P = .98. The implication for clinical practitioners and designers of health applications is that it may be worthwhile to let patients elaborate on their personal reasons for initially forming an unhealthy attitude to increase doubt about the strongly held attitude.

  3. An evaluation of flight path formats head-up and head-down

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.

    1988-01-01

    Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.

  4. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  5. Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks.

    PubMed

    Hovakimyan, N; Nardi, F; Calise, A; Kim, Nakwan

    2002-01-01

    We consider adaptive output feedback control of uncertain nonlinear systems, in which both the dynamics and the dimension of the regulated system may be unknown. However, the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. The classical approach requires a state observer. Finding a good observer for an uncertain nonlinear system is not an obvious task. We argue that it is sufficient to build an observer for the output tracking error. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. The theoretical results are illustrated in the design of a controller for a fourth-order nonlinear system of relative degree two and a high-bandwidth attitude command system for a model R-50 helicopter.

  6. Summary of the orbit determination of NOZOMI spacecraft for all the mission period

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Kawaguchi, Jun'Ichiro; Yamakawa, Hiroshi; Kato, Takaji; Ichikawa, Tsutomu; Ohnishi, Takafumi; Ishibashi, Shiro

    2005-07-01

    Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It could have reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. One of the most difficult works was the orbit determination for the period without the telemetry. In this period, for the most of the time the high gain antenna did not point to the earth because of a constraint of the attitude. Therefore, the quality of the tracking data was not good, and for some period it was impossible to get the tracking data at all. Under such critical condition, we managed to get the solution of the orbit, and in a near-miraculous way, we were able to control NOZOMI and execute two earth swingbys successfully. Other issues related to the orbit determination are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve these issues by the conventional way using range and Doppler data. However, we also tried the new method, that is the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys.

  7. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  8. Dynamics and control of robot for capturing objects in space

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.

  9. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  10. Tracking Young Adults' Attitudes Toward Tobacco Marketing Using Ecological Momentary Assessment (EMA).

    PubMed

    Roberts, Megan E; Lu, Bo; Browning, Christopher R; Ferketich, Amy K

    2017-07-29

    Decades of research demonstrate the pernicious effects of targeted cigarette marketing on young people. Now, with tobacco marketing shifting toward greater incorporation of alternative products, it is critical to identify current attitudes toward the new landscape of tobacco advertisements. The purpose of this study was to understand the present landscape of tobacco marketing to which young adults are exposed, and to assess how they respond to it. During 2015-2016, we used ecological momentary assessment (EMA), in which 44 young adults (aged 18-28) carried smartphones equipped with a survey app. Seventy-seven percent were ever-users of tobacco and 29.5% were intermittent users of tobacco (someday users of cigarettes and/or those who used another tobacco product >5 times within the past year). For ten days, participants were prompted at three random times/day to complete a brief survey about their exposures and responses to tobacco-related advertising. Analyses used t-test and multilevel modeling. Intermittent users reported greater exposure than non-intermittent users to tobacco advertising. Further, both intermittent and ever-users reported more positive attitudes toward the tobacco advertising. Of the tobacco advertisements reported, 22% were for products unregulated by the FDA at the time of data collection. Conclusions/Importance: These findings indicate that young adults, and especially young adults who use tobacco, are exposed to a fair amount of tobacco advertising on a weekly basis. As the tobacco users in our sample were largely experimental and occasional users, these marketing exposures could put young adults at risk for progression toward regular use.

  11. Summary of LET spectra and dose measurements on ten STS missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.

  12. Sigmoid function based integral-derivative observer and application to autopilot design

    NASA Astrophysics Data System (ADS)

    Shao, Xingling; Wang, Honglun; Liu, Jun; Tang, Jun; Li, Jie; Zhang, Xiaoming; Shen, Chong

    2017-02-01

    To handle problems of accurate signal reconstruction and controller implementation with integral and derivative components in the presence of noisy measurement, motivated by the design principle of sigmoid function based tracking differentiator and nonlinear continuous integral-derivative observer, a novel integral-derivative observer (SIDO) using sigmoid function is developed. The key merit of the proposed SIDO is that it can simultaneously provide continuous integral and differential estimates with almost no drift phenomena and chattering effect, as well as acceptable noise-tolerance performance from output measurement, and the stability is established based on exponential stability and singular perturbation theory. In addition, the effectiveness of SIDO in suppressing drift phenomena and high frequency noises is firstly revealed using describing function and confirmed through simulation comparisons. Finally, the theoretical results on SIDO are demonstrated with application to autopilot design: 1) the integral and tracking estimates are extracted from the sensed pitch angular rate contaminated by nonwhite noises in feedback loop, 2) the PID(proportional-integral-derivative) based attitude controller is realized by adopting the error estimates offered by SIDO instead of using the ideal integral and derivative operator to achieve satisfactory tracking performance under control constraint.

  13. The Florida "truth" anti-tobacco media evaluation: design, first year results, and implications for planning future state media evaluations

    PubMed Central

    Sly, D.; Heald, G.; Ray, S.

    2001-01-01

    OBJECTIVES—To outline the design and present selected findings from the evaluation of a state counter-advertising, anti-tobacco media campaign. The appropriateness of the design for states developing media evaluations is discussed.
DESIGN—Four cross sectional, telephone surveys of the 12-17 year old population were used to track and monitor advertising and campaign awareness, confirmed awareness, and receptivity. The Florida baseline and one year surveys were used with two parallel national surveys in a quasi-experimental design to assess attitude and smoking related behaviour change attributable to the campaign.
MEASURES—Awareness was measured by self report, confirmed awareness by unaided description, and receptivity by self reports of how well advertisements were liked, talked to friends about, and made one think about whether or not to smoke. Eleven attitude and three smoking behaviour items for Florida (treatment) and a national (control) population were compared at baseline and after 12 months.
RESULTS—Significant increases in ad specific awareness, confirmed, receptivity, and campaign awareness, and confirmed awareness were reached by the sixth week. They continued to rise through the first year. No attitude and only minor behaviour differences were noted between the treatment and comparison populations at baseline. By the end of the first year, Florida youth had stronger anti-tobacco attitudes and better behaviour patterns than the comparison population.
CONCLUSIONS—The industry manipulation strategy used in the Florida campaign resulted in high rates of recall, significant changes in attitudes/beliefs, and reduced rates of smoking behaviour among youth.


Keywords: anti-tobacco advertising campaign; youth; Florida PMID:11226354

  14. Formation Flying Control of Multiple Spacecraft

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.

    1997-01-01

    The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.

  15. X Views and Counting: Interest in Rape-Oriented Pornography as Gendered Microaggression.

    PubMed

    Makin, David A; Morczek, Amber L

    2016-07-01

    Academics and activists called to attention decades prior the importance of identifying, analyzing, and tracking the transmission of attitudes, behaviors, and norms correlated with violence against women. A specific call to attention reflected the media as a mode of transmission. This research builds on prior studies of media, with an emphasis on Internet search queries. Using Google search data, for the period 2004 to 2012, this research provides regional analysis of associated interest in rape-oriented pornography and pornographic hubs. Results indicate minor regional variations in interest, including the use of "BDSM" or "bondage/discipline, dominance/submission, and sadomasochism" as a foundational query for use in trend analysis. Interest in rape-oriented pornography by way of pornographic hubs is discussed in the context of microaggression. © The Author(s) 2015.

  16. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    NASA Astrophysics Data System (ADS)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in <30 min. The Manual Pointing mode was commissioned, and the spacecraft demonstrated the capability to follow or maintain different sets of attitudes. In Sun/Zenith Pointing mode, TANGO points its GPS antenna towards zenith with sufficient accuracy to track as many GPS satellites as MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  17. The impact of the web and social networks on vaccination. New challenges and opportunities offered to fight against vaccine hesitancy.

    PubMed

    Stahl, J-P; Cohen, R; Denis, F; Gaudelus, J; Martinot, A; Lery, T; Lepetit, H

    2016-05-01

    Vaccine hesitancy is a growing and threatening trend, increasing the risk of disease outbreaks and potentially defeating health authorities' strategies. We aimed to describe the significant role of social networks and the Internet on vaccine hesitancy, and more generally on vaccine attitudes and behaviors. Presentation and discussion of lessons learnt from: (i) the monitoring and analysis of web and social network contents on vaccination; (ii) the tracking of Google search terms used by web users; (iii) the analysis of Google search suggestions related to vaccination; (iv) results from the Vaccinoscopie(©) study, online annual surveys of representative samples of 6500 to 10,000 French mothers, monitoring vaccine behaviors and attitude of French parents as well as vaccination coverage of their children, since 2008; and (v) various studies published in the scientific literature. Social networks and the web play a major role in disseminating information about vaccination. They have modified the vaccination decision-making process and, more generally, the doctor/patient relationship. The Internet may fuel controversial issues related to vaccination and durably impact public opinion, but it may also provide new tools to fight against vaccine hesitancy. Vaccine hesitancy should be fought on the Internet battlefield, and for this purpose, communication strategies should take into account new threats and opportunities offered by the web and social networks. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Coupling Vanishing Point Tracking with Inertial Navigation to Estimate Attitude in a Structured Environment

    DTIC Science & Technology

    2011-03-01

    with the Earth but does follow the Earth’s orbit around the sun . Though it is not a true inertial frame, for the sake of terrestrial navigation it can...the center of the Earth , with the x and y-axes on the equatorial plane and the z- axis along the Earth’s axis of rotation. The i-frame does not spin...be considered as such. Earth -centered Earth -fixed frame (e-frame) - The origin is fixed at the center of the Earth , with the x- axis on the equatorial

  19. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  20. Attitudes, risk of infection and behaviours in the operating room (the ARIBO Project): a prospective, cross-sectional study.

