Sample records for au cern language

  1. LHC, le Big Bang en éprouvette

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Notre compréhension de l’Univers est en train de changer… Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l’innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur demore » recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008.« less

  2. LHC, le Big Bang en éprouvette

    ScienceCinema

    None

    2017-12-09

    Notre compréhension de l’Univers est en train de changer… Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l’innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur de recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008

  3. The significance of Cern

    ScienceCinema

    None

    2017-12-09

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  4. 65th birthday Jack Steinberger

    ScienceCinema

    None

    2017-12-09

    Laudatio pour Jack Steinberger né le 25 mai 1921, à l'occasion de son 65me anniversaire et sa retraite officielle, pour sa précieuse collaboration au Cern. Néanmoins son principal activité continuera comme avant dans sa recherche au Cern. Plusieurs orateurs prennent la parole (p.ex. E.Picasso) pour le féliciter et lui rendre hommage

  5. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  6. Visit CD

    ScienceCinema

    None

    2017-12-09

    Le DG H.Schopper souhaite la bienvenue aux ambassadeurs des pays membres et aux représentants des pays avec lesquels le Cern entretient des relations proches et fait un exposé sur les activités au Cern

  7. Signature CERN-URSS

    ScienceCinema

    None

    2017-12-09

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Plusieurs orateurs rendent hommage au grand physicien et scientifique Vladimir Jurko Glaser (1924 - 1984) qui travaillait au Ruder Boscovic Institut à Zagreb avant de venir au Cern en 1957 où il trouvait un poste permanent au département de physique théorique. Walter Tearing, Harry Lehmann,Henry Epstein, Jacques Bros et André Martin font des résumés biographiques de leurs collègue et ami en honorant ses grands qualités d'homme et ses remarquables conquêtes de la science et leurs accomplissement.

  9. Memorial V.J.Glaser

    ScienceCinema

    None

    2017-12-09

    Plusieurs orateurs rendent hommage au grand physicien et scientifique Vladimir Jurko Glaser (1924 - 1984) qui travaillait au Ruder Boscovic Institut à Zagreb avant de venir au Cern en 1957 où il trouvait un poste permanent au département de physique théorique. Walter Tearing, Harry Lehmann,Henry Epstein, Jacques Bros et André Martin font des résumés biographiques de leurs collègue et ami en honorant ses grands qualités d'homme et ses remarquables conquêtes de la science et leurs accomplissement.

  10. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  11. Retirement Kjell Johnsen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-12-05

    A l'occasion de son 65me anniversaire plusieurs orateurs (aussi l'ambassadeur de Norvège) remercient Kjell Johnsen, né en juin 1921 en Norvège, pour ses 34 ans de service au Cern et retracent sa vie et son travail. K.Johnsen a pris part aux premières études sur les accélérateurs du futur centre de physique et fut aussi le père et le premier directeur de l'Ecole du Cern sur les accélérateurs (CAS)

  12. Enhanced production of low-mass electron-positron pairs in 40-AGeV Pb-Au collisions at the CERN SPS.

    PubMed

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Richter, M; Sako, H; Schmitz, W; Sedykh, S; Seipp, W; Sharma, A; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-07-25

    We report on first measurements of low-mass electron-positron pairs in Pb-Au collisions at the CERN SPS beam energy of 40 AGeV. The observed pair yield integrated over the range of invariant masses 0.2e(+)e(-) annihilation with a modified rho propagator. They may be linked to chiral symmetry restoration and support the notion that the in-medium modifications of the rho are more driven by baryon density than by temperature.

  13. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  14. Ceremony 25th birthday Cern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-05-08

    Célébration du 25ème anniversaire du Cern (jour par jour) avec discours de L.Van Hove et J.B.Adams, des interludes musicals offerts par Mme Mey et ses collègues (au debut 1.mouvement du quatuor avec piano no 3 de L.van Beethoven) Les directeurs généraux procéderont à la remise du souvenir aux membres de personnel ayant 25 années de service dans l'organisation. Un témoignage de reconnaissance est auss fait à l'interprète Mme Zwerner

  15. Les droits linguistiques et scolaires au Quebec et au Canada (Linguistic and Educational Rights in Quebec and Canada).

    ERIC Educational Resources Information Center

    Tetley, William

    A review of the language laws and conventions in Canada and the province of Quebec focuses on: Canadian constitutional law concerning education and language, including the 1867 constitution, the 1960 declaration of linguistic rights, and a 1969 law on official languages; the language of government and instruction in Manitoba; language usage in the…

  16. Retirement Kjell Johnsen

    ScienceCinema

    None

    2017-12-09

    A l'occasion de son 65me anniversaire plusieurs orateurs (aussi l'ambassadeur de Norvège) remercient Kjell Johnsen, né en juin 1921 en Norvège, pour ses 34 ans de service au Cern et retracent sa vie et son travail. K.Johnsen a pris part aux premières études sur les accélérateurs du futur centre de physique et fut aussi le père et le premier directeur de l'Ecole du Cern sur les accélérateurs (CAS)

  17. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2017-12-09

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  18. Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2015-09-01

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d +Au , p +Au , and n +Au collisions at √{sN N}=200 GeV . The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p +Au and n +Au collisions in the data. A weighted combination of the yield of p +Au and n +Au is constructed to build a reference for Au +Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence of the yield of this improved reference system is found to match that of d +Au . The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p +p ¯ to central d +Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p +Au is compared to that of n +Au . No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p +A and d +A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.

  19. Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector

    DOE PAGES

    Back, B. B.; Nouicer, R.; Baker, M. D.; ...

    2015-09-23

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at √s NN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p T and centralitymore » dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less

  20. Nucleon-gold collisions at 200 A GeV using tagged d   +   Au interactions in the PHOBOS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, B. B.; Baker, M. D.; Ballintijn, M.

    2015-09-01

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d + Au, p + Au, and n + Au collisions at root s(NN) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p + Au and n + Au collisions in the data. A weighted combination of the yield of p + Au and n + Au is constructed to build a reference for Aumore » + Au collisions that better matches the isospin composition of the gold nucleus. The p(T) and centrality dependence of the yield of this improved reference system is found to match that of d + Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p + (p) over bar to central d + Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p + Au is compared to that of n + Au. No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p + A and d + A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less

  1. Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN

    NASA Astrophysics Data System (ADS)

    Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero

    The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.

  2. A quoi ça CERN? De l'invention du Web à la Grille de calcul, l'informatique pour tous?

    ScienceCinema

    None

    2018-06-28

    Venez débattre autour de l'ordinateur ayant servi à réaliser la première page Web au monde et découvrir sur le grand écran la Grille de calcul mondiale. The video is black for the first 9 minutes.

  3. Detailed α -decay study of 180Tl

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2017-11-01

    A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

  4. Experiential instruction in graduate-level preparation of speech-language pathology students in outer and middle ear screening.

    PubMed

    Serpanos, Yula C; Senzer, Deborah

    2015-05-01

    This study presents a piloted training model of experiential instruction in outer and middle ear (OE-ME) screening for graduate speech-language pathology students with peer teaching by doctor of audiology (AuD) students. Six individual experiential training sessions in screening otoscopy and tympanometry were conducted for 36 graduate-level speech-language pathology students led by a supervised AuD student. Postexperiential training, survey outcomes from 24 speech-language pathology students revealed a significant improvement (p = .01) in perceptions of attaining adequate knowledge and comfort in performing screening otoscopy (handheld and video otoscopy) and tympanometry. In a group of matched controls who did not receive experiential training in OE-ME screening (n = 24), ratings on the same learning outcomes survey in otoscopy and tympanometry were significantly poorer (p = .01) compared with students who did receive experiential training. A training model of experiential instruction for speech-language pathology students by AuD students improved learning outcomes, illustrating its promise in affecting clinical practices. The instructional model also meets the Council on Academic Accreditation in Audiology and Speech-Language Pathology (CAA; American Speech-Language-Hearing Association, 2008) and American Speech-Language-Hearing Association (2014) Certificate of Clinical Competence (ASHA CCC) standards for speech-language pathology in OE-ME screening and CAA (2008) and ASHA (2012) CCC standards in the supervisory process for audiology.

  5. Interprofessional Peer-Assisted Learning as a Model of Instruction in Doctor of Audiology Programs.

    PubMed

    Serpanos, Yula C; Senzer, Deborah; Gordon, Daryl M

    2017-09-18

    This study reports on interprofessional peer-assisted learning (PAL) as a model of instruction in the preparation of doctoral audiology students. Ten Doctor of Audiology (AuD) students provided training in audiologic screening for 53 graduate speech-language pathology students in 9 individual PAL sessions. Pre- and post-surveys assessed the peer teaching experience for AuD students in 5 areas of their confidence in audiologic screening: knowledge, skill, making a referral based on outcomes, teaching, and supervising. Pre- and post-learning outcomes in audiologic screening for the speech-language pathology student trainees determined the effectiveness of training by their AuD student peers. Survey outcomes revealed significant (p < .001) improvement in the overall confidence of AuD student peer instructors. Speech-language pathology students trained by their AuD peers exhibited significant (p = .003) improvements in their knowledge and skill and making outcome-based referrals in audiologic screening, supporting the effectiveness of the PAL paradigm. In addition to meeting required accreditation and professional certification competency standards, the PAL instructional model offers an innovative curricular approach in interprofessional education and in the teaching and supervisory preparation of students in doctoral audiology programs.

  6. La supraconductivité a 100 ans !

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebrun, Philippe

    2011-04-14

    Il y a 100 ans, le 8 avril 1911, une découverte majeure était réalisée : celle de la supraconductivité. La supraconductivité est la caractéristique qu’ont certains métaux et alliages de perdre toute résistance électrique en dessous d’une température donnée. Cette renversante découverte, réalisée de manière presque fortuite par Kammerlingh Onnes de l’Université de Leyde (Pays-Bas) et son étudiant Gilles Holst, a ouvert un nouveau champ de recherche en physique et de fabuleuses perspectives d’applications technologiques. Du point de vue scientifique, la supraconductivité est en effet l’une des rares manifestations de la physique quantique à l’échelle macroscopique.  Du point de vuemore » des retombées techniques, elle est porteuse d’applications majeures dans le domaine de la santé, des communications et de l’énergie. 100 ans après, les physiciens n’ont toujours pas fini d’explorer ce phénomène et ses applications. Le CERN abrite des applications de la supraconductivité à des échelles inédites. L’accélérateur de particules LHC, avec ses milliers d’aimants supraconducteurs répartis sur 27 kilomètres de circonférence, est en effet la plus grande application mondiale de la supraconductivité. Il ne pourrait exister sans elle. Le CERN fête donc la découverte de la supraconductivité avec une conférence exceptionnelle donnée par Philippe Lebrun. Au cours de cette conférence, l’expérience historique de Kammerlingh Onnes sera reproduite. Philippe Lebrun racontera l’histoire de cette étonnante découverte, en la replaçant dans le contexte scientifique de l’époque. Il racontera les développements scientifiques et les applications du premier siècle de la supraconductivité. Conférence en français Merci de bien vouloir vous inscrire au : +41 22 767 76 76 ou cern.reception@cern.ch« less

  7. The Infusion of Language, Regional, and Cultural Content into Military Education: Status Report

    DTIC Science & Technology

    2011-01-01

    outreach (to, for example, partner militaries) with typically only limited U.S. Government representation. Findings Throughout DoD, tremendous effort...U.S. Government Printing Office, Washington, 1989 http://www.au.af.mil/au/awc/awcgate/congress/skelton1989/skelton.pdf 4 29 January 2010 TASK ORDER...are: Application of combat power (military art and science), Culture and foreign language, an understanding of Governance , an understanding of

  8. Neuropsychological functioning of siblings of children with autism, siblings of children with developmental language delay, and siblings of children with mental retardation of unknown genetic etiology.

    PubMed

    Pilowsky, Tammy; Yirmiya, Nurit; Gross-Tsur, Varda; Shalev, Ruth S

    2007-03-01

    Neuropsychological functioning of 30 siblings of children with autism (AU-S), 28 siblings of children with mental retardation of (MR-S), and 30 siblings of children with developmental language delay (DLD-S) was compared. Two siblings, both AU-S, received diagnoses of pervasive developmental disorder (PDD). More siblings with cognitive disabilities were found in DLD-S than in AU-S. However, these differences disappeared after excluding diagnosed siblings or after accounting for family membership. In sum, despite the elevated incidence of PDD among AU-S, the neuropsychological functioning of the remaining siblings did not convey specific characteristics related to the genetic risk associated with autism, in contrast to the cognitive functioning of the DLD-S, which did reflect a genetic risk.

  9. Modification of the ρ meson detected by low-mass electron-positron pairs in central Pbsbnd Au collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    2008-09-01

    We present a measurement of e+e- pair production in central Pbsbnd Au collisions at 158 A GeV / c. As reported earlier, a significant excess of the e+e- pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ spectral function over a density-dependent shift of the ρ pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to the observed modifications of the ρ meson at SPS energy.

  10. Modification of the ρ meson detected by low-mass electron positron pairs in central PbAu collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.

    2008-09-01

    We present a measurement of ee pair production in central PbAu collisions at 158A GeV/c. As reported earlier, a significant excess of the ee pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ spectral function over a density-dependent shift of the ρ pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to the observed modifications of the ρ meson at SPS energy.

  11. Modification of jet-like correlations in Pb-Au collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kalisky, M.; Kniege, S.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.

    2009-07-01

    Results of a two-particle correlation analysis of high-p charged particles in Pb-Au collisions at 158A GeV/c are presented. The data have been recorded by the CERES experiment at the CERN-SPS. The correlations are studied as function of transverse momentum, particle charge and collision centrality. We observe a jet-like structure in the vicinity of a high-p trigger particle and a broad back-to-back distribution. The yields of associated particles per trigger show a strong dependence on the trigger/associate charge combination. A comparison to PYTHIA confirms the jet-like pattern at the near-side but suggests a strong modification at the away-side, implying significant energy transfer of the hard-scattered parton to the medium.

  12. Enseignement de la langue francaise au Maroc et dialogue des cultures (Teaching of the French Language in Morocco and Dialogue of Cultures).

    ERIC Educational Resources Information Center

    Lahjomri, Abdeljalil

    1984-01-01

    In the process of Arabization of Morocco, it is necessary to maintain French language instruciton, but as a necessary foreign language and not as a primary language. French remains an important part of Morocco's diverse cultural identity. (MSE)

  13. Les contributions de la psychologie cognitive a l'enseignement strategique des langues secondes au niveau universitaire (The Contributions of Cognitive Psychology to Strategic Second Language Instruction at the University Level).

    ERIC Educational Resources Information Center

    Besnard, Christine

    1995-01-01

    Contributions of the field of cognitive psychology to second language instruction are reviewed. It is proposed that these concepts can contribute not only to classroom language instruction, but also to methodology of language teacher education. (MSE)

  14. Pourquoi le francais et quel francais au Maroc? (Why French and Which French in Morocco?)

    ERIC Educational Resources Information Center

    Akouaou, Ahmed

    1984-01-01

    The status of French in Morocco is ambiguous: it is neither an official language nor a foreign language, and it would benefit greatly from an official definition that would allow a variety of language conflicts to be resolved. (MSE)

  15. (Dis)connections between Specific Language Impairment and Dyslexia in Chinese

    ERIC Educational Resources Information Center

    Wong, Anita M.-Y.; Ho, Connie S.-H.; Au, Terry K.-F.; Kidd, Joanna C.; Ng, Ashley K.-H.; Yip, Lesley P.-W.; Lam, Catherine C.-C.

    2015-01-01

    Specific language impairment (SLI) and dyslexia are found to co-occur in school-aged children learning Chinese, a non-alphabetic language (Wong, Kidd, Ho, & Au in "Sci Stud Read" 14:30--57, 2010). This paper examined the "Distinct" hypothesis--that SLI and dyslexia have different cognitive deficits and behavioural…

  16. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less

  17. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  18. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-08-16

    Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less

  19. Semi-Supervised Multiple Feature Analysis for Action Recognition

    DTIC Science & Technology

    2013-11-26

    Technology and Electrical Engineering, University of Queensland, Brisbane, Australia ( e -mail: sen.wang@uq.edu.au; yi.yang@uq.edu.au). Z. Ma is with...the Language Technologies Institute, Carnegie Mellon Univer- sity, Pittsburgh, PA 15213 USA ( e -mail: kevinma@cs.cmu.edu). X. Li is with the School of...Service Computing in Cyber Physical Society, Chongqing University, Chongqing, China ( e -mail: xueli@itee.uq.edu.au). C. Pang is with the Australian e

  20. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  1. A description of the pseudorapidity distributions in heavy ion collisions at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Jiang, Z. J.; Zhang, Y.; Zhang, H. L.; Deng, H. P.

    2015-09-01

    The charged particles produced in nucleus-nucleus collisions are classified into two parts: One is from the hot and dense matter created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand and generate particles according to BJP hydrodynamics, a theory put forward by A. Bialas, R.A. Janik and R. Peschanski. The leading particles are argued to possess a Gaussian rapidity distribution with the normalization constant equaling the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaborations at BNL-RHIC in Au-Au and Cu-Cu collisions at √{sNN} = 200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at √{sNN} = 2.76 TeV. The theoretical results are well consistent with experimental data.

  2. Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.

    2018-03-01

    Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.

  3. Two-proton correlations in the target fragmentation region of nuclear collisions at 200 A GeV

    NASA Astrophysics Data System (ADS)

    Awes, T. C.; Barlag, C.; Berger, F.; Bloomer, M. A.; Blume, C.; Bock, D.; Bock, R.; Bohne, E.-M.; Bucher, D.; Claussen, A.; Clewing, G.; Dragon, L.; Eklund, A.; Garpman, S.; Glasow, R.; Gustafsson, H.; Gutbrod, H. H.; Hölker, G.; Idh, J.; Jacobs, P.; Kampert, K. H.; Kolb, B. W.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Roters, B.; Saini, S.; Santo, R.; Schmidt, H. R.; Sørensen, S. P.; Steffens, K.; Steinhaeuser, P.; Stenlund, E.; Stüken, D.; Young, G. R.

    1995-06-01

    Correlations between protons are studied in the target fragmentation region of reactions of protons and16O with C, Cu, Ag, Au and of32S with Al and Au at 200 A GeV. The emitted protons were measured with the Plastic Ball detector in the WA80 experiment at the CERN SPS. The comparison of the correlation function with calculations, assuming a spherical, gaussian shaped source with a lifetime τ=0 fm/ c, allows the extraction of radius parameters. The values are very close to those expected from the geometry of the target nuclei and increase with the target mass as α A {Target/1/3}. Even in proton induced reactions the whole target nucleus is involved. The dependence of the radii on centrality, polar angle θ lab, and energy, and their relation to measured proton yields are presented.

  4. Les competences langagieres des etudiants-maitres en francais langue seconde au Canada (Linguistic Competence of Student Teachers of French as a Second Language in Canada).

    ERIC Educational Resources Information Center

    Boutin, France; Chinien, Christian; Boutin, Jean-Luc

    A survey of 23 Canadian schools of education investigated the French language competence of student enrolled in core and immersion French language teacher programs. The questionnaire developed for the study inquired about the native language of the students, methods used to sensitize non-francophone students to francophone culture, and strategies…

  5. STAR Au + Au Fixed Target Results

    NASA Astrophysics Data System (ADS)

    Meehan, Kathryn; STAR Collaboration

    2015-10-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. The results from the NA49 experiment at CERN have been used to claim that the onset of deconfinement occurs at a collision energy around a center-of-mass energy of 7 GeV, the low end of the BES range. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II with the same detector to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb analysis of Au + Au fixed-target collisions, which are found to be consistent with previous experiments, will be presented. These results demonstrate that STAR has good particle identification capabilities in this novel detector setup. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared with published results from the AGS. This material is based upon work supported by the National Science Foundation under Grant No. 1068833.

  6. Le LHC, un tunnel cosmique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binetruy, Pierre

    2009-09-17

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERNmore » a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76« less

  7. Perspektiven der angewandten Linguistik (Perspectives in Applied Linguistics).

    ERIC Educational Resources Information Center

    Watts, Richard J., Ed.; Werlen, Iwar, Ed.

    1995-01-01

    Articles in this issue include: "Complementarite et concurrence des politiques linguistiques au Canada: Le choix du medium d'instruction au Quebec et en Ontario" (The Complementarity and Competition of Language Policies in Canada: The Choice of Medium of Instruction in Quebec and Ontario) (Normand Labrie); "Presentation de la…

  8. L'evaluation de la competence linguistique des membres des ordres professionnels au Quebec (The Quebec Region Evaluation of Professional Personnel's Language Proficiency).

    ERIC Educational Resources Information Center

    Gareau, Claude

    1981-01-01

    Describes a testing program designed to assess the French language proficiency of professionals desiring to practice in the Quebec region. Discusses the criteria used for the construction, administration, and scoring of the tests in compliance with the 1977 French language legislation. (MES)

  9. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema

    Arnold, Jeffrey

    2018-05-14

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  10. Les Industries de la langue: Au confluent de la linguistique et de l'informatique (The Language Utilities: At the Confluence of Linguistics and Computer Science).

    ERIC Educational Resources Information Center

    Bourret, Annie, Ed.; L'Homme, Marie-Claude, Ed.

    A collection of essays addresses aspects of the "Language Utilities," the general term for the area of the conjunction of computer science and linguistics. The following are English translations of the titles of the articles in the collections: "Industrialization of the French Language and Its Maintenance as an Important Language of…

  11. Les linguistes et les questions de langue au Quebec: points de vue (Linguists and Language Questions in Quebec: Points of View).

    ERIC Educational Resources Information Center

    Deshaies, Denise, Ed.; Ouellon, Conrad, Ed.

    Papers, all in French, address four issues concerning linguistics and language in Quebec: language quality and linguistic reality; linguistic politics and the future of French in Quebec; the linguist's role in modern society; and dictionaries. Each section includes an untitled, substantive introduction and several papers. Papers include:…

  12. Role des congeneres interlinguaux dans le developpement du vocabulaire receptif: Application au francais langue seconde (The Role of Interlingual Cognates in the Development of Receptive Vocabulary: Application to French as a Second Language).

    ERIC Educational Resources Information Center

    Treville, Marie-Claude

    This study investigated the effects of systematic use of similarities between the native and second languages on the lexical competence of second language learners. Subjects were 209 first- and second-year English-speaking university students in French language classes. The students were pre- and post-tested for their visual recognition of…

  13. Aller au cinema. Pratiques langagieres et habitudes culturelles (Going to the Movies. Language Practice and Cultural Customs).

    ERIC Educational Resources Information Center

    Fargeot-Mauche, Marie-Claude

    1984-01-01

    A technique for illustrating to foreign language students how diversity can exist within a given culture uses taped interviews on a specific topic with different individuals. Students have a chance to analyze sociocultural patterns and make linguistic comparisons and generalizations. (MSE)

  14. Triangular flow of negative pions emitted in PbAu collisions at √{sNN} = 17.3 GeV

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Karpenko, Iu.; Krobath, G.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.

    2017-01-01

    Differential triangular flow, v3 (pT), of negative pions is measured at √{sNN} = 17.3 GeV around midrapidity by the CERES/NA45 experiment at CERN in central PbAu collisions in the range 0-30% with a mean centrality of 5.5%. This is the first measurement as a function of transverse momentum of the triangular flow at SPS energies. The pT range extends from about 0.05 GeV/c to more than 2 GeV/c. The triangular flow magnitude, corrected for the HBT effects, is smaller by a factor of about 2 than the one measured by the PHENIX experiment at RHIC and the ALICE experiment at the LHC. Within the analyzed range of central collisions no significant centrality dependence is observed. The data are found to be well described by a viscous hydrodynamic calculation combined with an UrQMD cascade model for the late stages.

  15. Performance and advantages of a soft-core based parallel architecture for energy peak detection in the calorimeter Level 0 trigger for the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Barbanera, M.; Bizzarri, M.; Bonaiuto, V.; Ceccucci, A.; Checcucci, B.; De Simone, N.; Fantechi, R.; Federici, L.; Fucci, A.; Lupi, M.; Paoluzzi, G.; Papi, A.; Piccini, M.; Ryjov, V.; Salamon, A.; Salina, G.; Sargeni, F.; Venditti, S.

    2017-03-01

    The NA62 experiment at CERN SPS has started its data-taking. Its aim is to measure the branching ratio of the ultra-rare decay K+ → π+ν ν̅ . In this context, rejecting the background is a crucial topic. One of the main background to the measurement is represented by the K+ → π+π0 decay. In the 1-8.5 mrad decay region this background is rejected by the calorimetric trigger processor (Cal-L0). In this work we present the performance of a soft-core based parallel architecture built on FPGAs for the energy peak reconstruction as an alternative to an implementation completely founded on VHDL language.

  16. Recent results in relativistic heavy ion collisions: from 'a new state of matter' to 'the perfect fluid'

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2006-07-01

    Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.

  17. La supraconductivité a 100 ans !

    ScienceCinema

    Lebrun, Philippe

    2018-06-12

    Il y a 100 ans, le 8 avril 1911, une découverte majeure était réalisée : celle de la supraconductivité. La supraconductivité est la caractéristique qu’ont certains métaux et alliages de perdre toute résistance électrique en dessous d’une température donnée. Cette renversante découverte, réalisée de manière presque fortuite par Kammerlingh Onnes de l’Université de Leyde (Pays-Bas) et son étudiant Gilles Holst, a ouvert un nouveau champ de recherche en physique et de fabuleuses perspectives d’applications technologiques. Du point de vue scientifique, la supraconductivité est en effet l’une des rares manifestations de la physique quantique à l’échelle macroscopique.  Du point de vue des retombées techniques, elle est porteuse d’applications majeures dans le domaine de la santé, des communications et de l’énergie. 100 ans après, les physiciens n’ont toujours pas fini d’explorer ce phénomène et ses applications. Le CERN abrite des applications de la supraconductivité à des échelles inédites. L’accélérateur de particules LHC, avec ses milliers d’aimants supraconducteurs répartis sur 27 kilomètres de circonférence, est en effet la plus grande application mondiale de la supraconductivité. Il ne pourrait exister sans elle. Le CERN fête donc la découverte de la supraconductivité avec une conférence exceptionnelle donnée par Philippe Lebrun. Au cours de cette conférence, l’expérience historique de Kammerlingh Onnes sera reproduite. Philippe Lebrun racontera l’histoire de cette étonnante découverte, en la replaçant dans le contexte scientifique de l’époque. Il racontera les développements scientifiques et les applications du premier siècle de la supraconductivité. Conférence en français Merci de bien vouloir vous inscrire au : +41 22 767 76 76 ou cern.reception@cern.ch

  18. Consequences of high-x proton size fluctuations in small collision systems at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    McGlinchey, D.; Nagle, J. L.; Perepelitsa, D. V.

    2016-08-01

    Recent measurements of jet production rates at large transverse momentum (pT) in the collisions of small projectiles with large nuclei at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider indicate that they have an unexpected relationship with estimates of the collision centrality. One compelling interpretation of the data is that they capture an xp-dependent decrease in the average interaction strength of the nucleon in the projectile undergoing a hard scattering. A weakly interacting or "shrinking" nucleon in the projectile strikes fewer nucleons in the nucleus, resulting in a particular pattern of centrality-dependent modifications to high-pT processes. We describe a simple one-parameter geometric implementation of this picture within a modified Monte Carlo Glauber model tuned to d +Au jet data, and explore two of its major consequences. First, the model predicts a particular projectile-species effect on the centrality dependence at high xp, opposite to that expected from a final state energy loss effect. Second, we find that some of the large centrality dependence observed for forward dihadron production in d +Au collisions at RHIC may arise from the physics of the "shrinking" projectile nucleon, in addition to impact parameter dependent shadowing or saturation effects at low nuclear x . We conclude that analogous measurements in recently collected p +Au and 3He+Au collision data at RHIC can provide a unique test of these predictions.

  19. Acquisition des competences discursives dans un contexte plurilingue (Acquisition of Discourse Competencies in a Multilingual Context).

    ERIC Educational Resources Information Center

    Berthoud, Anne-Claude, Ed.

    1996-01-01

    This collection of articles on second language learning in a multilingual environment includes: "Franzosisch-Deutsch: Zweisprachiges Lernen au der Sekundarstufe 1" (French-German: Learning Two Languages at Secondary School, Level 1) (Otto Stern, Brigit Eriksson, Christine Le Pape, Hans Reutener, Cecilia Serra Oesch); "Das Projekt…

  20. Proceedings: Pacific Northwest Council on Foreign Languages. Volume XXX, Part 2.

    ERIC Educational Resources Information Center

    Mazur, Gertrud S., Ed.

    The following papers of relevance to second language instruction are compiled here: (1) "Bilingual Math in a Monolingual Classroom: A Field Study," by Elizabeth M. Baricevic; (2) "Ideologie et pedagogie: reflexions sur le manuel de francais au programme de '3e annee secondaire' en Algerie," by Jeanne Adam; (3) "Pedagogic…

  1. Litterature: Retour au texte (Literature: Return to the Text).

    ERIC Educational Resources Information Center

    Noe, Alfred

    1993-01-01

    Choice of texts for use in French language instruction is discussed. It is argued that the text's format (e.g., advertising, figurative poetry, journal article, play, prose, etc.) is instrumental in bringing attention to the language in it, and this has implications for the best uses of different text types. (MSE)

  2. Italian Exposition

    ScienceCinema

    None

    2017-12-09

    Le DG parle dans son allocution à l'occasion de l'exposition (suivi d'une visite)de la contribution du Cern à la création d'une espace de la technologie européenne. Il parle de la manière comment organiser des formes fructueuses de coopération et coordination internationales dans ce domaine. "Afin de renforcer encore notre relation avec l'industrie et intensifier le transfert de la technologie nous proposerons au ministre de recherche de poursuivre dans le cadre du programme EUREKA ensemble avec les industries des programmes concrètes." Le ministre italien prend ensuite la parole.

  3. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi

    The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less

  4. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC

    DOE PAGES

    Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi

    2018-03-19

    The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less

  5. Second Language Learners' Attitudes towards English Varieties

    ERIC Educational Resources Information Center

    Zhang, Weimin; Hu, Guiling

    2008-01-01

    This pilot project investigates second language (L2) learners' attitudes towards three varieties of English: American (AmE), British (BrE) and Australian (AuE). A 69-word passage spoken by a female speaker of each variety was used. Participants were 30 Chinese students pursuing Masters or Doctoral degrees in the United States, who listened to each…

  6. De l'ideogramme au syntagme: une semio-pedagogie du Guide Michelin (From Ideograph to Syntagma: A Semio-Pedagogy of the Guide Michelin).

    ERIC Educational Resources Information Center

    Brown, James W.; Clarke, Paul

    1987-01-01

    The "Guide Michelin de France" is proposed as an authentic document for studying France and its language, increasing student motivation, and fostering an appreciation of the link between language and culture. Three ways (grammatical, communicative, and cultural) of exploiting the guide's semiotics are demonstrated. (MSE)

  7. Travaux du laboratoire de traitement du langage et de la parole (Laboratory Work in the Treatment of Language and Linguistics).

    ERIC Educational Resources Information Center

    Grosjean, Francois, Ed.

    1994-01-01

    Research papers on language and linguistics include: "Enchainement des mots et acces au lexique en francais" ("Word Order and Lexical Access in French") (Besson); "L'apport de la coarticulation dans la perception de consonnes occlusives et constrictives" ("The Contribution of Coarticulation to the Perception of…

  8. La Pedagogie Convergente: Son Experimentation au Mali et son Impact sur le Systeme Educatif. Monographies Innodata (The Convergent Pedagogy: Its Experimentation in Mali and Its Impact on the Educational System. Innodata Monographs).

    ERIC Educational Resources Information Center

    Traore, Samba

    In this monograph, convergent pedagogy, which is a foreign language education approach to develop functional bilingualism in students, is described as a new approach to teaching language in bi- or multilingual contexts. Convergent pedagogy was introduced to the Mali educational system as a language education experiment in 1987. This monograph is a…

  9. High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    NASA Astrophysics Data System (ADS)

    Sabaté-Gilarte, M.; Barbagallo, M.; Colonna, N.; Gunsing, F.; Žugec, P.; Vlachoudis, V.; Chen, Y. H.; Stamatopoulos, A.; Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Villacorta, A.; Guerrero, C.; Damone, L.; Audouin, L.; Berthoumieux, E.; Cosentino, L.; Diakaki, M.; Finocchiaro, P.; Musumarra, A.; Papaevangelou, T.; Piscopo, M.; Tassan-Got, L.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Baccomi, R.; Balibrea, J.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Cortés, G.; Deo, K.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Frost, R. J. W.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wolf, C.; Woods, P. J.; Weiss, C.; Wright, T.

    2017-10-01

    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.

  10. Fiches Pratiques: ...et comme le poeme est violent; droit au concours; la liberte guide nos pas; lexique de didactique les 39 marches (Practical Ideas: ...And How Violent the Poem Is; Right to the Contest; Liberty Guides Us; The Language of Teaching in 39 Steps).

    ERIC Educational Resources Information Center

    Dautry, Claire-Lise; And Others

    1988-01-01

    Four ideas for French language instruction are described, including a class recording of a famous French poem, a contest about the French Revolution, study of the Declaration of the Rights of Man, and a list of 39 definitions forming the basis of instructional language. (MSE)

  11. Au Courant: Teaching French Vocabulary and Culture Using the Mass Media. Language in Education: Theory and Practice 65.