    PubMed

    Birgand, Gabriel; Azevedo, Christine; Toupet, Gaelle; Pissard-Gibollet, Roger; Grandbastien, Bruno; Fleury, Eric; Lucet, Jean-Christophe

    2014-01-02

    Inappropriate staff behaviours can lead to environmental contamination in the operating room (OR) and subsequent surgical site infection (SSI). This study will focus on the continued assessment of OR staff behaviours using a motion tracking system and their impact on the SSI risk during surgical procedures. This multicentre prospective cross-sectional study will include 10 ORs of cardiac and orthopaedic surgery in 12 healthcare facilities (HCFs). The staff behaviour will be assessed by an objective, continued and prolonged quantification of movements within the OR. A motion tracking system including eight optical cameras (VICON-Bonita) will record the movements of reflective markers placed on the surgical caps/hoods of each person entering the room. Different configurations of markers positioning will be used to distinguish between the staff category. Doors opening will be observed by means of wireless inertial sensors fixed on the doors and synchronised with the motion tracking system. We will collect information on the OR staff, surgical procedures and surgical environment characteristics. The behavioural data obtained will be compared (1) to the 'best behaviour rules' in the OR, pre-established using a Delphi method and (2) to surrogates of the infectious risk represented by microbiological air counts, particle counts, and a bacteriological sample of the wound at closing. Statistics will be performed using univariate and multivariate analysis to adjust on the aerolic and architectural characteristics of the OR. A multilevel model will allow including surgical specialty and HCFs effects. Through this study, we will develop an original approach using high technology tools associated to data processing techniques to evaluate 'automatically' the behavioural dynamics of the OR staff and their impact on the SSI risk. Approbation of the Institutional Review Board of Paris North Hospitals, Paris 7 University, AP-HP (no 11-113, 6 April 2012). The findings will be disseminated through peer-reviewed journals, and national and international conference presentations.

  1. Attitudes, risk of infection and behaviours in the operating room (the ARIBO Project): a prospective, cross-sectional study

    PubMed Central

    Birgand, Gabriel; Azevedo, Christine; Toupet, Gaelle; Pissard-Gibollet, Roger; Grandbastien, Bruno; Fleury, Eric; Lucet, Jean-Christophe

    2014-01-01

    Introduction Inappropriate staff behaviours can lead to environmental contamination in the operating room (OR) and subsequent surgical site infection (SSI). This study will focus on the continued assessment of OR staff behaviours using a motion tracking system and their impact on the SSI risk during surgical procedures. Methods and analysis This multicentre prospective cross-sectional study will include 10 ORs of cardiac and orthopaedic surgery in 12 healthcare facilities (HCFs). The staff behaviour will be assessed by an objective, continued and prolonged quantification of movements within the OR. A motion tracking system including eight optical cameras (VICON-Bonita) will record the movements of reflective markers placed on the surgical caps/hoods of each person entering the room. Different configurations of markers positioning will be used to distinguish between the staff category. Doors opening will be observed by means of wireless inertial sensors fixed on the doors and synchronised with the motion tracking system. We will collect information on the OR staff, surgical procedures and surgical environment characteristics. The behavioural data obtained will be compared (1) to the ‘best behaviour rules’ in the OR, pre-established using a Delphi method and (2) to surrogates of the infectious risk represented by microbiological air counts, particle counts, and a bacteriological sample of the wound at closing. Statistics will be performed using univariate and multivariate analysis to adjust on the aerolic and architectural characteristics of the OR. A multilevel model will allow including surgical specialty and HCFs effects. Through this study, we will develop an original approach using high technology tools associated to data processing techniques to evaluate ‘automatically’ the behavioural dynamics of the OR staff and their impact on the SSI risk. Ethics and dissemination Approbation of the Institutional Review Board of Paris North Hospitals, Paris 7 University, AP-HP (no 11-113, 6 April 2012). The findings will be disseminated through peer-reviewed journals, and national and international conference presentations. PMID:24384903

  2. Motivations, Challenges, and Attitudes to Self-management in Kidney Transplant Recipients: A Systematic Review of Qualitative Studies.

    PubMed

    Jamieson, Nathan J; Hanson, Camilla S; Josephson, Michelle A; Gordon, Elisa J; Craig, Jonathan C; Halleck, Fabian; Budde, Klemens; Tong, Allison

    2016-03-01

    Kidney transplantation offers better outcomes compared to dialysis, but requires patients to adhere to an ongoing and complex self-management regimen. Medication nonadherence remains a leading cause of transplant loss, and inadequate self-management undermines transplantation and other health outcomes. We aimed to describe kidney transplant recipients' motivations, challenges, and attitudes toward self-management. Systematic review and thematic synthesis of qualitative studies. Kidney transplant recipients. MEDLINE, EMBASE, PsycINFO, and CINAHL were searched to October 2014. Thematic synthesis. 50 studies involving 1,238 recipients aged 18 to 82 years across 19 countries were included. We identified 5 themes: empowerment through autonomy (achieving mastery, tracking against tangible targets, developing bodily intuition, routinizing and problem solving, and adaptive coping), prevailing fear of consequences (inescapable rejection anxiety, aversion to dialysis, minimizing future morbidity, trivialization and denial, and defining acceptable risks), burdensome treatment and responsibilities (frustrating ambiguities, inadvertent forgetfulness, intrusive side effects, reversing ingrained behaviors, and financial hardship), overmedicalizing life (dominating focus, evading patienthood, and succumbing to burnout), and social accountability and motivation (demonstrating gratitude toward medical team, indebtedness to donor, and peer learning). Non-English articles were excluded. Self-efficacy and social accountability are motivators for self-management, although adherence can be mentally and physically taxing. Multicomponent interventions incorporating personalized care planning, education, psychosocial support, decision aids, and self-monitoring tools may foster self-management capacity and improve transplantation outcomes. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  4. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  5. GOCE Re-Entry Predictions for the Italian Civil Protection Authorities

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2015-03-01

    The uncommon nature of the GOCE reentry campaign, sharing an uncontrolled orbital decay with a finely controlled attitude along the atmospheric drag direction, made the reentry predictions for this satellite an interesting case study, especially because nobody was able to say a priori if and when the attitude control would have failed, leading to an unrestrained tumbling and a sudden variation of the orbital decay rate. As in previous cases, ISTI/CNR was in charge of reentry predictions for the Italian civil protection authorities, monitoring also the satellite decay in the frame of an international reentry campaign promoted by the Inter-Agency Space Debris Coordination Committee (IADC). Due to the peculiar nature of the GOCE reentry, the definition of reliable uncertainty windows was not easy, especially considering the critical use of this information for civil protection evaluations. However, after an initial period of test and analysis, reasonable and conservative criteria were elaborated and applied, with good and consistent results through the end of the reentry campaign. In the last three days of flight, reentries were simulated over Italy to obtain quite accurate ground tracks, debris swaths and air space crossing time windows associated with the critical passes over the national territory still included in the global uncertainty windows.

  6. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures.

    PubMed

    Jiang, Ye; Hu, Qinglei; Ma, Guangfu

    2010-01-01

    In this paper, a robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft is proposed for use in situations when there are reaction wheel/actuator failures, persistent bounded disturbances and unknown inertia parameter uncertainties. The controller is designed based on an adaptive backstepping sliding mode control scheme, and a sufficient condition under which this control law can render the system semi-globally input-to-state stable is also provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. Moreover, in the design, the control law does not need a fault detection and isolation mechanism even if the failure time instants, patterns and values on actuator failures are also unknown for the designers, as motivated from a practical spacecraft control application. In addition to detailed derivations of the new controller design and a rigorous sketch of all the associated stability and attitude error convergence proofs, illustrative simulation results of an application to flexible spacecraft show that high precise attitude control and vibration suppression are successfully achieved using various scenarios of controlling effective failures. 2009. Published by Elsevier Ltd.

  7. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    NASA Technical Reports Server (NTRS)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  8. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  9. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  10. 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties.