    ERIC Educational Resources Information Center

    Berwald, Jean-Pierre

    This volume outlines potential uses of many of the topics associated with daily newspapers, music, film, theater, and sports for vocabulary development and grammar review in French language instruction. The emphasis is on the advantage of using authentic, current materials prepared for the general public but somewhat familiar to students. The…

  12. Baryon anomaly and strong color fields in Pb + Pb collisions at 2.76A TeV at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Topor Pop, V.; Gyulassy, M.; Barrette, J.; Gale, C.

    2011-10-01

    With the HIJING/B¯B v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-antibaryon junction (J¯J) loops and SCF effects. The saturation/minijet cutoff scale p0(s,A) and effective string tension κ(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT) and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT˜10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.

  13. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  14. THERMINATOR 2: THERMal heavy Io N gener ATOR 2

    NASA Astrophysics Data System (ADS)

    Chojnacki, Mikołaj; Kisiel, Adam; Florkowski, Wojciech; Broniowski, Wojciech

    2012-03-01

    We present an extended version of THERMINATOR, a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The package is written in C++ and uses the CERN ROOT data-analysis environment. The largely increased functionality of the code contains the following main features: 1) The possibility of input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1-dimensional profiles, in particular those generated externally with various hydrodynamic codes. 2) The hypersurfaces may have variable thermal parameters, which allow studies departing significantly from the mid-rapidity region where the baryon chemical potential becomes large. 3) We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au + Au data at √{s}=200 GeV for various centralities, as well as those anticipated for the LHC Pb + Pb collisions at √{s}=5.5 TeV. 4) A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of the pion-pion femtoscopic correlations which are an important source of information concerning the size and expansion of the system. 5) We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p-spectra, the elliptic flow coefficients, and the HBT correlation radii. Program summaryProgram title:THERMINATOR 2 Catalogue identifier: ADXL_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 423 444 No. of bytes in distributed program, including test data, etc.: 2 854 602 Distribution format: tar.gz Programming language:C++ with the CERN ROOT libraries, BASH shell Computer: Any with a C++ compiler and the CERN ROOT environment, ver. 5.26 or later, tested with Intel Core2 Duo CPU E8400 @ 3 GHz, 4 GB RAM Operating system: Linux Ubuntu 10.10 x64 (gcc 4.4.5) ROOT 5.26 Linux Ubuntu 11.04 x64 (gcc Ubuntu/Linaro 4.5.2-8ubuntu4) ROOT 5.30/00 (compiled from source) Linux CentOS 5.2 (gcc Red Hat 4.1.2-42) ROOT 5.30/00 (compiled from source) Mac OS X 10.6.8 (i686-apple-darwin10-g++-4.2.1) ROOT 5.30/00 (for Mac OS X 10.6 x86-64 with gcc 4.2.1) cygwin-1.7.9-1 (gcc gcc4-g++-4.3.4-4) ROOT 5.30/00 (for cygwin gcc 4.3) RAM: 30 MB therm2 events 150 MB therm2 femto Classification: 11.2 Catalogue identifier of previous version: ADXL_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 669 External routines: CERN ROOT ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: Particle production via statistical hadronization in relativistic heavy-ion collisions. Solution method: Monte Carlo simulation, analyzed with ROOT. Reasons for new version: The increased functionality of the code contains the following important features. The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1-dimensional profiles, in particular those generated externally with the various popular hydrodynamic codes. The hypersurfaces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au + Au and the LHC Pb+Pb data. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations. Summary of revisions: THERMINATOR 2 incorporates major revisions to encompass the enhanced functionality. Classes: The Integrator class has been expanded and a new subgroup of classes defined. Model and abstract class: These classes are responsible for the physical models of the freeze-out process. The functionality and readability of the code has been substantially increased by implementing each freeze-out model in a different class. The Hypersurface class was added to handle the input form hydrodynamic codes. The hydro input is passed to the program as a lattice of the freeze-out hypersurface. That information is stored in the .xml files. Input: THERMINATOR 2 programs are now controlled by *. ini type files. The programs parameters and the freeze-out model parameters are now in separate ini files. Output: The event files generated by the therm2_events program are not backward compatible with the previous version. The event*. root file structure was expanded with two new TTree structures. From the particle entry it is possible to back-trace the whole cascade. Event text output is now optional. The ROOT macros produce the *. eps figures with physics results, e.g. the pT-spectra, the elliptic-flow coefficient, rapidity distributions, etc. The THERMINATOR HBT package creates the ROOT files femto*. root ( therm2_femto) and hbtfit*. root ( therm2_hbtfit). Directory structure: The directory structure has been reorganized. Source code resides in the build directory. The freeze-out model input files, event files, ROOT macros are stored separately. The THERMINATOR 2 system, after installation, is able to run on a cluster. Scripts: The package contains a few BASH scripts helpful when running e.g. on a cluster the whole system can be executed via a single script. Additional comments: Typical data file size: default configuration. 45 MB/500 events; 35 MB/correlation file (one k bin); 45 kB/fit file (projections and fits). Running time: Default configuration at 3 GHz. primordial multiplicities 70 min (calculated only once per case); 8 min/500 events; 10 min - draw all figures; 25 min/one k bin in the HBT analysis with 5000 events.

  15. Software and languages for microprocessors

    NASA Astrophysics Data System (ADS)

    Williams, David O.

    1986-08-01

    This paper forms the basis for lectures given at the 6th Summer School on Computing Techniques in Physics, organised by the Computational Physics group of the European Physics Society, and held at the Hotel Ski, Nové Město na Moravě, Czechoslovakia, on 17-26 September 1985. Various types of microprocessor applications are discussed and the main emphasis of the paper is devoted to 'embedded' systems, where the software development is not carried out on the target microprocessor. Some information is provided on the general characteristics of microprocessor hardware. Various types of microprocessor operating system are compared and contrasted. The selection of appropriate languages and software environments for use with microprocessors is discussed. Mechanisms for interworking between different languages, including reasonable error handling, are treated. The CERN developed cross-software suite for the Motorola 68000 family is described. Some remarks are made concerning program tools applicable to microprocessors. PILS, a Portable Interactive Language System, which can be interpreted or compiled for a range of microprocessors, is described in some detail, and the implementation techniques are discussed.

  16. Les Enjeux juridiques et sociopolitiques des conflits linguistiques au Nouveau-Brunswick (The Legal and Sociopolitical Factors in Linguistic Conflicts in New Brunswick). Publication G-7.

    ERIC Educational Resources Information Center

    Tremblay, Daniel

    A study looks at the economic, social, cultural, and political factors involved in conflicts between New Brunswick language communities in the last two decades. The demographic, economic, cultural, and political relationships between the French and English language communities are presented and discussed in terms of political matters and principal…

  17. De la dualite a la complementaire: Le cas du bilingualisme au Maroc (From Duality to Complementarity: The Case of Bilingualism in Morocco).

    ERIC Educational Resources Information Center

    Redouane, Rabia

    1998-01-01

    Discusses the case of bilingualism in Morocco, a territory where a large variety of languages intersect, including French, Arabic, and Tamazight. The contact of cultures articulated through these languages allows Morocco to assign value to bilingualism that is not perceived as rivalry but as complementing the development of modern cosmopolitan…

  18. The first case of Niikawa-Kuroki syndrome in Kazakhstan associated with café au lait spots.

    PubMed

    Al Mosawi, A J; Fewin, L

    2009-10-01

    Niikawa-Kuroki syndrome (Kabuki syndrome) is a multiple congenital anomaly syndrome of unknown etiology with a very wide spectrum of abnormalities and severity. The aim of this paper was to report the first case of the syndrome in Kazakhstan associated café au lait. Five year and half old boy from Kazakhstan (Uzbek-of Turk ethnicity) presented with dysmorphic facial features (long palpebral fissures, a broad and depressed nasal tip, large prominent earlobes, small head, epicanthic folds short stature, delayed language development, hypotonia, bilateral developmental dysplasia of the hip (DDH), large ears and triangular chin, café au lait spots. The clinical diagnosis was based on the triad of characteristic facial abnormalities (long palpebral fissures, a broad and depressed nasal tip, large prominent earlobes, small head), growth retardation, (DDH). In this paper the authors report the first case of Kabuki syndrome associated with café au lait spots.

  19. L'Apport des Faits Phonetiques au Developpement de la Comprehension Auditive en Langue Seconde (The Influence of Phonetic Skills on the Development of Listening Comprehension in a Second Language).

    ERIC Educational Resources Information Center

    Champagne-Muzar, Cecile

    1996-01-01

    Ascertains the influence of the development of receptive phonetic skills on the level of listening comprehension of adults learning French as a second language in a formal setting. Test results indicate substantial gains in phonetics by the experimental group and a significant difference between the performance of experimental and control groups.…

  20. Jets in d (p )-A collisions: Color transparency or energy conservation

    NASA Astrophysics Data System (ADS)

    Kordell, Michael; Majumder, Abhijit

    2018-05-01

    The production of jets, and high momentum hadrons from jets, produced in deuteron-Au (d -Au) collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and proton-Pb (p -Pb) collisions at the CERN Large Hadron Collider (LHC) are studied as a function of centrality, a measure of the impact parameter of the collision. A modified version of the event generator pythia, widely used to simulate p -p collisions, is used in conjunction with a nuclear Monte Carlo event generator which simulates the locations of the nucleons within a large nucleus. We demonstrate how events with a hard jet may be simulated, in such a way that the parton distribution function of the projectile is "frozen" during its interaction with the extended nucleus. Using our approach, we demonstrate that the puzzling enhancement seen in peripheral events at RHIC and the LHC, as well as the suppression seen in central events at the LHC, are possibly due to mis-binning of central and semicentral events, containing a jet, as peripheral events. This occurs due to the suppression of soft particle production away from the jet, caused by the depletion of energy available in a nucleon of the deuteron (in d -Au at RHIC) or in the proton (in p -Pb at LHC), after the production of a hard jet. We conclude that partonic correlations built out of simple energy conservation are responsible for such an effect, though these are sampled at the hard scale of jet production and, as such, represent smaller states.

  1. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    NASA Astrophysics Data System (ADS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  2. Electromagnetic fields in small systems from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang

    2018-02-01

    We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.

  3. L'enseignement de l'anglais dans les colleges anglophones. Avis au ministre de l'enseignement superieur et de la science (English Instruction in English-Speaking Colleges. Advisory to the Minister of Higher Education and Science).

    ERIC Educational Resources Information Center

    Conseil des Colleges, Quebec (Quebec).

    The quality of language is a matter of concern in numerous educational systems throughout the world. In Quebec, questions of the health of both the French and English languages take on particular importance. This report makes a series of proposals to the Ministry of Higher Education and Science designed to ensure the coherence and quality of…

  4. From e+e- to Heavy Ion Collisions - Proceedings of the XXX International Symposium on Multiparticle Dynamics

    NASA Astrophysics Data System (ADS)

    Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram

    The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants

  5. Caring Closes the Language-Learning Gap

    ERIC Educational Resources Information Center

    Borba, Mary

    2009-01-01

    Educators sometimes misjudge immigrant families' ability to contribute to their children's school success, especially those of English learners (August and Shanahan 2006). However, families powerfully influence the academic achievement of their children, and most take a strong interest in what happens in schools (Au 2002). Cummins (1986, 2003)…

  6. New developments of the in-source spectroscopy method at RILIS/ISOLDE

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Andel, B.; Andreyev, A. N.; Antalic, S.; Atanasov, D.; Barzakh, A. E.; Bastin, B.; Borgmann, Ch.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Dehairs, M.; Derkx, X.; De Witte, H.; Fedorov, D. V.; Fedosseev, V. N.; Focker, G. J.; Fink, D. A.; Flanagan, K. T.; Franchoo, S.; Ghys, L.; Huyse, M.; Imai, N.; Kalaninova, Z.; Köster, U.; Kreim, S.; Kesteloot, N.; Kudryavtsev, Yu.; Lane, J.; Lecesne, N.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Molkanov, P. L.; Nicol, T.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wendt, K.; Wienholtz, F.; Wolf, R. N.; Zemlyanoy, S. G.

    2013-12-01

    At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar free ionization using the Laser Ion Source Trap, LIST (Po); isobar selective particle identification using the multi-reflection time-of-flight mass separator (MR-ToF MS) of ISOLTRAP (Au, At). These are summarized as part of an overview of the current status of the in-source resonance ionization spectroscopy setup at ISOLDE.

  7. Les attentes des parents des comites d'ecole de la region de Montreal quant au role et a la place des langues non maternelles a l'ecole polyvalente (The Expectations of the Parents on the School Committees in the Montreal Region as to the Role and Place of Non-Native Languages in the Multipurpose Secondary Schools).

    ERIC Educational Resources Information Center

    Boucher, Anne-Marie

    A study of parental expectations and attitudes toward non-native language instruction in the public schools in the Montreal (Quebec) region focused specifically on the parents involved in parent-school liaison organizations related to the "polyvalentes", or nontraditional, broad-spectrum secondary schools. Two objectives were to learn…

  8. A Touch of...Class.

    ERIC Educational Resources Information Center

    Chatlain, Harvey; Sotiriadis, Caterina

    1985-01-01

    Describes educational games for teaching French as a second language (with one game to teach German). These include: "Comiques," for grades 7-12; "Battleship," for grades 7-8; "Scrabble au tableau," for grades 7-9""Baseball a l'interieur,""Phrase," for grades 7-12""Food-Enjoyment!" for grade 8; "Mon Nombre Secret;" and "Hallowe'en Activity." (SED)

  9. Hawaiian Language and Culture in the Middle Level Math Class

    ERIC Educational Resources Information Center

    Terai, Kim E.

    2010-01-01

    The Kamehameha Schools (KS) is a private co-educational institution that was established under the terms of the will of Princess Bernice Pauahi Bishop in 1887. KS operates three campuses Kapalama (O'ahu), Pukalani (Maui), and Kea'au (Hawai'i island) that serves over 6,500 students from preschool through twelfth grade. KS recently adopted a…

  10. Third International Conference on Acoustic Communication by Animals

    DTIC Science & Technology

    2011-09-30

    communications Invited Speakers Peter Tyack cetacean communications Christopher Clark acoustic environment of whales Whitlow Au sound detection and...echolocation by dolphins Magnus Wahlberg sperm whale acoustics Robert Dooling bird hearing Ronald Hoy communication strategies in insects Peter Narins...frogs (6). Topics covered included cognition/language; song and call classification; rule learning; acoustic ecology; communication in noisy

  11. Paradoxes in French-Language Instruction: Recent Social and Historical Research on Literacy in France

    ERIC Educational Resources Information Center

    Rockwell, Elsie; Galvao, Ana Maria

    2012-01-01

    This essay on three recent books by outstanding scholars--"La raison scolaire" by Bernard Lahire, "Histoire de l'enseignement du francais du XVII[superscript e] au XX[superscript e] siecle" by Andre Chervel, and "L'ecole et la lecture obligatoire" by Anne-Marie Chartier--offers the opportunity to acquaint readers with…

  12. Enhancing Academic Investment through Home-School Connections and Building on ELL Students' Scholastic Funds of Knowledge

    ERIC Educational Resources Information Center

    Johnson, Eric J.; Johnson, Angela B.

    2016-01-01

    This discussion examines an academic intervention designed to enhance the motivation and classroom engagement of English Language Learners (ELLs) during literacy-based activities. Stemming from a sociocultural perspective of literacy (Au, 1993; Perez, 2004) within a funds of knowledge framework (González, Moll, & Amanti , 2005), our approach…

  13. Le Point sur L'immersion au Canada (The Argument for...Immersion in Canada).

    ERIC Educational Resources Information Center

    Rebuffot, Jacques

    A discussion of French immersion education in Canada begins with a general examination of language immersion, including the historical context and social climate from which the immersion approach has grown in Canada, its beginnings in Quebec and spread throughout Canada, and the status of the approach in the United States, a number of European…

  14. Grammaire au service de l'apprenant (Grammar at the Service of the Learner)

    ERIC Educational Resources Information Center

    Kafala, Michele; And Others

    1977-01-01

    A study of the evolution of audiovisual methods with particular emphasis on verb usage and indirect discourse. Early texts were totally language-centered; newer texts are student-centered and, in spite of grammatical difficulties introduced, make authentic oral communication possible and attractive earlier in the course. (Text is in French.) (AMH)

  15. Measuring the D0 lifetime at the LHCb Masterclass

    NASA Astrophysics Data System (ADS)

    Trišović, Ana

    2016-04-01

    The LHCb Event Display was made for educational purposes at the European Organization for Nuclear Research, CERN in Geneva, Switzerland. The project was implemented as a stand-alone application using C++ and ROOT, a framework developed by CERN for data analysis. This paper outlines the development and architecture of the application in detail, as well as the motivation for the development and the goals of the exercise. The application focuses on the visualization of events recorded by the LHCb detector, where an event represents a set of charged particle tracks in one proton-proton collision. The application allows students to save this information and calculate the invariant mass for any pair of particles. Furthermore, the students can use additional calculating tools in the application and build up a histogram of these invariant masses. The goal for the students is to find a D0 particle in the event, which decays into the two different particles selected by the students. Even if a student doesn't find all the decays successfully, they will be able to complete the exercise and get a meaningful set of results. The application also offers detailed instructions and inline help available in five languages: English, Italian, French, German and Romanian.

  16. New directions in the CernVM file system

    NASA Astrophysics Data System (ADS)

    Blomer, Jakob; Buncic, Predrag; Ganis, Gerardo; Hardi, Nikola; Meusel, Rene; Popescu, Radu

    2017-10-01

    The CernVM File System today is commonly used to host and distribute application software stacks. In addition to this core task, recent developments expand the scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for container engines to distribute the container image contents. Compared to native container image distribution (e.g. through the “Docker registry”), CernVM-FS massively reduces the network traffic for image distribution. This has been shown, for instance, by a prototype integration of CernVM-FS into Mesos developed by Mesosphere, Inc. We present a path for a smooth integration of CernVM-FS and Docker. Secondly, CernVM-FS recently raised new interest as an option for the distribution of experiment conditions data. Here, the focus is on improved versioning capabilities of CernVM-FS that allows to link the conditions data of a run period to the state of a CernVM-FS repository. Lastly, CernVM-FS has been extended to provide a name space for physics data for the LIGO and CMS collaborations. Searching through a data namespace is often done by a central, experiment specific database service. A name space on CernVM-FS can particularly benefit from an existing, scalable infrastructure and from the POSIX file system interface.

  17. Origine et evolution du bilinguisme judiciaire au Quebec (Origin and Evolution of Judicial Bilingualism in Quebec).

    ERIC Educational Resources Information Center

    St. Laurent, Gilles

    The history and conditions of the use of English and French in the exercise of justice in Quebec are outlined in the context of the problems, sociopolitical realities, and procedural impact of language usage. The history is chronicled in six segments: 1760-1764, a period of British military government and political standoff between British and…

  18. Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example

    NASA Astrophysics Data System (ADS)

    HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos

    2015-12-01

    High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.

  19. Section Editors

    NASA Astrophysics Data System (ADS)

    Groep, D. L.; Bonacorsi, D.

    2014-06-01

    1. Data Acquisition, Trigger and Controls Niko NeufeldCERNniko.neufeld@cern.ch Tassos BeliasDemokritosbelias@inp.demokritos.gr Andrew NormanFNALanorman@fnal.gov Vivian O'DellFNALodell@fnal.gov 2. Event Processing, Simulation and Analysis Rolf SeusterTRIUMFseuster@cern.ch Florian UhligGSIf.uhlig@gsi.de Lorenzo MonetaCERNLorenzo.Moneta@cern.ch Pete ElmerPrincetonpeter.elmer@cern.ch 3. Distributed Processing and Data Handling Nurcan OzturkU Texas Arlingtonnurcan@uta.edu Stefan RoiserCERNstefan.roiser@cern.ch Robert IllingworthFNAL Davide SalomoniINFN CNAFDavide.Salomoni@cnaf.infn.it Jeff TemplonNikheftemplon@nikhef.nl 4. Data Stores, Data Bases, and Storage Systems David LangeLLNLlange6@llnl.gov Wahid BhimjiU Edinburghwbhimji@staffmail.ed.ac.uk Dario BarberisGenovaDario.Barberis@cern.ch Patrick FuhrmannDESYpatrick.fuhrmann@desy.de Igor MandrichenkoFNALivm@fnal.gov Mark van de SandenSURF SARA sanden@sara.nl 5. Software Engineering, Parallelism & Multi-Core Solveig AlbrandLPSC/IN2P3solveig.albrand@lpsc.in2p3.fr Francesco GiacominiINFN CNAFfrancesco.giacomini@cnaf.infn.it Liz SextonFNALsexton@fnal.gov Benedikt HegnerCERNbenedikt.hegner@cern.ch Simon PattonLBNLSJPatton@lbl.gov Jim KowalkowskiFNAL jbk@fnal.gov 6. Facilities, Infrastructures, Networking and Collaborative Tools Maria GironeCERNMaria.Girone@cern.ch Ian CollierSTFC RALian.collier@stfc.ac.uk Burt HolzmanFNALburt@fnal.gov Brian Bockelman U Nebraskabbockelm@cse.unl.edu Alessandro de SalvoRoma 1Alessandro.DeSalvo@ROMA1.INFN.IT Helge MeinhardCERN Helge.Meinhard@cern.ch Ray PasetesFNAL rayp@fnal.gov Steven GoldfarbU Michigan Steven.Goldfarb@cern.ch

  20. Security Classification Using Automated Learning (SCALE): Optimizing Statistical Natural Language Processing Techniques to Assign Security Labels to Unstructured Text

    DTIC Science & Technology

    2010-12-01

    recommend [13]. 2.2 Commercial content scanning technology In [16], a companion piece to this paper, Magar completed a thorough review of commercially...defense Canada Chef de file au Canada en matiere de science et de technologie pour la defense et la securite nationale DEFENCE ~~EFENSE (_.,./ www.drdc-rddc.gc.ca

  1. Electronic Clinic Journaling: The Use of Weblogs to Support Evidence-Based Practice in Doctor of Audiology Students

    ERIC Educational Resources Information Center

    Neldon, Gayle B.

    2009-01-01

    Evidence-based practice (EBP) is a strategy for the provision of high quality health care. The use of journals to document clinical experiences and reflection has been used in speech-language pathology as well as nursing and psychology. This study uses qualitative analysis to study what AuD students learn about evidence-based practice from writing…

  2. Overcoming Vocabulary Limitations in Twitter Microblogs

    DTIC Science & Technology

    2012-11-01

    lence footer By BARRY WILNER AP Pro Football Writer - National Football League news Table 2: Sample expansion terms for tweets Tweet Type Number of...written by a different au- thor that was forwarded) or are non- English tweets are non- relevant. Additionally, document expansion requires detect- ing and...retweets as well. 3.4 Language Identification The Microblog Track guidelines stipulate that non- English tweets are non-relevant. Therefore, the

  3. CERN and high energy physics, the grand picture

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-05-24

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  4. Resourcing speech-language pathologists to work with multilingual children.

    PubMed

    McLeod, Sharynne

    2014-06-01

    Speech-language pathologists play important roles in supporting people to be competent communicators in the languages of their communities. However, with over 7000 languages spoken throughout the world and the majority of the global population being multilingual, there is often a mismatch between the languages spoken by children and families and their speech-language pathologists. This paper provides insights into service provision for multilingual children within an English-dominant country by viewing Australia's multilingual population as a microcosm of ethnolinguistic minorities. Recent population studies of Australian pre-school children show that their most common languages other than English are: Arabic, Cantonese, Vietnamese, Italian, Mandarin, Spanish, and Greek. Although 20.2% of services by Speech Pathology Australia members are offered in languages other than English, there is a mismatch between the language of the services and the languages of children within similar geographical communities. Australian speech-language pathologists typically use informal or English-based assessments and intervention tools with multilingual children. Thus, there is a need for accessible culturally and linguistically appropriate resources for working with multilingual children. Recent international collaborations have resulted in practical strategies to support speech-language pathologists during assessment, intervention, and collaboration with families, communities, and other professionals. The International Expert Panel on Multilingual Children's Speech was assembled to prepare a position paper to address issues faced by speech-language pathologists when working with multilingual populations. The Multilingual Children's Speech website ( http://www.csu.edu.au/research/multilingual-speech ) addresses one of the aims of the position paper by providing free resources and information for speech-language pathologists about more than 45 languages. These international collaborations have been framed around the World Health Organization's International Classification of Functioning, Disability and Health (ICF-CY) and have been established with the goal of supporting multilingual children to participate in society.

  5. Web application for detailed real-time database transaction monitoring for CMS condition data

    NASA Astrophysics Data System (ADS)

    de Gruttola, Michele; Di Guida, Salvatore; Innocente, Vincenzo; Pierro, Antonio

    2012-12-01

    In the upcoming LHC era, database have become an essential part for the experiments collecting data from LHC, in order to safely store, and consistently retrieve, a wide amount of data, which are produced by different sources. In the CMS experiment at CERN, all this information is stored in ORACLE databases, allocated in several servers, both inside and outside the CERN network. In this scenario, the task of monitoring different databases is a crucial database administration issue, since different information may be required depending on different users' tasks such as data transfer, inspection, planning and security issues. We present here a web application based on Python web framework and Python modules for data mining purposes. To customize the GUI we record traces of user interactions that are used to build use case models. In addition the application detects errors in database transactions (for example identify any mistake made by user, application failure, unexpected network shutdown or Structured Query Language (SQL) statement error) and provides warning messages from the different users' perspectives. Finally, in order to fullfill the requirements of the CMS experiment community, and to meet the new development in many Web client tools, our application was further developed, and new features were deployed.

  6. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  7. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  8. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  9. Leptonic and charged kaon decay modes of the phi meson measured in heavy-ion collisions at the CERN super proton synchrotron.

    PubMed

    Adamová, D; Agakichiev, G; Antończyk, D; Appelshäuser, H; Belaga, V; Bielcíková, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Krobath, G; Kushpil, V; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Miśkowiec, D; Ortega, R; Panebrattsev, Y; Petchenova, O; Petrácek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2006-04-21

    We report on results of a measurement of meson production in central Pb-Au collisions at E(lab) = 158A GeV. For the first time in the history of high energy heavy-ion collisions, phi mesons were reconstructed both in the K+K- and the dilepton decay channels in the same experiment. This measurement yields rapidity densities near midrapidity, from the two decay channels, of 2.05 +/- 0.14(stat) +/- 0.25(syst) and 2.04 +/- 0.49(stat) +/- 0.32(syst), respectively. The shape of the measured transverse momentum spectrum is also in close agreement in both decay channels. The data rule out a possible enhancement of the phi yield in the leptonic over the hadronic decay channel of a factor 1.6 or larger at the 95% C.L. This rules out the discrepancy reported in the literature between measurements of the hadronic and dimuon decay channels by two different experiments.

  10. The LHC timeline: a personal recollection (1980-2012)

    NASA Astrophysics Data System (ADS)

    Maiani, Luciano; Bonolis, Luisa

    2017-12-01

    The objective of this interview is to study the history of the Large Hadron Collider in the LEP tunnel at CERN, from first ideas to the discovery of the Brout-Englert-Higgs boson, seen from the point of view of a member of CERN scientific committees, of the CERN Council and a former Director General of CERN in the years of machine construction.

  11. Parents' Translations of Child Gesture Facilitate Word Learning in Children with Autism, Down Syndrome and Typical Development.

    PubMed

    Dimitrova, Nevena; Özçalışkan, Şeyda; Adamson, Lauren B

    2016-01-01

    Typically-developing (TD) children frequently refer to objects uniquely in gesture. Parents translate these gestures into words, facilitating children's acquisition of these words (Goldin-Meadow et al. in Dev Sci 10(6):778-785, 2007). We ask whether this pattern holds for children with autism (AU) and with Down syndrome (DS) who show delayed vocabulary development. We observed 23 children with AU, 23 with DS, and 23 TD children with their parents over a year. Children used gestures to indicate objects before labeling them and parents translated their gestures into words. Importantly, children benefited from this input, acquiring more words for the translated gestures than the not translated ones. Results highlight the role contingent parental input to child gesture plays in language development of children with developmental disorders.

  12. QM2017: Status and Key open Questions in Ultra-Relativistic Heavy-Ion Physics

    NASA Astrophysics Data System (ADS)

    Schukraft, Jurgen

    2017-11-01

    Almost exactly 3 decades ago, in the fall of 1986, the era of experimental ultra-relativistic E / m ≫ 1) heavy ion physics started simultaneously at the SPS at CERN and the AGS at Brookhaven with first beams of light Oxygen ions at fixed target energies of 200 GeV/A and 14.6 GeV/A, respectively. The event was announced by CERN [CERN's subatomic particle accelerators: Set up world-record in energy and break new ground for physics (CERN-PR-86-11-EN) (1986) 4 p, issued on 29 September 1986. URL (http://cds.cern.ch/record/855571)

  13. Update on CERN Search based on SharePoint 2013

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Fernandez, S.; Lossent, A.; Posada, I.; Silva, B.; Wagner, A.

    2017-10-01

    CERN’s enterprise Search solution “CERN Search” provides a central search solution for users and CERN service providers. A total of about 20 million public and protected documents from a wide range of document collections is indexed, including Indico, TWiki, Drupal, SharePoint, JACOW, E-group archives, EDMS, and CERN Web pages. In spring 2015, CERN Search was migrated to a new infrastructure based on SharePoint 2013. In the context of this upgrade, the document pre-processing and indexing process was redesigned and generalised. The new data feeding framework allows to profit from new functionality and it facilitates the long term maintenance of the system.

  14. The Named-State Register File

    DTIC Science & Technology

    1993-08-01

    on the Lempel - Ziv [44] algo- rithm. Zip is compressing a single 8,017 byte file. " RTLSim An register transfer language simulator for the Message...package. gordoni@cs.adelaide.edu.au, Wynn Vale, 5127, Australia, 1.0 edition, October 1991. [44] Ziv J. and Lempel A. "A universal algorithm for...fixed hardware algorithm . Some data caches allow the program to explicitly allocate cache lines [68]. This allocation is only useful in writing new data

  15. Big Bang Day: The Making of CERN (Episode 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-06

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  16. Big Bang Day: The Making of CERN (Episode 1)

    ScienceCinema

    None

    2017-12-09

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  17. Two-Year Outcomes of a Population-Based Intervention for Preschool Language Delay: An RCT.

    PubMed

    Wake, Melissa; Levickis, Penny; Tobin, Sherryn; Gold, Lisa; Ukoumunne, Obioha C; Goldfeld, Sharon; Zens, Naomi; Le, Ha N D; Law, James; Reilly, Sheena

    2015-10-01

    We have previously shown short-term benefits to phonology, letter knowledge, and possibly expressive language from systematically ascertaining language delay at age 4 years followed by the Language for Learning intervention. Here, we report the trial's definitive 6-year outcomes. Randomized trial nested in a population-based ascertainment. Children with language scores >1.25 SD below the mean at age 4 were randomized, with intervention children receiving 18 1-hour home-based therapy sessions. Primary outcome was receptive/expressive language. Secondary outcomes were phonological, receptive vocabulary, literacy, and narrative skills; parent-reported pragmatic language, behavior, and health-related quality of life; costs of intervention; and health service use. For intention-to-treat analyses, trial arms were compared using linear regression models. Of 1464 children assessed at age 4, 266 were eligible and 200 randomized; 90% and 82% of intervention and control children were retained respectively. By age 6, mean language scores had normalized, but there was little evidence of a treatment effect for receptive (adjusted mean difference 2.3; 95% confidence interval [CI] -1.2 to 5.7; P = .20) or expressive (0.8; 95% CI -1.6 to 3.2; P = .49) language. Of the secondary outcomes, only phonological awareness skills (effect size 0.36; 95% CI 0.08-0.65; P = .01) showed benefit. Costs were higher for intervention families (mean difference AU$4276; 95% CI: $3424 to $5128). Population-based intervention targeting 4-year-old language delay was feasible but did not have lasting impacts on language, possibly reflecting resolution in both groups. Long-term literacy benefits remain possible but must be weighed against its cost. Copyright © 2015 by the American Academy of Pediatrics.

  18. CERN welcomes new members

    NASA Astrophysics Data System (ADS)

    2017-08-01

    Lithuania is on course to become an associate member of CERN, pending final approval by the Lithuanian parliament. Associate membership will allow representatives of the Baltic nation to take part in meetings of the CERN Council, which oversees the Geneva-based physics lab.

  19. East African Crisis Response: Shaping Ethiopian Peace Force for Better Participation in Future Peace Operations

    DTIC Science & Technology

    2006-12-01

    security policy and the need for establishment of a single continental army were stressed during the Inaugural Summit of the AU held in Durban...equipment and orientation" as key issues in interoperability within ECOMOG, stressing the need for bilingual language training in the region, as...hexed them as if they were fighting the superhuman. The Ethiopian left no tracks shed no blood and spoke always in an unknown tongue. Lack of

  20. Princeton VLSI Project: Semi-Annual Report.

    DTIC Science & Technology

    1982-11-01

    already fully defined the new language and implementation is now under way o [7]. AMl differs from AU in two essential ways. First, it is based on...Our main thesis is that the VLSI design task can be profitably thought of as a progremmiW task, as opposed to a geometric editing task. We believe...S. Thesis , MIT, EECS Department, June, 1980. [4] Batali, J., Mayle, N., Shrobe, H., Sussman, G., Weise, D., "The DPL/Daedalus Design Environment

  1. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity

    PubMed Central

    Wittenberg, Leah A.; Jonsson, Nina J.; Chan, RV Paul; Chiang, Michael F.