    PubMed

    Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang

    2011-10-01

    This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Video-Guidance Design for the DART Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Ruth, Michael; Tracy, Chisholm

    2004-01-01

    NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.

  12. Synchronization of multiple 3-DOF helicopters under actuator faults and saturations with prescribed performance.

    PubMed

    Yang, Huiliao; Jiang, Bin; Yang, Hao; Liu, Hugh H T

    2018-04-01

    The distributed cooperative control strategy is proposed to make the networked nonlinear 3-DOF helicopters achieve the attitude synchronization in the presence of actuator faults and saturations. Based on robust adaptive control, the proposed control method can both compensate the uncertain partial loss of control effectiveness and deal with the system uncertainties. To address actuator saturation problem, the control scheme is designed to ensure that the saturation constraint on the actuation will not be violated during the operation in spite of the actuator faults. It is shown that with the proposed control strategy, both the tracking errors of the leading helicopter and the attitude synchronization errors of each following helicopter are bounded in the existence of faulty actuators and actuator saturations. Moreover, the state responses of the entire group would not exceed the predesigned performance functions which are totally independent from the underlaying interaction topology. Simulation results illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. MAGSAT data processing: A report for investigators

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Berbert, J.; Jennings, T.; Horner, R. (Principal Investigator)

    1981-01-01

    The in-flight attitude and vector magnetometer data bias recovery techniques and results are described. The attitude bias recoveries are based on comparisons with a magnetic field model and are thought to be accurate to 20 arcsec. The vector magnetometer bias recoveries are based on comparisons with the scalar magnetometer data and are thought to be accurate to 3 nT or better. The MAGSAT position accuracy goals of 60 m radially and 300 m horizontally were achieved for all but the last 3 weeks of Magsat lifetime. This claim is supported by ephemeris overlap statistics and by comparisons with ephemerides computed with an independent orbit program using data from an independent tracking network. MAGSAT time determination accuracy is estimated at 1 ms. Several errors in prelaunch assumptions regarding data time tags, which escaped detection in prelaunch data tests, and were discovered and corrected postlaunch are described. Data formats and products, especially the Investigator-B tapes, which contain auxiliary parameters in addition to the basic magnetometer and ephemeris data, are described.

  14. Platform control for space-based imaging: the TOPSAT mission

    NASA Astrophysics Data System (ADS)

    Dungate, D.; Morgan, C.; Hardacre, S.; Liddle, D.; Cropp, A.; Levett, W.; Price, M.; Steyn, H.

    2004-11-01

    This paper describes the imaging mode ADCS design for the TOPSAT satellite, an Earth observation demonstration mission targeted at military applications. The baselined orbit for TOPSAT is a 600-700km sun synchronous orbit from which images up to 30° off track can be captured. For this baseline, the imaging camera proves a resolution of 2.5m and a nominal image size of 15x15km. The ADCS design solution for the imaging mode uses a moving demand approach to enable a single control algorithm solution for both the preparatory reorientation prior to image capture and the post capture return to nadir pointing. During image capture proper, control is suspended to minimise the disturbances experienced by the satellite from the wheels. Prior to each imaging sequence, the moving demand attitude and rate profiles are calculated such that the correct attitude and rate are achieved at the correct orbital position, enabling the correct target area to be captured.

  15. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    NASA Astrophysics Data System (ADS)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  16. Image sequence analysis workstation for multipoint motion analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  17. Relation between contemplative exercises and an enriched psychology students' experience in a neuroscience course

    PubMed Central

    Levit Binnun, Nava; Tarrasch, Ricardo

    2014-01-01

    This article examines the relation of contemplative exercises with enhancement of students' experience during neuroscience studies. Short contemplative exercises inspired by the Buddhist tradition of self-inquiry were introduced in an undergraduate neuroscience course for psychology students. At the start of the class, all students were asked to participate in short “personal brain investigations” relevant to the topic presented. These investigations were aimed at bringing stable awareness to a specific perceptual, emotional, attentional, or cognitive process and observing it in a non-judgmental, non-personal way. In addition, students could choose to participate, for bonus credit, in a longer exercise designed to expand upon the weekly class activity. In the exercise, students continued their “personal brain investigations” for 10 min a day, 4 days a week. They wrote “lab reports” on their daily observations, obtained feedback from the teacher, and at the end of the year reviewed their reports and reflected upon their experiences during the semester. Out of 265 students, 102 students completed the bonus track and their final reflections were analyzed using qualitative methodology. In addition, 91 of the students answered a survey at the end of the course, 43 students participated in a quiz 1 year after course graduation, and the final grades of all students were collected and analyzed. Overall, students reported satisfaction from the exercises and felt they contributed to their learning experience. In the 1-year follow-up, the bonus-track students were significantly more likely than their peers to remember class material. The qualitative analysis of bonus-track students' reports revealed that the bonus-track process elicited positive feelings, helped students connect with class material and provided them with personal insights. In addition, students acquired contemplative skills, such as increased awareness and attention, non-judgmental attitudes, and better stress-management abilities. We provide examples of “personal brain investigations” and discuss limitations of introducing a contemplative approach. PMID:25477833

  18. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    NASA Technical Reports Server (NTRS)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  19. Attitude importance as a moderator of the relationship between implicit and explicit attitude measures.

    PubMed

    Karpinski, Andrew; Steinman, Ross B; Hilton, James L

    2005-07-01

    The authors examined attitude importance as a moderator of the relationship between the Implicit Association Test (IAT) and explicit attitude measures. In Study 1 (N = 194), as ratings of attitude importance regarding the 2000 presidential election increased, the strength of the relationship between a Bush-Gore IAT and explicit attitude measures also increased. Study 2 provided a conceptual replication of these results using attitudes toward Coke and Pepsi (N = 112). In addition, across both studies, explicit attitude measures were better predictors of deliberative behaviors than IAT scores. In Study 3 (N = 77), the authors examined the role of elaboration as a mechanism by which attitude importance may moderate IAT-explicit attitude correlations. As predicted, increased elaboration resulted in stronger IAT-explicit attitude correlations. Other possible mechanisms by which attitude importance may moderate the IAT-explicit attitude relationship also are discussed.

  20. Attitudes toward emotions.

    PubMed

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Amodio, David M; Gable, Philip A

    2011-12-01

    The present work outlines a theory of attitudes toward emotions, provides a measure of attitudes toward emotions, and then tests several predictions concerning relationships between attitudes toward specific emotions and emotional situation selection, emotional traits, emotional reactivity, and emotion regulation. The present conceptualization of individual differences in attitudes toward emotions focuses on specific emotions and presents data indicating that 5 emotions (anger, sadness, joy, fear, and disgust) load on 5 separate attitude factors (Study 1). Attitudes toward emotions predicted emotional situation selection (Study 2). Moreover, attitudes toward approach emotions (e.g., anger, joy) correlated directly with the associated trait emotions, whereas attitudes toward withdrawal emotions (fear, disgust) correlated inversely with associated trait emotions (Study 3). Similar results occurred when attitudes toward emotions were used to predict state emotional reactivity (Study 4). Finally, attitudes toward emotions predicted specific forms of emotion regulation (Study 5).

  1. Impact of continuing medical education in cancer diagnosis on GP knowledge, attitude and readiness to investigate - a before-after study.

    PubMed

    Toftegaard, Berit Skjødeberg; Bro, Flemming; Falborg, Alina Zalounina; Vedsted, Peter

    2016-07-26

    Continuing medical education (CME) in earlier cancer diagnosis was launched in Denmark in 2012 as part of the Danish National Cancer Plan. The CME programme was introduced to improve the recognition among general practitioners (GPs) of symptoms suggestive of cancer and improve the selection of patients requiring urgent investigation. This study aims to explore the effect of CME on GP knowledge about cancer diagnosis, attitude towards own role in cancer detection, self-assessed readiness to investigate and cancer risk assessment of urgently referred patients. We conducted a before-after study in the Central Denmark Region including 831 GPs assigned to one of eight geographical clusters. All GPs were invited to participate in the CME at three-week intervals between clusters. A questionnaire focusing on knowledge, attitude and clinical vignettes was sent to each GP one month before and seven months after the CME. The GPs were also asked to assess the risk of cancer in patients urgently referred to a fast-track cancer pathway during an eight-month period. CME-participating GPs were compared with reference (non-participating) GPs by analysing before-after differences. One quarter of all GPs participated in the CME. 202 GPs (24.3 %) completed both the baseline and the follow-up questionnaires. 532 GPs (64.0 %) assessed the risk of cancer before the CME and 524 GPs (63.1 %) assessed the risk of cancer after the CME in urgently referred consecutive patients. Compared to the reference group, CME-participating GPs statistically significantly improved their understanding of a rational probability of diagnosing cancer among patients urgently referred for suspected cancer, increased their knowledge of cancer likelihood in a 50-year-old referred patient and lowered the assessed risk of cancer in urgently referred patients. The standardised CME lowered the GP-assessed cancer risk of urgently referred patients, whereas the effect on knowledge about cancer diagnosis and attitude towards own role in cancer detection was limited. No effect was found on the GPs' readiness to investigate. CME may be effective for optimising the interpretation of cancer symptoms and thereby improve the selection of patients for urgent cancer referral. NCT02069470 on ClinicalTrials.gov. Retrospectively registered, 1/29/2014.