    2014-01-01

    Presence of plus disease in retinopathy of prematurity (ROP) is an important criterion for identifying treatment-requiring ROP. Plus disease is defined by a standard published photograph selected over 20 years ago by expert consensus. However, diagnosis of plus disease has been shown to be subjective and qualitative. Computer-based image analysis, using quantitative methods, has potential to improve the objectivity of plus disease diagnosis. The objective was to review the published literature involving computer-based image analysis for ROP diagnosis. The PubMed and Cochrane library databases were searched for the keywords “retinopathy of prematurity” AND “image analysis” AND/OR “plus disease.” Reference lists of retrieved articles were searched to identify additional relevant studies. All relevant English-language studies were reviewed. There are four main computer-based systems, ROPtool (AU ROC curve, plus tortuosity 0.95, plus dilation 0.87), RISA (AU ROC curve, arteriolar TI 0.71, venular diameter 0.82), Vessel Map (AU ROC curve, arteriolar dilation 0.75, venular dilation 0.96), and CAIAR (AU ROC curve, arteriole tortuosity 0.92, venular dilation 0.91), attempting to objectively analyze vessel tortuosity and dilation in plus disease in ROP. Some of them show promise for identification of plus disease using quantitative methods. This has potential to improve the diagnosis of plus disease, and may contribute to the management of ROP using both traditional binocular indirect ophthalmoscopy and image-based telemedicine approaches. PMID:21366159

  2. EFQPSK Versus CERN: A Comparative Study

    NASA Technical Reports Server (NTRS)

    Borah, Deva K.; Horan, Stephen

    2001-01-01

    This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.

  3. THERMINATOR: THERMal heavy-IoN generATOR

    NASA Astrophysics Data System (ADS)

    Kisiel, Adam; Tałuć, Tomasz; Broniowski, Wojciech; Florkowski, Wojciech

    2006-04-01

    THERMINATOR is a Monte Carlo event generator designed for studying of particle production in relativistic heavy-ion collisions performed at such experimental facilities as the SPS, RHIC, or LHC. The program implements thermal models of particle production with single freeze-out. It performs the following tasks: (1) generation of stable particles and unstable resonances at the chosen freeze-out hypersurface with the local phase-space density of particles given by the statistical distribution factors, (2) subsequent space-time evolution and decays of hadronic resonances in cascades, (3) calculation of the transverse-momentum spectra and numerous other observables related to the space-time evolution. The geometry of the freeze-out hypersurface and the collective velocity of expansion may be chosen from two successful models, the Cracow single-freeze-out model and the Blast-Wave model. All particles from the Particle Data Tables are used. The code is written in the object-oriented c++ language and complies to the standards of the ROOT environment. Program summaryProgram title:THERMINATOR Catalogue identifier:ADXL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland RAM required to execute with typical data:50 Mbytes Number of processors used:1 Computer(s) for which the program has been designed: PC, Pentium III, IV, or Athlon, 512 MB RAM not hardware dependent (any computer with the c++ compiler and the ROOT environment [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] Operating system(s) for which the program has been designed:Linux: Mandrake 9.0, Debian 3.0, SuSE 9.0, Red Hat FEDORA 3, etc., Windows XP with Cygwin ver. 1.5.13-1 and gcc ver. 3.3.3 (cygwin special)—not system dependent External routines/libraries used: ROOT ver. 4.02.00 Programming language:c++ Size of the package: (324 KB directory 40 KB compressed distribution archive), without the ROOT libraries (see http://root.cern.ch for details on the ROOT [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] requirements). The output files created by the code need 1.1 GB for each 500 events. Distribution format: tar gzip file Number of lines in distributed program, including test data, etc.: 6534 Number of bytes in ditribution program, including test data, etc.:41 828 Nature of the physical problem: Statistical models have proved to be very useful in the description of soft physics in relativistic heavy-ion collisions [P. Braun-Munzinger, K. Redlich, J. Stachel, 2003, nucl-th/0304013. [2

  4. Sharing scientific discovery globally: toward a CERN virtual visit service

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.; Hatzifotiadou, D.; Lapka, M.; Papanestis, A.

    2017-10-01

    The installation of virtual visit services by the LHC collaborations began shortly after the first high-energy collisions were provided by the CERN accelerator in 2010. The experiments: ATLAS [1], CMS [2], LHCb [3], and ALICE [4] have all joined in this popular and effective method to bring the excitement of scientific exploration and discovery into classrooms and other public venues around the world. Their programmes, which use a combination of video conference, webcast, and video recording to communicate with remote audiences have already reached tens of thousands of viewers, and the demand only continues to grow. Other venues, such as the CERN Control Centre, are also considering similar permanent installations. We present a summary of the development of the various systems in use around CERN today, including the technology deployed and a variety of use cases. We then lay down the arguments for the creation of a CERN-wide service that would support these programmes in a more coherent and effective manner. Potential services include a central booking system and operational management similar to what is currently provided for the common CERN video conference facilities. Certain choices in technology could be made to support programmes based on popular tools including (but not limited to) Skype™ [5], Google Hangouts [6], Facebook Live [7], and Periscope [8]. Successful implementation of the project, which relies on close partnership between the experiments, CERN IT CDA [9], and CERN IR ECO [10], has the potential to reach an even larger, global audience, more effectively than ever before.

  5. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  6. First experience with the new .cern Top Level Domain

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Malo de Molina, M.; Salwerowicz, M.; Silva De Sousa, B.; Smith, T.; Wagner, A.

    2017-10-01

    In October 2015, CERN’s core website has been moved to a new address, http://home.cern, marking the launch of the brand new top-level domain .cern. In combination with a formal governance and registration policy, the IT infrastructure needed to be extended to accommodate the hosting of Web sites in this new top level domain. We will present the technical implementation in the framework of the CERN Web Services that allows to provide virtual hosting, a reverse proxy solution and that also includes the provisioning of SSL server certificates for secure communications.

  7. Hangout with CERN: a direct conversation with the public

    NASA Astrophysics Data System (ADS)

    Rao, Achintya; Goldfarb, Steven; Kahle, Kate

    2016-04-01

    Hangout with CERN refers to a weekly, half-hour-long, topical webcast hosted at CERN. The aim of the programme is threefold: (i) to provide a virtual tour of various locations and facilities at CERN, (ii) to discuss the latest scientific results from the laboratory, and, most importantly, (iii) to engage in conversation with the public and answer their questions. For each ;episode;, scientists gather around webcam-enabled computers at CERN and partner institutes/universities, connecting to one another using the Google+ social network's ;Hangouts; tool. The show is structured as a conversation mediated by a host, usually a scientist, and viewers can ask questions to the experts in real time through a Twitter hashtag or YouTube comments. The history of Hangout with CERN can be traced back to ICHEP 2012, where several physicists crowded in front of a laptop connected to Google+, using a ;Hangout On Air; webcast to explain to the world the importance of the discovery of the Higgs-like boson, announced just two days before at the same conference. Hangout with CERN has also drawn inspiration from two existing outreach endeavours: (i) ATLAS Virtual Visits, which connected remote visitors with scientists in the ATLAS Control Room via video conference, and (ii) the Large Hangout Collider, in which CMS scientists gave underground tours via Hangouts to groups of schools and members of the public around the world. In this paper, we discuss the role of Hangout with CERN as a bi-directional outreach medium and an opportunity to train scientists in effective communication.

  8. Replies to the Questionnaire on the Theme of the 42nd ICE on Literacy Education = Responses au questionnaire sur le theme de la 42e CIE sur l'alphabetisation. IBE Documents Series, Number 2, December 1991.

    ERIC Educational Resources Information Center

    International Bureau of Education, Geneva (Switzerland).

    This report represents elements of 105 replies received from UNESCO Member States to the International Bureau of Education (IBE) questionnaire. The report does not always reproduce the complete answers given, and the extracts presented are usually presented in the language used in the relevant answer. The report begins with a list of member…

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-15

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.

  10. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010)

    NASA Astrophysics Data System (ADS)

    Lin, Simon C.; Shen, Stella; Neufeld, Niko; Gutsche, Oliver; Cattaneo, Marco; Fisk, Ian; Panzer-Steindel, Bernd; Di Meglio, Alberto; Lokajicek, Milos

    2011-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at Academia Sinica in Taipei from 18-22 October 2010. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18 month intervals, alternating between Europe, Asia, America and other parts of the world. Recent CHEP conferences have been held in Prauge, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, California(2003); Beijing, China (2001); Padova, Italy (2000) CHEP 2010 was organized by Academia Sinica Grid Computing Centre. There was an International Advisory Committee (IAC) setting the overall themes of the conference, a Programme Committee (PC) responsible for the content, as well as Conference Secretariat responsible for the conference infrastructure. There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 260 oral and 200 poster presentations, and industrial exhibitions. We thank all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Engineering, Data Stores, and Databases, Distributed Processing and Analysis, Computing Fabrics and Networking Technologies, Grid and Cloud Middleware, and Collaborative Tools. The conference included excursions to various attractions in Northern Taiwan, including Sanhsia Tsu Shih Temple, Yingko, Chiufen Village, the Northeast Coast National Scenic Area, Keelung, Yehliu Geopark, and Wulai Aboriginal Village, as well as two banquets held at the Grand Hotel and Grand Formosa Regent in Taipei. The next CHEP conference will be held in New York, the United States on 21-25 May 2012. We would like to thank the National Science Council of Taiwan, the EU ACEOLE project, commercial sponsors, and the International Advisory Committee and the Programme Committee members for all their support and help. Special thanks to the Programme Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing about 340 post conference proceedings papers. Simon C Lin CHEP 2010 Conference Chair and Proceedings Editor Taipei, Taiwan November 2011 Track Editors/ Programme Committee Chair Simon C Lin, Academia Sinica, Taiwan Online Computing Track Y H Chang, National Central University, Taiwan Harry Cheung, Fermilab, USA Niko Neufeld, CERN, Switzerland Event Processing Track Fabio Cossutti, INFN Trieste, Italy Oliver Gutsche, Fermilab, USA Ryosuke Itoh, KEK, Japan Software Engineering, Data Stores, and Databases Track Marco Cattaneo, CERN, Switzerland Gang Chen, Chinese Academy of Sciences, China Stefan Roiser, CERN, Switzerland Distributed Processing and Analysis Track Kai-Feng Chen, National Taiwan University, Taiwan Ulrik Egede, Imperial College London, UK Ian Fisk, Fermilab, USA Fons Rademakers, CERN, Switzerland Torre Wenaus, BNL, USA Computing Fabrics and Networking Technologies Track Harvey Newman, Caltech, USA Bernd Panzer-Steindel, CERN, Switzerland Antonio Wong, BNL, USA Ian Fisk, Fermilab, USA Niko Neufeld, CERN, Switzerland Grid and Cloud Middleware Track Alberto Di Meglio, CERN, Switzerland Markus Schulz, CERN, Switzerland Collaborative Tools Track Joao Correia Fernandes, CERN, Switzerland Philippe Galvez, Caltech, USA Milos Lokajicek, FZU Prague, Czech Republic International Advisory Committee Chair: Simon C. Lin , Academia Sinica, Taiwan Members: Mohammad Al-Turany , FAIR, Germany Sunanda Banerjee, Fermilab, USA Dario Barberis, CERN & Genoa University/INFN, Switzerland Lothar Bauerdick, Fermilab, USA Ian Bird, CERN, Switzerland Amber Boehnlein, US Department of Energy, USA Kors Bos, CERN, Switzerland Federico Carminati, CERN, Switzerland Philippe Charpentier, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, UK Michael Ernst, Brookhaven National Laboratory, USA David Foster, CERN, Switzerland Merino Gonzalo, CIEMAT, Spain John Gordon, STFC-RAL, UK Volker Guelzow, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany John Harvey, CERN, Switzerland Frederic Hemmer, CERN, Switzerland Hafeez Hoorani, NCP, Pakistan Viatcheslav Ilyin, Moscow State University, Russia Matthias Kasemann, DESY, Germany Nobuhiko Katayama, KEK, Japan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, USA Pere Mato Vila, CERN, Switzerland Mirco Mazzucato, INFN CNAF, Italy Richard Mount, SLAC, USA Harvey Newman, Caltech, USA Mitsuaki Nozaki, KEK, Japan Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, USA Hiroshi Sakamoto, The University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, USA Alan Silverman, CERN, Switzerland Randy Sobie , University of Victoria, Canada Dongchul Son, Kyungpook National University, South Korea Reda Tafirout , TRIUMF, Canada Victoria White, Fermilab, USA Guy Wormser, LAL, France Frank Wuerthwein, UCSD, USA Charles Young, SLAC, USA

  11. CERN@school: bringing CERN into the classroom

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.

    2016-04-01

    CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.

  12. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  13. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  14. Hands on CERN: A Well-Used Physics Education Project

    ERIC Educational Resources Information Center

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  15. Mad-X a worthy successor for MAD8?

    NASA Astrophysics Data System (ADS)

    Schmidt, F.

    2006-03-01

    MAD-X is the successor at CERN to MAD8, a program for accelerator design and simulation with a long history. We had to give up on MAD8 since the code had evolved in such a way that the maintenance and upgrades had become increasingly difficult. In particular, the memory management with the Zebra banks seemed outdated. MAD-X was first released in June, 2002. It offers most of the MAD8 functionality, with some additions, corrections, and extensions. The most important of these extensions is the interface to PTC, the Polymorphic Tracking Code by E. Forest. The most relevant new features of MAD-X are: languages: C, Fortran77, and Fortran90; dynamic memory allocation: in the core program written in C; strictly modular organization, modified and extended input language; symplectic and arbitrary exact description of all elements via PTC; Taylor Maps and Normal Form techniques using PTC. It is also important to note that we have adopted a new style for program development and maintenance that relies heavily on active maintenance of modules by the users themselves. Proposals for collaboration as with KEK, Japan and GSI, Germany are therefore very welcome.

  16. 25th Birthday Cern- Amphi

    ScienceCinema

    None

    2017-12-09

    Cérémonie du 25ème anniversaire du Cern avec 2 orateurs: le Prof.Weisskopf parle de la signification et le rôle du Cern et le Prof.Casimir(?) fait un exposé sur les rélations entre la science pure et la science appliquée et la "big science" (science légère)

  17. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors

    PubMed Central

    Kim, Hae-Jin; Sim, Kyoseung; Thukral, Anish; Yu, Cunjiang

    2017-01-01

    A general strategy to impart mechanical stretchability to stretchable electronics involves engineering materials into special architectures to accommodate or eliminate the mechanical strain in nonstretchable electronic materials while stretched. We introduce an all solution–processed type of electronics and sensors that are rubbery and intrinsically stretchable as an outcome from all the elastomeric materials in percolated composite formats with P3HT-NFs [poly(3-hexylthiophene-2,5-diyl) nanofibrils] and AuNP-AgNW (Au nanoparticles with conformally coated silver nanowires) in PDMS (polydimethylsiloxane). The fabricated thin-film transistors retain their electrical performances by more than 55% upon 50% stretching and exhibit one of the highest P3HT-based field-effect mobilities of 1.4 cm2/V∙s, owing to crystallinity improvement. Rubbery sensors, which include strain, pressure, and temperature sensors, show reliable sensing capabilities and are exploited as smart skins that enable gesture translation for sign language alphabet and haptic sensing for robotics to illustrate one of the applications of the sensors. PMID:28913428

  18. Global EOS: exploring the 300-ms-latency region

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.

    2017-10-01

    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  19. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Introduction to CERN

    ScienceCinema

    Heuer, R.-D.

    2018-02-19

    Summer Student Lecture Programme Introduction. The mission of CERN; push back the frontiers of knowledge, e.g. the secrets of the Big Bang...what was the matter like within the first moments of the Universe's existence? You have to develop new technologies for accelerators and detectors (also information technology--the Web and the GRID and medicine--diagnosis and therapy). There are three key technology areas at CERN; accelerating, particle detection, large-scale computing.

  1. HIGH ENERGY PHYSICS: Bulgarians Sue CERN for Leniency.

    PubMed

    Koenig, R

    2000-10-13

    In cash-strapped Bulgaria, scientists are wondering whether a ticket for a front-row seat in high-energy physics is worth the price: Membership dues in CERN, the European particle physics lab, nearly equal the country's entire budget for competitive research grants. Faced with that grim statistic and a plea for leniency from Bulgaria's government, CERN's governing council is considering slashing the country's membership dues for the next 2 years.

  2. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-14

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  3. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  4. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-06-28

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  6. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2017-12-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  7. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-24

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher

  8. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2018-04-27

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  10. Adaptability in Coalition Teamwork (Facultes d’adaptation au travail d’equipe en coalition)

    DTIC Science & Technology

    2008-04-01

    principaux résultats des 30 communications théoriques et de recherche ont été les suivants : • Les outils de formation (jeux, simulations) fonctionnent...militaires ; • Le retour d’information sur le moral et les performances des équipes en opérations est un instrument qui est particulièrement apprécié...during operations is an instrument that is highly valued by commanders in the field; and • Differences in language proficiency in English confound

  11. Service management at CERN with Service-Now

    NASA Astrophysics Data System (ADS)

    Toteva, Z.; Alvarez Alonso, R.; Alvarez Granda, E.; Cheimariou, M.-E.; Fedorko, I.; Hefferman, J.; Lemaitre, S.; Clavo, D. Martin; Martinez Pedreira, P.; Pera Mira, O.

    2012-12-01

    The Information Technology (IT) and the General Services (GS) departments at CERN have decided to combine their extensive experience in support for IT and non-IT services towards a common goal - to bring the services closer to the end user based on Information Technology Infrastructure Library (ITIL) best practice. The collaborative efforts have so far produced definitions for the incident and the request fulfilment processes which are based on a unique two-dimensional service catalogue that combines both the user and the support team views of all services. After an extensive evaluation of the available industrial solutions, Service-now was selected as the tool to implement the CERN Service-Management processes. The initial release of the tool provided an attractive web portal for the users and successfully implemented two basic ITIL processes; the incident management and the request fulfilment processes. It also integrated with the CERN personnel databases and the LHC GRID ticketing system. Subsequent releases continued to integrate with other third-party tools like the facility management systems of CERN as well as to implement new processes such as change management. Independently from those new development activities it was decided to simplify the request fulfilment process in order to achieve easier acceptance by the CERN user community. We believe that due to the high modularity of the Service-now tool, the parallel design of ITIL processes e.g., event management and non-ITIL processes, e.g., computer centre hardware management, will be easily achieved. This presentation will describe the experience that we have acquired and the techniques that were followed to achieve the CERN customization of the Service-Now tool.

  12. Vidyo@CERN: A Service Update

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Baron, T.

    2015-12-01

    We will present an overview of the current real-time video service offering for the LHC, in particular the operation of the CERN Vidyo service will be described in terms of consolidated performance and scale: The service is an increasingly critical part of the daily activity of the LHC collaborations, topping recently more than 50 million minutes of communication in one year, with peaks of up to 852 simultaneous connections. We will elaborate on the improvement of some front-end key features such as the integration with CERN Indico, or the enhancements of the Unified Client and also on new ones, released or in the pipeline, such as a new WebRTC client and CERN SSO/Federated SSO integration. An overview of future infrastructure improvements, such as virtualization techniques of Vidyo routers and geo-location mechanisms for load-balancing and optimum user distribution across the service infrastructure will also be discussed. The work done by CERN to improve the monitoring of its Vidyo network will also be presented and demoed. As a last point, we will touch the roadmap and strategy established by CERN and Vidyo with a clear objective of optimizing the service both on the end client and backend infrastructure to make it truly universal, to serve Global Science. To achieve those actions, the introduction of the multitenant concept to serve different communities is needed. This is one of the consequences of CERN's decision to offer the Vidyo service currently operated for the LHC, to other Sciences, Institutions and Virtual Organizations beyond HEP that might express interest for it.

  13. Public Lecture

    ScienceCinema

    None

    2017-12-09

    An outreach activity is being organized by the Turkish community at CERN, on 5 June 2010 at CERN Main Auditorium. The activity consists of several talks that will take 1.5h in total. The main goal of the activity will be describing the CERN based activities and experiments as well as stimulating the public's attention to the science related topics. We believe the wide communication of the event has certain advantages especially for the proceeding membership process of Turkey.

  14. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  15. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  16. NEWS: A trip to CERN

    NASA Astrophysics Data System (ADS)

    Ellison, A. D.

    2000-07-01

    Two years ago John Kinchin and myself were lucky enough to attend the Goldsmith's particle physics course. As well as many interesting lectures and activities, this course included a visit to CERN. To most physics teachers CERN is Mecca, a hallowed place where gods manipulate and manufacture matter. The experience of being there was even better. Alison Wright was an enthusiastic and very knowledgeable host who ensured the visit went smoothly and we all learned a lot. While we were there, John and I discussed the possibility of bringing a party of A-level students to see real physics in action. In February of this year we managed it. 33 students from two schools, Boston Grammar School and Northampton School for Boys, and four staff left England and caught the 2 am ferry to France. Many hours and a few `short cuts' later we arrived at our hotel in St Genis, not far from CERN. The first day was spent sight-seeing in Lausanne and Geneva. The Olympic museum in Lausanne is well worth a visit. Unfortunately, the famous fountain in Geneva was turned off, but then you can't have everything. The following morning we turned up at CERN late due to the coach's brakes being iced up! We were met once again by Alison Wright who forgave us and introduced the visit by giving an excellent talk on CERN, its background and its reason for existing. At this point we met another member of our Goldsmith's course and his students so we joined forces once again. We then piled back into the coach to re-cross the border and visit ALEPH. ALEPH is a monster of a detector 150 m below ground. We divided into four groups, each with a very able and knowledgeable guide, and toured the site. The size and scale of the detector are awesome and the students were suitably impressed. We repeated the speed of sound experiment of two years ago at the bottom of a 150 m concrete shaft (320 m s-1), posed for a group photo in front of the detector (figure 1) and returned to the main site for lunch in the canteen. Over lunch we mixed with physicists of many different nationalities and backgrounds. Figure 1 Figure 1. In the afternoon we visited Microcosm, the CERN visitors centre, and the LEP control room and also the SPS. Here the students learned new applications for much of the physics of standing waves and resonance that they had been taught in the classroom. Later that night, we visited a bowling alley where momentum and collision theory were put into practice. The following morning we returned to CERN and visited the large magnet testing facility. Here again physics was brought to life. We saw superconducting magnets being assembled and tested and the students gained a real appreciation of the problems and principles involved. The afternoon was rounded off by a visit to a science museum in Geneva - well worth a visit, as some of us still use some of the apparatus on display. Friday was our last full day so we visited Chamonix in the northern Alps. In the morning, we ascended the Aiguille de Midi - by cable car. Twenty minutes and 3842 m later we emerged into 50 km h-1 winds and -10 °C temperature, not counting the -10 °C wind chill factor. A crisp packet provided an unusual demonstration of the effects of air pressure (figure 2). Figure 2 Figure 2. The views from the summit were very spectacular though a few people experienced mild altitude sickness. That afternoon the party went to the Mer de Glace. Being inside a 3 million year-old structure moving down a mountain at 3 cm per day was an interesting experience, as was a tot of whisky with 3 million year-old water. Once again the local scenery was very photogenic and the click and whirr of cameras was a constant background noise. Saturday morning saw an early start for the long drive home. Most students - and some staff - took the opportunity to catch up on their sleep. Thanks are due to many people without whom the trip would never have taken place. Anne Craige, Stuart Williams, Christine Sutton and Andrew Morrison of PPARC, but most especially Alison Wright of CERN and John Kinchin of Boston Grammar School who did all the hard work and organization. The week gave students a unique chance to see the principles of physics being applied in many different ways and I am sure this has reinforced their knowledge and understanding. Some students also took the opportunity to practise their language skills. The only remaining question is: what next? I'll have to think about it in the summer when I have some slack time. Hmm, SLAC, that gives me an idea....

  17. CERN and 60 years of science for peace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuer, Rolf-Dieter, E-mail: Rolf.Heuer@cern.ch

    2015-02-24

    This paper presents CERN as it celebrates its 60{sup th} Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  18. Meeting Jentschke

    ScienceCinema

    None

    2018-05-18

    After an introduction about the latest research and news at CERN, the DG W. Jentschke speaks about future management of CERN with two new general managers, who will be in charge for the next 5 years: Dr. J.B. Adams who will focus on the administration of CERN and also the construction of buildings and equipment, and Dr. L. Van Hove who will be responsible for research activities. The DG speaks about expected changes, shared services, different divisions and their leaders, etc.

  19. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2017-12-18

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  20. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-02-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  1. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  2. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.« less

  4. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  5. Transition edge sensors for quench localization in SRF cavity tests

    NASA Astrophysics Data System (ADS)

    Furci, H.; Kovács, Z.; Koettig, T.; Vandoni, G.

    2017-12-01

    Transition Edge Sensors (TES) are bolometers based on the gradual superconducting transition of a thin film alloy. In the frame of improvement of non-contact thermal mapping for quench localisation in SRF cavity tests, TES have been developed in-house at CERN. Based on modern photolithography techniques, a fabrication method has been established and used to produce TES from Au-Sn alloys. The fabricated sensors superconducting transitions were characterised. The sensitive temperature range of the sensors spreads over 100 mK to 200 mK and its centre can be shifted by the bias current applied between 1.5 K and 2.1 K. Maximum sensitivity being in the range of 0.5 mV/mK, it is possible to detect fast temperature variations (in the 50 μs range) below 1 mK. All these characteristics are an asset for the detection of second sound. Second sound was produced by heaters and the TES were able to distinctively detect it. The value of the speed of second sound was determined and corresponds remarkably with literature values. Furthermore, there is a clear correlation between intensity of the signal and distance, opening possibilities for a more precise signal interpretation in quench localisation.

  6. CERN: A European laboratory for a global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2015-06-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN's membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  7. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  8. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    PubMed

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  9. Réunion publique HR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-04-30

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanéemore » de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department« less

  10. Réunion publique HR

    ScienceCinema

    None

    2017-12-09

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department

  11. Facial expressions and speech acts: experimental evidences on the role of the upper face as an illocutionary force indicating device in language comprehension.

    PubMed

    Domaneschi, Filippo; Passarelli, Marcello; Chiorri, Carlo

    2017-08-01

    Language scientists have broadly addressed the problem of explaining how language users recognize the kind of speech act performed by a speaker uttering a sentence in a particular context. They have done so by investigating the role played by the illocutionary force indicating devices (IFIDs), i.e., all linguistic elements that indicate the illocutionary force of an utterance. The present work takes a first step in the direction of an experimental investigation of non-verbal IFIDs because it investigates the role played by facial expressions and, in particular, of upper-face action units (AUs) in the comprehension of three basic types of illocutionary force: assertions, questions, and orders. The results from a pilot experiment on production and two comprehension experiments showed that (1) certain upper-face AUs seem to constitute non-verbal signals that contribute to the understanding of the illocutionary force of questions and orders; (2) assertions are not expected to be marked by any upper-face AU; (3) some upper-face AUs can be associated, with different degrees of compatibility, with both questions and orders.

  12. CERN launches high-school internship programme

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  13. Commissioning of a CERN Production and Analysis Facility Based on xrootd

    NASA Astrophysics Data System (ADS)

    Campana, Simone; van der Ster, Daniel C.; Di Girolamo, Alessandro; Peters, Andreas J.; Duellmann, Dirk; Coelho Dos Santos, Miguel; Iven, Jan; Bell, Tim

    2011-12-01

    The CERN facility hosts the Tier-0 of the four LHC experiments, but as part of WLCG it also offers a platform for production activities and user analysis. The CERN CASTOR storage technology has been extensively tested and utilized for LHC data recording and exporting to external sites according to experiments computing model. On the other hand, to accommodate Grid data processing activities and, more importantly, chaotic user analysis, it was realized that additional functionality was needed including a different throttling mechanism for file access. This paper will describe the xroot-based CERN production and analysis facility for the ATLAS experiment and in particular the experiment use case and data access scenario, the xrootd redirector setup on top of the CASTOR storage system, the commissioning of the system and real life experience for data processing and data analysis.

  14. CERN alerter—RSS based system for information broadcast to all CERN offices

    NASA Astrophysics Data System (ADS)

    Otto, R.

    2008-07-01

    Nearly every large organization uses a tool to broadcast messages and information across the internal campus (messages like alerts announcing interruption in services or just information about upcoming events). These tools typically allow administrators (operators) to send 'targeted' messages which are sent only to specific groups of users or computers, e/g only those located in a specified building or connected to a particular computing service. CERN has a long history of such tools: CERNVMS's SPM_quotMESSAGE command, Zephyr [2] and the most recent the NICE Alerter based on the NNTP protocol. The NICE Alerter used on all Windows-based computers had to be phased out as a consequence of phasing out NNTP at CERN. The new solution to broadcast information messages on the CERN campus continues to provide the service based on cross-platform technologies, hence minimizing custom developments and relying on commercial software as much as possible. The new system, called CERN Alerter, is based on RSS (Really Simple Syndication) [9] for the transport protocol and uses Microsoft SharePoint as the backend for database and posting interface. The windows-based client relies on Internet Explorer 7.0 with custom code to trigger the window pop-ups and the notifications for new events. Linux and Mac OS X clients could also rely on any RSS readers to subscribe to targeted notifications. The paper covers the architecture and implementation aspects of the new system.

  15. OBITUARY: Maurice Jacob (1933 2007)

    NASA Astrophysics Data System (ADS)

    Quercigh, Emanuele; Šándor, Ladislav

    2008-04-01

    Maurice Jacob passed away on 2 May 2007. With his death, we have lost one of the founding fathers of the ultra-relativistic heavy ion programme. His interest in high-energy nuclear physics started in 1981 when alpha alpha collisions could first be studied in the CERN ISR. An enthusiastic supporter of ion beam experiments at CERN, Maurice was at the origin of the 1982 Quark Matter meeting in Bielefeld [1] which brought together more than 100 participants from both sides of the Atlantic, showing a good enthusiastic constituency for such research. There were twice as many the following year at Brookhaven. Finally in the mid-eighties, a heavy ion programme was approved both at CERN and at Brookhaven involving as many nuclear as particle physicists. It was the start of a fruitful interdisciplinary collaboration which is nowadays continuing both at RHIC and at LHC. Maurice followed actively the development of this field, reporting at a number of conferences and meetings (Les Arcs, Bielefeld, Beijing, Brookhaven, Lenox, Singapore, Taormina,...). This activity culminated in 2000, when Maurice, together with Ulrich Heinz, summarized the main results of the CERN SPS heavy-ion experiments and the evidence was obtained for a new state of matter [2]. Maurice was a brilliant theoretical physicist. His many contributions have been summarized in a recent article in the CERN Courier by two leading CERN theorists, John Ellis and Andre Martin [3]. The following is an excerpt from their article: `He began his research career at Saclay and, while still a PhD student, he continued brilliantly during a stay at Brookhaven. It was there in 1959 that Maurice, together with Giancarlo Wick, developed the helicity amplitude formalism that is the basis of many modern theoretical calculations. Maurice obtained his PhD in 1961 and, after a stay at Caltech, returned to Saclay. A second American foray was to SLAC, where he and Sam Berman made the crucial observation that the point-like structures (partons) seen in deep-inelastic scattering implied the existence of high-transverse-momentum processes in proton proton collisions, as the ISR at CERN subsequently discovered. In 1967 Maurice joined CERN, where he remained, apart from influential visits to Yale, Fermilab and elsewhere, until his retirement in 1998. He became one of the most respected international experts on the phenomenology of strong interactions, including diffraction, scaling, high-transverse-momentum processes and the formation of quark gluon plasma. In particular, he pioneered the studies of inclusive hadron-production processes, including scaling and its violations. Also, working with Ron Horgan, he made detailed predictions for the production of jets at CERN's proton antiproton collider. The UA2 and UA1 experiments subsequently discovered these. He was also interested in electron positron colliders, making pioneering calculations, together with Tai Wu, of radiation in high-energy collisions. Maurice was one of the scientific pillars of CERN, working closely with experimental colleagues in predicting and interpreting results from successive CERN colliders. He was indefatigable in organizing regular meetings on ISR physics, bringing together theorists and experimentalists to debate the meaning of new results and propose new measurements. He was one of the strongest advocates of Carlo Rubbia's proposal for a proton antiproton collider at CERN, and was influential in preparing and advertising its physics. In 1978 he organized the Les Houches workshop that brought the LEP project to the attention of the wider European particle physics community. He also organized the ECFA workshop at Lausanne in 1984 that made the first exploration of the possible physics of the LHC. It is a tragedy that Maurice has not lived to enjoy data from the LHC.' References [1] Maurice Jacob and Helmut Satz (eds) 1982 Proc. Workshop on Quark Matter Formation and Heavy Ion Collisions, Bielefeld, 10 14 May 1982 (Singapore: World Scientific Publishing) [2] Heinz Ulrich W and Jacob Maurice 2000 Evidence for a new state of matter: An assessment of the results from the CERN lead beam program. Preprint nucl-th/0002042 [3] Ellis J and Martin A 2007 CERN Courier 47 issue 6

  16. Lexique et procedures heuristiques. Arguments pour un renouvellement de l'enseignement du vocabulaire au degre elementaire (Word-Study and Heuristic Processes. Arguments for a Renewal in the Teaching of Vocabulary at the Elementary Level). Acts of the Colloquium of the Swiss Interuniversity Commission for Applied Linguistics. CILA Bulletin, No. 28.

    ERIC Educational Resources Information Center

    Muller, Charles

    A study is described of heuristic devices useful in learning both native and second languages. The study concerns particularly the means used by very young students (second and third graders) in vocabulary acquisition and in the establishment of semantic relationships. It was of concern to verify if (1) the children would use their knowledge of…

  17. CERN automatic audio-conference service

    NASA Astrophysics Data System (ADS)

    Sierra Moral, Rodrigo

    2010-04-01

    Scientists from all over the world need to collaborate with CERN on a daily basis. They must be able to communicate effectively on their joint projects at any time; as a result telephone conferences have become indispensable and widely used. Managed by 6 operators, CERN already has more than 20000 hours and 5700 audio-conferences per year. However, the traditional telephone based audio-conference system needed to be modernized in three ways. Firstly, to provide the participants with more autonomy in the organization of their conferences; secondly, to eliminate the constraints of manual intervention by operators; and thirdly, to integrate the audio-conferences into a collaborative working framework. The large number, and hence cost, of the conferences prohibited externalization and so the CERN telecommunications team drew up a specification to implement a new system. It was decided to use a new commercial collaborative audio-conference solution based on the SIP protocol. The system was tested as the first European pilot and several improvements (such as billing, security, redundancy...) were implemented based on CERN's recommendations. The new automatic conference system has been operational since the second half of 2006. It is very popular for the users and has doubled the number of conferences in the past two years.

  18. CERN openlab: Engaging industry for innovation in the LHC Run 3-4 R&D programme

    NASA Astrophysics Data System (ADS)

    Girone, M.; Purcell, A.; Di Meglio, A.; Rademakers, F.; Gunne, K.; Pachou, M.; Pavlou, S.

    2017-10-01

    LHC Run3 and Run4 represent an unprecedented challenge for HEP computing in terms of both data volume and complexity. New approaches are needed for how data is collected and filtered, processed, moved, stored and analysed if these challenges are to be met with a realistic budget. To develop innovative techniques we are fostering relationships with industry leaders. CERN openlab is a unique resource for public-private partnership between CERN and leading Information Communication and Technology (ICT) companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide HEP community. In 2015, CERN openlab started its phase V with a strong focus on tackling the upcoming LHC challenges. Several R&D programs are ongoing in the areas of data acquisition, networks and connectivity, data storage architectures, computing provisioning, computing platforms and code optimisation and data analytics. This paper gives an overview of the various innovative technologies that are currently being explored by CERN openlab V and discusses the long-term strategies that are pursued by the LHC communities with the help of industry in closing the technological gap in processing and storage needs expected in Run3 and Run4.

  19. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  20. Memorial W.Gentner

    ScienceCinema

    None

    2018-05-25

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  2. OPERA - First Beam Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    2008-02-21

    OPERA is a long base-line neutrino oscillation experiment to detect tau-neutrino appearance and to prove that the origin of the atmospheric muon neutrino deficit observed by Kamiokande is the neutrino oscillation. A Hybrid emulsion detector, of which weight is about 1.3 kton, has been installed in Gran Sasso laboratory. New muon neutrino beam line, CNGS, has been constructed at CERN to send neutrinos to Gran Sasso, 730 km apart from CERN. In 2006, first neutrinos were sent from CERN to LNGS and were detected by the OPERA detector successfully as planned.

  3. Membership Finland

    ScienceCinema

    None

    2018-05-18

    The DG C. Rubbia and the vice president of the council of CERN gives a warm welcome to the membership of Finland, as the 15th member of CERN since January 1 1991 in the presence of the Secretary-General and the ambassador.

  4. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  5. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  6. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    NASA Astrophysics Data System (ADS)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other physical systems described by quantum field theory, for instance in the context of a condensed matter system. The lectures by S Hartnoll provided an introduction to this recent development with an emphasis on the dual holographic description of superconductivity. Finally, ideas inspired by the AdS/CFT correspondence are yielding deep insights into fundamental questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. The lectures by S Mathur reviewed the black hole entropy and information paradox, and the proposal for its resolution in terms of `fuzzball' microstates. Further sets of lectures, not included in this special section, by F Zwirner and V Mukhanov, covered phenomenological aspects of high energy physics beyond the Standard Model and of cosmology. The coming experimental data in these two fields are expected to foster new developments in connecting string theory to the real world. The conference was financially supported by CERN and partially by the Arnold Sommerfeld Center for Theoretical Physics of the Ludwig Maximilians University of Munich. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. A M Uranga CERN, Switzerland Guest Editor

  7. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  8. Offering Global Collaboration Services beyond CERN and HEP

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Ferreira, P.; Baron, T.

    2015-12-01

    The CERN IT department has built over the years a performant and integrated ecosystem of collaboration tools, from videoconference and webcast services to event management software. These services have been designed and evolved in very close collaboration with the various communities surrounding the laboratory and have been massively adopted by CERN users. To cope with this very heavy usage, global infrastructures have been deployed which take full advantage of CERN's international and global nature. If these services and tools are instrumental in enabling the worldwide collaboration which generates major HEP breakthroughs, they would certainly also benefit other sectors of science in which globalization has already taken place. Some of these services are driven by commercial software (Vidyo or Wowza for example), some others have been developed internally and have already been made available to the world as Open Source Software in line with CERN's spirit and mission. Indico for example is now installed in 100+ institutes worldwide. But providing the software is often not enough and institutes, collaborations and project teams do not always possess the expertise, or human or material resources that are needed to set up and maintain such services. Regional and national institutions have to answer needs, which are growingly global and often contradict their operational capabilities or organizational mandate and so are looking at existing worldwide service offers such as CERN's. We believe that the accumulated experience obtained through the operation of a large scale worldwide collaboration service combined with CERN's global network and its recently- deployed Agile Infrastructure would allow the Organization to set up and operate collaborative services, such as Indico and Vidyo, at a much larger scale and on behalf of worldwide research and education institutions and thus answer these pressing demands while optimizing resources at a global level. Such services would be built over a robust and massively scalable Indico server to which the concept of communities would be added, and which would then serve as a hub for accessing other collaboration services such as Vidyo, on the same simple and successful model currently in place for CERN users. This talk will describe this vision, its benefits and the steps that have already been taken to make it come to life.

  9. Let's call it "aphasia": Rationales for eliminating the term "dysphasia".

    PubMed

    Worrall, Linda; Simmons-Mackie, Nina; Wallace, Sarah J; Rose, Tanya; Brady, Marian C; Kong, Anthony Pak Hin; Murray, Laura; Hallowell, Brooke

    2016-10-01

    Health professionals, researchers, and policy makers often consider the two terms aphasia and dysphasia to be synonymous. The aim of this article is to argue the merits of the exclusive use of the term aphasia and present a strategy for creating change through institutions such as the WHO-ICD. Our contention is that one term avoids confusion, speech-language pathologists prefer aphasia, scholarly publications indicate a preference for the term aphasia, stroke clinical guidelines indicate a preference for the term aphasia, consumer organizations use the title aphasia in their name and on their websites, and languages other than English use a term similar to aphasia. The use of the term dysphasia in the broader medical community may stem from the two terms being used interchangeably in the ICD10. Aphasia United http://www.shrs.uq.edu.au/aphasiaunited , an international movement for uniting the voice of all stakeholders in aphasia within an international context, will seek to eliminate the use of the term dysphasia.

  10. A program for the Bayesian Neural Network in the ROOT framework

    NASA Astrophysics Data System (ADS)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  11. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  12. Elliptic flow of charged pions, protons and strange particles emitted in Pb + Au collisions at top SPS energy

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Krobath, G.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    Differential elliptic flow spectra v2(pT) of π-, KS0, p, Λ have been measured at √{sNN}=17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb + Au collisions (10% of σgeo). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for Λ) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow is derived as a constituent, besides π+ and K+, of the elliptic flow of positive pion candidates. This retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 are adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming π+ and π- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series π--KS0-p-Λ, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf=160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous hydrodynamics studies which focus on late hadronic stages.

  13. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  14. CERN IRRADIATION FACILITIES.

    PubMed

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Towards a 21st century telephone exchange at CERN

    NASA Astrophysics Data System (ADS)

    Valentín, F.; Hesnaux, A.; Sierra, R.; Chapron, F.

    2015-12-01

    The advent of mobile telephony and Voice over IP (VoIP) has significantly impacted the traditional telephone exchange industry—to such an extent that private branch exchanges are likely to disappear completely in the near future. For large organisations, such as CERN, it is important to be able to smooth this transition by implementing new multimedia platforms that can protect past investments and the flexibility needed to securely interconnect emerging VoIP solutions and forthcoming developments such as Voice over LTE (VoLTE). We present the results of ongoing studies and tests at CERN of the latest technologies in this area.

  16. Ageing Studies on the First Resistive-MicroMeGaS Quadruplet at GIF++ Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alvarez Gonzalez, B.; Bianco, M.; Farina, E.; Iengo, P.; Kuger, F.; Lin, T.; Longo, L.; Sekhniaidze, G.; Sidiropoulou, O.; Schott, M.; Valderanis, C.; Wotschack, J.

    2018-02-01

    A resistive-MicroMeGaS quadruplet built at CERN has been installed at the new CERN Gamma Irradiation Facility (GIF++) with the aim of carrying out a long-term ageing study. Two smaller resistive bulk-MicroMeGaS produced at the CERN PCB workshop have also been installed at GIF++ in order to provide a comparison of the ageing behavior with the MicroMeGaS quadruplet. We give an overview of the ongoing tests at GIF++ in terms of particle rate, integrated charge and spatial resolution of the MicroMeGaS detectors.

  17. Media Training

    ScienceCinema

    None

    2017-12-09

    With the LHC starting up soon, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. The training is open for everybody. Make sure you arrive early enough to get a seat - there are only 200 seats in the Globe. The session will also be webcast: http://webcast.cern.ch/

  18. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  19. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    NASA Astrophysics Data System (ADS)

    Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.

    2014-05-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  20. Building an organic block storage service at CERN with Ceph

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel; Wiebalck, Arne

    2014-06-01

    Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

  1. Self-service for software development projects and HPC activities

    NASA Astrophysics Data System (ADS)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five seriesmore » of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions";. This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.« less

  10. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012)

    NASA Astrophysics Data System (ADS)

    Ernst, Michael; Düllmann, Dirk; Rind, Ofer; Wong, Tony

    2012-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at New York University on 21- 25 May 2012. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community and related scientific and technical fields. The CHEP conference provides a forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18-month intervals, alternating between Europe, Asia, the Americas and other parts of the world. Recent CHEP conferences have been held in Taipei, Taiwan (2010); Prague, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, United States (2003); Beijing, China (2001); Padova, Italy (2000). CHEP 2012 was organized by Brookhaven National Laboratory (BNL) and co-sponsored by New York University. The organizational structure for CHEP consists of an International Advisory Committee (IAC) which sets the overall themes of the conference, a Program Organizing Committee (POC) that oversees the program content, and a Local Organizing Committee (LOC) that is responsible for local arrangements (lodging, transportation and social events) and conference logistics (registration, program scheduling, conference site selection and conference proceedings). There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 125 oral and 425 poster presentations and industrial exhibitions. We thank all the presenters for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Distributed Processing and Analysis on Grids and Clouds, Computer Facilities, Production Grids and Networking, Software Engineering, Data Stores and Databases and Collaborative Tools. We would like to thank Brookhaven Science Associates, New York University, Blue Nest Events, the International Advisory Committee, the Program Committee and the Local Organizing Committee members for all their support and assistance. We also would like to acknowledge the support provided by the following sponsors: ACEOLE, Data Direct Networks, Dell, the European Middleware Initiative and Nexsan. Special thanks to the Program Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing the conference proceedings. The next CHEP conference will be held in Amsterdam, the Netherlands on 14-18 October 2013. Conference Chair Michael Ernst (BNL) Program Committee Daniele Bonacorsi, University of Bologna, Italy Simone Campana, CERN, Switzerland Philippe Canal, Fermilab, United States Sylvain Chapeland, CERN, Switzerland Dirk Düllmann, CERN, Switzerland Johannes Elmsheuser, Ludwig Maximilian University of Munich, Germany Maria Girone, CERN, Switzerland Steven Goldfarb, University of Michigan, United States Oliver Gutsche, Fermilab, United States Benedikt Hegner, CERN, Switzerland Andreas Heiss, Karlsruhe Institute of Technology, Germany Peter Hristov, CERN, Switzerland Tony Johnson, SLAC, United States David Lange, LLNL, United States Adam Lyon, Fermilab, United States Remigius Mommsen, Fermilab, United States Axel Naumann, CERN, Switzerland Niko Neufeld, CERN, Switzerland Rolf Seuster, TRIUMF, Canada Local Organizing Committee Maureen Anderson, John De Stefano, Mariette Faulkner, Ognian Novakov, Ofer Rind, Tony Wong (BNL) Kyle Cranmer (NYU) International Advisory Committee Mohammad Al-Turany, GSI, Germany Lothar Bauerdick, Fermilab, United States Ian Bird, CERN, Switzerland Dominique Boutigny, IN2P3, France Federico Carminati, CERN, Switzerland Marco Cattaneo, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, United Kingdom Sridhara Dasu, University of Wisconsin-Madison, United States Günter Duckeck, Ludwig Maximilian University of Munich, Germany Richard Dubois, SLAC, United States Michael Ernst, BNL, United States Ian Fisk, Fermilab, United States Gonzalo Merino, PIC, Spain John Gordon, STFC-RAL, United Kingdom Volker Gülzow, DESY, Germany Frederic Hemmer, CERN, Switzerland Viatcheslav Ilyin, Moscow State University, Russia Nobuhiko Katayama, KEK, Japan Alexei Klimentov, BNL, United States Simon C. Lin, Academia Sinica, Taiwan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, United States Pere Mato Vila, CERN, Switzerland Mauro Morandin, INFN CNAF, Italy Harvey Newman, Caltech, United States Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, United States Hiroshi Sakamoto, University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, United States Dongchul Son, Kyungpook National University, South Korea Reda Tafirout, TRIUMF, Canada Stephen Wolbers, Fermilab, United States Frank Wuerthwein, UCSD, United States

  11. Learning to Understand Natural Language with Less Human Effort

    DTIC Science & Technology

    2015-05-01

    j ); if one of these has the correct logical form, ` j = `i, then tj is taken as the approximate maximizer. 29 2.3 Discussion This chapter...where j indexes entity tuples (e1, e2). Training optimizes the semantic parser parameters θ to predict Y = yj,Z = zj given S = sj . The parameters θ...be au tif ul / J J N 1 /N 1 λ f .f L on do n /N N P N λ x .M (x ,“ lo nd on ”, C IT Y ) N : λ x .M (x ,“ lo nd on ”, C IT Y ) (S [d cl ]\\N

  12. List of Standards to Accompany Manual of Documentation Practices Applicable to Defence-Aerospace Scientific and Technical Information (Liste des Normes a Placer en Annexe au Manuel Concernant les Techniques Documentaires Applicables a l’Information Scientifique et Technique de la Defense et du Secteur Aerospatial)

    DTIC Science & Technology

    1990-10-01

    CHARACTERS ISO 0233 1984 DOCUMENTATION - TRANSLITERATION OF ARABIC CHARACTERS INTO LATIN CHARACTERS ISO 0259 1954 DOCUMENTATION - TRANSLITERATION OF HEBREW...TRANSLITERATION OF ARABIC CHARACTERS IN LATIN CHARACTERS SF I 46-DUO 1N64 TRANSLITERATION - TRANSLITERATION OF HEBREW IN LATIN CHARACTERS . 46-010...LANGUAGE CODES (ANNIE: AUT.ORITY SYMSOLS DIN 31 634 CONVERSION OF THE GREEN ALUBABET DIN 31 635 CONVERSION OF THE ARABIC ALPHABET DIN 31 635 CONVERSION OF

  13. L'enseignement modulaire et le laboratoire de langues: conception et experimentation d'un nouveau cours de francais oral au Centre d'anglais et de francais, Universite McGill (Modular Instruction and the Language Laboratory: Conception and Experimentation with a New Course in Oral French at the English and French Center, McGill University).

    ERIC Educational Resources Information Center

    Legoux, Marie-Noelle

    1980-01-01

    A modular-type course in French was developed at the "Centre d'anglais et de francais" at McGill University (Montreal) to meet the needs of incoming students who were lacking skills in listening and oral expression. The course is composed of eight modules a semester, each module corresponding to 15 to 20 hours work on the student's part. The…

  14. CERN goes iconic

    NASA Astrophysics Data System (ADS)

    2017-06-01

    There are more than 1800 emoji that can be sent and received in text messages and e-mails. Now, the CERN particle-physics lab near Geneva has got in on the act and released its own collection of 35 images that can be used by anyone with an Apple device.

  15. Neutrino Factory Plans at CERN

    NASA Astrophysics Data System (ADS)

    Riche, J. A.

    2002-10-01

    The considerable interest raised by the discovery of neutrino oscillations and recent progress in studies of muon colliders has triggered interest in considering a neutrino factory at CERN. This paper explains the reference scenario, indicates the other possible choices and mentions the R&D that are foreseen.

  16. Wi-Fi Service enhancement at CERN

    NASA Astrophysics Data System (ADS)

    Ducret, V.; Sosnowski, A.; Gonzalez Caballero, B.; Barrand, Q.

    2017-10-01

    Since the early 2000’s, the number of mobile devices connected to CERN’s internal network has increased from just a handful to well over 10,000. Wireless access is no longer simply “nice to have” or just for conference and meeting rooms; support for mobility is expected by most, if not all, of the CERN community. In this context, a full renewal of the CERN Wi-Fi network has been launched to deliver a state-of-the-art campus-wide Wi-Fi Infrastructure. We aim to deliver, in more than 200 office buildings with a surface area of over 400,000m2 and including many high-priority and high-occupation zones, an end-user experience comparable, for most applications, to a wired connection and with seamless mobility support. We describe here the studies and tests performed at CERN to ensure the solution we are deploying can meet these goals as well as delivering a single, simple, flexible and open management platform.

  17. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    NASA Astrophysics Data System (ADS)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  18. ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization

    NASA Astrophysics Data System (ADS)

    Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Canal, Ph.; Casadei, D.; Couet, O.; Fine, V.; Franco, L.; Ganis, G.; Gheata, A.; Maline, D. Gonzalez; Goto, M.; Iwaszkiewicz, J.; Kreshuk, A.; Segura, D. Marcos; Maunder, R.; Moneta, L.; Naumann, A.; Offermann, E.; Onuchin, V.; Panacek, S.; Rademakers, F.; Russo, P.; Tadel, M.

    2011-06-01

    A new stable version ("production version") v5.28.00 of ROOT [1] has been published [2]. It features several major improvements in many areas, most noteworthy data storage performance as well as statistics and graphics features. Some of these improvements have already been predicted in the original publication Antcheva et al. (2009) [3]. This version will be maintained for at least 6 months; new minor revisions ("patch releases") will be published [4] to solve problems reported with this version. New version program summaryProgram title: ROOT Catalogue identifier: AEFA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser Public License v.2.1 No. of lines in distributed program, including test data, etc.: 2 934 693 No. of bytes in distributed program, including test data, etc.: 1009 Distribution format: tar.gz Programming language: C++ Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC Operating system: GNU/Linux, Windows XP/Vista/7, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX Has the code been vectorized or parallelized?: Yes RAM: > 55 Mbytes Classification: 4, 9, 11.9, 14 Catalogue identifier of previous version: AEFA_v1_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 2499 Does the new version supersede the previous version?: Yes Nature of problem: Storage, analysis and visualization of scientific data Solution method: Object store, wide range of analysis algorithms and visualization methods Reasons for new version: Added features and corrections of deficiencies Summary of revisions: The release notes at http://root.cern.ch/root/v528/Version528.news.html give a module-oriented overview of the changes in v5.28.00. Highlights include File format Reading of TTrees has been improved dramatically with respect to CPU time (30%) and notably with respect to disk space. Histograms A new TEfficiency class has been provided to handle the calculation of efficiencies and their uncertainties, TH2Poly for polygon-shaped bins (e.g. maps), TKDE for kernel density estimation, and TSVDUnfold for singular value decomposition. Graphics Kerning is now supported in TLatex, PostScript and PDF; a table of contents can be added to PDF files. A new font provides italic symbols. A TPad containing GL can be stored in a binary (i.e. non-vector) image file; add support for full-scene anti-aliasing. Usability enhancements to EVE. Math New interfaces for generating random number according to a given distribution, goodness of fit tests of unbinned data, binning multidimensional data, and several advanced statistical functions were added. RooFit Introduction of HistFactory; major additions to RooStats. TMVA Updated to version 4.1.0, adding e.g. the support for simultaneous classification of multiple output classes for several multivariate methods. PROOF Many new features, adding to PROOF's usability, plus improvements and fixes. PyROOT Support of Python 3 has been added. Tutorials Several new tutorials were provided for above new features (notably RooStats). A detailed list of all the changes is available at http://root.cern.ch/root/htmldoc/examples/V5. Additional comments: For an up-to-date author list see: http://root.cern.ch/drupal/content/root-development-team and http://root.cern.ch/drupal/content/former-root-developers. The distribution file for this program is over 30 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Depending on the data size and complexity of analysis algorithms. References: id="pr0100" view="all">http://root.cern.ch. http://root.cern.ch/drupal/content/production-version-528. I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo, M. Tadel, ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499. http://root.cern.ch/drupal/content/root-version-v5-28-00-patch-release-notes.

  19. Highlights from the CERN/ESO/NordForsk ''Gender in Physics Day''

    NASA Astrophysics Data System (ADS)

    Primas, F.; Guinot, G.; Strandberg, L.

    2017-03-01

    In their role as observers on the EU Gender Equality Network in the European Research Area (GENERA) project, funded under the Horizon 2020 framework, CERN, ESO and NordForsk joined forces and organised a Gender in Physics Day at the CERN Globe of Science and Innovation. The one-day conference aimed to examine innovative activities promoting gender equality, and to discuss gender-oriented policies and best practice in the European Research Area (with special emphasis on intergovernmental organisations), as well as the importance of building solid networks. The event was very well attended and was declared a success. The main highlights of the meeting are reported.

  20. Dissemination of data measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Otuka, N.; Cabellos, O.; Aberle, O.; Aerts, G.; Altstadt, S.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Badurek, G.; Balibrea, J.; Barbagallo, M.; Barros, S.; Baumann, P.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Cardella, R.; Carrapiço, C.; Casanovas, A.; Castelluccio, D. M.; Cennini, P.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Couture, A.; Cox, J.; Damone, L. A.; David, S.; Deo, K.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Dressler, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Fernández-Domínguez, B.; Ferrant, L.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Fraval, K.; Frost, R. J. W.; Fujii, K.; Furman, W.; Ganesan, S.; Garcia, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Giubrone, G.; Glodariu, T.; Göbel, K.; Gomez-Hornillos, M. B.; Goncalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Haight, R.; Harada, H.; Heftrich, T.; Heil, M.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Igashira, M.; Isaev, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Kalamara, A.; Karadimos, D.; Karamanis, D.; Katabuchi, T.; Kavrigin, P.; Kerveno, M.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Konovalov, V.; Krtička, M.; Kroll, J.; Kurtulgil, D.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Naour, C. Le; Lerendegui-Marco, J.; Leong, L. S.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Lozano, M.; Macina, D.; Manousos, A.; Marganiec, J.; Martinez, T.; Marrone, S.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Montesano, S.; Moreau, C.; Mosconi, M.; Musumarra, A.; Negret, A.; Nolte, R.; O'Brien, S.; Oprea, A.; Palomo-Pinto, F. R.; Pancin, J.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perkowski, J.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, L.; Poch, A.; Porras, I.; Praena, J.; Pretel, C.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M.; Roman, F.; Rout, P. C.; Rudolf, G.; Rubbia, C.; Rullhusen, P.; Ryan, J. A.; Sabaté-Gilarte, M.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Stephan, C.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Ware, T.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Wiesher, M.; Wisshak, K.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  1. How to create successful Open Hardware projects — About White Rabbits and open fields

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Arruat, M.; Cattin, M.; Daniluk, G.; Gonzalez Cobas, J. D.; Gousiou, E.; Lewis, J.; Lipinski, M. M.; Serrano, J.; Stana, T.; Voumard, N.; Wlostowski, T.

    2013-12-01

    CERN's accelerator control group has embraced ''Open Hardware'' (OH) to facilitate peer review, avoid vendor lock-in and make support tasks scalable. A web-based tool for easing collaborative work was set up and the CERN OH Licence was created. New ADC, TDC, fine delay and carrier cards based on VITA and PCI-SIG standards were designed and drivers for Linux were written. Often industry was paid for developments, while quality and documentation was controlled by CERN. An innovative timing network was also developed with the OH paradigm. Industry now sells and supports these designs that find their way into new fields.

  2. Medical Applications at CERN and the ENLIGHT Network

    PubMed Central

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN. PMID:26835422

  3. Medical Applications at CERN and the ENLIGHT Network.

    PubMed

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.

  4. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  5. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    NASA Astrophysics Data System (ADS)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  6. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher. This video is Part 11 in the series.« less

  8. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  9. Mapping Remote and Multidisciplinary Learning Barriers: Lessons from "Challenge-Based Innovation" at CERN

    ERIC Educational Resources Information Center

    Jensen, Matilde Bisballe; Utriainen, Tuuli Maria; Steinert, Martin

    2018-01-01

    This paper presents the experienced difficulties of students participating in the multidisciplinary, remote collaborating engineering design course challenge-based innovation at CERN. This is with the aim to identify learning barriers and improve future learning experiences. We statistically analyse the rated differences between distinct design…

  10. DG's New Year's presentation

    ScienceCinema

    Heuer, R.-D.

    2018-05-22

    CERN general staff meeting. Looking back at key messages: Highest priority: LHC physics in 2009; Increase diversity of the scientific program; Prepare for future projects; Establish open and direct communication; Prepare CERN towards a global laboratory; Increase consolidation efforts; Financial situation--tight; Knowledge and technology transfer--proactive; Contract policy and internal mobility--lessons learned.

  11. Knowledge and Technology: Sharing With Society

    NASA Astrophysics Data System (ADS)

    Benvenuti, Cristoforo; Sutton, Christine; Wenninger, Horst

    The following sections are included: * A Core Mission of CERN * Medical Accelerators: A Tool for Tumour Therapy * Medipix: The Image is the Message * Crystal Clear: From Higgs to PET * Solar Collectors: When Nothing is Better * The TARC Experiment at CERN: Modern Alchemy * A CLOUD Chamber with a Silvery Lining * References

  12. Contextualized Magnetism in Secondary School: Learning from the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid, Ramon

    2005-01-01

    Physics teachers in secondary schools usually mention the world's largest particle physics laboratory--CERN (European Organization for Nuclear Research)--only because of the enormous size of the accelerators and detectors used there, the number of scientists involved in their activities and also the necessary international scientific…

  13. WorldWide Web: Hypertext from CERN.

    ERIC Educational Resources Information Center

    Nickerson, Gord

    1992-01-01

    Discussion of software tools for accessing information on the Internet focuses on the WorldWideWeb (WWW) system, which was developed at the European Particle Physics Laboratory (CERN) in Switzerland to build a worldwide network of hypertext links using available networking technology. Its potential for use with multimedia documents is also…

  14. Preparation of a primary argon beam for the CERN fixed target physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less

  15. Deployment and Operational Experiences with CernVM-FS at the GridKa Tier-1 Center

    NASA Astrophysics Data System (ADS)

    Alef, Manfred; Jäger, Axel; Petzold and, Andreas; Verstege, Bernhard

    2012-12-01

    In 2012 the GridKa Tier-1 computing center hosts 130 kHS06 computing resources and 14PB disk and 17PB tape space. These resources are shared between the four LHC VOs and a number of national and international VOs from high energy physics and other sciences. CernVM-FS has been deployed at GridKa to supplement the existing NFS-based system to access VO software on the worker nodes. It provides a solution tailored to the requirement of the LHC VOs. We will focus on the first operational experiences and the monitoring of CernVM-FS on the worker nodes and the squid caches.

  16. Open Media Training Session

    ScienceCinema

    None

    2017-12-09

    Have you ever wondered how the media work and why some topics make it into the news and other don't? Would you like to know how to (and how not to) give an interview to a journalist? With the LHC preparing for first collisions at high energies, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. Follow the webcast: http://webcast.cern.ch/

  17. CERN - Six Decades of Science, Innovation, Cooperation, and Inspiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris

    The European Laboratory for Particle Physics, which straddles the Swiss-French border northwest of Geneva, celebrates its sixtieth birthday in 2014 CERN is the preeminent particle-physics institution in the world, currently emphasizing the study of collisions of protons and heavy nuclei at very high energies and the exploration of physics on the electroweak scale (energies where electromagnetism and the weak nuclear force merge). With brilliant accomplishments in research, innovation, and education, and a sustained history of cooperation among people from different countries and cultures, CERN ranks as one of the signal achievements of the postwar European Project. For physicists the worldmore » over, the laboratory is a source of pride and inspiration.« less

  18. More "Hands-On" Particle Physics: Learning with ATLAS at CERN

    ERIC Educational Resources Information Center

    Long, Lynne

    2011-01-01

    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (http://learningwithatlas-portal.eu/), which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling…

  19. History of Cern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-12-20

    Cérémonie à l'occasion de l'apparition du premier volume du livre sur l'histoire du Cern, avec plusieurs personnes présentes qui jouaient un rôle important dans cette organisation européenne couronnée de succès grâce à l'esprit des membres fondateurs qui est et restera essentiel

  20. Big data analytics as a service infrastructure: challenges, desired properties and solutions

    NASA Astrophysics Data System (ADS)

    Martín-Márquez, Manuel

    2015-12-01

    CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.

  1. Commissioning the CERN IT Agile Infrastructure with experiment workloads

    NASA Astrophysics Data System (ADS)

    Medrano Llamas, Ramón; Harald Barreiro Megino, Fernando; Kucharczyk, Katarzyna; Kamil Denis, Marek; Cinquilli, Mattia

    2014-06-01

    In order to ease the management of their infrastructure, most of the WLCG sites are adopting cloud based strategies. In the case of CERN, the Tier 0 of the WLCG, is completely restructuring the resource and configuration management of their computing center under the codename Agile Infrastructure. Its goal is to manage 15,000 Virtual Machines by means of an OpenStack middleware in order to unify all the resources in CERN's two datacenters: the one placed in Meyrin and the new on in Wigner, Hungary. During the commissioning of this infrastructure, CERN IT is offering an attractive amount of computing resources to the experiments (800 cores for ATLAS and CMS) through a private cloud interface. ATLAS and CMS have joined forces to exploit them by running stress tests and simulation workloads since November 2012. This work will describe the experience of the first deployments of the current experiment workloads on the CERN private cloud testbed. The paper is organized as follows: the first section will explain the integration of the experiment workload management systems (WMS) with the cloud resources. The second section will revisit the performance and stress testing performed with HammerCloud in order to evaluate and compare the suitability for the experiment workloads. The third section will go deeper into the dynamic provisioning techniques, such as the use of the cloud APIs directly by the WMS. The paper finishes with a review of the conclusions and the challenges ahead.

  2. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.

    PubMed

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-04-01

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.

  3. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING

    PubMed Central

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-01-01

    Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154

  4. Got Questions About the Higgs Boson? Ask a Scientist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinchliffe, Ian

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. •more » Post your questions in the comment box • E-mail your questions to askascientist@lbl.gov • Tweet to @BerkeleyLab • Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g. Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm. And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en. CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.« less

  5. Got Questions About the Higgs Boson? Ask a Scientist

    ScienceCinema

    Hinchliffe, Ian

    2017-12-12

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. • Post your questions in the comment box • E-mail your questions to askascientist@lbl.gov • Tweet to @BerkeleyLab • Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g. Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm. And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en. CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.

  6. Of people, particles and prejudice

    NASA Astrophysics Data System (ADS)

    Jackson, Penny; Greene, Anne; Mears, Matt; Spacecadet1; Green, Christian; Hunt, Devin J.; Berglyd Olsen, Veronica K.; Ilya, Komarov; Pierpont, Elaine; Gillman, Matthew

    2016-05-01

    In reply to Louise Mayor's feature article “Where people and particles collide”, about the experiences of researchers at CERN who are lesbian, gay, bisexual or transgender (LGBT), efforts to make LGBT CERN an officially recognized club, and incidents where posters advertising the club have been torn down or defaced (March pp31-36, http://ow.ly/YVP2Z).