  2. Standardization and economics of nuclear spacecraft: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft were investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 2200 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification.

  3. Three-dimensional tracking and imaging laser scanner for space operations

    NASA Astrophysics Data System (ADS)

    Laurin, Denis G.; Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc

    1999-05-01

    This paper presents the development of a laser range scanner (LARS) as a three-dimensional sensor for space applications. The scanner is a versatile system capable of doing surface imaging, target ranging and tracking. It is capable of short range (0.5 m to 20 m) and long range (20 m to 10 km) sensing using triangulation and time-of-flight (TOF) methods respectively. At short range (1 m), the resolution is sub-millimeter and drops gradually with distance (2 cm at 10 m). For long range, the TOF provides a constant resolution of plus or minus 3 cm, independent of range. The LARS could complement the existing Canadian Space Vision System (CSVS) for robotic manipulation. As an active vision system, the LARS is immune to sunlight and adverse lighting; this is a major advantage over the CSVS, as outlined in this paper. The LARS could also replace existing radar systems used for rendezvous and docking. There are clear advantages of an optical system over a microwave radar in terms of size, mass, power and precision. Equipped with two high-speed galvanometers, the laser can be steered to address any point in a 30 degree X 30 degree field of view. The scanning can be continuous (raster scan, Lissajous) or direct (random). This gives the scanner the ability to register high-resolution 3D images of range and intensity (up to 4000 X 4000 pixels) and to perform point target tracking as well as object recognition and geometrical tracking. The imaging capability of the scanner using an eye-safe laser is demonstrated. An efficient fiber laser delivers 60 mW of CW or 3 (mu) J pulses at 20 kHz for TOF operation. Implementation of search and track of multiple targets is also demonstrated. For a single target, refresh rates up to 137 Hz is possible. Considerations for space qualification of the scanner are discussed. Typical space operations, such as docking, object attitude tracking, and inspections are described.

  4. The EMO-Model: An Agent-Based Model of Primate Social Behavior Regulated by Two Emotional Dimensions, Anxiety-FEAR and Satisfaction-LIKE

    PubMed Central

    Evers, Ellen; de Vries, Han; Spruijt, Berry M.; Sterck, Elisabeth H. M.

    2014-01-01

    Agent-based models provide a promising tool to investigate the relationship between individuals’ behavior and emerging group-level patterns. An individual’s behavior may be regulated by its emotional state and its interaction history with specific individuals. Emotional bookkeeping is a candidate mechanism to keep track of received benefits from specific individuals without requiring high cognitive abilities. However, how this mechanism may work is difficult to study in real animals, due to the complexity of primate social life. To explore this theoretically, we introduce an agent-based model, dubbed EMO-model, in which we implemented emotional bookkeeping. In this model the social behaviors of primate-like individuals are regulated by emotional processes along two dimensions. An individual’s emotional state is described by an aversive and a pleasant dimension (anxiety and satisfaction) and by its activating quality (arousal). Social behaviors affect the individuals’ emotional state. To implement emotional bookkeeping, the receiver of grooming assigns an accumulated affiliative attitude (LIKE) to the groomer. Fixed partner-specific agonistic attitudes (FEAR) reflect the stable dominance relations between group members. While the emotional state affects an individual’s general probability of executing certain behaviors, LIKE and FEAR affect the individual’s partner-specific behavioral probabilities. In this way, emotional processes regulate both spontaneous behaviors and appropriate responses to received behaviors, while emotional bookkeeping via LIKE attitudes regulates the development and maintenance of affiliative relations. Using an array of empirical data, the model processes were substantiated and the emerging model patterns were partially validated. The EMO-model offers a framework to investigate the emotional bookkeeping hypothesis theoretically and pinpoints gaps that need to be investigated empirically. PMID:24504194

  5. The EMO-model: an agent-based model of primate social behavior regulated by two emotional dimensions, anxiety-FEAR and satisfaction-LIKE.

    PubMed

    Evers, Ellen; de Vries, Han; Spruijt, Berry M; Sterck, Elisabeth H M

    2014-01-01

    Agent-based models provide a promising tool to investigate the relationship between individuals' behavior and emerging group-level patterns. An individual's behavior may be regulated by its emotional state and its interaction history with specific individuals. Emotional bookkeeping is a candidate mechanism to keep track of received benefits from specific individuals without requiring high cognitive abilities. However, how this mechanism may work is difficult to study in real animals, due to the complexity of primate social life. To explore this theoretically, we introduce an agent-based model, dubbed EMO-model, in which we implemented emotional bookkeeping. In this model the social behaviors of primate-like individuals are regulated by emotional processes along two dimensions. An individual's emotional state is described by an aversive and a pleasant dimension (anxiety and satisfaction) and by its activating quality (arousal). Social behaviors affect the individuals' emotional state. To implement emotional bookkeeping, the receiver of grooming assigns an accumulated affiliative attitude (LIKE) to the groomer. Fixed partner-specific agonistic attitudes (FEAR) reflect the stable dominance relations between group members. While the emotional state affects an individual's general probability of executing certain behaviors, LIKE and FEAR affect the individual's partner-specific behavioral probabilities. In this way, emotional processes regulate both spontaneous behaviors and appropriate responses to received behaviors, while emotional bookkeeping via LIKE attitudes regulates the development and maintenance of affiliative relations. Using an array of empirical data, the model processes were substantiated and the emerging model patterns were partially validated. The EMO-model offers a framework to investigate the emotional bookkeeping hypothesis theoretically and pinpoints gaps that need to be investigated empirically.

  6. Preliminary Design and Analysis of the GIFTS Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Zomkowski, Paul P.

    2003-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.

  7. IAF 15 Draft Paper

    NASA Technical Reports Server (NTRS)

    Menkin, Evgeny; Juillerat, Robert

    2015-01-01

    With the International Space Station Program transition from assembly to utilization, focus has been placed on the optimization of essential resources. This includes resources both resupplied from the ground and also resources produced by the ISS. In an effort to improve the use of two of these, the ISS Engineering teams, led by the ISS Program Systems Engineering and Integration Office, undertook an effort to modify the techniques use to perform several key on-orbit events. The primary purposes of this endeavor was to make the ISS more efficient in the use of the Russian-supplied fuel for the propulsive attitude control system and also to minimize the impacts to available ISS power due to the positioning of the ISS solar arrays. Because the ISS solar arrays are sensitive to several factors that are present when propulsive attitude control is used, they must be operated in a manner to protect them from damage. This results in periods of time where the arrays must be positioned, rather than autonomously tracking the sun, resulting in negative impacts to power generated by the solar arrays and consumed by both the ISS core systems and payload customers. A reduction in the number and extent of the events each year that require the ISS to use propulsive attitude control simultaneously accomplishes both these goals. Each instance where the ISS solar arrays normal sun tracking mode must be interrupted represent a need for some level of powerdown of equipment. As the magnitude of payload power requirements increases, and the efficiency of the ISS solar arrays decreases, these powerdowns caused by array positioning, will likely become more significant and could begin to negatively impact the payload operations. Through efforts such as this, the total number of events each year that require positioning of the arrays to unfavorable positions for power generation, in order to protect them against other constraints, are reduced. Optimization of propulsive events and transitioning some of them to non-propulsive CMG control significantly reduces propellant usage on the ISS leading to the reduction of the propellant delivery requirement. This results in move available upmass that can be used for delivering critical dry cargo, additional water, air, crew supplies and science experiments.

  8. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.; hide

    2001-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.

  9. A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances

    NASA Astrophysics Data System (ADS)

    Xian, Bin; Zhang, Yao

    2016-06-01

    In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.

  10. The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chen, Jiahong; Zhao, Wenhua

    2016-02-01

    The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.

  11. Global fast dynamic terminal sliding mode control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zhang, Guo-Bao

    2017-01-01

    A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    NASA Astrophysics Data System (ADS)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational opportunities for women. Because this research study was based on a sizable sample and many hypotheses were tested, this work has contributed appreciable to the base of data available to future researchers. This study also implemented use of the SISS instrument for the first time in Arabic.