  7. The Secret Chambers in the Chephren Pyramid

    ERIC Educational Resources Information Center

    Gutowski, Bartosz; Józwiak, Witold; Joos, Markus; Kempa, Janusz; Komorowska, Kamila; Krakowski, Kamil; Pijus, Ewa; Szymczak, Kamil; Trojanowska, Malgorzata

    2018-01-01

    In 2016, we (seven high school students from a school in Plock, Poland) participated in the CERN Beamline for Schools competition. Together with our team coach, Mr. Janusz Kempa, we submitted a proposal to CERN that was selected as one of two winning proposals that year. This paper describes our experiment from the early days of brainstorming to…

  8. Lead Ions and Coulomb's Law at the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  9. From strangeness enhancement to quark-gluon plasma discovery

    NASA Astrophysics Data System (ADS)

    Koch, Peter; Müller, Berndt; Rafelski, Johann

    2017-11-01

    This is a short survey of signatures and characteristics of the quark-gluon plasma in the light of experimental results that have been obtained over the past three decades. In particular, we present an in-depth discussion of the strangeness observable, including a chronology of the experimental effort to detect QGP at CERN-SPS, BNL-RHIC, and CERN-LHC.

  10. Ceremony 25th birthday Cern

    ScienceCinema

    None

    2018-05-18

    Celebration of CERN's 25th birthday with a speech by L. Van Hove and J.B. Adams, musical interludes by Ms. Mey and her colleagues (starting with Beethoven). The general managers then proceed with the presentation of souvenirs to members of the personnel who have 25 years of service in the organization. A gesture of recognition is also given to Zwerner.

  11. Comittees

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Fritz Caspers (CERN, Switzerland), Michel Chanel (CERN, Switzerland), Håkan Danared (MSL, Sweden), Bernhard Franzke (GSI, Germany), Manfred Grieser (MPI für Kernphysik, Germany), Dieter Habs (LMU München, Germany), Jeffrey Hangst (University of Aarhus, Denmark), Takeshi Katayama (RIKEN/Univ. Tokyo, Japan), H.-Jürgen Kluge (GSI, Germany), Shyh-Yuan Lee (Indiana University, USA), Rudolf Maier (FZ Jülich, Germany), John Marriner (FNAL, USA), Igor Meshkov (JINR, Russia), Dieter Möhl (CERN, Switzerland), Vasily Parkhomchuk (BINP, Russia), Robert Pollock (Indiana University), Dieter Prasuhn (FZ Jülich, Germany), Dag Reistad (TSL, Sweden), John Schiffer (ANL, USA), Andrew Sessler (LBNL, USA), Alexander Skrinsky (BINP, Russia), Markus Steck (GSI, Germany), Jie Wei (BNL, USA), Andreas Wolf (MPI für Kernphysik, Germany), Hongwei Zhao (IMP, People's Rep. of China).

  12. Across Europe to CERN: Taking students on the ultimate physics experience

    NASA Astrophysics Data System (ADS)

    Wheeler, Sam

    2018-05-01

    In 2013, I was an Einstein Fellow with the U.S. Department of Energy and I was asked by a colleague, working in a senator's office, if I would join him in a meeting with a physicist to "translate" the science into something more understandable. That meeting turned out to be a wonderful opportunity I would never have otherwise had. During the meeting I met Michael Tuts, a physicist who was working on project ATLAS at CERN. Afterwards, I walked with him out of the Senate office building to Union Station and, in parting, he gave me his card and told me that if I were in Geneva that he could help me get a tour of CERN and the LHC.

  13. User and group storage management the CMS CERN T2 centre

    NASA Astrophysics Data System (ADS)

    Cerminara, G.; Franzoni, G.; Pfeiffer, A.

    2015-12-01

    A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.

  14. [CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility].

    PubMed

    Viertl, David; Buchegger, Franz; Prior, John O; Forni, Michel; Morel, Philippe; Ratib, Osman; Bühler Léo H; Stora, Thierry

    2015-06-17

    CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.

  15. Electronic and geometric structures of Au30 clusters: a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S

    NASA Astrophysics Data System (ADS)

    Tian, Zhimei; Cheng, Longjiu

    2015-12-01

    Density functional theory calculations have been performed to study the experimentally synthesized Au30S(SR)18 and two related Au30(SR)18 and Au30S2(SR)18 clusters. The patterns of thiolate ligands on the gold cores for the three thiolate-protected Au30 nanoclusters are on the basis of the ``divide and protect'' concept. A novel extended protecting motif with u3-S, S(Au2(SR)2)2AuSR, is discovered, which is termed the tridentate protecting motif. The Au cores of Au30S(SR)18, Au30(SR)18 and Au30S2(SR)18 clusters are Au17, Au20 and Au14, respectively. The superatom-network (SAN) model and the superatom complex (SAC) model are used to explain the chemical bonding patterns, which are verified by chemical bonding analysis based on the adaptive natural density partitioning (AdNDP) method and aromatic analysis on the basis of the nucleus-independent chemical shift (NICS) method. The Au17 core of the Au30S(SR)18 cluster can be viewed as a SAN of one Au6 superatom and four Au4 superatoms. The shape of the Au6 core is identical to that revealed in the recently synthesized Au18(SR)14 cluster. The Au20 core of the Au30(SR)18 cluster can be viewed as a SAN of two Au6 superatoms and four Au4 superatoms. The Au14 core of Au30S2(SR)18 can be regarded as a SAN of two pairs of two vertex-sharing Au4 superatoms. Meanwhile, the Au14 core is an 8e-superatom with 1S21P6 configuration. Our work may aid understanding and give new insights into the chemical synthesis of thiolate-protected Au clusters.Density functional theory calculations have been performed to study the experimentally synthesized Au30S(SR)18 and two related Au30(SR)18 and Au30S2(SR)18 clusters. The patterns of thiolate ligands on the gold cores for the three thiolate-protected Au30 nanoclusters are on the basis of the ``divide and protect'' concept. A novel extended protecting motif with u3-S, S(Au2(SR)2)2AuSR, is discovered, which is termed the tridentate protecting motif. The Au cores of Au30S(SR)18, Au30(SR)18 and Au30S2(SR)18 clusters are Au17, Au20 and Au14, respectively. The superatom-network (SAN) model and the superatom complex (SAC) model are used to explain the chemical bonding patterns, which are verified by chemical bonding analysis based on the adaptive natural density partitioning (AdNDP) method and aromatic analysis on the basis of the nucleus-independent chemical shift (NICS) method. The Au17 core of the Au30S(SR)18 cluster can be viewed as a SAN of one Au6 superatom and four Au4 superatoms. The shape of the Au6 core is identical to that revealed in the recently synthesized Au18(SR)14 cluster. The Au20 core of the Au30(SR)18 cluster can be viewed as a SAN of two Au6 superatoms and four Au4 superatoms. The Au14 core of Au30S2(SR)18 can be regarded as a SAN of two pairs of two vertex-sharing Au4 superatoms. Meanwhile, the Au14 core is an 8e-superatom with 1S21P6 configuration. Our work may aid understanding and give new insights into the chemical synthesis of thiolate-protected Au clusters. Electronic supplementary information (ESI) available: The AdNDP localized natural bonding orbitals of the valence shells of the Au30S(SH)18 cluster. IR spectra, absorption spectra and coordinates of Au30S(SCH3)18, Au30(SCH3)18 and Au30S2(SCH3)18 clusters. See DOI: 10.1039/c5nr05020k

  16. LCG MCDB—a knowledgebase of Monte-Carlo simulated events

    NASA Astrophysics Data System (ADS)

    Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.

    2008-02-01

    In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC) generators to prepare the events. For example, the same MC samples of Standard Model (SM) processes can be employed for the investigations either in the SM analyses (as a signal) or in searches for new phenomena in Beyond Standard Model analyses (as a background). If the samples are made available publicly and equipped with corresponding and comprehensive documentation, it can speed up cross checks of the samples themselves and physical models applied. Some event samples require a lot of computing resources for preparation. So, a central storage of the samples prevents possible waste of researcher time and computing resources, which can be used to prepare the same events many times. Solution method: Creation of a special knowledgebase (MCDB) designed to keep event samples for the LHC experimental and phenomenological community. The knowledgebase is realized as a separate web-server ( http://mcdb.cern.ch). All event samples are kept on types at CERN. Documentation describing the events is the main contents of MCDB. Users can browse the knowledgebase, read and comment articles (documentation), and download event samples. Authors can upload new event samples, create new articles, and edit own articles. Restrictions: The software is adopted to solve the problems, described in the article and there are no any additional restrictions. Unusual features: The software provides a framework to store and document large files with flexible authentication and authorization system. Different external storages with large capacity can be used to keep the files. The WEB Content Management System provides all of the necessary interfaces for the authors of the files, end-users and administrators. Running time: Real time operations. References: [1] The main LCG MCDB server, http://mcdb.cern.ch/. [2] P. Bartalini, L. Dudko, A. Kryukov, I.V. Selyuzhenkov, A. Sherstnev, A. Vologdin, LCG Monte-Carlo data base, hep-ph/0404241. [3] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, O. Barring, CASTOR: status and evolution, cs.oh/0305047.

  17. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  18. Asymmetric B-factory note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, M.

    Three main issues giving purpose to our visit to CERN, ESRF and DESY were to: assess the current thinking at CERN on whether Eta, the gas desorption coefficient, would continue to decrease with continued with continued beam cleaning, determine if the time between NEG reconditioning could be expanded, and acquire a knowledge of the basic fabrication processes and techniques for producing beam vacuum chambers of copper.

  19. The Proton Synchrotron (PS): At the Core of the CERN Accelerators

    NASA Astrophysics Data System (ADS)

    Cundy, Donald; Gilardoni, Simone

    The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References

  20. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  1. The Higgs Boson: Is the End in Sight?

    ERIC Educational Resources Information Center

    Lincoln, Don

    2012-01-01

    This summer, perhaps while you were lounging around the pool in the blistering heat, the blogosphere was buzzing about data taken at the Large Hadron Collider at CERN. The buzz reached a crescendo in the first week of July when both Fermilab and CERN announced the results of their searches for the Higgs boson. Hard data confronted a theory nearly…

  2. The kaon identification system in the NA62 experiment at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, A.

    2015-07-01

    The main goal of the NA62 experiment at CERN is to measure the branching ratio of the ultra-rare K{sup +} → π{sup +} ν ν-bar decay with 10% accuracy. NA62 will use a 750 MHz high-energy un-separated charged hadron beam, with kaons corresponding to ∼6% of the beam, and a kaon decay-in-flight technique. The positive identification of kaons is performed with a differential Cherenkov detector (CEDAR), filled with Nitrogen gas and placed in the incoming beam. To stand the kaon rate (45 MHz average) and meet the performances required in NA62, the Cherenkov detector has been upgraded (KTAG) with newmore » photon detectors, readout, mechanics and cooling systems. The KTAG provides a fast identification of kaons with an efficiency of at least 95% and precise time information with a resolution below 100 ps. A half-equipped KTAG detector has been commissioned during a technical run at CERN in 2012, while the fully equipped detector, its readout and front-end have been commissioned during a pilot run at CERN in October 2014. The measured time resolution and efficiency are within the required performances. (authors)« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.« less

  4. Lecture archiving on a larger scale at the University of Michigan and CERN

    NASA Astrophysics Data System (ADS)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A.

    2010-04-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  5. COSMO 09

    ScienceCinema

    None

    2018-02-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.

  6. HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters

    NASA Astrophysics Data System (ADS)

    Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge

    2015-12-01

    In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.

  7. DataBase on Demand

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, R.; Gomez, D.; Coterillo Coz, I.; Wojcik, D.

    2012-12-01

    At CERN a number of key database applications are running on user-managed MySQL database services. The database on demand project was born out of an idea to provide the CERN user community with an environment to develop and run database services outside of the actual centralised Oracle based database services. The Database on Demand (DBoD) empowers the user to perform certain actions that had been traditionally done by database administrators, DBA's, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently open community version of MySQL and single instance Oracle database server. This article describes a technology approach to face this challenge, a service level agreement, the SLA that the project provides, and an evolution of possible scenarios.

  8. International aspirations for speech-language pathologists' practice with multilingual children with speech sound disorders: development of a position paper.

    PubMed

    McLeod, Sharynne; Verdon, Sarah; Bowen, Caroline

    2013-01-01

    A major challenge for the speech-language pathology profession in many cultures is to address the mismatch between the "linguistic homogeneity of the speech-language pathology profession and the linguistic diversity of its clientele" (Caesar & Kohler, 2007, p. 198). This paper outlines the development of the Multilingual Children with Speech Sound Disorders: Position Paper created to guide speech-language pathologists' (SLPs') facilitation of multilingual children's speech. An international expert panel was assembled comprising 57 researchers (SLPs, linguists, phoneticians, and speech scientists) with knowledge about multilingual children's speech, or children with speech sound disorders. Combined, they had worked in 33 countries and used 26 languages in professional practice. Fourteen panel members met for a one-day workshop to identify key points for inclusion in the position paper. Subsequently, 42 additional panel members participated online to contribute to drafts of the position paper. A thematic analysis was undertaken of the major areas of discussion using two data sources: (a) face-to-face workshop transcript (133 pages) and (b) online discussion artifacts (104 pages). Finally, a moderator with international expertise in working with children with speech sound disorders facilitated the incorporation of the panel's recommendations. The following themes were identified: definitions, scope, framework, evidence, challenges, practices, and consideration of a multilingual audience. The resulting position paper contains guidelines for providing services to multilingual children with speech sound disorders (http://www.csu.edu.au/research/multilingual-speech/position-paper). The paper is structured using the International Classification of Functioning, Disability and Health: Children and Youth Version (World Health Organization, 2007) and incorporates recommendations for (a) children and families, (b) SLPs' assessment and intervention, (c) SLPs' professional practice, and (d) SLPs' collaboration with other professionals. Readers will 1. recognize that multilingual children with speech sound disorders have both similar and different needs to monolingual children when working with speech-language pathologists. 2. Describe the challenges for speech-language pathologists who work with multilingual children. 3. Recall the importance of cultural competence for speech-language pathologists. 4. Identify methods for international collaboration and consultation. 5. Recognize the importance of engaging with families and people within their local communities for supporting multilingual children in context. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The Air University 404 Page

    Science.gov Websites

    (National Guard) AFITC Conference Air Force Information Technology and Cyberpower Conference graphic The Air Air University Banner AU Home AETC AU FAQs AU Index AU Schools AU Site Contacts USAF AF Recruiting AFRC Recruiting AU Links About Air University AU Academic Office AU Accreditation AU Board of Visitors

  10. High-performance liquid chromatographic analysis of as-synthesised N,N'-dimethylformamide-stabilised gold nanoclusters product

    NASA Astrophysics Data System (ADS)

    Xie, Shunping; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Chan, Wan; Choi, Martin M. F.

    2012-08-01

    Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands.Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands. This article was submitted as part of a Themed Issue on metallic clusters. Other papers on this topic can be found in issue 14 of vol. 4 (2012). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale].

  11. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms.Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms. Electronic supplementary information (ESI) available: The MALDI-TOF-MS identification of Au24Peptide8, the structural divisions of Au24(Cys-Cys)8 obtained based on the ``divide and protect'' approach, the structure of level-1 and -3 staple motifs, the relative energies of all stable configurations of Au24(Cys-Cys)8, orbital components of Iso1 of Au24(Cys-Cys)8, electronic structure comparison between Au24(Cys-Cys)8 and Au24(SR)20, and the coordination of Iso1. See DOI: 10.1039/c5nr08727a

  12. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  13. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  14. History of Cern

    ScienceCinema

    None

    2017-12-09

    Cérémonie à l'occasion de l'apparition du premier volume du livre sur l'histoire du Cern, avec plusieurs personnes présentes qui jouaient un rôle important dans cette organisation européenne couronnée de succès grâce à l'esprit des membres fondateurs qui est et restera essentiel

  15. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  16. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer.

    PubMed

    Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan

    2018-02-22

    An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.

  17. GLISSANDO: GLauber Initial-State Simulation AND mOre…

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Rybczyński, Maciej; Bożek, Piotr

    2009-01-01

    We present a Monte Carlo generator for a variety of Glauber-like models (the wounded-nucleon model, binary collisions model, mixed model, model with hot spots). These models describe the early stages of relativistic heavy-ion collisions, in particular the spatial distribution of the transverse energy deposition which ultimately leads to production of particles from the interaction region. The original geometric distribution of sources in the transverse plane can be superimposed with a statistical distribution simulating the dispersion in the generated transverse energy in each individual collision. The program generates inter alia the fixed-axes (standard) and variable-axes (participant) two-dimensional profiles of the density of sources in the transverse plane and their azimuthal Fourier components. These profiles can be used in further analysis of physical phenomena, such as the jet quenching, event-by-event hydrodynamics, or analysis of the elliptic flow and its fluctuations. Characteristics of the event (multiplicities, eccentricities, Fourier coefficients, etc.) are stored in a ROOT file and can be analyzed off-line. In particular, event-by-event studies can be carried out in a simple way. A number of ROOT scripts is provided for that purpose. Supplied variants of the code can also be used for the proton-nucleus and deuteron-nucleus collisions. Program summaryProgram title: GLISSANDO Catalogue identifier: AEBS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4452 No. of bytes in distributed program, including test data, etc.: 34 766 Distribution format: tar.gz Programming language: C++ Computer: any computer with a C++ compiler and the ROOT environment [R. Brun, et al., Root Users Guide 5.16, CERN, 2007, http://root.cern.ch[1

  18. Agglomeration behavior of lipid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajeev; Kirillova, Maria A.; Esimbekova, Elena N.; Zharkov, Sergey M.; Kratasyuk, Valentina A.

    2018-04-01

    The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100-400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525-533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35 ± 5 nm, AuNP2 15 ± 5 nm, AuNP3 30 ± 5 nm, and AuNP4 30 ± 5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1 x/200, - 17.93 ± 1.02 mV; AuNP2-L-1 x/200, - 21.63 ± 0.70; AuNP3-L-1 x/200, - 14.54 ± 0.90; AuNP3-L-1 x/200 - 13.77 ± 0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1 x/200 or 1 x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling. [Figure not available: see fulltext.

  19. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures

    NASA Astrophysics Data System (ADS)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au-FexOy HSs. See DOI: 10.1039/c1nr10768b

  20. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Generating and Describing Affective Eye Behaviors

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Zheng

    The manner of a person's eye movement conveys much about nonverbal information and emotional intent beyond speech. This paper describes work on expressing emotion through eye behaviors in virtual agents based on the parameters selected from the AU-Coded facial expression database and real-time eye movement data (pupil size, blink rate and saccade). A rule-based approach to generate primary (joyful, sad, angry, afraid, disgusted and surprise) and intermediate emotions (emotions that can be represented as the mixture of two primary emotions) utilized the MPEG4 FAPs (facial animation parameters) is introduced. Meanwhile, based on our research, a scripting tool, named EEMML (Emotional Eye Movement Markup Language) that enables authors to describe and generate emotional eye movement of virtual agents, is proposed.

  2. Effects of antirheumatic gold compounds on the conversion of xanthine dehydrogenase to oxidase in rabbit liver cytosol in vitro.

    PubMed

    Sakuma, Satoru; Gotoh, Kyohko; Sadatoku, Namiko; Fujita, Tadashi; Fujimoto, Yohko

    2004-07-23

    Effects of auranofin (AUR), aurothioglucose (AuTG) and aurothiomalate (AuTM) on the conversion of xanthine dehydrogenase (XD) to oxidase (XO) in the cytosolic fraction from rabbit liver were examined. AUR had no effect on the conversion of XD to XO at concentrations up to 50 microM, whereas at concentrations ranging from 10 to 25 microM, AuTG and AuTM induced the conversion of XD to XO. The constituents of AuTG and AuTM, aurous ion (Au+), but not mercaptosuccinic acid and 1-thio-beta-D-glucose, converted XD to XO in a similar degree to AuTG and AuTM. This means that Au (I) moiety has an important role in the AuTG- and AuTM-induced conversion of XD to XO. Furthermore, N-acetyl-L-cysteine (NAC) and British anti-Lewisite (BAL) reconverted AuTG and AuTM-induced XO to XD, implying that clinical activity of NAC and BAL against toxic reactions of AuTG and AuTM is partially due to the XO reconversion. These results suggest that AuTG and AuTM have the potential to convert XD to its reactive oxygen species-generating form, XO, and that this effect may be correlated with cytotoxic actions of these drugs.

  3. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    PubMed

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  4. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE PAGES

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  5. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  6. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  7. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  8. Wolfgang Kummer at CERN

    NASA Astrophysics Data System (ADS)

    Schopper, Herwig

    Wolfgang Kummer was not only a great theorist but also a man with a noble spirit and extensive education, based on a fascinating long-term Austrian cultural tradition. As an experimentalist I am not sufficiently knowledgeable to evaluate his contributions to theoretical physics - this will certainly be done by more competent scientists. Nevertheless I admired him for not only being attached to fundamental and abstract problems like quantum field theory, quantum gravity or black holes, but for his interest in down to earth questions like electron-proton scattering or the toponium mass. I got to know Wolfgang Kummer very well and appreciate his human qualities during his long attachment to CERN, in particular when he served as president of the CERN Council, the highest decision taking authority of this international research centre, from 1985 to 1987 falling into my term as Director-General…

  9. Database on Demand: insight how to build your own DBaaS

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, Ruben; Coterillo Coz, Ignacio

    2015-12-01

    At CERN, a number of key database applications are running on user-managed MySQL, PostgreSQL and Oracle database services. The Database on Demand (DBoD) project was born out of an idea to provide CERN user community with an environment to develop and run database services as a complement to the central Oracle based database service. The Database on Demand empowers the user to perform certain actions that had been traditionally done by database administrators, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently three major RDBMS (relational database management system) vendors are offered. In this article we show the actual status of the service after almost three years of operations, some insight of our new redesign software engineering and near future evolution.

  10. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie

    2015-02-01

    Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07056a

  11. The beam test of muon detector parameters for the SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  12. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    PubMed

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-04

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  13. Integrating Containers in the CERN Private Cloud

    NASA Astrophysics Data System (ADS)

    Noel, Bertrand; Michelino, Davide; Velten, Mathieu; Rocha, Ricardo; Trigazis, Spyridon

    2017-10-01

    Containers remain a hot topic in computing, with new use cases and tools appearing every day. Basic functionality such as spawning containers seems to have settled, but topics like volume support or networking are still evolving. Solutions like Docker Swarm, Kubernetes or Mesos provide similar functionality but target different use cases, exposing distinct interfaces and APIs. The CERN private cloud is made of thousands of nodes and users, with many different use cases. A single solution for container deployment would not cover every one of them, and supporting multiple solutions involves repeating the same process multiple times for integration with authentication services, storage services or networking. In this paper we describe OpenStack Magnum as the solution to offer container management in the CERN cloud. We will cover its main functionality and some advanced use cases using Docker Swarm and Kubernetes, highlighting some relevant differences between the two. We will describe the most common use cases in HEP and how we integrated popular services like CVMFS or AFS in the most transparent way possible, along with some limitations found. Finally we will look into ongoing work on advanced scheduling for both Swarm and Kubernetes, support for running batch like workloads and integration of container networking technologies with the CERN infrastructure.

  14. CERN data services for LHC computing

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.

    2017-10-01

    Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.

  15. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    NASA Astrophysics Data System (ADS)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  16. Microstructure and opto-electronic properties of Sn-rich Au-Sn diffusive solders

    NASA Astrophysics Data System (ADS)

    Rerek, T.; Skowronski, L.; Kobierski, M.; Naparty, M. K.; Derkowska-Zielinska, B.

    2018-09-01

    Microstructural and opto-electronic properties of Au ⧹ Sn and Sn ⧹ Au bilayers, obtained by sequential evaporating of metals on the Si substrate, were investigated by means of atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry. Thicknesses of individual films were established to obtain the atomic ratio of Au:Sn atoms 1:1, 1:2 and 1:4, which were favor the formation of AuSn, AuSn2 and AuSn4, respectively. However, the produced intermatallic compounds were detected as AuSn and AuSn2. Additionally, the unbounded Sn was found. The sequence of deposition of Au and Sn films as well as their thickness strongly affect on the composition, microstructure, optical and electrical properties of the produced layers. The Au ⧹ Sn (Sn on the top) layers were more smooth than Sn ⧹ Au (Au on the top) films. Generally, the Au ⧹ Sn layers exhibit a better electrical and optical properties than Sn ⧹ Au films. The optical parameters: plasma energy, free-carrier damping, mean relaxation time of conduction electrons and optical resistivity were determined from the effective complex dielectric function of the formed Au, Sn and Au-Sn films. The optical resistivity values are in the range from 17.8 μΩ cm to 85.1 μΩ cm and from 29.6 μΩ cm to 113.3 μΩ cm for Au ⧹ Sn and Sn ⧹ Au layers, respectively.

  17. The rational design of a Au(I) precursor for focused electron beam induced deposition.

    PubMed

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M; van Dorp, Willem F

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au-Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe 3 , they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe 3 and MeAuPMe 3 shows that Au-Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe 3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au-Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au.

  18. Bonding properties of FCC-like Au 44 (SR) 28 clusters from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Chevrier, Daniel M.; Zeng, Chenjie

    Thiolate-protected gold clusters with precisely controlled atomic composition have recently emerged as promising candidates for a variety of applications because of their unique optical, electronic, and catalytic properties. The recent discovery of the Au44(SR)28 total structure is considered as an interesting finding in terms of the face-centered cubic (FCC)-like core structure in small gold-thiolate clusters. Herein, the unique bonding properties of Au44(SR)28 is analyzed using temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge and compared with other FCC-like clusters such as Au36(SR)24 and Au28(SR)20. A negative thermal expansion was detected for the Au–Au bonds of the metal coremore » (the first Au–Au shell) and was interpreted based on the unique Au core structure consisting of the Au4 units. EXAFS fitting results from Au28(SR)20, Au36(SR)24, and Au44(SR)28 show a size-dependent negative thermal expansion behavior in the first Au–Au shell, further highlighting the importance of the Au4 units in determining the Au core bonding properties and shedding light on the growth mechanism of these FCC-like Au clusters.« less

  19. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, S.; Shimakura, H.; Tahara, S.

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less

  20. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; McEntee, Monica; Tang, Wenjie

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  1. A comparative theoretical study of the catalytic activities of Au2(-) and AuAg(-) dimers for CO oxidation.

    PubMed

    Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu

    2012-05-01

    The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.

  2. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  3. Evidence of final-state suppression of high-p{_ T} hadrons in Au + Au collisions using d + Au measurements at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    Transverse momentum spectra of charged hadrons with pT < 6 GeV/c have been measured near mid-rapidity (0.2 < ɛ < 1.4) by the PHOBOS experiment at RHIC in Au + Au and d + Au collisions at {√ {s{NN}} = {200 GeV}}. The spectra for different collision centralities are compared to {p + ¯ {p}} collisions at the same energy. The resulting nuclear modification factor for central Au + Au collisions shows evidence of strong suppression of charged hadrons in the high-pT region (>2 GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pT yields. These measurements suggest a large energy loss of the high-pT particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions. PACS: 25.75.-q

  4. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  5. Database and interactive monitoring system for the photonics and electronics of RPC Muon Trigger in CMS experiment

    NASA Astrophysics Data System (ADS)

    Wiacek, Daniel; Kudla, Ignacy M.; Pozniak, Krzysztof T.; Bunkowski, Karol

    2005-02-01

    The main task of the RPC (Resistive Plate Chamber) Muon Trigger monitoring system design for the CMS (Compact Muon Solenoid) experiment (at LHC in CERN Geneva) is the visualization of data that includes the structure of electronic trigger system (e.g. geometry and imagery), the way of its processes and to generate automatically files with VHDL source code used for programming of the FPGA matrix. In the near future, the system will enable the analysis of condition, operation and efficiency of individual Muon Trigger elements, registration of information about some Muon Trigger devices and present previously obtained results in interactive presentation layer. A broad variety of different database and programming concepts for design of Muon Trigger monitoring system was presented in this article. The structure and architecture of the system and its principle of operation were described. One of ideas for building this system is use object-oriented programming and design techniques to describe real electronics systems through abstract object models stored in database and implement these models in Java language.

  6. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels

    NASA Astrophysics Data System (ADS)

    Desario, Paul A.; Pietron, Jeremy J.; Devantier, Devyn E.; Brintlinger, Todd H.; Stroud, Rhonda M.; Rolison, Debra R.

    2013-08-01

    We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au||TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures.We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au||TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures. Electronic supplementary information (ESI) available: Nitrogen physisorption isotherms; Au4f X-ray photoelectron spectra; TEM-derived distributions of Au size and aspect ratio; relative IPCE enhancement ratio. See DOI: 10.1039/c3nr01429k

  7. Structure-activity relationships in cytotoxic Au(I)/Au(III) complexes derived from 2-(2'-pyridyl)benzimidazole.

    PubMed

    Maiore, Laura; Aragoni, Maria Carla; Deiana, Carlo; Cinellu, Maria Agostina; Isaia, Francesco; Lippolis, Vito; Pintus, Anna; Serratrice, Maria; Arca, Massimiliano

    2014-04-21

    Gold(I) and gold(III) complexes derived from 2-(2'-pyridyl)benzimidazole (pbiH) were proven to be a promising class of in vitro antitumor agents against A2780 human ovarian cancer cells. In this paper, a comparative electrochemical, UV-vis absorption, and emission spectroscopic investigation is reported on pbiH, the two mononuclear Au(III) complexes [(pbi)AuX2] (X = Cl (1), AcO (2)), the four mononuclear Au(I) derivatives [(pbiH)AuCl] (3), [(pbiH)Au(PPh3)]PF6 ((4(+))(PF6(-))), [(pbi)Au(PPh3)] (5), and [(pbi)Au(TPA)] (6), the three mixed-valence Au(III)/Au(I) complexes [(μ-pbi)Au2Cl3] (7), [(Ph3P)Au(μ-pbi)AuX2]PF6 (X = Cl ((8(+))(PF6(-))), AcO ((9(+))(PF6(-)))), and the binuclear Au(I)-Au(I) compound [(μ-pbi)Au2(PPh3)2]PF6 ((10(+))(PF6(-))). All complexes feature irreversible reduction processes related to the Au(III)/Au(I) or Au(I)/Au(0) processes and peculiar luminescent emission at about 360-370 nm in CH2Cl2, with quantum yields that are remarkably lower ((0.7-14.5) × 10(-2)) in comparison to that determined for the free pbiH ligand (31.5 × 10(-2)) in the same solvent. The spectroscopic and electrochemical properties of all complexes were interpreted on the grounds of time-dependent PBE0/DFT calculations carried out both in the gas phase and in CH2Cl2 implicitly considered within the IEF-PCM SCRF approach. The electronic structure of the complexes, and in particular the energy and composition of the Kohn-Sham LUMOs, can be related to the antiproliferative properties against the A2780 ovarian carcinoma cell line, providing sound quantitative structure-activity relationships and shedding a light on the role played by the global charge and nature of ancillary ligands in the effectiveness of Au-based antitumor drugs.

  8. Corrigendum to “Suppression of Υ production in d+Au and Au+Au collisions at √ SNN = 200 GeV" [Phys. Lett. B 735 (2014) 127-137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.

    We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less

  9. Suppression of Υ production in d + Au + and Au + Au collisions at √ sNN =200 GeV

    DOE PAGES

    None

    2014-07-01

    We report measurements of Upsilon meson production in p + p, d +Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d +Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p +p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in the rapidity range |y|more » < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state part on energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less

  10. Corrigendum to “Suppression of Υ production in d+Au and Au+Au collisions at √ SNN = 200 GeV" [Phys. Lett. B 735 (2014) 127-137

    DOE PAGES

    Adamczyk, L.

    2015-04-01

    We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less

  11. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-05-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.

  12. Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities.

    PubMed

    Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank

    2018-05-03

    Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.

  13. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.

    PubMed

    Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi

    2008-03-01

    To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.

  14. Internal-Modified Dithiol DNA-Directed Au Nanoassemblies: Geometrically Controlled Self-Assembly and Quantitative Surface-Enhanced Raman Scattering Properties

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang

    2015-11-01

    In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”-number-depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique.

  15. Isomorphism and solid solutions among Ag- and Au-selenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Novosibirsk State University

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag{sub 2−x}Au{sub x}Se with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag{sub 2}Se – Ag{sub 1.94}Au{sub 0.06}Se, fischesserite Ag{sub 3}AuSe{sub 2} - Ag{sub 3.2}Au{sub 0.8}Se{sub 2} and gold selenide AuSe - Au{sub 0.94}Ag{sub 0.06}Se. Solid solutions and AgAuSe phases were added tomore » the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe. - Highlights: • Au-Ag selenides were synthesized. • Limited Ag-Au isomorphism in the selenides is affected by structural features. • Some new phases were introduced to the phase diagram Ag-Au-Se.« less

  16. A remote-controlled generation of gold@polydopamine (core@shell) nanoparticles via physical-chemical stimuli of polydopamine/gold composites

    NASA Astrophysics Data System (ADS)

    Lee, Yi Seul; Bae, Ji Young; Koo, Hye Young; Lee, Young Boo; Choi, Won San

    2016-03-01

    We present the synthesis of polydopamine particle-gold composites (PdopP-Au) and unique release of Au@Pdop core@shell nanoparticles (NPs) from the PdopP-Au upon external stimuli. The PdopP-Au was prepared by controlled synthesis of AuNPs on the Pdop particles. Upon near infrared (NIR) irradiation or NaBH4 treatment on the PdopP-Au, the synthesized AuNPs within the PdopPs could be burst-released as a form of Au@Pdop NPs. The PdopP-Au composite showed outstanding photothermal conversion ability under NIR irradiation due to the ultrahigh loading of the AuNPs within the PdopPs, leading to a remote-controlled explosion of the PdopP-Au and rapid formation of numerous Au@Pdop NPs. The release of the Au@Pdop NPs could be instantly stopped or re-started by off or reboot of NIR, respectively. The structure of the released Au@Pdop NPs is suitable for a catalyst or adsorbent, thus we demonstrated that the PdopP-Au composite exhibited excellent and sustained performances for environmental remediation due to its capability of the continuous production of fresh catalysts or adsorbents during the reuse.