  13. Determination of the System Mass and the Individual Masses of Pluto and Charon from New Horizons Radio Tracking

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Paetzold, M.; Andert, T.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.; Linscott, I.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2016-12-01

    One objective of the New Horizons Radio Science Experiment REX is the direct determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were the changes in spacecraft attitude by thrusters which applied extra Δv to the spacecraft motion masking partially the continuously perturbed motion caused by the attracting forces of the Pluto system members. The times of the spacecraft thruster activity are known but the applied Δv magnitude needed to be specifically adjusted. No two-way tracking was available during the flyby day on 14th July but slots of the REX one-way uplink observations cover the most important time near closest approach, these are for example the Pluto and Charon Earth occultation entries and exits. The REX data during the flyby day allowed to extract the individual masses of Pluto and Charon from the system mass at high precision. The relative errors of the mass determinations are below 0.02% and 0.2%, respectively. The masses of the 4 small satellites in the Pluto system could not be resolved.

  14. Multivariable control of a rolling spider drone

    NASA Astrophysics Data System (ADS)

    Lyu, Haifeng

    The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.

  15. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  16. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  17. Second order sliding mode control for a quadrotor UAV.

    PubMed

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  19. F-8C adaptive flight control extensions. [for maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Stein, G.; Hartmann, G. L.

    1977-01-01

    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.

  20. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.

  1. Parents' Attitudes toward Mathematics and the Influence on Their Students' Attitudes toward Mathematics: A Quantitative Study

    ERIC Educational Resources Information Center

    Mohr-Schroeder, Margaret J.; Jackson, Christa; Cavalcanti, Maureen; Jong, Cindy; Schroeder, D. Craig; Speler, Lydia G.

    2017-01-01

    The purpose of this study was to investigate parents' attitudes toward mathematics, their students' attitude toward mathematics, and the influence of the parents' attitude on the students' attitude toward mathematics. Data analyses revealed statistically significant positive correlations between parents' and students' attitudes toward mathematics.…

  2. A qualitative assessment of West Virginia pharmacist activities and attitude in diabetes management.

    PubMed

    Shatnawi, Aymen; Latif, David A

    2017-06-01

    The role of pharmacists in chronic disease state management has been shown to significantly improve patient health outcomes and reduce overall health care costs. The current study is designed to assess the roles and attitudes of West Virginia (WV) pharmacists toward diabetes, evaluate services provided, address pharmacist clinical understanding and training, and demonstrate the challenges that limit pharmacists ability to deliver an efficient disease state management. We invited 435 preceptors affiliated with the University of Charleston School of Pharmacy to participate in the study using Qualtrics online survey software. The survey was divided into sections related to pharmacists, practice environment, pharmacist's roles in diabetes management, and challenges faced that limit their ability to deliver effective care to diabetic patients. Data were analyzed using 1-way analysis of variance, and a P value ≤.05 was considered statistically significant. Of all eligible invited preceptors, 104 accessed the online survey based on the Qualtrics tracking tool, while 58 participated in the survey with a 56% response rate. Generally, WV pharmacists have positive attitudes regarding the provision of primary activities related to drug use and its associated problems. However, we report that WV pharmacists are less involved in providing education or recommendations regarding diabetes-associated risk factors such as nephropathy, retinopathy, foot care, and gastroparesis. In addition, the majority of pharmacists indicated that they face many challenges related to patient and the practice site environment that limit their ability to provide optimum diabetes patient care services. Despite the mounting evidence that pharmacists can improve diabetic patient outcomes while significantly reducing overall costs, WV pharmacists are less involved in providing education or counseling in a variety of areas related to disease state management. In addition, identifying pharmacist challenges provides significant information for future planning toward improving diabetic patient care. © 2016 John Wiley & Sons, Ltd.

  3. Mobile Electronic Medical Records Promote Workflow: Physicians’ Perspective From a Survey

    PubMed Central

    Schmidt, Sein; Hupperts, Hagen; Brandt, Stephan A

    2016-01-01

    Background As a result of demographic changes, physicians are required to deliver needed services with limited resources. Research suggests that tablet PCs with access to patient data may streamline clinical workflow. A recent study found tablets with mobile electronic medical records (EMRs) can facilitate data retrieval and produce time savings across the clinical routine within hospital settings. However, the reasons for these time savings, including details on how tablets were being used, remain unclear. The same applies to physicians’ perceptions of this tool within an inpatient setting. Objective This study examined physicians’ perception of tablets with EMRs in an inpatient setting. The rationale was to identify both subjective and objective factors that impacted the successful implementation and use of tablets running an EMR. Methods We developed a 57-item survey questionnaire designed to examine users’ perception of and attitude toward tablets, which was administered to 14 participating physicians following 7 weeks of tablet use. Five participants volunteered to participate in a second study that investigated physicians’ patterns of tablet use within the EMR environment by digitally tracking and storing usage behavior. Statistical analyses of questionnaire results included mean values with their bootstrapped 95% confidence intervals and multivariate analysis of variance to identify predictors of tablet use. Results Physicians reported high degrees of satisfaction with the tablets. There was a general consensus among physicians that tablet use streamlined clinical workflow through optimized data retrieval (rated 0.69, 0.23-1.15 points better than control) and improved communication with patients and other physicians (rated 0.85, 0.54-1.15 and 0.77, 0.38-1.15 points better than control, respectively). Age (F3,11=3.54, P=.04), occupational group (F1,11=7.17, P=.04), and attitude toward novel technologies (F1,11=10.54, P=.02) predicted physicians’ satisfaction with the devices and their motivation regarding their further use. Tracking data yielded that only a few of the available functions were used frequently. Conclusions Although tablet PCs were consistently perceived as beneficial, several factors contributed to the fact that their full potential was not fully exploited. Training in functionality and providing a reliable infrastructure might foster successful tablet implementation. PMID:27268720

  4. What Consumers Say About Nursing Homes in Online Reviews.

    PubMed

    Kellogg, Caitlyn; Zhu, Yujun; Cardenas, Valeria; Vazquez, Katalina; Johari, Kayla; Rahman, Anna; Enguidanos, Susan

    2018-04-20

    Although patient-centered care is an expressed value of our healthcare system, no studies have examined what consumers say in online reviews about nursing homes (NHs). Insight into themes addressed in these reviews could inform improvement efforts that promote patient-centered NH care. We analyzed nursing home (NH) Yelp reviews. From a list of all NHs in California, we drew a purposeful sample of 51 NHs, selecting facilities representing a range of geographical areas and occupancy rates. Two research teams analyzed the reviews using grounded theory to identify codes and tracked how frequently each code was mentioned. We evaluated 264 reviews, identifying 24 codes, grouped under five categories: quality of staff care and staffing; physical facility and setting; resident safety and security; clinical care quality; and financial issues. More than half (53.41%) of Yelp reviewers posted comments related to staff attitude and caring and nearly a third (29.2%) posted comments related to staff responsiveness. Yelp reviewers also often posted about NHs' physical environment. Infrequently mentioned were the quality of health care provided and concerns about resident safety and security. Our results are consistent with those from related studies. Yelp reviewers focus on NH aspects that are not evaluated in most other NH rating systems. The federal Nursing Home Compare website, for instance, does not report measures of staff attitudes or the NH's physical setting. Rather, it reports measures of staffing levels and clinical processes and outcomes. We recommend that NH consumers consult both types of rating systems because they provide complementary information.

  5. Feasibility and acceptability of a mobile app in an ecological momentary assessment of early breastfeeding.

    PubMed

    Demirci, Jill R; Bogen, Debra L

    2017-07-01

    Ecological momentary assessment (EMA) is a novel data collection method that samples subject experiences in real-time - minimizing recall bias. Here, we describe the feasibility of EMA to track breastfeeding behaviour through a mobile phone app. During their birth hospitalization, we approached healthy, first-time mothers intending to exclusively breastfeed for at least 2 months to participate in a study tracking breastfeeding through 8 weeks postpartum. Participants downloaded a commercially available smartphone app, entered information and thoughts about breastfeeding as they occurred, and emailed this data weekly. We called participants at 2 and 8 weeks to assess breastfeeding status. At the 8-week call, we also assessed participants' experiences using the app. Of the 61 participants, 38% sent complete or nearly complete feeding data, 24% sent some data, and 38% sent no data; 58% completed at least one free-text breastfeeding entry, and five women logged daily or near daily entries. Compared with women who sent no data, those who sent any were more likely to be married, highly educated, intend to breastfeed more than 6 months, have a more favourable baseline attitude towards breastfeeding, and less likely to have used formula during hospitalization. There was a high degree of agreement between participant-reported proportion of breast milk feeds via app and interview data at 2 weeks (ICC 0.97). Experiences with the app ranged from helpful to too time-consuming or anxiety-provoking. Participants and researchers encountered technical issues related to app use and analysis, respectively. While our data do not support the feasibility of stand-alone app-based EMA to track breastfeeding behaviour, it may provide rich accounts of the breastfeeding experience for certain subgroups of women. © 2016 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  6. Nursing Students' Attitudes Toward Lesbian, Gay, Bisexual, and Transgender Persons: An Integrative Review.

    PubMed

    Lim, Fidelindo A; Hsu, Richard

    2016-01-01

    The aim of this study was to critically appraise and synthesize findings from studies on the attitudes of nursing students toward lesbian, gay, bisexual, and transgender (LGBT) persons. There is paucity of research to assess the attitudes of nursing students toward LGBT persons. An electronic search was conducted using PubMed, Medline, Web of Science, EbscoHost, PsycInfo, and the Cumulative Index to Nursing and Allied Health Literature using medical subject headings terminologies. Search terms used included gay, lesbian, transgender, bisexual, LGBT, nursing students, baccalaureate nursing, undergraduate nursing, homophobia, homosexuality, sexual minority, attitudes, discrimination, and prejudice. Less than 50 percent of the studies (5 out of 12) suggested positively leaning attitudes of nursing students toward LGBT persons; six studies reported negative attitudes, and one study reported neutral attitudes. There are some indications that student attitudes may be moving toward positively leaning. Studies published before 2000 reported a preponderance of negative attitudes.

  7. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  8. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  9. The deep space 1 extended mission

    NASA Astrophysics Data System (ADS)

    Rayman, Marc D.; Varghese, Philip

    2001-03-01

    The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.

  10. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  11. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2017-01-01

    Any exploration vehicle assembled or Spacecraft placed in LEO or GTO must pass through this debris cloud and survive. Large cross section, low thrust vehicles will spend more time spiraling out through the cloud and will suffer more impacts.Better knowledge of small debris will improve survival odds. Current estimated Density of debris at various orbital attitudes with notation of recent collisions and resulting spikes. Orbital Debris Tracking and Characterization has now been added to NASA Office of Chief Technologists Technology Development Roadmap in Technology Area 5 (TA5.7)[Orbital Debris Tracking and Characterization] and is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crews due to the risk of Orbital Debris damage to ISS Exploration vehicles. The Problem: Traditional orbital trackers looking for small, dim orbital derelicts and debris typically will stare at the stars and let any reflected light off the debris integrate in the imager for seconds, thus creating a streak across the image. The Solution: The Small Tracker will see Stars and other celestial objects rise through its Field of View (FOV) at the rotational rate of its orbit, but the glint off of orbital objects will move through the FOV at different rates and directions. Debris on a head-on collision course (or close) will stay in the FOV at 14 Km per sec. The Small Tracker can track at 60 frames per sec allowing up to 30 fixes before a near-miss pass. A Stereo pair of Small Trackers can provide range data within 5-7 Km for better orbit measurements.

  12. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  13. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  14. Awareness of Implicit Attitudes

    PubMed Central

    Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.

    2013-01-01

    Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868

  15. A stellar tracking reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1971-01-01

    A stellar attitude reference system concept for satellites was studied which promises to permit continuous precision pointing of payloads with accuracies of 0.001 degree without the use of gyroscopes. It is accomplished with the use of a single, clustered star tracker assembly mounted on a non-orthogonal, two gimbal mechanism, driven so as to unwind satellite orbital and orbit precession rates. A set of eight stars was found which assures the presence of an adequate inertial reference on a continuous basis in an arbitrary orbit. Acquisition and operational considerations were investigated and inherent reference redundancy/reliability was established. Preliminary designs for the gimbal mechanism, its servo drive, and the star tracker cluster with its associated signal processing were developed for a baseline sun-synchronous, noon-midnight orbit. The functions required of the onboard computer were determined and the equations to be solved were found. In addition detailed error analyses were carried out, based on structural, thermal and other operational considerations.

  16. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  17. TOPEX satellite option study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic design of the fleet satellite communication spacecraft (FLTSATCOM) can easily accommodate any of the three payload options for the ocean dynamic topography experiment (TOPEX). The principal mission requirements as well as the payload accommodations and communications systems needed for launching this payload are reviewed. The existing FLTSATCOM satellite design is identified and the approaches for the proposed propulsion system are described in addition to subsystems for mechanical; power; attitude and velocity control; and telemetry, tracking and control are described. The compatability of FLTSATCOM with the launch vehicle is examined and its capabilities vs TOPEX requirements are summarized. Undetermined changes needed to meet data storage, thermal control, and area to mass ratio requirements are discussed. Cost estimates are included for budgetary and planning purposes. The availability of the described design is assessed based on the continuing production of FLTSATCOM spacecraft during the schedule span planned for TOPEX.

  18. Sensors: Views of Staff of a Disability Service Organization

    PubMed Central

    Wolbring, Gregor; Leopatra, Verlyn

    2013-01-01

    Sensors have become ubiquitous in their reach and scope of application. They are a technological cornerstone for various modes of health surveillance and participatory medicine—such as quantifying oneself; they are also employed to track people with certain as impairments perceived ability differences. This paper presents quantitative and qualitative data of an exploratory, non-generalizable study into the perceptions, attitudes and concerns of staff of a disability service organization, that mostly serve people with intellectual disabilities, towards the use of various types of sensor technologies that might be used by and with their clients. In addition, perspectives of various types of privacy issues linked to sensors, as well data regarding the concept of quantified self were obtained. Our results highlight the need to involve disabled people and their support networks in sensor and quantified-self discourses, in order to prevent undue disadvantages. PMID:25562409

  19. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  20. Students' Attitudes towards Peers with Disabilities: A Review of the Literature

    ERIC Educational Resources Information Center

    de Boer, Anke; Pijl, Sip Jan; Minnaert, Alexander

    2012-01-01

    The trend towards inclusive education has led to an increase of studies focusing on peer attitudes. This review study presents an overview of studies describing attitudes of students, variables relating to students' attitudes, and the relationship between students' attitudes and the social participation of peers with disabilities. Based on a…

  1. Attitudes and Opinions of Doctors of Chiropractic Specializing in Pediatric Care Toward Patient Safety: A Cross-sectional Survey.

    PubMed

    Pohlman, Katherine A; Carroll, Linda; Hartling, Lisa; Tsuyuki, Ross; Vohra, Sunita

    2016-09-01

    The purpose of this cross-sectional survey was to evaluate attitudes and opinions of doctors of chiropractic (DCs) specializing in pediatric care toward patient safety. The Medical Office Survey on Patient Safety Culture of the Agency for Healthcare Research and Quality was adapted for providers who use spinal manipulation therapy and sent out to 2 US chiropractic organizations' pediatric council members (n = 400) between February and April 2014. The survey measured 12 patient safety dimensions and included questions on patient safety items and quality issues, information exchange, and overall clinic ratings. Data analyses included a percent composite average and a nonrespondent analysis. The response rate was 29.5% (n = 118). Almost one- third of respondents' patients were pediatric (≤17 years of age). DCs with a pediatric certification were 3 times more likely to respond (P < .001), but little qualitative differences were found in responses. The patient safety dimensions with the highest positive composite percentages were Organizational Learning (both administration and clinical) and Teamwork (>90%). Patient Care Tracking/Follow-up and Work Pressure and Pace were patient safety dimensions that had the lowest positive composite scores (<85%). The responses also indicated that there was concern regarding information exchange with insurance/third-party payors. Two quality issues identified for improvement were (1) updating a patient's medication list and (2) following up on critically abnormal results from a laboratory or imaging test within 1 day. The average overall patient safety rating score indicated that 83% of respondents rated themselves as "very good" or "excellent." Compared with 2014 Agency for Healthcare Research and Quality physician referent data from medical offices, pediatric DCs appear to have more positive patient safety attitudes and opinions. Future patient safety studies need to prospectively evaluate safety performance with direct feedback from patients and compare results with these self-assessed safety attitudes, as well as make further use of this survey to develop a comparable database for spinal manipulation providers. Copyright © 2016. Published by Elsevier Inc.