  17. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and alteration by hydrothermal fluids. The second trend consists of pyrites from porphyry Cu and epithermal Au deposits, which are characterised by compositions that preserve the Au/As signature of mineralizing magmatic-hydrothermal fluids, confirming the role of this sulfide in controlling metal ratios in ore systems.

  18. Analyse Des Inégalités De Rendement Liées Au Sexe De l'élève Dans l'Enseignement Primaire Ivoirien

    NASA Astrophysics Data System (ADS)

    Grisay, Aletta

    1984-03-01

    A survey of achievement in primary education in the Ivory Coast shows that the results of girls are inferior to those of boys in all subjects and at all levels of schooling. Concerning the learning of French (the language of instruction in the Ivory Coast), the situation differs from that observed in a number of industrialised countries, where the performance of girls is generally superior to that of boys in subjects linked to language learning. On the other hand, it conforms to the situation observed in other developing countries, where boys most frequently show superior results. This pattern of results suggests that the differences in achievement between the sexes are of a cultural origin. Analysis of factors associated with these differences in the Ivory Coast seems to confirm this hypothesis: First, society in the Ivory Coast attaches less importance to the educational achievements of girls than of boys. Girls go to school less often than boys or leave school more readily than boys. They less often express the desire to continue their studies beyond the primary school.

  19. Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Cui, Xiaoyu; Xiao, Qunfeng; Hu, Yongfeng; Wang, Zhiqiang; Yiu, Y. M.; Sham, T. K.

    2018-06-01

    The electronic structure and charge redistribution of 6s conduction charge and 5d charge in Au and Pt alloys, Au9Pt and AuPt9 have been investigated using a charge compensation model. It is found that, both the Au and Pt 4f binding energy (BE) exhibits a negative shift in the alloys relatively to the pure metal in apparent disagreement with electroneutrality considerations (Au is the most electronegative metallic element); more interestingly, the negative Au 4f BE shift in Au-Pt alloy is in contrast to previous observations for a large number of Au bimetallic systems with more electropositive hosts in which the more electropositive the host„ the more positive the Au 4f BE shift. This anomaly is counter intuitive to electronegativity considerations. This dilemma was resolved by the charge compensation model in which both electronegativity and charge neutrality can be satisfied and the overall charge flow δ, onto Au is small and positive and δ arises from charge flow of 6s conduction charge, Δnc onto Au site, which is partially compensated by the depletion of 6d charge Δnd at the Au site (δ = Δnc+ Δnd ˜0.1 >0). The much larger Coulomb interaction between 4f and 5d than that between 4f and 6s results in positive 4f BE shifts. The Au 4f BE shift in Au-Pt alloys together with 193Au Mössbauer data were used in the charge compensation model analysis which shows that the model is still valid in that the Au 4f shift in Au-Pt alloy arises from mainly conduction charge gain with little depletion of d charge at the Au site. The model also works for Pt. The Au and Pt 5d character in the alloys have been examined with valence band spectra which show both maintain their d characteristic in dilute alloys with Pt d piling up at the Fermi level, and the top of the Au valence band being pushed toward the Fermi level; this is confirmed with DFT densities of state calculations. When Pt is diluted in Au, it gains d charge as evident from the reduction in whiteline intensity at the Pt L3-edge XANES. What emerges from this work is a picture in which the s-d charge compensation in Au bimetallic alloys is triggered by electronegativity difference between Au and the host. For Au-Pt and Au-Pd systems, the difference in electronegativity is very small, conduction charge transfer dominates, and the Au 4f shift is negative whereas in most Au bimetallics, the larger the electronegativity difference, the larger the compensation and the larger the Au 4f shifts.

  20. About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter

    NASA Astrophysics Data System (ADS)

    Stozhkov, Yuri I.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Sparvoli, R.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y. T.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Mennh, W.; Simonh, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaya, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20 - 180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.

  1. DAMPE prototype and its beam test results at CERN

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hu, Yiming; Chang, Jin

    The first Chinese high energy cosmic particle detector(DAMPE) aims to detect electron/gamma at the range between 5GeV and 10TeV in space. A prototype of this detector is made and tested using both cosmic muons and test beam at CERN. Energy and space resolution as well as strong separation power for electron and proton are shown in the results. The detector structure is illustrated as well.

  2. Measurement of the inclusive jet cross section at the CERN pp collider

    NASA Astrophysics Data System (ADS)

    Arnison, G.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J. R.; Bauer, G.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fince Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Homer, R. J.; Honma, A.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäri, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, F.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szonczo, F.; Tao, C.; Ten Have, I.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; van Eijk, B.; Verecchia, P.; Vialle, J. P.; Virdee, T. S.; von der Schmitt, H.; von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C.-E.; Wyatt, T.; Yvert, M.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.

    1986-05-01

    The inclusive jet cross section has been measured in the UA1 experiment at the CERN pp Collider at centre-of-mass energies √s = 546 GeV and √s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √s is accounted for in terms of xT scaling.

  3. Highlights from High Energy Neutrino Experiments at CERN

    NASA Astrophysics Data System (ADS)

    Schlatter, W.-D.

    2015-07-01

    Experiments with high energy neutrino beams at CERN provided early quantitative tests of the Standard Model. This article describes results from studies of the nucleon quark structure and of the weak current, together with the precise measurement of the weak mixing angle. These results have established a new quality for tests of the electroweak model. In addition, the measurements of the nucleon structure functions in deep inelastic neutrino scattering allowed first quantitative tests of QCD.

  4. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  5. An alternative model to distribute VO software to WLCG sites based on CernVM-FS: a prototype at PIC Tier1

    NASA Astrophysics Data System (ADS)

    Lanciotti, E.; Merino, G.; Bria, A.; Blomer, J.

    2011-12-01

    In a distributed computing model as WLCG the software of experiment specific application software has to be efficiently distributed to any site of the Grid. Application software is currently installed in a shared area of the site visible for all Worker Nodes (WNs) of the site through some protocol (NFS, AFS or other). The software is installed at the site by jobs which run on a privileged node of the computing farm where the shared area is mounted in write mode. This model presents several drawbacks which cause a non-negligible rate of job failure. An alternative model for software distribution based on the CERN Virtual Machine File System (CernVM-FS) has been tried at PIC, the Spanish Tierl site of WLCG. The test bed used and the results are presented in this paper.

  6. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  7. CERN@school: demonstrating physics with the Timepix detector

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.

    2015-10-01

    This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.

  8. CERN's approach to public outreach

    NASA Astrophysics Data System (ADS)

    Landua, Rolf

    2016-03-01

    CERN's communication goes beyond publishing scientific results. Education and outreach are equally important ways of communicating with the general public, and in particular with the young generation. Over the last decade, CERN has significantly increased its efforts to accommodate the very large interest of the general public (about 300,000 visit requests per year), by ramping up its capacity for guided tours from 25,000 to more than 100,000 visitors per year, by creating six new of state-of-the-art exhibitions on-site, by building and operating a modern physics laboratory for school teachers and students, and by showing several traveling exhibitions in about 10 countries per year. The offer for school teachers has also been expanded, to 35-40 weeks of teacher courses with more than 1000 participants from more than 50 countries per year. The talk will give an overview about these and related activities.

  9. Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum

    NASA Astrophysics Data System (ADS)

    Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju

    2008-09-01

    Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.

  10. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K.

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-Nmore » and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.« less

  11. Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Chiu, Hsin-Kai; Chiang, I.-Chen; Chen, Dong-Hwang

    2009-07-01

    NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6-13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core-shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.

  12. The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion

    NASA Astrophysics Data System (ADS)

    Nassikas, A. A.

    2010-09-01

    The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.

  13. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  14. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  15. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  16. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    León, Iker; ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels; Ruipérez, Fernando

    We report a joint photoelectron spectroscopy and theoretical study on AuC{sub 4}{sup −}, AuC{sub 6}{sup −}, and AuC{sub n}H{sup −} (n = 2, 4, and 6) using high-resolution photoelectron imaging and ab initio calculations. The ground state of AuC{sub 2}H{sup −}, AuC{sub 4}H{sup −}, and AuC{sub 6}H{sup −} is found to be linear, while that of AuC{sub 4}{sup −} and AuC{sub 6}{sup −} is bent. All the species are found to be linear in their neutral ground states. The electron affinities (EAs) are measured to be 3.366(1) and 3.593(1) eV for AuC{sub 4} and AuC{sub 6}, respectively. Both bending andmore » stretching frequencies are resolved in the spectra of AuC{sub 4}{sup −} and AuC{sub 6}{sup −}. High-resolution data of AuC{sub n}H{sup −} reveal major vibrational progressions in the Au—C stretching and bending modes. AuC{sub 2}H{sup −} has a ground state stretching frequency of 445(10) cm{sup −1} and a bending frequency of 260(10) cm{sup −1}; AuC{sub 4}H{sup −} has a ground state stretching frequency of 340(10) cm{sup −1}; AuC{sub 6}H{sup −} has a ground state stretching frequency of 260(10) cm{sup −1} and a bending frequency of 55(10) cm{sup −1}. The EAs are measured to be 1.475(1), 1.778(1), and 1.962(1) eV for AuC{sub 2}H, AuC{sub 4}H, and AuC{sub 6}H, respectively. The strength of the Au—C bond decreases as the number of carbon atoms increases. The current study provides a wealth of electronic structure information about AuC{sub 4}{sup −}, AuC{sub 6}{sup −}, and AuC{sub n}H{sup −} (n = 2, 4, and 6) and their corresponding neutrals.« less

  18. Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.

    PubMed

    Patterson, C H

    2015-12-02

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the [Formula: see text]-Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the [Formula: see text]-Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the [Formula: see text]-Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the [Formula: see text]-Au phase. Extra Au atoms bound in interstitial sites of the [Formula: see text]-Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a [Formula: see text]-Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the [Formula: see text]-Au structure. The [Formula: see text]-Au phase is 2D chiral and this is evident in computed and actual STM images. [Formula: see text]-Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the [Formula: see text]-Au and [Formula: see text]-Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  19. MCdevelop - a universal framework for Stochastic Simulations

    NASA Astrophysics Data System (ADS)

    Slawinska, M.; Jadach, S.

    2011-03-01

    We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 136 No. of bytes in distributed program, including test data, etc.: 355 698 Distribution format: tar.gz Programming language: ANSI C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system. Operating system: Most UNIX systems, Linux. The application programs were thoroughly tested under Ubuntu 7.04, 8.04 and CERN Scientific Linux 5. Has the code been vectorised or parallelised?: Tools (scripts) for optional parallelisation on a PC farm are included. RAM: 500 bytes Classification: 11.3 External routines: ROOT package version 5.0 or higher ( http://root.cern.ch/drupal/). Nature of problem: Developing any type of stochastic simulation program for high energy physics and other areas. Solution method: Object Oriented programming in C++ with added persistency mechanism, batch scripts for running on PC farms and Autotools.

  20. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  1. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Comparison of the space-time extent of the emission source in d +Au and Au + Au collisions at √{sNN} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Ajitanand, N. N.; Phenix Collaboration

    2014-11-01

    Two-pion interferometry measurements in d +Au and Au + Au collisions at √{sNN} = 200 GeV are used to extract and compare the Gaussian source radii Rout, Rside and Rlong, which characterize the space-time extent of the emission sources. The comparisons, which are performed as a function of collision centrality and the mean transverse momentum for pion pairs, indicate strikingly similar patterns for the d +Au and Au + Au systems. They also indicate a linear dependence of Rside on the initial transverse geometric size R bar , as well as a smaller freeze-out size for the d +Au system. These patterns point to the important role of final-state re-scattering effects in the reaction dynamics of d +Au collisions.

  3. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions

    NASA Astrophysics Data System (ADS)

    Aazadfar, Parvaneh; Solati, Elmira; Dorranian, Davoud

    2018-04-01

    The fundamental wavelength of a Q-switched pulsed Nd:YAG laser was employed to produce Au and copper oxide nanoparticles via pulsed laser ablation method in water. Different volumetric ratio of nanoparticles were mixed and irradiated by the second harmonic pulses of the Nd:YAG laser to prepare Au/Copper oxide nanocomposite. The experimental investigation was dedicated to study the properties of Au/Copper oxide nanocomposite as a function of volumetric ratio of Au nanoparticles and copper oxide nanoparticles. Nanocomposites of Au and copper oxide were found almost spherical in shape. Adhesion of spherical nanostructure in Au/Copper oxide nanocomposites was decreased with increasing the concentration of Au nanoparticles. Crystalline phase of the Au/Copper oxide nanocomposites differs with the change in the volumetric ratio of Au and copper oxide nanoparticles. The intensity of surface plasmon resonance of Au nanoparticles was decreased after irradiation. Au/Copper oxide nanocomposites suspensions have emissions in the visible range. Results reveal that green laser irradiation of nanoparticle suspensions is an appropriate method to synthesize Au based nanocomposites with controlled composition and size.

  4. A theoretical study on the electronic structure of Au-XO(0,-1,+1) (X=C, N, and O) complexes: effect of an external electric field.

    PubMed

    Tielens, Frederik; Gracia, Lourdes; Polo, Victor; Andrés, Juan

    2007-12-20

    A theoretical study on the nature of Au-XO(0,-1,+1) (X=C, N, O) interaction is carried out in order to provide a better understanding on the adsorption process of XO molecules on Au surfaces or Au-supported surfaces. The effect of the total charge as well as the presence of an external electric field on the formation processes of the Au-XO complex are analyzed and discussed using DFT (B3LYP) and high-level ab initio (CCSD(T)//MP2) methods employing a 6-311+G(3df) basis set for X and O atoms and Stuttgart pseudopotentials for Au atom. The presence of an electric field can increase the binding of O2 molecule to Au while weakening the formation of the Au-CO complex. These behaviors are discussed in the context of adsorption or deadsorption of these molecules on Au clusters. The formation of the Au-XO complex, the effect of addition/removal of one electron, and the role of the electric field are rationalized by studying the nature of the bonding interactions by means of the electron localization function (ELF) analysis. The net interaction between Au and XO fragments is governed by the interplay of three factors: (i) the amount of charge transfer from Au to XO, (ii) the sharing of the lone pair from X atom by the Au core (V(X, Au) basin), and (iii) the role of the lone pair of Au (V(Au) basin) mainly formed by 6s electrons. The total charge of the system and the applied electric field determine the population and orientation of the V(Au) basin and, subsequently, the degree of repulsion with the V(X, Au) basin.

  5. Facile preparation of SERS and catalytically active Au nanostructures using furfuryl derivatives

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Jung; Kim, Hyun-Chul; Park, Minsun; Huh, Seong

    2017-08-01

    Six different types of Au nanostructures with rough surfaces were readily prepared through the redox reactions between Au precursor, AuCl4-, and furfuryl derivatives without extra metal surface capping ligands, in deionized water at room temperature. Furfuryl alcohol (FA) or furfurylamine (FFA) was used as a sole reducing agent for the reduction of Au precursor. Both FA and FFA effectively polymerized during the redox reactions to form polyfuran polymers. These polymers are thought to act as surface capping ligands during the formation of Au nanostructures. Experiments were conducted with three different concentrations of each furfuryl derivative. Interestingly, Au particles prepared from the reaction with varying concentration of FA or FFA showed large differences in size, and revealed that the higher the ratios of [FA]/[AuCl4-] or [FFA]/[AuCl4-], the smaller the size of Au particles. The size of Au particles was in the range of 1 μm to under 30 nm. Among these samples, two nanostructured Au particles, AuFA-4 and AuFFA-1, deposited on a Si wafer by a simple drop-casting method, were revealed as highly active surface-enhanced Raman scattering (SERS) substrates for the detection of methylene blue (MB) and crystal violet (CV). High SERS enhancement factors (EFs) of 106 ∼ 108 for MB and CV were observed. Small size Au nanoparticles (AuFFA-2 and AuFFA-4) were also found to be very active for the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 at room temperature. AuFFA-2 could be recycled eight times, without losing its activity.

  6. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.

  7. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    PubMed

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  8. Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at sqrt[s NN ] =200 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Corral, M M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2003-02-28

    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudorapidity range and full azimuth in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes previously observed in high-energy collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

  9. Ethanol electrooxidation in alkaline medium on electrochemically synthesized Co(OH)2/Au composite

    NASA Astrophysics Data System (ADS)

    Babu, Sreejith P.; Elumalai, Perumal

    2017-01-01

    Gold (Au), cobalt hydroxide (Co(OH)2) and different Co(OH)2/Au compositions were electro-deposited onto stainless steel by a potentiodynamic method from the respective metal-ion solutions. The deposits were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transformed infra-red spectroscopy (FT-IR). The XRD and IR data confirmed that the deposits were Au, α-Co(OH)2 or Co(OH)2/Au composites. The SEM observations confirmed that the morphology of the Au was spherical, while the α-Co(OH)2 was flakey with pores. The morphology of the Co(OH)2/Au composites consisted of highly agglomerated Au grains distributed on the Co(OH)2 matrix. The electrocatalytic activity of each of the Au, Co(OH)2 and Co(OH)2/Au-composite electrodes towards ethanol electrooxidation in an alkaline medium was investigated by cyclic voltammetry and chronoamperometry. It turned out that the Co(OH)2/Au-composite electrodes exhibited superior catalytic activity for ethanol electrooxidation compared with the pristine Au or Co(OH)2 electrodes. A peak current density as high as 25 mA cm-2 was exhibited by the Co(OH)2/ Au composite while the Au and Co(OH)2 showed only 0.9 and 13 mA cm-2, respectively. The enhanced conductivity of the Co(OH)2/Au matrix due to the presence of Au, as well as the combined catalytic activity, seemed to be responsible for the superior performance of the Co(OH)2/Au-composite electrodes.

  10. Efficient electrocatalytic conversion of CO.sub.2 to CO using ligand-protected Au.sub.25 clusters

    DOEpatents

    Kauffman, Douglas; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao; Alfonso, Dominic R.

    2015-09-22

    An apparatus and method for CO.sub.2 reduction using an Au.sub.25 electrode. The Au.sub.25 electrode is comprised of ligand-protected Au.sub.25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically --SR--Au--SR--Au--SR or --SeR--Au--SeR--Au--SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au.sub.13 core, and organic ligand --SR or --SeR groups are bonded to the Au.sub.13 core with sulfur or selenium atoms. The Au.sub.25 electrode and a counter-electrode are in contact with an electrolyte comprising CO.sub.2 and H+, and a potential of at least -0.1 volts is applied from the Au.sub.25 electrode to the counter-electrode.

  11. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  12. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of х=0.25 (0≤х≤2) to 1050 °С and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  13. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  14. CERN: A global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2017-07-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN’s membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  15. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  16. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneodo, F.; Cavanna, F.; Mitri, I. De

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  17. Upper limits of the proton magnetic form factor in the time-like region from p¯p--> e+e- at the CERN-ISR

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J. C.; Broll, C.; Brom, J. M.; Bugge, L.; Buran, T.; Burq, J. P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillaud, J. P.; Khan-Aronsen, E.; Kirsebom, K.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Mattera, L.; Menichetti, E.; Mouellic, B.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poulet, M.; Pozzo, A.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stapnes, S.; Stugu, B.; Tomasini, F.; Valbusa, U.

    1985-11-01

    From the measurement of e+e- pairs from the reaction p¯p-->e+e- at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q2⋍8.9(GeV/c)2 and Q2⋍12.5(GeV/c)2.

  18. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  19. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  20. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  1. Au plasmonics in a WS{sub 2}-Au-CuInS{sub 2} photocatalyst for significantly enhanced hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Zhongzhou; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn

    2015-11-30

    Promoting the activities of photocatalysts is still the critical challenge in H{sub 2} generation area. Here, a Au plasmon enhanced photocatalyst of WS{sub 2}-Au-CuInS{sub 2} is developed by inserting Au nanoparticles between WS{sub 2} nanotubes and CuInS{sub 2} (CIS) nanoparticles. Due to the localized surface plasmonic resonance properties from Au nanoparticles, WS{sub 2}-Au-CIS shows the best performance as compared to Au-CIS, CIS, WS{sub 2}-CIS, CIS-Au, WS{sub 2}-Au, and WS{sub 2}-CIS-Au. The surface plasmonic resonance effects dramatically intensify the absorption of visible light and help to inject hot electrons into the semiconductors. Our findings open up an efficient method to optimizemore » the type-II structures for photocatalytic water splitting.« less

  2. Density Functional Investigation of the Inclusion of Gold Clusters on a CH 3 S Self-Assembled Lattice on Au(111)

    DOE PAGES

    Allen, Darnel J.; Archibald, Wayne E.; Harper, John A.; ...

    2016-01-01

    We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au) clusters in a well-packed CH 3 S self-assembled lattice. We compute CH 3 S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH 3 S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effect tomore » the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH 3 S-Au-SCH 3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH 3 S-Au interface.« less

  3. Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure

    NASA Astrophysics Data System (ADS)

    Shen, Yanbai; Bi, Hongshan; Li, Tingting; Zhong, Xiangxi; Chen, Xiangxiang; Fan, Anfeng; Wei, Dezhou

    2018-03-01

    Hierarchically nanostructured WO3 microspheres that had two types of Au functionalization modes (i.e., Au-loaded mode and Au-doped mode) were characterized in terms of their microstructure and NO2 sensing performance. Pure, Au-loaded, and Au-doped WO3 microspheres were synthesized using a hydrothermal method, followed by a dipping method for Au-loaded WO3 microspheres. Microstructure characterization indicated that uniform microspheres with 3-6 μm in diameter were assembled from numerous well-defined individual WO3 nanorods with a single crystal hexagonal structure. The morphology and size of the WO3 microspheres were not affected by the functionalization of the Au nanoparticles, and the W, O, and Au elements were well-distributed in the WO3 microspheres. The NO2 sensing properties indicated that the Au nanoparticles not only improved the sensor response and reproducibility but also decreased the operating temperature at which the sensor response reached a maximum. Gas sensors based on pure, Au-loaded, and Au-doped WO3 microspheres exhibited a linear relationship between the sensor response and NO2 concentration. The sensing performance was significantly enhanced in the following order: pure, Au-loaded, and Au-doped WO3 microspheres. This result is due to the modulation of the depletion layer via oxygen adsorption as well as chemical and electronic sensitization of Au nanoparticles.

  4. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  5. The rational design of a Au(I) precursor for focused electron beam induced deposition

    PubMed Central

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au–Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe3, they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe3 and MeAuPMe3 shows that Au–Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au–Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au. PMID:29354346

  6. Gold as hydrogen: Structural and electronic properties and chemical bonding in Si3Au3+/0/- and comparisons to Si3H3+/0/-

    NASA Astrophysics Data System (ADS)

    Kiran, Boggavarapu; Li, Xi; Zhai, Hua-Jin; Wang, Lai-Sheng

    2006-10-01

    A single Au atom has been shown to behave like H in its bonding to Si in several mono- and disilicon gold clusters. In the current work, we investigate the Au /H analogy in trisilicon gold clusters, Si3Au3+/0/-. Photoelectron spectroscopy and density functional calculations are combined to examine the geometric and electronic structure of Si3Au3-. We find that there are three isomers competing for the ground state of Si3Au3- as is the case for Si3H3-. Extensive structural searches show that the potential energy surfaces of the trisilicon gold clusters (Si3Au3-, Si3Au3, and Si3Au3+) are similar to those of the corresponding silicon hydrides. The lowest energy isomers for Si3Au3- and Si3Au3 are structurally similar to a Si3Au four-membered ring serving as a common structural motif. For Si3Au3+, the 2π aromatic cyclotrisilenylium auride ion, analogous to the aromatic cyclotrisilenylium ion (Si3H3+), is the most stable species. Comparison of the structures and chemical bonding between Si3Au3+/0/- and the corresponding silicon hydrides further extends the isolobal analogy between Au and H.

  7. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  8. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen. Electronic supplementary information (ESI) available: Details in experimental and further characterization. See DOI: 10.1039/c3nr05604j

  9. Diphosphine-protected ultrasmall gold nanoclusters: opened icosahedral Au 13 and heart-shaped Au 8 clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shan-Shan; Feng, Lei; Senanayake, Ravithree D.

    Two ultrasmall gold clusters, Au 13 and Au 8 , were identified as a distorted I h icosahedral Au 13 and edge-shared “core + 4 exo ” structure Au 8 S 2 cores, respectively. They showed interesting luminescence and electrochemical properties.

  10. Diphosphine-protected ultrasmall gold nanoclusters: opened icosahedral Au 13 and heart-shaped Au 8 clusters

    DOE PAGES

    Zhang, Shan-Shan; Feng, Lei; Senanayake, Ravithree D.; ...

    2018-01-01

    Two ultrasmall gold clusters, Au 13 and Au 8 , were identified as a distorted I h icosahedral Au 13 and edge-shared “core + 4 exo ” structure Au 8 S 2 cores, respectively. They showed interesting luminescence and electrochemical properties.

  11. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-02-06

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.

  12. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  13. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Dr. Yong; Shao, Nan; Li, Prof. Hui

    Using ab initio methods, we investigate the structural evolution of a family of gold-sulfide cluster anions (Au{sub m}S{sub n}{sup -}). We show that this family of clusters exhibits simple size-evolution rules and novel hollow polyhedron structures. The highly stable Au{sub m}S{sub n}{sup -} species such as Au{sub 6}S{sub 4}{sup -}, Au{sub 9}S{sub 5}{sup -}, Au{sub 9}S{sub 6}{sup -}, Au{sub 10}S{sub 6}{sup -}, Au{sub 11}S{sub 6}{sup -}, Au{sub 12}S{sub 8}{sup -}, and Au{sub 13}S{sub 8}{sup -} detected in the recent ion mobility mass spectrometry experiment of Au{sub 25}(SCH{sub 2}CH{sub 2}Ph){sub 18} (Angel et al. ACS Nano2010, 4, 4691) are found tomore » possess either quasi-tetrahedron, pyramidal, quasi-triangular prism, or quasi-cuboctahedron structures. The formation of these polyhedron structures are attributed to the high stability of the S-Au-S structural unit. A unique 'edge-to-face' growth mechanism is proposed to understand the structural evolution of the small Au{sub m}S{sub n}{sup -} cluster. A 3:2 ratio rule of Au/S is suggested for the formation of a hollow polyhedron structure among small-sized Au{sub m}S{sub m} clusters.« less

  15. Facile Syntheses of Monodisperse Ultra-Small Au Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui

    2006-11-02

    During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less

  16. Study on plasmon absorption of hybrid Au-GO-GNP films for SPR sensing application

    NASA Astrophysics Data System (ADS)

    Mukhtar, Wan Maisarah; Ahmad, Farah Hayati; Samsuri, Nurul Diyanah; Murat, Noor Faezah

    2018-06-01

    This study proposed the development of hybrid Au-GO-GNP films for the enhancement of plasmon absorption in SPR sensing. Several thicknesses of Au at t=40nm, t=50nm and t=300nm were sputtered on the glass substrate. The hybridization of bilayer and trilayer films were formed by depositing GO-GNP layers and GNP-GO layers on top of various thicknesses of Au coated substrates. UV-Vis spectra analysis was conducted to characterize the plasmon absorption for each configuration. The plasmon absorption was successfully amplified by employing hybrid trilayer Au-GO-GNP with the thickness of Au film was fixed at t=50nm. It is noteworthy to highlight that the employment of bilayer and trilayer configurations are the key success to enhance the SPP excitation. Au-GNP and Au-GNP-GO results no significant outcome in comparison with Au-GO and Au-GO-GNP. A redshift of the absorbance wavelength evinces the presence of GO on Au-GO sample and GNP on Au-GO-GNP sample due to the surface reconstruction. It is important to emphasize that not all bilayer and trilayer configurations able to enhance the plasmon absorption where no significant output was obtained with the hybridization order of Au-GNP and Au-GNP-GO.

  17. Multiple Nonstoichiometric Phases with Discrete Composition Ranges in the CaAu5−CaAu4Bi−BiAu2 System. A Case Study of the Chemistry of Spinodal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng; Corbett, John D.

    2010-04-01

    Synthetic explorations in the CaAu{sub 5}-CaAu{sub 4}Bi-BiAu{sub 2} system at 400 C reveal five separate solid solution regions that show three distinct substitution patterns in the CaAu{sub 5} parent: (I) CaAu{sub 4}(Au{sub 1-m}Bi{sub m}) with 0 {le} m {le} 0.15(1), (II) 0.33(1) {le} m {le} 0.64(1), (III) 0.85(4) {le} m {le} 0.90(2); (IV) (Ca{sub 1-r}Au{sub r})Au{sub 4}(Bi{sub 1-s}Au{sub s}) with 0 {le} r {le} 0.39(1) and 0 {le} s {le} 0.12(2); (V) (Ca{sub 1-p-q}Au{sub p}Bi{sub q})Au{sub 4}Bi with 0.09(2) {le} p {le} 0.13(1) and 0.31(2) {le} q {le} 0.72(4). Single crystal X-ray studies establish that all of these phase regionsmore » have common cubic symmetry F{sub 4}3m and that their structures (MgCu{sub 4}Sn-type, an ordered derivative of MgCu{sub 2}) all feature three-dimensional networks of Au{sub 4} tetrahedra, in which the truncated tetrahedra are centered and capped by Ca/Au, Au/Bi, or Ca/Au/Bi mixtures to give 16-atom Friauf polyhedra. TB-LMTO-ASA and -COHP calculations also reveal that direct interactions between Ca-Au and Ca-Bi pairs of atoms are relatively weak and that the Bi-Au interactions in the unstable ideal CaAu{sub 4}Bi are antibonding in character at E{sub F} but that their bonding is optimized at {+-}1 e. Compositions between the five nonstoichiometric phases appear to undergo spinodal decompositions. The last phenomenon has been confirmed by HRTEM, STEM-HAADF, EPMA, and XRD studies of the nominal composition CaAu{sub 4.25}Bi{sub 0.75}. Its DTA analyses suggest that the phases resulting from spinodal decomposition have nearly the same melting point ({approx}807 C), as expected, and that they are interconvertible through peritectic reactions at {approx}717 C.« less

  18. Atomic and electronic structures of Si(1 1 1)-\\left(\\sqrt{\\mathbf{3}}\\times\\sqrt{\\mathbf{3}}\\right)\\text{R}\\mathbf{3}{{\\mathbf{0}}^{\\circ}} -Au and (6 × 6)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2015-12-01

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the \\sqrt{3} -Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the \\sqrt{3} -Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the \\sqrt{3} -Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the ≤ft(6× 6\\right) -Au phase. Extra Au atoms bound in interstitial sites of the \\sqrt{3} -Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a ≤ft(6× 6\\right) -Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the ≤ft(6× 6\\right) -Au structure. The ≤ft(6× 6\\right) -Au phase is 2D chiral and this is evident in computed and actual STM images. ≤ft(6× 6\\right) -Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the \\sqrt{3} -Au and ≤ft(6× 6\\right) -Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  19. Parents' Translations of Child Gesture Facilitate Word Learning in Children with Autism, Down Syndrome and Typical Development

    PubMed Central

    Dimitrova, Nevena; Özçalışkan, Şeyda; Adamson, Lauren B.

    2016-01-01

    Typically-developing (TD) children frequently refer to objects uniquely in gesture. Parents translate these gestures into words, facilitating children's acquisition of these words (Goldin-Meadow et al., 2007). We ask whether this pattern holds for children with autism (AU) and with Down syndrome (DS) who show delayed vocabulary development. We observed 23 children with ASD, 23 with DS, and 23 TD children with their parents over a year. Children used gestures to indicate objects before labeling them and parents translated their gestures into words. Importantly, children benefited from this input, acquiring more words for the translated gestures than the not translated ones. Results highlight the role contingent parental input to child gesture plays in language development of children with developmental disorders. PMID:26362150

  20. Au pairs are rarely male: norms on the gender perception of role names across English, French, and German.

    PubMed

    Gabriel, Ute; Gygax, Pascal; Sarrasin, Oriane; Garnham, Alan; Oakhill, Jane

    2008-02-01

    A list of role names for future use in research on gender stereotyping was created and evaluated. In two studies, 126 role names were rated with reference to their gender stereotypicality by English-, French-, and German-speaking students of universities in Switzerland (French and German) and in the U.K. (English). Role names were either presented in specific feminine and masculine forms (Study 1) or in the masculine form (generic masculine) only (Study 2). The rankings of the stereotypicality ratings were highly reliable across languages and questionnaire versions, but the overall mean of the ratings was less strongly male if participants were also presented with the female versions of the role names and if the latter were presented on the left side of the questionnaires.

  1. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry.