  2. The challenge of vaccinating adults: attitudes and beliefs of the Canadian public and healthcare providers.

    PubMed

    MacDougall, D M; Halperin, B A; MacKinnon-Cameron, D; Li, Li; McNeil, S A; Langley, J M; Halperin, S A

    2015-09-29

    Vaccine coverage for recommended vaccines is low among adults. The objective of this study was to assess the knowledge, attitudes, beliefs and behaviours of adults and healthcare providers related to four vaccine-preventable diseases and vaccines (diphtheria-tetanus-pertussis, zoster, pneumococcus and influenza). We undertook a survey and focus groups of Canadian adults and healthcare providers (doctors, nurses, pharmacists). A total of 4023 adults completed the survey and 62 participated in the focus groups; 1167 providers completed the survey and 45 participated in the focus groups. Only 46.3% of adults thought they were up-to-date on their vaccines; 30% did not know. In contrast, 75.6% of providers reported being up-to-date. Only 57.5% of adults thought it was important to receive all recommended vaccines (compared to 87.1-91.5% of providers). Positive attitudes towards vaccines paralleled concern about the burden of illness and confidence in the vaccines, with providers being more aware of disease burden and confident in vaccine effectiveness than the public. Between 55.0% and 59.7% of adults reported willingness to be vaccinated if recommended by their healthcare provider. However, such recommendations were variable; while 77.4% of the public reported being offered and 52.8% reported being recommended the influenza vaccine by their provider, only 10.8% were offered and 5.6% recommended pertussis vaccine. Barriers and facilitators to improved vaccine coverage in adults, such as trust-mistrust of health authorities, pharmaceutical companies and national recommendations, autonomy versus the public good and logistical issues (such as insufficient time and lack of vaccination status tracking), were identified by both the public and providers. Despite guidelines for adult vaccination, there are substantial gaps in knowledge and attitudes and beliefs among both the public and healthcare providers that lead to low vaccine coverage. A systematic approach that involves education, elimination of barriers and establishing and improving infrastructure for adult immunisation is required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. A close examination of under-actuated attitude control subsystem design for future satellite missions' life extension

    NASA Astrophysics Data System (ADS)

    Lam, Quang M.; Barkana, Itzhak

    2014-12-01

    Satellite mission life, maintained and prolonged beyond its typical norm of their expectancy, are primarily dictated by the state of health of its Reaction Wheel Assembly (RWA), especially for commercial GEO satellites since torquer bars are no longer applicable while thruster assistant is unacceptable due to pointing accuracy impact during jet firing. The RWA is the primary set of actuators (as compared to thrusters for orbit maintenance and maneuvering) mainly responsible for the satellite mission for accurately and precisely pointing its payloads to the right targets to conduct its mission operations. The RWA consisting of either a set of four in pyramid or three in orthogonal is the primary set of actuators to allow the satellite to achieve accurate and precise pointing of the satellite payloads towards the desired targets. Future space missions will be required to achieve much longer lives and are currently perceived by the GEO satellite community as an "expected norm" of 20 years or longer. Driven by customers' demands/goals and competitive market have challenged Attitude Control Subsystems (ACS) engineers to develop better ACS algorithms to address such an emerging need. There are two main directions to design satellite's under-actuated control subsystem: (1) Attitude Feedback with Zero Momentum Principle and (2) Attitude Control by Angular Velocity Tracking via Small Time Local Controllability concept. Successful applications of these control laws have been largely demonstrated via simulation for the rest to rest case. Limited accuracy and oscillatory behaviors are observed in three axes for non-zero wheel momentum while realistic loss of a wheel scenario (i.e., fully actuated to under-actuated) has not been closely examined! This study revisits the under-actuated control design with detailed set ups of multiple scenarios reflecting real life operating conditions which have put current under-actuated control laws mentioned earlier into a re-evaluation mode since rest to rest case is not adequate to truly represent an on orbit failure of a single wheel. The study is intended to facilitate the ACS community to further develop a more practical under-actuated control law and present a path to extend these current thinking to address a more realistic reconfigurable ACS subject to a dynamic transition from a 3 RWs mode to 2 RWs mode.

  4. How the Polls Can Be Both Spot On and Dead Wrong: Using Choice Blindness to Shift Political Attitudes and Voter Intentions

    PubMed Central

    Hall, Lars; Strandberg, Thomas; Pärnamets, Philip; Lind, Andreas; Tärning, Betty; Johansson, Petter

    2013-01-01

    Political candidates often believe they must focus their campaign efforts on a small number of swing voters open for ideological change. Based on the wisdom of opinion polls, this might seem like a good idea. But do most voters really hold their political attitudes so firmly that they are unreceptive to persuasion? We tested this premise during the most recent general election in Sweden, in which a left- and a right-wing coalition were locked in a close race. We asked our participants to state their voter intention, and presented them with a political survey of wedge issues between the two coalitions. Using a sleight-of-hand we then altered their replies to place them in the opposite political camp, and invited them to reason about their attitudes on the manipulated issues. Finally, we summarized their survey score, and asked for their voter intention again. The results showed that no more than 22% of the manipulated replies were detected, and that a full 92% of the participants accepted and endorsed our altered political survey score. Furthermore, the final voter intention question indicated that as many as 48% (±9.2%) were willing to consider a left-right coalition shift. This can be contrasted with the established polls tracking the Swedish election, which registered maximally 10% voters open for a swing. Our results indicate that political attitudes and partisan divisions can be far more flexible than what is assumed by the polls, and that people can reason about the factual issues of the campaign with considerable openness to change. PMID:23593244

  5. Medical teachers' attitudes towards science and motivational orientation for medical research.

    PubMed

    Cvek, Mario; Hren, Darko; Sambunjak, Dario; Planinc, Mislav; Macković, Maja; Marusić, Ana; Marusić, Matko

    2009-01-01

    Research is an important motivating factor for pursuing a career in academic medicine, but the relation between motivation and other factors involved in scientific research are not clear. To explore the motivational orientation for doing research and its relation with attitudes towards science and publication practice among members of faculty at a medical school. We used a Science Attitude Survey and the Work Preference Inventory (intrinsic and extrinsic motivational orientation using 4 Likert-type scales of motivation, possible range 1-5) to survey two groups of teachers at the Zagreb University School of Medicine (n = 327, 66% response rate): professors, elected to tenure-track positions (n = 150), and instructor/research fellows working on or just completing their thesis (n = 177). Overall, teachers scored highest on the Enjoyment subscale of intrinsic motivational orientation (mean score +/- standard deviation 4.3 +/- 0.42 for professors vs 4.1 +/- 0.42 for instructors/research fellows, P = 0.001, t-test). Professors also scored higher than instructors/research fellows on the Challenge subscale of intrinsic motivational orientation (3.8 +/- 0.55 vs. 3.5 +/- 0.64, P < 0.001, t-test), whereas instructors/research fellows scored higher on the Compensation subscale of extrinsic motivational orientation (3.5 +/- 0.74 vs. 3.1 +/- 0.71, P < 0.001, t-test). Multiple linear regression analysis showed that the number of publications was positively associated with scores on the Science Attitude Survey and the Challenge subscale of intrinsic motivation, and negatively associated with scores on the Compensation subscale of extrinsic motivation. Members of the medical faculty differ in motivational orientation for research depending on their academic status, and their motivation is associated more with requirements for academic advancement than with research. These findings have important implications for developing strategies for enhancing academic research production.

  6. Parental Attitudes and the Effects of Ethnicity: How They Influence Children's Attitudes toward Science Education

    ERIC Educational Resources Information Center

    Alrehaly, Essa D.

    2011-01-01

    The purpose of this study was to explore the manner in which parents' attitudes toward science learning influences their children's attitudes and the effect of ethnicity on attitudes toward science learning. The results of this study show that parental attitudes toward science learning were influenced by both parents' early life experiences and…

  7. Study on pixel matching method of the multi-angle observation from airborne AMPR measurements

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han

    2015-10-01

    For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.

  8. Mental health professionals' attitudes towards people with mental illness: do they differ from attitudes held by people with mental illness?

    PubMed

    Hansson, Lars; Jormfeldt, Henrika; Svedberg, Petra; Svensson, Bengt

    2013-02-01

    Studies investigating mental health professionals' attitudes towards people with mental illness are scarce and there is a lack of comparative studies including both patients' and mental health professionals' attitudes. The aim of the present study was to investigate mental health staff's attitudes towards people with mental illness and compare these with the attitudes of patients in contact with mental health services. A further aim was to relate staff attitudes to demographic and work characteristics. A cross-sectional study was performed including 140 staff and 141 patients. The study included a random sample of outpatients in contact with mental health services in the southern part of Sweden and staff working in these services. Attitudes were investigated using a questionnaire covering beliefs of devaluation and discrimination of people with a mental illness. Negative attitudes were prevalent among staff. Most negative attitudes concerned whether an employer would accept an application for work, willingness to date a person who had been hospitalized, and hiring a patient to take care of children. Staff treating patients with a psychosis or working in inpatient settings had the most negative attitudes. Patient attitudes were overall similar to staff attitudes and there were significant differences in only three out of 12 dimensions. Patients' most negative attitudes were in the same area as the staff's. This study points to the suggestion that mental health care staff may hold negative attitudes and beliefs about people with mental illness with tentative implications for treatment of the patient and development and implementation of evidence-based services. Since patients and staff in most respects share these beliefs, it is essential to develop interventions that have an impact on both patients and staff, enabling a more recovery-oriented staff-patient relationship.