    PubMed

    Panyala, Nagender Reddy; Peña-Méndez, Eladia María; Havel, Josef

    2012-05-15

    Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time-of-flight mass spectrometry (LDI TOFMS). Gold clusters Au(m)(+) (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For P(n)(+) (n = 2 to ~111) clusters, the intensities of odd-numbered phosphorus clusters are much higher than those for even-numbered phosphorus clusters. During ablation of P-nanogold mixtures, clusters Au(m)(+) (m = 1-12), P(n)(+) (n = 2-7, 9, 11, 13-33, 35-95 (odd numbers)), AuP(n)(+) (n = 1, 2-88 (even numbers)), Au(2)P(n)(+) (n = 1-7, 14-16, 21-51 (odd numbers)), Au(3)P(n)(+) (n = 1-6, 8, 9, 14), Au(4)P(n)(+) (n = 1-9, 14-16), Au(5)P(n)(+) (n = 1-6, 14, 16), Au(6)P(n)(+) (n = 1-6), Au(7)P(n)(+) (n = 1-7), Au(8)P(n)(+) (n = 1-6, 8), Au(9)P(n)(+) (n = 1-10), Au(10)P(n)(+) (n = 1-8, 15), Au(11)P(n)(+) (n = 1-6), and Au(12)P(n)(+) (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Au(m)(-) (m = 1-5), P(n)(-) (n = 2, 3, 5-11, 13-19, 21-35, 39, 41, 47, 49, 55 (odd numbers)), AuP(n)(-) (n = 4-6, 8-26, 30-36 (even numbers), 48), Au(2)P(n)(-) (n = 2-5, 8, 11, 13, 15, 17), A(3) P(n)(-) (n = 6-11, 32), Au(4)P(n)(-) (n = 1, 2, 4, 6, 10), Au(6)P(5)(-), and Au(7)P(8)(-) clusters were observed. In both modes, phosphorus-rich Au(m)P(n) clusters prevailed. The first experimental evidence for formation of AuP(60) and gold-covered phosphorus Au(12)P(n) (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of new Au-P materials with specific properties. Copyright © 2012 John Wiley & Sons, Ltd.

  2. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    PubMed

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  3. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less

  5. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials

    DOE PAGES

    Chen, Hangning; Cullen, David A.; Larese, J. Z.

    2015-11-30

    We used Au/ZnO catalysts for liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol and compared with Au/Fe 2O 3 catalysts. To investigate the influence of the support on the hydrogenation activity and selectivity, three different Au/ZnO catalysts were synthesized, including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP prepared using a coprecipitation method. Moreover, the influence of calcination temperature was also systematically investigated in this study. The characterization of Au/ZnO catalysts was performed using ICP, N 2 adsorption/desorption isotherms, X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy. Among all the supported Au catalysts prepared in this study, Au/ZnO-CP exhibits bothmore » the highest hydrogenation activity and selectivity. Using a 1.5% Au/ZnO-CP catalyst, 100% selectivity could be achieved with 94.9% conversion. Finally, we find that the Au particle (size and shape), the ZnO support (size and surface texture) and the interaction between Au and ZnO are three important parameters for achieving a highly efficient Au/ZnO catalyst.« less

  6. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates

    NASA Astrophysics Data System (ADS)

    Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.

    2012-06-01

    In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that Au reduction occurs most rapidly and extensively upon interaction with cell wall functional groups.

  7. Preparation, Spectroscopic Characterization, and Frontier MO Study of the Heteronuclear Luminescent [Pt(2)Au(2)(dmb)(2)(PPh(3))(4)](PF(6))(2) Cluster (dmb = 1,8-Diisocyano-p-menthane). A Cluster with a Formal Au(0)-Au(0) Bond Encapsulated inside a "Pt(2)(dmb)(2)(2+) " Fragment.

    PubMed

    Zhang, Tianle; Drouin, Marc; Harvey, Pierre D.

    1999-11-01

    The title compound is prepared from the direct reaction of Pt(2)(dba)(3) (dba = dibenzylideneacetone) and [Au(PPh(3))(2)](PF(6)) in the presence of 1,8-diisocyano-p-methane (dmb), with Pt(2)(dmb)(2)Cl(2), [Pt(4)(dmb)(4)(PPh(3))(2)](PF(6))(2), and (PPh(3))AuCl being formed as parallel products. X-ray crystallography reveals the presence of a quasi-linear PPh(3)Au-AuPPh(3) fragment encapsulated inside a "Pt(2)(dmb)(2)(2+)" ring which is axially coordinated with two PPh(3) ligands. The d(AuAu) is 2.5977(6) Å and is indicative of a strong Au-Au single bond. The IR nu(CN) data reveal that the Pt oxidation state is I, which places the Au oxidation state at 0. The PtAu distances are 2.8422(5) and 2.8082(5) Å. The Raman-active nu(Au(2)), nu(PtAu) (b(2g) + a(g)), nu(PtP), nu(AuP), and nu(PtC) are found at 121.2, approximately 100, 85.5, 162.1, 183.1, and 457.2, and 440.9 cm(-)(1), respectively. The PtAu (0.67 mdyn Å(-)(1)) and Au(2) (1.21 mdyn Å(-)(1)) force constants (F) confirm the presence of medium PtAu and strong Au(2) bonding interactions. The absorption spectra are characterized by strong bands at lambda(max) (epsilon, M(-1) cm(-1)) at 316 (32 300), 366 (37 800), and 418 nm (21 500) and lower intensity features at 516 (2860) and 655 nm (834). The cluster is luminescent at low temperatures (solid and frozen glasses), and in the solid state at room temperature, and exhibits an emission band at approximately 875 nm, and an emission lifetime, tau(e), of 4.4 +/- 0.4 ns (solvent = butyronitrile, T = 77 K).

  8. Investigation of the thermal annealing effect on electrical properties of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Sleptsov, E. V.; Chernykh, A. V.; Chernykh, S. V.; Dorofeev, A. A.; Gladysheva, N. B.; Kondakov, M. N.; Sleptsova, A. A.; Panichkin, A. V.; Konovalov, M. P.; Didenko, S. I.

    2017-03-01

    Investigation of the thermal annealing effect on Schottky barrier parameters and the leakage current of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures has been performed. Improvement of Schottky barrier parameters after annealing of the investigated metallization schemes was observed. Ni/Au and Mo/Au contacts drastically degrade after annealing at the temperatures higher than 400 °C, whereas the Ni/Mo/Au contact exhibits excellent parameters after 500 °C annealing (qϕb = 1.00 eV, n = 1.13 и Ileak = 5 μA).

  9. Connected Au network in annealed Ni/Au thin films on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. P.; Jang, H. W.; Noh, D. Y.

    2007-11-12

    We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.

  10. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  11. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Part 305—Sample Labels ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER29AU07.126 SAMPLE LABEL 1 ER29AU07.127 SAMPLE LABEL 2...

  12. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  13. Two Barium Gold Iodates: Syntheses, Structures, and Properties of Polar BaAu(IO3)5 and Nonpolar HBa4Au(IO3)12 Materials.

    PubMed

    Yang, Bing-Ping; Hu, Chun-Li; Mao, Fei-Fei; Xu, Xiang; Mao, Jiang-Gao

    2017-06-19

    Two new barium gold iodates, namely, BaAu(IO 3 ) 5 and HBa 4 Au(IO 3 ) 12 , have been prepared. BaAu(IO 3 ) 5 crystallizes in the polar space group Pca2 1 , whereas HBa 4 Au(IO 3 ) 12 crystallizes in the centrosymmetric space group P2 1 /c. BaAu(IO 3 ) 5 consists of unique polar [Au(IO 3 ) 4 ] - anions whose four iodate groups are located at both sides of the AuO 4 plane and the polarity points in the [001̅] direction. BaAu(IO 3 ) 5 displays strong second-harmonic-generation (SHG) effects about 0.6KTiOPO 4 (KTP) and is phase-matchable. Thermal properties, optical spectra analyses, and theoretical calculations are also reported.

  14. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging

    PubMed Central

    Cheheltani, Rabee; Ezzibdeh, Rami M.; Chhour, Peter; Pulaparthi, Kumidini; Kim, Johoon; Jurcova, Martina; Hsu, Jessica C.; Blundell, Cassidy; Litt, Harold I.; Ferrari, Victor A.; Allcock, Harry R.; Sehgal, Chandra M.; Cormode, David P.

    2016-01-01

    Gold nanoparticles (AuNP) have been proposed for many applications in medicine. Although large AuNP (>5.5 nm) are desirable for their longer blood circulation and accumulation in diseased tissues, small AuNP (<5.5 nm) are required for excretion via the kidneys. We present a novel platform where small, excretable AuNP are encapsulated into biodegradable poly di(carboxylatophenoxy)phosphazene (PCPP) nanospheres. These larger nanoparticles (Au-PCPP) can perform their function as contrast agents, then subsequently break down into harmless byproducts and release the AuNP for swift excretion. Homogeneous Au-PCPP were synthesized using a microfluidic device. The size of the Au-PCPP can be controlled by the amount of polyethylene glycol-polylysine (PEG-PLL) block co-polymer in the formulation. Synthesis of Au-PCPP nanoparticles and encapsulation of AuNP in PCPP were evaluated using transmission electron microscopy and their biocompatibility and biodegradability confirmed in vitro. The Au-PCPP nanoparticles were found to produce strong computed tomography contrast. The UV-Vis absorption peak of Au-PCPP can be tuned into the near infrared region via inclusion of varying amounts of AuNP and controlling the nanoparticle size. In vitro and in vivo experiments demonstrated the potential of Au-PCPP as contrast agents for photoacoustic imaging. Therefore, Au-PCPP nanoparticles have high potency as contrast agents for two imaging modalities, as well as being biocompatible and biodegradable, and thus represent a platform with potential for translation into the clinic. PMID:27322961

  15. Au38(SPh)24: Au38 Protected with Aromatic Thiolate Ligands.

    PubMed

    Rambukwella, Milan; Burrage, Shayna; Neubrander, Marie; Baseggio, Oscar; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2017-04-06

    Au 38 (SR) 24 is one of the most extensively investigated gold nanomolecules along with Au 25 (SR) 18 and Au 144 (SR) 60 . However, so far it has only been prepared using aliphatic-like ligands, where R = -SC 6 H 13 , -SC 12 H 25 and -SCH 2 CH 2 Ph. Au 38 (SCH 2 CH 2 Ph) 24 when reacted with HSPh undergoes core-size conversion to Au 36 (SPh) 24 , and existing literature suggests that Au 38 (SPh) 24 cannot be synthesized. Here, contrary to prevailing knowledge, we demonstrate that Au 38 (SPh) 24 can be prepared if the ligand exchanged conditions are optimized, under delicate conditions, without any formation of Au 36 (SPh) 24 . Conclusive evidence is presented in the form of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectra (ESI-MS) characterization, and optical spectra of Au 38 (SPh) 24 in a solid glass form showing distinct differences from that of Au 38 (S-aliphatic) 24 . Theoretical analysis confirms experimental assignment of the optical spectrum and shows that the stability of Au 38 (SPh) 24 is not negligible with respect to that of its aliphatic analogous, and contains a significant component of ligand-ligand attractive interactions. Thus, while Au 38 (SPh) 24 is stable at RT, it converts to Au 36 (SPh) 24 either on prolonged etching (longer than 2 hours) at RT or when etched at 80 °C.

  16. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  17. Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-11-01

    In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, l-cysteine-AuNPs and l-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, l-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was 11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

  18. Slab melting and the origin of gold in Au and Au-Cu deposits: geochemical clues from recent adakites.

    NASA Astrophysics Data System (ADS)

    Polve, M.; Maury, R.; Joron, J. L.

    2003-04-01

    Understanding the genetic processes responsible for the common occurrence of Au and Au-Cu deposits in subduction environments is a fairly "hot" question nowadays, as it is clear that most subduction-related magmatic rocks are barren. Studies of space and time relationships between magmatic intrusions, hydrothermal episodes and Au deposits have shown that, very often, Au deposits are associated with adakitic intrusions (Thieblemont et al, 1997, Sajona and Maury, 1998). Adakites are here understood as being generated by melting of the subducting oceanic crust. This study aims to check wether or not magmas derived from melted oceanic crust do contain significantly more Au than regular calc-alkaline magmas by measuring directly Au concentrations in fresh (and barren) adakites and equivalent calc-alkaline andesites. There is a lack of reliable data on Au content in unaltered adakites and andesites, because Au analyses are generally done on hydrothermalized rocks in connection with Au deposits and also because old measurements may give overestimated Au contents, due to technical limitations. Therefore we compiled recent literature data on gold contents of fresh calc-alkaline rocks, and measured Au on a selection of 40 well studied and dated adakites from different localities (Philippines, Baja California). Analyses have been performed either by INAA or by ICP-MS after Au extraction with aqua regia, following the method described by Terashima (1988). Preliminary results show that, for equivalent Si02 contents, adakites are systematically enriched in Au compared to regular dacites, even if regional trends also exist. Moreover, Au seems to behave as an incompatible element in adakitic magmas, whereas in calc-alkaline dacites it is controlled by sulfide crystallization. Our data suggest that, not excluding any other processes related to the hydrothermal phase in the deposit generation, adakites may indeed represent the source of Au, a possible explanation for the adakite-Au deposit association.

  19. Evidence of significant covalent bonding in Au(CN)(2)(-).

    PubMed

    Wang, Xue-Bin; Wang, Yi-Lei; Yang, Jie; Xing, Xiao-Peng; Li, Jun; Wang, Lai-Sheng

    2009-11-18

    The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is still lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-C bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoelectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability.

  20. Homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100): An in-situ STM study

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo

    2015-01-01

    A study of homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100) surfaces is presented. The growth behavior has been investigated by in-situ scanning tunneling microscopy for Au(100) in contact with 0.1 M H2SO4 + 5 μM K[AuCl4]. It is shown that the initial surface structure is decisive for the emerging Au structures, giving rise to clearly different surface morphologies for electro-crystallization of Au on the unreconstructed and on the reconstructed Au(100) surface. A layer-by-layer growth is observed at more positive potentials for unreconstructed Au(100). The electrodeposition proceeds initially by the formation of Au islands followed by island coalescence due to the high mobility of surface atoms. Monatomic recessed stripes are formed as a result of the coalescence of deposited Au islands. At more negative potentials, the growth of Au proceeds strongly anisotropic on the reconstructed surface by the formation of reconstructed elongated islands.

  1. Fermi surfaces properties of AuAl2, AuGa2, and AuIn2 with the CaF2-type cubic structure

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Suzuki, F.; Yara, T.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    We grew high-quality single crystals of AuAl2, AuGa2, and AuIn2 with the fluorite (CaF2)-type cubic structure and determined the Fermi surface properties by the de Haas-van Alphen (dHvA) experiments using full-potential LAPW bad calculations. The Fermi surface and optical properties for three compounds were once studied from an interest of colors because AuAl2 has a striking bright reddish-purple color, whereas AuGa2 and AuIn2 are, respectively, neutral and bluish. The detected dHvA frequencies in the present study are found to be in a wide range of (0.1-13)×107 Oe. The main dHvA branches for three compounds are in excellent agreement with the theoretical ones, but some dHvA branches with small dHvA frequencies are slightly deviated from the theoretical ones, especially in AuGa2 and AuIn2.

  2. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    DOE PAGES

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.; ...

    2017-01-30

    Results on two-particle ΔηΔΦ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. Furthermore, the results are compared with the Epos and UrQMD models.

  3. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  4. Overview of LHC physics results at ICHEP

    ScienceCinema

    Mangano, Michelangelo

    2018-06-20

    This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar). For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  5. CERN at 60: giant magnet journeys through Geneva

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2014-07-01

    More than 30,000 people descended onto Geneva's harbour last month to celebrate the bicentenary of the city's integration into Switzerland with a parade through the city. Joining the 1200 participants at the Genève200 celebrations were staff from the CERN particle-physics lab, which is located on the outskirts of Geneva, who paraded a superconducting dipole magnet - similar to the thousands used in the Large Hadron Collider - through the city's narrow streets on a 20 m lorry.

  6. Astronomie, écologie et poésie par Hubert Reeves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-21

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  7. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  8. CERN's Common Unix and X Terminal Environment

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    The Desktop Infrastructure Group of CERN's Computing and Networks Division has developed a Common Unix and X Terminal Environment to ease the migration to Unix based Interactive Computing. The CUTE architecture relies on a distributed filesystem—currently Trans arc's AFS—to enable essentially interchangeable client work-stations to access both "home directory" and program files transparently. Additionally, we provide a suite of programs to configure workstations for CUTE and to ensure continued compatibility. This paper describes the different components and the development of the CUTE architecture.

  9. News Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

    NASA Astrophysics Data System (ADS)

    2012-07-01

    Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

  10. Overview of LHC physics results at ICHEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  11. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  12. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  13. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols.

    PubMed

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-04-07

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 ± 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ∼0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h(-1)) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.

  14. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors.

    PubMed

    Zhu, Guixian; Liu, Jen-Tsai; Wang, Yuzhen; Zhang, Dechen; Guo, Yi; Tasciotti, Ennio; Hu, Zhongbo; Liu, Xuewu

    2016-05-11

    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application.

  15. Compound formation and superconductivity in Au-Si: X-ray absorption measurements on ion-beam-mixed Au-Si films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Y.; Jisrawi, N.; Liang, G.

    Multilayered Au-Si thin films have been deposited with the net compositions ''Au/sub 1-//sub x/Si/sub x/,'' x = 0.29, 0.5, and 0.8. After ion-beam mixing these films exhibited superconductivity in the 0.3--1.2 K range despite the nonsuperconducting character of both Au and Si. Near-edge x-ray absorption spectroscopy (XAS) measurements on the Au L/sub 3/ edge in these films indicate that metastable Au-Si compound formation occurs in these ion-mixed materials. Specifically, the XAS measurements indicate changes in Au 5d-orbital occupancy and changes in the local Au structural environment which are both consistent with local compound formation.

  16. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy

    NASA Astrophysics Data System (ADS)

    Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.

    2015-12-01

    Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future. Electronic supplementary information (ESI) available: The evolution of the UV-vis absorption of Au NPrs by centrifugation, TEM image of PEG-capped Au NPrs, the UV-vis absorption of glucose, cytotoxicity of Au@PEG-Glc NPrs, gastric cell viabilities versus the concentration of Au@PEG-Glc NPrs and gastric cell viabilities filled with 80 μg Au@PEG-Glc NPrs versus the irradiation time, optoacoustic signals of Au NPr solution and Au@PEG NPrs. See DOI: 10.1039/c5nr06261f

  17. Synthesis of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18 Nanomolecules from a Common Precursor Mixture.

    PubMed

    Rambukwella, Milan; Dass, Amala

    2017-10-17

    Phenylethanethiol protected nanomolecules such as Au 25 , Au 38 , and Au 144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bulky ligands, impeding progress. Here we report the facile synthesis of three distinct nanomolecules, Au 38 (SCH 2 CH 2 Ph) 24 , Au 36 (SPh-tBu) 24 , and Au 30 (S-tBu) 18 , exclusively, starting from a common Au n (glutathione) m (where n and m are number of gold atoms and glutathiolate ligands) starting material upon reaction with HSCH 2 CH 2 Ph, HSPh-tBu, and HStBu, respectively. The systematic synthetic approach involves two steps: (i) synthesis of kinetically controlled Au n (glutathione) m crude nanocluster mixture with 1:4 gold to thiol molar ratio and (ii) thermochemical treatment of the purified nanocluster mixture with excess thiols to obtain thermodynamically stable nanomolecules. Thermochemical reactions with physicochemically different ligands formed highly monodispersed, exclusively three different core-size nanomolecules, suggesting a ligand induced core-size conversion and structural transformation. The purpose of this work is to make available a facile and simple synthetic method for the preparation of Au 38 (SCH 2 CH 2 Ph) 24 , Au 36 (SPh-tBu) 24 , and Au 30 (S-tBu) 18 , to nonspecialists and the broader scientific community. The central idea of simple synthetic method was demonstrated with other ligand systems such as cyclopentanethiol (HSC 5 H 9 ), cyclohexanethiol(HSC 6 H 11 ), para-methylbenzenethiol(pMBT), 1-pentanethiol(HSC 5 H 11 ), 1-hexanethiol(HSC 6 H 13 ), where Au 36 (SC 5 H 9 ) 24 , Au 36 (SC 6 H 11 ) 24 , Au 36 (pMBT) 24 , Au 38 (SC 5 H 11 ) 24 , and Au 38 (SC 6 H 13 ) 24 were obtained, respectively.

  18. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    PubMed

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.

  19. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant

    NASA Astrophysics Data System (ADS)

    Huang, Youju; Kim, Dong-Hwan

    2012-09-01

    We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications.We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications. Electronic supplementary information (ESI) available: The UV-vis spectra, representative field-emission scanning electron microscopy (FESEM) images and size distributions of Au seeds (18 nm) and spherical AuNPs (50 nm), photograph images of AuNPs solution and TEM images of blackberry-like AuNPs. See DOI: 10.1039/c2nr31717f

  20. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  1. Electronic Absorption and MCD Spectra for Pd(AuPPh(3))(8)(2+), Pt(AuPPh(3))(8)(2+), and Related Platinum-Centered Gold Cluster Complexes.

    PubMed

    Adrowski, Michael J.; Mason, W. Roy

    1997-03-26

    Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.

  2. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.

    PubMed

    Li, Jiuxing; Zhu, Binqing; Yao, Xiujie; Zhang, Yicong; Zhu, Zhi; Tu, Song; Jia, Shasha; Liu, Rudi; Kang, Huaizhi; Yang, Chaoyong James

    2014-10-08

    Attaching thiolated DNA on gold nanoparticles (AuNPs) has been extremely important in nanobiotechnology because DNA-AuNPs combine the programmability and molecular recognition properties of the biopolymers with the optical, thermal, and catalytic properties of the inorganic nanomaterials. However, current standard protocols to attach thiolated DNA on AuNPs involve time-consuming, tedious steps and do not perform well for large AuNPs, thereby greatly restricting applications of DNA-AuNPs. Here we demonstrate a rapid and facile strategy to attach thiolated DNA on AuNPs based on the excellent stabilization effect of mPEG-SH on AuNPs. AuNPs are first protected by mPEG-SH in the presence of Tween 20, which results in excellent stability of AuNPs in high ionic strength environments and extreme pHs. A high concentration of NaCl can be applied to the mixture of DNA and AuNP directly, allowing highly efficient DNA attachment to the AuNP surface by minimizing electrostatic repulsion. The entire DNA loading process can be completed in 1.5 h with only a few simple steps. DNA-loaded AuNPs are stable for more than 2 weeks at room temperature, and they can precisely hybridize with the complementary sequence, which was applied to prepare core-satellite nanostructures. Moreover, cytotoxicity assay confirmed that the DNA-AuNPs synthesized by this method exhibit lower cytotoxicity than those prepared by current standard methods. The proposed method provides a new way to stabilize AuNPs for rapid and facile loading thiolated DNA on AuNPs and will find wide applications in many areas requiring DNA-AuNPs, including diagnosis, therapy, and imaging.

  3. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    PubMed

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  4. Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.

    PubMed

    Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E

    2014-08-26

    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

  5. Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si

    NASA Astrophysics Data System (ADS)

    Yang, W.; Akey, A. J.; Smillie, L. A.; Mailoa, J. P.; Johnson, B. C.; McCallum, J. C.; Macdonald, D.; Buonassisi, T.; Aziz, M. J.; Williams, J. S.

    2017-12-01

    Au-hyperdoped Si, synthesized by ion implantation and pulsed laser melting, is known to exhibit a strong sub-band gap photoresponse that scales monotonically with the Au concentration. However, there is thought to be a limit to this behavior since ultrahigh Au concentrations (>1 ×1020c m-3 ) are expected to induce cellular breakdown during the rapid resolidification of Si, a process that is associated with significant lateral impurity precipitation. This work shows that the cellular morphology observed in Au-hyperdoped Si differs from that in conventional, steady-state cellular breakdown. In particular, Rutherford backscattering spectrometry combined with channeling and transmission electron microscopy revealed an inhomogeneous Au distribution and a subsurface network of Au-rich filaments, within which the Au impurities largely reside on substitutional positions in the crystalline Si lattice, at concentrations as high as ˜3 at. %. The measured substitutional Au dose, regardless of the presence of Au-rich filaments, correlates strongly with the sub-band gap optical absorptance. Upon subsequent thermal treatment, the supersaturated Au forms precipitates, while the Au substitutionality and the sub-band gap optical absorption both decrease. These results offer insight into a metastable filamentary regime in Au-hyperdoped Si that has important implications for Si-based infrared optoelectronics.

  6. Bi-functional Au/FeS (Au/Co3O4) composite for in situ SERS monitoring and degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan; Shao, Mingwang

    2016-01-01

    The bi-functional Au/FeS (Au/Co3O4) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co3O4). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of 47.5 nm. While the Co3O4 showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of 79.0 nm. Both the as-prepared Au/FeS and Au/Co3O4 composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 106 and 7.60 × 104, respectively. Moreover, Au/FeS (Au/Co3O4) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H2O2 into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co3O4) composite both as SERS substrate and catalyst.

  7. Electron flow in large metallomacromolecules and electronic switch of nanoparticle stabilization: new click ferrocenyl dentromers that reduce Au(III) to Au nanoparticles.

    PubMed

    Astruc, Didier; Wang, Qi; Fu, Fangyu; Martinez-Villacorta, Angel M; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Hunel, Julien; Vax, Amélie

    2018-06-04

    Click ferrocenyl-terminal dentromers, a family of arene-cored dendrimers with triple branching (9-Fc, 27-Fc, 81-Fc and 243-Fc) reduce Au(III) to ferricinium dentromer-stabilized Au nanoparticles (AuNPs). Cyclic voltammetry studies in CH2Cl2 show reversible CV waves with some adsorption for the 243-Fc dentromer and a number of redox groups found, 255 ± 25, using the Bard-Anson method, close to the theoretical number of 243. The dentromers reduce aqueous HAuCl4 to water-soluble ferricinium chloride dentromer-stabilized gold nanoparticles (AuNPs) with core sizes between 30 and 47 nm. These triazolylferricinium dentromer-stabilized AuNPs are reduced by cobaltocene to cobalticinium chloride and ferrocene dentromer-weakly stabilized AuNPs together with red shift of the AuNP plasmon. The weakness of the AuNP stabilization is characterized by dentromer extraction with CH2Cl2 along with irreversible AuNP agglomeration for the 9, 27 and 81-ferrocenyl dentromer, only the 243-ferrocenyl dentromer-AuNP withstanding this process. Altogether this demonstrates the electronic switch of the dentromer-mediated AuNP stabilization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Controlling Au Nanorod Dispersion in Thin Film Polymer Blends

    NASA Astrophysics Data System (ADS)

    Hore, Michael J. A.; Composto, Russell J.

    2012-02-01

    Dispersion of Au nanorods (Au NRs) in polymer thin films is studied using a combination of experimental and theoretical techniques. Here, we incorporate small volume fractions of polystyrene-functionalized Au NRs (φrod 0.05) into polystyrene (PS) thin films. By controlling the ratio of the brush length (N) to that of the matrix polymers (P), we can selectively obtain dispersed or aggregated Au NR structures in the PS-Au(N):PS(P) films. A dispersion map of these structures allows one to choose N and P to obtain either uniformly dispersed Au NRs or aggregates of closely packed, side-by-side aligned Au NRs. Furthermore, by blending poly(2,6-dimethyl-p-phenylene oxide) (PPO) into the PS films, we demonstrate that the Au nanorod morphology can be further tuned by reducing depletion-attraction forces and promoting miscibility of the Au NRs. These predictable structures ultimately give rise to tunable optical absorption in the films resulting from surface plasmon resonance coupling between the Au NRs. Finally, self-consistent field theoretic (SCFT) calculations for both the PS-Au(N):PS(P) and PS-Au(N):PS(P):PPO systems provide insight into the PS brush structure, and allow us to interpret morphology and optical property results in terms of wet and dry PS brush states.

  9. Au–CsPbBr 3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, Subila K.; Kamat, Prashant V.

    A selective growth of gold (Au) nanoparticles on the corners of CsPbBr 3 nanocrystals (NCs) is made possible with the treatment of Au(III) salts such as Au(III) bromide and Au(III) chloride in solution. The surface bound oleylamine ligands not only stabilize NCs but also facilitate reduction of the Au(III) salts followed by nucleation of the Au nanoparticles on the corners of the perovskite NCs. The luminescence quantum yield of NCs is decreased when Au nanoparticles are formed on the corners of CsPbBr 3 NCs, suggesting interaction between the two systems. Formation of Au nanoparticles as well as an anion exchangemore » is seen when Au(III) bromide was replaced with Au(III) chloride as a precursor. This simple strategy of designing perovskite-gold hybrid nanostructures with good colloidal stability offers new opportunities to explore their photocatalytic properties.« less

  10. A theoretical study of the decomposition of gold (I) complexes

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1998-04-01

    Structures, energetics and excitation energies are calculated for the gold (I) complexes CH 3Au, (CH 3) 2Au -, CH 3AuOH 2, CH 3AuPH 3 and PH 3AuCl at the Hartree-Fock and MP2 levels of theory, and for CH 3AuP(CH 3) 3, CH 3AuP(OH) 3 and Au 3Cl 3 at the HF level. The lowest-energy neutral triplet state of each 2-coordinate compound dissociates into either two or three radical species (always including the CH 3 radical), with the exception of (CH 3) 2Au - which shows only slight Au-C bond elongation. In contrast, the doublet anion states dissociate neutral ligands, like PH 3, but do not dissociate CH 3. These results indicate that gold (I) chemical vapor deposition processes must involve excited states of the neutrals rather than their anions.

  11. Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2003-10-06

    Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data revealmore » strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.« less

  12. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  13. An efficient synthetic method for organometallic radicals: structures and properties of gold(i)-(nitronyl nitroxide)-2-ide complexes.

    PubMed

    Suzuki, Shuichi; Kira, Sayaka; Kozaki, Masatoshi; Yamamura, Masaki; Hasegawa, Toru; Nabeshima, Tatsuya; Okada, Keiji

    2017-02-21

    One-pot synthesis of (nitronyl nitroxide)-gold(i)-phosphine (NN-Au-P) complexes has been developed using chloro(tetrahydrothiophene)gold(i), phosphine ligands, nitronyl nitroxide radicals, and sodium hydroxide. The NN-Au-P complexes can be easily handled because they were quite stable under aerated conditions in both solution and crystalline states. They showed weak absorption bands with vibrational structures in the 450-650 nm region. The oxidation potentials assigned to the NN moieties of NN-Au-P complexes with aromatic phosphines were observed around -0.1 V vs. Fc/Fc + (-0.11 V for NN-Au-1, -0.08 V for NN-Au-2, -0.13 V for NN-Au-5, and -0.07 V for NN-Au-6), somewhat lower than that of NN-Au-P complexes with aliphatic phosphines (-0.25 V for NN-Au-3 and -0.17 V for NN-Au-4).

  14. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE PAGES

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; ...

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Au core–Ru shell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity,more » the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  15. Au–CsPbBr 3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals

    DOE PAGES

    Balakrishnan, Subila K.; Kamat, Prashant V.

    2016-11-29

    A selective growth of gold (Au) nanoparticles on the corners of CsPbBr 3 nanocrystals (NCs) is made possible with the treatment of Au(III) salts such as Au(III) bromide and Au(III) chloride in solution. The surface bound oleylamine ligands not only stabilize NCs but also facilitate reduction of the Au(III) salts followed by nucleation of the Au nanoparticles on the corners of the perovskite NCs. The luminescence quantum yield of NCs is decreased when Au nanoparticles are formed on the corners of CsPbBr 3 NCs, suggesting interaction between the two systems. Formation of Au nanoparticles as well as an anion exchangemore » is seen when Au(III) bromide was replaced with Au(III) chloride as a precursor. This simple strategy of designing perovskite-gold hybrid nanostructures with good colloidal stability offers new opportunities to explore their photocatalytic properties.« less

  16. Optical fibres in the radiation environment of CERN

    NASA Astrophysics Data System (ADS)

    Guillermain, E.

    2017-11-01

    CERN, the European Organization for Nuclear Research (in Geneva, Switzerland), is home to a complex scientific instrument: the 27-kilometre Large Hadron Collider (LHC) collides beams of high-energy particles at close to the speed of light. Optical fibres are widely used at CERN, both in surface areas (e.g. for inter-building IT networks) and in the accelerator complex underground (e.g. for cryogenics, vacuum, safety systems). Optical fibres in the accelerator are exposed to mixed radiation fields (mainly composed of protons, pions, neutrons and other hadrons, gamma rays and electrons), with dose rates depending on the particular installation zone, and with radiation levels often significantly higher than those encountered in space. In the LHC and its injector chain radiation levels range from relatively low annual doses of a few Gy up to hundreds of kGy. Optical fibres suffer from Radiation Induced Attenuation (RIA, expressed in dB per unit length) that affect light transmission and which depends on the irradiation conditions (e.g. dose rate, total dose, temperature). In the CERN accelerator complex, the failure of an optical link can affect the proper functionality of control or monitoring systems and induce the interruption of the accelerator operation. The qualification of optical fibres for installation in critical radiation areas is therefore crucial. Thus, all optical fibre types installed in radiation areas at CERN are subject to laboratory irradiation tests, in order to evaluate their RIA at different total dose and dose rates. This allows the selection of the appropriate optical fibre type (conventional or radiation resistant) compliant with the requirements of each installation. Irradiation tests are performed in collaboration with Fraunhofer INT (irradiation facilities and expert team in Euskirchen, Germany). Conventional off-the-shelf optical fibres can be installed for optical links exposed to low radiation levels (i.e. annual dose typically below few kGy). Nevertheless, the conventional optical fibres must be carefully qualified as a spread in RIA of factor 10 is observed among optical fibres of different types and dopants. In higher radiation areas, special radiation resistant optical fibres are installed. For total dose above 1 kGy, the RIA of these special optical fibres is at least 10 times lower than the conventional optical fibres RIA at same irradiation conditions. 2400 km of these special radiation resistant optical fibres were recently procured at CERN. As part of this procurement process, a quality assurance plan including the irradiation testing of all 65 produced batches was set up. This presentation will review the selection process of the appropriate optical fibre types to be installed in the radiation environment of CERN. The methodology for choosing the irradiation parameters for the laboratory tests will be discussed together with an overview of the RIA of different optical fibre types under several irradiation conditions.