  9. Attitude to the Study of Chemistry and Its Relationship with Achievement in an Introductory Undergraduate Course

    ERIC Educational Resources Information Center

    Brown, Stephen J.; White, Sue; Sharma, Bibhya; Wakeling, Lara; Naiker, Mani; Chandra, Shaneel; Gopalan, Romila; Bilimoria, Veena

    2015-01-01

    A positive attitude to a subject may be congruent with higher achievement; however, limited evidence supports this for students in undergraduate chemistry--this may result from difficulties in quantifying attitude. Therefore, in this study, the Attitude to the Study of Chemistry Inventory (ASCI)--a validated instrument to quantify attitude, was…

  10. Attitudes to animal euthanasia do not correlate with acceptance of human euthanasia or suicide.

    PubMed

    Ogden, U; Kinnison, T; May, S A

    2012-08-18

    Several reasons have been suggested for the elevated risk of suicide experienced by those in the veterinary profession. The current study aimed to investigate possible links between veterinarians' attitudes to 'convenience' or non-justified animal euthanasia and attitudes towards human euthanasia and suicide. Veterinary students and graduates had a negative attitude towards convenience animal euthanasia, but their attitudes changed over time (pre-clinical studies, clinical studies and recently graduated). A greater tolerance to euthanasia was displayed in the later years of study and post qualification - primarily by males. Attitudes towards both human euthanasia and suicide, however, remained stable over time and indicated on average a neutral stance. No correlations were found between attitudes to convenience euthanasia and either human euthanasia or suicide, suggesting a tolerance to convenience euthanasia of animals does not lead to desensitisation in valuing human life and a changed attitude to human euthanasia or suicide, or vice versa. Attitudes to human euthanasia and suicide were predictably correlated, perhaps suggesting an overarching attitude towards control over human death. The results of the current study throw into question the argument that it is the changes in attitudes to animal life that affect veterinarian's attitudes to human life and contribute to the high suicide rate.

  11. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    NASA Technical Reports Server (NTRS)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  12. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  13. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  14. Miniature star tracker for small remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Cassidy, Lawrence W.; Schlom, Leslie

    1995-01-01

    Designers of future remote sensing spacecraft, including platforms for Mission to Planet Earth and small satellites, will be driven to provide spacecraft designs that maximize data return and minimize hardware and operating costs. The attitude determination subsystems of these spacecraft must likewise provide maximum capability and versatility at an affordable price. Hughes Danbury Optical Systems (HDOS) has developed the Model HD-1003 Miniature Star Tracker which combines high accuracy, high reliability and growth margin for `all-stellar' capability in a compact, radiation tolerant design that meets these future spacecraft needs and whose cost is competitive with horizon sensors and digital fine sum sensors. Begun in 1991, our HD-1003 development program has now entered the hardware qualification phase. This paper acquaints spacecraft designers with the design and performance capabilities of the HD- 1003 tracker. We highlight the tracker's unique features which include: (1) Very small size (165 cu. in.). (2) Low weight (7 lbs). (3) Multi-star tracking (6 stars simultaneously). (4) Eighteen arc-sec (3-sigma) accuracy. (5) Growth margin for `all-stellar' attitude reference.

  15. Training response inhibition to reduce food consumption: Mechanisms, stimulus specificity and appropriate training protocols.

    PubMed

    Adams, Rachel C; Lawrence, Natalia S; Verbruggen, Frederick; Chambers, Christopher D

    2017-02-01

    Training individuals to inhibit their responses towards unhealthy foods has been shown to reduce food intake relative to a control group. Here we aimed to further explore these effects by investigating the role of stimulus devaluation, training protocol, and choice of control group. Restrained eaters received either inhibition or control training using a modified version of either the stop-signal or go/no-go task. Following training we measured implicit attitudes towards food (Study 1) and food consumption (Studies 1 and 2). In Study 1 we used a modified stop-signal training task with increased demands on top-down control (using a tracking procedure and feedback to maintain competition between the stop and go processes). With this task, we found no evidence for an effect of training on implicit attitudes or food consumption, with Bayesian inferential analyses revealing substantial evidence for the null hypothesis. In Study 2 we removed the feedback in the stop-signal training to increase the rate of successful inhibition and revealed a significant effect of both stop-signal and go/no-go training on food intake (compared to double-response and go training, respectively) with a greater difference in consumption in the go/no-go task, compared with the stop-signal task. However, results from an additional passive control group suggest that training effects could be partly caused by increased consumption in the go control group whereas evidence for reduced consumption in the inhibition groups was inconclusive. Our findings therefore support evidence that inhibition training tasks with higher rates of inhibition accuracy are more effective, but prompt caution for interpreting the efficacy of laboratory-based inhibition training as an intervention for behaviour change. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Changes in attitudes towards war and violence after September 11, 2001.

    PubMed

    Carnagey, Nicholas L; Anderson, Craig A

    2007-01-01

    Two inter-related studies examined the effect of the September 11, 2001, terrorist attacks on attitudes towards war and violence. A three-wave between-subjects analysis revealed that attitudes towards war became more positive after September 11, 2001 and remained high over a year afterwards. Self-reported trait physical aggression also rose after September 11. Attitudes towards penal code violence (PCV) became more positive immediately after September 11, but were somewhat reduced a year afterward. A two-wave within subjects study revealed that war attitudes became even more positive at 2 months post-September 11. Attitudes towards PCV became less positive during this time period, but only for women. Other aggression-related attitudes were not affected in either study. These studies demonstrate that a large-scale event can change attitudes, but those attitudes must be directly relevant to the event. Copyright 2006 Wiley-Liss; Inc.

  17. Spacecraft attitude calibration/verification baseline study

    NASA Technical Reports Server (NTRS)

    Chen, L. C.

    1981-01-01

    A baseline study for a generalized spacecraft attitude calibration/verification system is presented. It can be used to define software specifications for three major functions required by a mission: the pre-launch parameter observability and data collection strategy study; the in-flight sensor calibration; and the post-calibration attitude accuracy verification. Analytical considerations are given for both single-axis and three-axis spacecrafts. The three-axis attitudes considered include the inertial-pointing attitudes, the reference-pointing attitudes, and attitudes undergoing specific maneuvers. The attitude sensors and hardware considered include the Earth horizon sensors, the plane-field Sun sensors, the coarse and fine two-axis digital Sun sensors, the three-axis magnetometers, the fixed-head star trackers, and the inertial reference gyros.

  18. Exploring changes in nursing students' attitudes towards the use of technology: A four-wave longitudinal panel study.

    PubMed

    Tubaishat, Ahmad; Aljezawi, Ma'en; Al-Rawajfah, Omar M; Habiballah, Laila; Akhu-Zaheya, Laila M

    2016-03-01

    It is essential for nursing students to be equipped with the necessary technology skills throughout and after their study period. Their acceptance of this technology depends largely on their attitudes towards technology. To explore the evolution in nursing students' attitudes towards technology, and to determine whether there was a change in participants' formal education in technology over their four years of study. A longitudinal panel study was conducted in a single school of nursing in Jordan. A total of 140 students were followed over their four years of undergraduate study. They completed the same tool (the Technology Attitude Scale) each year, to capture any changes in their attitudes towards technology across the years. In all four waves of data collection, students showed positive attitudes towards technology, with the highest attitude scores being in their final year (M=6.19, SD=0.72). As the students spent more time on their nursing education, they were found to have a more positive attitude. Thus, a strong positive relationship existed between this formal education in technology and attitudes: as the students' education in technology increased, their attitudes were more positive. A remarkable development in students' attitudes towards technology is reported in this study. The positive attitudes displayed by the students should be enhanced by providing technology-related subjects during their studies in nursing schools at a very early stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Exploring Different Patterns of Love Attitudes among Chinese College Students.

    PubMed

    Zeng, Xianglong; Pan, Yiqin; Zhou, Han; Yu, Shi; Liu, Xiangping

    2016-01-01

    Individual differences in love attitudes and the relationship between love attitudes and other variables in Asian culture lack in-depth exploration. This study conducted cluster analysis with data regarding love attitudes obtained from 389 college students in mainland China. The result of cluster analysis based on love-attitude scales distinguished four types of students: game players, rational lovers, emotional lovers, and absence lovers. These four groups of students showed significant differences in sexual attitudes and personality traits of deliberation and dutifulness but not self-discipline. The study's implications for future studies on love attitudes in certain cultural groups were also discussed.

  20. Gravity and Macro-Model Tuning for the Geosat Follow-on Spacecraft

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Marr, Gregory C.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.

    1999-01-01

    The US Navy's GEOSAT Follow-On (GFO) spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. The spacecraft tracking complement consisted of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). The spacecraft has been tracked by the international satellite laser ranging network since April 22, 1998, and an average of 7.4 passes per day have been obtained from US and participating foreign stations. Since the predicted radial orbit error due to the gravity field is two to three cm, the largest contributor to the high SLR residuals (7-10 cm RMS for five day arcs) is the mismodelling of the non-conservative forces, not withstanding the development of a three-dimensional eight-panel model and an analytical attitude model for the GFO spacecraft. The SLR residuals show a clear correlation with beta-prime (solar elevation) angle, peaking in mid-August 1998 when the beta-prime angle reached -80 to -90 degrees. In this paper we discuss the tuning of the non-conservative force model, for GFO and report the subsequent addition of the GFO tracking data to the Earth gravity model solutions.

Top