  17. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers.

    PubMed

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J; Corbett, John D

    2009-12-07

    The new phase K(12)Au(21)Sn(4) has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) A, V = 1901.3(7) A(3), and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au(20)) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn(4)). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K(3)Au(5)In and Rb(2)Au(3)Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  18. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    PubMed

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    PubMed Central

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  20. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    PubMed

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  1. A preliminary investigation of acousto-ultrasonic NDE of metal matrix composite test specimens

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Lerch, Brad A.

    1991-01-01

    Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of 8 laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The following subject areas are covered: AU signal analysis; tensile behavior; AU and interrupted tensile tests; AU and thermally cycled specimens; AU and stiffness; and AU and specimen geometry.

  2. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography.

    PubMed

    Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk

    2009-09-09

    We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.

  3. Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at sqrt[sNN]=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Gronstal, S; Grosnick, D; Guertin, S M; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Hughes, E; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Levine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vandermolen, A M; Varma, R; Vasilevski, I; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Vznuzdaev, M; Waggoner, W; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Yuting, B; Zanevski, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zhaomin, Z P; Zizong, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2005-10-07

    Charged hadrons in [EQUATION: SEE TEXT] associated with particles of [EQUATION: SEE TEXT] are reconstructed in pp and Au+Au collisions at sqrt[sNN]=200 GeV. The associated multiplicity and p magnitude sum are found to increase from pp to central Au+Au collisions. The associated p distributions, while similar in shape on the nearside, are significantly softened on the awayside in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the awayside fragments approach equilibration with the medium traversed.

  4. Charged hadron transverse momentum distributions in Au+Au collisions at √ SNN = 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; van Nieuwenhuizen, Gerrit; PHOBOS Collaboration

    2003-04-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at √ SNN = 200 GeV. The evolution of the spectra for transverse momenta p T from 0.25 to 5 GeV/C is studied as a function of collision centrality. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. When comparing peripheral to central Au+Au collisions, we find that the yields at the highest p T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  5. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  6. {331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity

    NASA Astrophysics Data System (ADS)

    Song, Yahui; Miao, Tingting; Zhang, Peina; Bi, Cuixia; Xia, Haibing; Wang, Dayang; Tao, Xutang

    2015-04-01

    We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities.We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities. Electronic supplementary information (ESI) available: Extra TEM images and extinction spectra of the corresponding TOH Au NCs obtained with CTAB-Au seeds and CTAC-Au seeds, cyclic voltammograms of the corresponding TOH Au NCs with {221} facets and {331} facets in 0.50 M H2SO4 medium, cyclic voltammograms of TOH Au NCs with different sizes in 0.50 M H2SO4 medium and in 0.50 M KOH medium, the variation of oxidation peak current density of the GCEs modified by the 110 nm TOH Au NCs at different scanning cycle numbers, experimental extinction spectra of TOH Au NCs of different sizes, SERS spectra of 4-ATP molecules on the aggregates of 175 nm TOH Au NCs and 170 nm spherical Au NCs, the normal Raman spectrum of the neat film of the 4-ATP molecule, and summarized data of the Raman intensity and SERS enhancement factors of the TOH Au NCs with different sizes in specific Raman bands. See DOI: 10.1039/c5nr01049g

  7. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties

    NASA Astrophysics Data System (ADS)

    Song, Yongbo; Zhong, Juan; Yang, Sha; Wang, Shuxin; Cao, Tiantian; Zhang, Jun; Li, Peng; Hu, Daqiao; Pei, Yong; Zhu, Manzhou

    2014-10-01

    The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster.The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04631e

  8. Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)

    PubMed Central

    Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.

    2012-01-01

    A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031

  9. Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties.

    PubMed

    Zhang, Liqiu; Jang, Hee-Jeong; Yoo, Sung Jae; Cho, Sanghyun; Won, Ji Hye; Liu, Lichun; Park, Sungho

    2018-06-22

    Site-selective synthesis of nanostructures is an important topic in the nanoscience community. Normally, the difference between seeds and deposition atoms in terms of crystallinity triggers the deposition atoms to grow initially at the specific site of nucleation. It is more challenging to control the deposition site of atoms that have the same composition as the seeds because the atoms tend to grow epitaxially, covering the whole surface of the seed nanoparticles. Gold (Au) nano-octahedrons used as seeds in this study possess obvious hierarchical surface energies depending on whether they are at vertices, edges, or terraces. Although vertices of Au nano-octahedrons have the highest surface energy, it remains a challenge to selectively deposit Au atoms at the vertices but not at the edges and faces; this selectivity is required to meet the ever-increasing demands of engineered nanomaterial properties. This work demonstrates an easy and robust method to precisely deposit Au nanoparticles at the vertices of Au nano-octahedrons via wet-chemical seed-mediated growth. The successful synthesis of octahedral Au tip-blobbed nanoparticles (Oh Au TBPs) benefited from the cooperative use of thin silver (Ag) layers at the surface of Au nano-octahedron seeds and iodide ions in the Au growth solution. As-synthesized Au nanostructures gave rise to hybrid optical properties, as evidenced from the UV-VIS-NIR extinction spectra, in which a new extinction peak appeared after Au nanoparticles were formed at the vertices of Au nano-octahedrons. A sensitivity evaluation toward dielectric media of a mixture of dimethyl sulfoxide and water suggested that Au TBPs were more optically sensitive compared to the original Au nano-octahedrons. The method demonstrated in this work is promising in the synthesis of advanced Au nanostructures with hybrid optical properties for versatile applications by engineering the surface energy of vertex-bearing Au nanostructures to trigger site-selective overgrowth of congener Au atoms. © 2018 IOP Publishing Ltd.

  10. The neodymium-gold phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccone, A.; Maccio, D.; Delfino, S.

    The Nd-Au phase diagram was studied in the 0 to 100 at. pct Au composition range by differential thermal analysis (DTA), X-ray diffraction (XRD), optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Six intermetallic phases were identified, the crystallographic structures were determined or confirmed, and the melting behavior was determined, as follows: Nd{sub 2}Au, orthorhombic oP12-Co{sub 2}Si type, peritectic decomposition at 810 C; NdAu, R.T. form, orthorhombic oP8-FeB type, H.T. forms, orthorhombic oC8-CrB type and, at a higher temperature, cubic cP2-CsCl type, melting point 1470 C; Nd{sub 3}Au{sub 4}, trigonal hR42-Pu{sub 3}Pd{sub 4} type, peritectic decompositionmore » at 1250 C; Nd{sub 17}Au{sub 36}, tetragonal tP106-Nd{sub 17}Au{sub 36} type, melting point 1170 C; Nd{sub 14}Au{sub 51}, hexagonal hP65-Gd{sub 14}Ag{sub 51} type, melting point 1210 C; and NdAu{sub 6}, monoclinic mC28-PrAu{sub 6} type, peritectic decomposition at 875 C. Four eutectic reactions were found, respectively, at 19.0 at. pct Au and 655 C, at 63.0 at. pct Au and 1080 C, at 72.0 at. pct Au and 1050 C, and, finally, at 91.0 at. pct Au and 795 C. A catatectic decomposition of the ({beta}Nd) phase, at 825 C and {approx}1 at. pct Au, was also found. The results are briefly discussed and compared to those for the other rare earth-gold (R-Au) systems. A short discussion of the general alloying behavior of the coinage metals (Cu, Ag, and Au) with the rare-earth metals is finally presented.« less

  11. The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells

    PubMed Central

    Wu, Ya-Na; Wu, Ping-Ching; Yang, Li-Xing; Ratinac, Kyle R; Thordarson, Pall; Jahn, Kristina A; Chen, Dong-Hwang; Shieh, Dar-Bin; Braet, Filip

    2013-01-01

    Previously, iron core–gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells’ relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the “active” component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core–shell nanoparticles are essential for the anticancer properties observed in CRC cells. PMID:24039416

  12. Exploring the Photoreduction of Au(III) Complexes in the Gas-Phase

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Kaufman, Sydney H.; Weber, J. Mathias

    2010-06-01

    We have used photodissociation spectroscopy to probe the electronic structure and photoreduction of Au(III) in gas-phase complexes containing Cl- and OH-. The gas-phase electronic spectrum of [AuCl_4]- closely resembles the aqueous solution spectrum, showing a lack of strong solvatochromic shifts. Substitution of Cl- ligands with OH- results in a strong blue shift, in agreement with ligand-field theory. Upon excitation, [AuCl_4]- can dissociate by loss of either one or two neutral Cl atoms, resulting in the reduction of gold from Au(III) to Au(II) and Au(I) respectively. The hydroxide substituted complex, [AuCl_2(OH)_2]-, demonstrates similar behavior but the only observable fragment channel is the loss of two neutral OH ligands, leading only to Au(I).

  13. Tunable random lasing behavior in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Yadav, Ashish; Zhong, Liubiao; Sun, Jun; Jiang, Lin; Cheng, Gary J.; Chi, Lifeng

    2017-01-01

    Random lasing is desired in plasmonics nanostructures through surface plasmon amplification. In this study, tunable random lasing behavior was observed in dye molecules attached with Au nanorods (NRs), Au nanoparticles (NPs) and Au@Ag nanorods (NRs) respectively. Our experimental investigations showed that all nanostructures i.e., Au@AgNRs, AuNRs & AuNPs have intensive tunable spectral effects. The random lasing has been observed at excitation wavelength 532 nm and varying pump powers. The best random lasing properties were noticed in Au@AgNRs structure, which exhibits broad absorption spectrum, sufficiently overlapping with that of dye Rhodamine B (RhB). Au@AgNRs significantly enhance the tunable spectral behavior through localized electromagnetic field and scattering. The random lasing in Au@AgNRs provides an efficient coherent feedback for random lasers.

  14. Theoretical prediction of a new stable structure of Au28(SR)20 cluster

    NASA Astrophysics Data System (ADS)

    Sun, Xiangxiang; Wang, Pu; Xiong, Lin; Pei, Yong

    2018-07-01

    A new stable structure of Au28(SR)20 cluster is predicted, which has the same gold core as two known structures but different Au-S framework. The new Au28(SR)20 cluster is proposed to be a key link in the evolution of Au22(SR)18, Au34(SR)22 and Au40(SR)24 clusters. The four clusters belong to a homogenous Au16+6N(SR)16+2N series (N = 1-4). The relative stabilities of the new Au28 isomer structure were confirmed by density functional theory calculations including dispersion corrections (DFT-D). It is found that upon protection of certain SR ligands, the new isomer structure has lower or comparable energies to two known cluster structures.

  15. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  16. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  17. Protocols for Scholarly Communication

    NASA Astrophysics Data System (ADS)

    Pepe, A.; Yeomans, J.

    2007-10-01

    CERN, the European Organization for Nuclear Research, has operated an institutional preprint repository for more than 10 years. The repository contains over 850,000 records of which more than 450,000 are full-text OA preprints, mostly in the field of particle physics, and it is integrated with the library's holdings of books, conference proceedings, journals and other grey literature. In order to encourage effective propagation and open access to scholarly material, CERN is implementing a range of innovative library services into its document repository: automatic keywording, reference extraction, collaborative management tools and bibliometric tools. Some of these services, such as user reviewing and automatic metadata extraction, could make up an interesting testbed for future publishing solutions and certainly provide an exciting environment for e-science possibilities. The future protocol for scientific communication should guide authors naturally towards OA publication, and CERN wants to help reach a full open access publishing environment for the particle physics community and related sciences in the next few years.

  18. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  19. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    NASA Astrophysics Data System (ADS)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  20. Chicago Ebola Response Network (CERN): A Citywide Cross-hospital Collaborative for Infectious Disease Preparedness.

    PubMed

    Lateef, Omar; Hota, Bala; Landon, Emily; Kociolek, Larry K; Morita, Julie; Black, Stephanie; Noskin, Gary; Kelleher, Michael; Curell, Krista; Galat, Amy; Ansell, David; Segreti, John; Weber, Stephen G

    2015-11-15

    The 2014-2015 Ebola virus disease (EVD) epidemic and international public health emergency has been referred to as a "black swan" event, or an event that is unlikely, hard to predict, and highly impactful once it occurs. The Chicago Ebola Response Network (CERN) was formed in response to EVD and is capable of receiving and managing new cases of EVD, while also laying the foundation for a public health network that can anticipate, manage, and prevent the next black swan public health event. By sharing expertise, risk, and resources among 4 major academic centers, Chicago created a sustainable network to respond to the latest in a series of public health emergencies. In this respect, CERN is a roadmap for how a region can prepare to respond to public health emergencies, thereby preventing negative impacts through planning and implementation. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    NASA Astrophysics Data System (ADS)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  2. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys.

    PubMed

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-19

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn 2 ][Ir(NO 2 ) 6 ], [AuEn 2 ][Ir(NO 2 ) 6 ] х [Rh(NO 2 ) 6 ] 1-х and [AuEn 2 ][Rh(NO 2 ) 6 ]. The precursors employed contain all desired metals 'mixed' at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr 0.75 Rh 0.25 , AuIr 0.50 Rh 0.50 and AuIr 0.25 Rh 0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the 'conversion chemistry' mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  3. Selection and Socialization Effects in Early Adolescent Alcohol Use: A Propensity Score Analysis

    PubMed Central

    Scalco, Matthew D.; Trucco, Elisa M.; Coffman, Donna L.; Colder, Craig R.

    2015-01-01

    The robust correlation between peer and adolescent alcohol use (AU) has been taken as evidence for both socialization and selection processes in the etiology of adolescent AU. Accumulating evidence from studies using a diverse range of methodological and statistical approaches suggests that both processes are involved. A major challenge in testing whether peer AU predicts an adolescent's drinking (socialization) or whether an adolescent's drinking predicts peer AU (selection) is the myriad of potentially confounding factors that might lead to an overestimation of socialization and selection effects. After creating AU transition groups based on peer and adolescent AU across two waves (N = 765; age = 10-15; 53% female), we test whether transitions into AU by adolescents and peers predict later peer and adolescent AU respectively, using (1) propensity score analysis to balance transition groups on 26 potential confounds, (2) a longitudinal design with three waves to establish temporal precedence, and (3) both adolescent (target) and peer self-report of peer AU to disentangle effects attributable to shared reporter bias. Both selection and socialization were supported using both peer self-report of AU and adolescent-report of peer AU. Although cross-sectional analyses suggested peer self-reported models were associated with smaller effects than perceived peer AU, longitudinal analyses suggest a similar sized effect across reporter of peer AU for both selection and socialization. The implications of these findings for the etiology and treatment of adolescent AU are discussed. PMID:25601099

  4. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  5. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24.

    PubMed

    Zeng, Chenjie; Liu, Chunyan; Pei, Yong; Jin, Rongchao

    2013-07-23

    We report a disproportionation mechanism identified in the transformation of rod-like biicosahedral Au38(SCH2CH2Ph)24 to tetrahedral Au36(TBBT)24 nanoclusters. Time-dependent mass spectrometry and optical spectroscopy analyses unambiguously map out the detailed size-conversion pathway. The ligand exchange of Au38(SCH2CH2Ph)24 with bulkier 4-tert-butylbenzenethiol (TBBT) until a certain extent starts to trigger structural distortion of the initial biicosahedral Au38(SCH2CH2Ph)24 structure, leading to the release of two Au atoms and eventually the Au36(TBBT)24 nanocluster with a tetrahedral structure, in which process the number of ligands is interestingly preserved. The other product of the disproportionation process, i.e., Au40(TBBT)m+2(SCH2CH2Ph)24-m, was concurrently observed as an intermediate, which was the result of addition of two Au atoms and two TBBT ligands to Au38(TBBT)m(SCH2CH2Ph)24-m. The reaction kinetics on the Au38(SCH2CH2Ph)24 to Au36(TBBT)24 conversion process was also performed, and the activation energies of the structural distortion and disproportionation steps were estimated to be 76 and 94 kJ/mol, respectively. The optical absorption features of Au36(TBBT)24 are interpreted on the basis of density functional theory simulations.

  6. Uncommon and Emissive {[Au2(C3H6NS2)2][Au(C3H6NS2)2]2(PF6)2} Mixed Au+ and Au3+ Pseudotetranuclear Crystalline Compound: Synthesis, Structural Characterization, and Optical Properties.

    PubMed

    Langaro, Ana P; Souza, Ana K R; Morassuti, Claudio Y; Lima, Sandro M; Casagrande, Gleison A; Deflon, Victor M; Nunes, Luiz A O; Da Cunha Andrade, Luis H

    2016-11-23

    An uncommon emissive pseudotetranuclear compound, {[Au 2 (C 3 H 6 NS 2 ) 2 ][Au(C 3 H 6 NS 2 ) 2 ] 2 (PF 6 ) 2 }, was synthesized and characterized in terms of its structure and optical properties. The synthesis produced a crystalline compound composed of four gold atoms with two different oxidation states (Au + and Au 3+ ) in the same crystalline structure. The title complex belonged to a triclinic crystalline system involving the centrosymmetric P1̅ space group. X-ray diffractometry and vibrational spectroscopy (infrared, Raman, and SERS) were used for structural characterization of the new crystal. The vibrational spectroscopy techniques supported the X-ray diffraction results and confirmed the presence of bonds including Au-Au and Au-S. Optical characterization performed using UV-vis spectroscopy showed that under ultraviolet excitation, the emissive crystalline complex presented characteristic broad luminescent bands centered at 420 and 670 nm.

  7. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions.

    PubMed

    Arshadi, M; Mousavi, S M; Rasoulnia, P

    2016-11-01

    Bioleaching of Au from mobile phone printed circuit boards (MPPCBs) was studied, using Bacillus megaterium which is a cyanogenic bacterium. To maximize Au extraction, initial pH, pulp density, and glycine concentration were optimized via response surface methodology (RSM). Bioleaching of Cu, an important inhibitor on Au recovery, was also examined. To maximize Au recovery, the optimal condition suggested by the models was initial pH of 10, pulp density of 8.13g/l, and glycine concentration of 10g/l. Under the optimal condition, approximately 72% of Cu and 65g Au/ton MPPCBs, which is 7 times greater than the recovery from gold mines, was extracted. Cu elimination from the MPPCBs having a rich content of Au did not cause a significant effect on Au recovery. It was found that when the ratio of Cu to Au is high, Cu elimination can considerably improve Au recovery. B. megaterium could extract the total Au from PCBs containing 130g Au/ton MPPCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.

    PubMed

    Hartadi, Yeusy; Widmann, Daniel; Behm, R Jürgen

    2015-02-01

    The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO. Furthermore, measurements on Au/ZnO samples with different Au particle sizes reveal distinct Au particle size effects: although the activity increases strongly with the decreasing particle size, the selectivity decreases. The consequences of these findings for the reaction mechanism and for the potential of Au/ZnO catalysts for chemical energy storage and a "green" methanol technology are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  10. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  11. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    PubMed

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  12. Analyzing the electrooxidation of ethylene glycol and glucose over platinum-modified gold electrocatalysts in alkaline electrolyte using in-situ infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahoney, Elizabeth G.; Sheng, Wenchao; Cheng, Mei; Lee, Kevin X.; Yan, Yushan; Chen, Jingguang G.

    2016-02-01

    Platinum modified gold (Pt/Au) catalysts are evaluated for the electrooxidation of ethylene glycol (EG) and glucose (Glc). The Pt/Au catalysts are synthesized on an Au disk and supported Au/C particles through the galvanic displacement of a copper monolayer with Pt. The Pt/Au catalysts are compared to monometallic Pt and Au catalysts for the oxidation of EG and Glc in alkaline electrolyte. The Pt/Au disk has an onset potential for these reactions that is similar to Pt and is lower than Au. The supported catalysts are less active toward the electrooxidation of EG and Glc than the corresponding disk electrodes, but the Pt/Au/C also has an onset potential similar to Pt/C. In-situ FTIR is used to analyze the C-C bond scission in both reactions on the surfaces of Pt, Au, and Pt/Au disks. While the Pt/Au disk is found to have a low onset potential for the oxidation of EG, it does not produce as much CO2 as bulk Pt. On the other hand, the FTIR results show that CO2 is produced for the oxidation of Glc on the Pt/Au disk. These results show promise for the possibility of decreasing the amount of Pt needed for the electrooxidation of polyol molecules.

  13. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  14. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  16. x509-free access to WLCG resources

    NASA Astrophysics Data System (ADS)

    Short, H.; Manzi, A.; De Notaris, V.; Keeble, O.; Kiryanov, A.; Mikkonen, H.; Tedesco, P.; Wartel, R.

    2017-10-01

    Access to WLCG resources is authenticated using an x509 and PKI infrastructure. Even though HEP users have always been exposed to certificates directly, the development of modern Web Applications by the LHC experiments calls for simplified authentication processes keeping the underlying software unmodified. In this work we will show a solution with the goal of providing access to WLCG resources using the user’s home organisations credentials, without the need for user-acquired x509 certificates. In particular, we focus on identity providers within eduGAIN, which interconnects research and education organisations worldwide, and enables the trustworthy exchange of identity-related information. eduGAIN has been integrated at CERN in the SSO infrastructure so that users can authenticate without the need of a CERN account. This solution achieves x509-free access to Grid resources with the help of two services: STS and an online CA. The STS (Security Token Service) allows credential translation from the SAML2 format used by Identity Federations to the VOMS-enabled x509 used by most of the Grid. The IOTA CA (Identifier-Only Trust Assurance Certification Authority) is responsible for the automatic issuing of short-lived x509 certificates. The IOTA CA deployed at CERN has been accepted by EUGridPMA as the CERN LCG IOTA CA, included in the IGTF trust anchor distribution and installed by the sites in WLCG. We will also describe the first pilot projects which are integrating the solution.

  17. EOS developments

    NASA Astrophysics Data System (ADS)

    Sindrilaru, Elvin A.; Peters, Andreas J.; Adde, Geoffray M.; Duellmann, Dirk

    2017-10-01

    CERN has been developing and operating EOS as a disk storage solution successfully for over 6 years. The CERN deployment provides 135 PB and stores 1.2 billion replicas distributed over two computer centres. Deployment includes four LHC instances, a shared instance for smaller experiments and since last year an instance for individual user data as well. The user instance represents the backbone of the CERNBOX service for file sharing. New use cases like synchronisation and sharing, the planned migration to reduce AFS usage at CERN and the continuous growth has brought EOS to new challenges. Recent developments include the integration and evaluation of various technologies to do the transition from a single active in-memory namespace to a scale-out implementation distributed over many meta-data servers. The new architecture aims to separate the data from the application logic and user interface code, thus providing flexibility and scalability to the namespace component. Another important goal is to provide EOS as a CERN-wide mounted filesystem with strong authentication making it a single storage repository accessible via various services and front- ends (/eos initiative). This required new developments in the security infrastructure of the EOS FUSE implementation. Furthermore, there were a series of improvements targeting the end-user experience like tighter consistency and latency optimisations. In collaboration with Seagate as Openlab partner, EOS has a complete integration of OpenKinetic object drive cluster as a high-throughput, high-availability, low-cost storage solution. This contribution will discuss these three main development projects and present new performance metrics.

  18. Structures and magnetic properties of Fe and Ni monoatomic chains encapsulated by an Au nanotube

    NASA Astrophysics Data System (ADS)

    Han, Zhi-Dong; Li, Xiu-Yan; Yang, Zhi; Liu, Rui-Ping; Liu, Shao-Ding; Zhang, Ying

    2012-11-01

    Structures and magnetic properties of transition metal (TM) Fe or Ni monoatomic chains (MACs) encapsulated by a Au (5, 5) nanotube (Fe@Au and Ni@Au) are investigated using the density functional theory (DFT). The calculated results show that both Fe@Au and Ni@Au prefer to adopt ferromagnetic (FM) orders as ground states. In particular, the Fe@Au keeps the magnetic properties of free-standing Fe MAC, indicating that this system may be viewed as a new candidate in electromagnetic devices.

  19. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  20. Fabrication of Au 25(SG) 18–ZIF-8 Nanocomposites: A Facile Strategy to Position Au 25(SG) 18 Nanoclusters Inside and Outside ZIF-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25(SG) 18 with ZIF-8 (Zn(MeIm) 2, MeIm = 2-methylimidazole), is developed in this paper via the typical Zn-carboxylate type of linkage. Au 25(SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25(SG) 18@ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25(SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25(SG) 18/ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption–desorption isothermal analysis and thermal gravimetric analysis. The distribution ofmore » Au 25(SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25(SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25(SG) 18 nanoclusters (NCs). Au 25(SG) 18@ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. Finally, the structural distinction between Au 25(SG) 18@ZIF-8 and Au 25(SG) 18/ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25(SG) 18 for applications in bioimaging and biotherapy.« less

  1. Fabrication of Au 25(SG) 18–ZIF-8 Nanocomposites: A Facile Strategy to Position Au 25(SG) 18 Nanoclusters Inside and Outside ZIF-8

    DOE PAGES

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian; ...

    2017-12-22

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25(SG) 18 with ZIF-8 (Zn(MeIm) 2, MeIm = 2-methylimidazole), is developed in this paper via the typical Zn-carboxylate type of linkage. Au 25(SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25(SG) 18@ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25(SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25(SG) 18/ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption–desorption isothermal analysis and thermal gravimetric analysis. The distribution ofmore » Au 25(SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25(SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25(SG) 18 nanoclusters (NCs). Au 25(SG) 18@ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. Finally, the structural distinction between Au 25(SG) 18@ZIF-8 and Au 25(SG) 18/ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25(SG) 18 for applications in bioimaging and biotherapy.« less

  2. Fabrication of Au25 (SG)18 -ZIF-8 Nanocomposites: A Facile Strategy to Position Au25 (SG)18 Nanoclusters Inside and Outside ZIF-8.

    PubMed

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian; Wu, Zili; Cullen, David A; Liang, Chaolun; Shi, Jianying; Su, Chengyong

    2018-02-01

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25 (SG) 18 with ZIF-8 (Zn(MeIm) 2 , MeIm = 2-methylimidazole), is developed via the typical Zn-carboxylate type of linkage. Au 25 (SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25 (SG) 18 @ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25 (SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25 (SG) 18 /ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption-desorption isothermal analysis and thermal gravimetric analysis. The distribution of Au 25 (SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25 (SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25 (SG) 18 nanoclusters (NCs). Au 25 (SG) 18 @ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. The structural distinction between Au 25 (SG) 18 @ZIF-8 and Au 25 (SG) 18 /ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25 (SG) 18 for applications in bioimaging and biotherapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE PAGES

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan; ...

    2017-09-26

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  4. Long Term Measurement of the Vapor Pressure of Gold in the Au-C System

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.

    2009-01-01

    Incorporating the {Au(s,l) + graphite} reference in component activity measurements made with the multiple effusion-cell vapor source mass spectrometry (multicell KEMS) technique provides a fixed temperature defining ITS-90 (T(sub mp)(Au) = 1337.33K) and a systematic method to check accuracy. Over a 2 year period delta H sub(298)Au was determined by the 2nd and 3rd law methods in 25 separate experiments and were in the ranges 362.2 plus or minus 3.3 kJmol(sup -1) and 367.8 plus or minus 1.1 kJmol(sup -1), respectively. This 5 kJmol-1 discrepancy is transferred directly to the measured activities. This is unacceptable and the source of this discrepancy needs to be understood and corrected. Accepting the 2nd law value increases p(Au) by about 50 percent, brings the 2nd and 3rd law values into agreement and removes the T dependence in the 3rd law values. While compelling, there is no way to independently determine instrument sensitivities, S(sub Au), with T in a single experiment with KEMS. This lack of capability is stopping a deeper understanding of this problem. In addition, the Au-C phase diagram suggests a eutectic invariant reaction: L-Au(4.7at%C) = FCC-Au(0.08at%C) + C(graphite) at T(sub e) approximately 1323K. This high C concentration in Au(l) must reduce p(Au) in equilibrium with {Au(s,l) + graphite} and raises some critical questions about the Gibbs free energy functions of Au(s,l) and the Au fixed point (T(sub mp)(Au) = 1337.33K) which is always measured in graphite.

  5. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  6. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  7. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin

    2012-10-01

    A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers. Electronic supplementary information (ESI) available: Additional flow cytometry histogram profiles of DOX fluorescence and ASCL1 knockdown results. See DOI: 10.1039/c2nr31853a

  8. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    PubMed

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  9. A spectrophotometric study of aqueous Au(III) halide-hydroxide complexes at 25-80 °C

    NASA Astrophysics Data System (ADS)

    Usher, Al; McPhail, D. C.; Brugger, Joël

    2009-06-01

    The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl 3Br] -, [AuCl 2Br 2] -, [AuBr 3Cl] - and [AuBr 4] -; [AuCl 3(OH)] -, [AuCl 2(OH) 2] -, [AuCl(OH) 3] - and [Au(OH) 4] -; and [AuBr 3(OH)] -, [AuBr 2(OH) 2] - and [AuBr(OH) 3] -. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl (4-n)(OH) n] - series of complexes ( n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I -) was found to be unstable in the presence of Au(III), oxidizing rapidly to I 2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.

  10. R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi): A link between Cu 10Sn 3 and Gd 14Ag 51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia

    A new series of intermetallic compounds R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R 3Au 9 Pn compounds crystallize in the hexagonal crystal system with space group P6 3/m (a = 8.08–8.24 Å, c = 8.98–9.08 Å). All compounds feature Au- Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au 6 and Sb@Au 6 trigonal antiprisms of overall composition Aumore » 6/2 Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R 3Au 7Sn 3 (a ternary ordered derivative of the Cu 10Sn 3-structure type), but no example of R 3Au 9M is known when M is a triel or tetrel element. R 3Au 9 Pn also contains Au@Au 6Au 2 R 3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R 14Au 51 series. This structural motif, not present in R 3Au 7Sn 3, represents a previously unrecognized link between Cu 10Sn 3 and Gd 14Ag 51 parent structure types. Magnetic property measurements carried out for Ho 3Au 9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature ( T N = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials’ properties and to shed some light on the stability ranges. As a result, this allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.« less

  11. R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi): A link between Cu 10Sn 3 and Gd 14Ag 51

    DOE PAGES

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...

    2017-06-05

    A new series of intermetallic compounds R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R 3Au 9 Pn compounds crystallize in the hexagonal crystal system with space group P6 3/m (a = 8.08–8.24 Å, c = 8.98–9.08 Å). All compounds feature Au- Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au 6 and Sb@Au 6 trigonal antiprisms of overall composition Aumore » 6/2 Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R 3Au 7Sn 3 (a ternary ordered derivative of the Cu 10Sn 3-structure type), but no example of R 3Au 9M is known when M is a triel or tetrel element. R 3Au 9 Pn also contains Au@Au 6Au 2 R 3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R 14Au 51 series. This structural motif, not present in R 3Au 7Sn 3, represents a previously unrecognized link between Cu 10Sn 3 and Gd 14Ag 51 parent structure types. Magnetic property measurements carried out for Ho 3Au 9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature ( T N = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials’ properties and to shed some light on the stability ranges. As a result, this allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.« less

  12. Avoiding Thiol Compound Interference: A Nanoplatform Based on High-Fidelity Au-Se Bonds for Biological Applications.

    PubMed

    Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo

    2018-05-04

    Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.

    PubMed

    Zhang, Zhen; Sèbe, Gilles; Wang, Xiaosong; Tam, Kam C

    2018-02-15

    pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation of Au Nanoclusters-Modified Polylactic Acid Fiber with Bright Red Fluorescence and its Use as Sensing Probe.

    PubMed

    Zhu, Wenli; Li, Huili; Wan, Ajun; Liu, Lanbo

    2017-01-01

    In present work, the Au nanoclusters-modified polylactic acid fiber (PLA-Au NCs) with bright red fluorescence were fabricated by the encapsulation of Au nanoclusters (Au NCs) in the PLA fiber treated with H 2 O 2 . The Au 25 nanoclusters stabilized by bovine serum albumin (BSA-Au NCs) were prepared via an improved "green" synthetic routine. With pretreatment of the PLA fiber in H 2 O 2 concentration of 12 and 18 %, the as-prepared PLA-Au NCs exhibited brighter red emission with a strong peak centered at ~640 nm than BSA-Au NCs. The fluorescence can be quenched by nitric oxide (NO). A good linear relationship between the relative fluorescence quenching intensity of the as-prepared PLA-Au NCs and the concentration of NO can be obtained in the range of 0.0732 to 0.7320 mM, and the detection limit was 0.0070 mM.

  15. {phi} meson production in Au + Au and p + p collisions at {radical}s{sub NN}=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2004-06-01

    We report the STAR measurement of {psi} meson production in Au + Au and p + p collisions at {radical}s{sub NN} = 200 GeV. Using the event mixing technique, the {psi} spectra and yields are obtained at midrapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the {psi} transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that {psi} production in central Au+Au collisions is suppressed relative to peripheral collisions when scaledmore » by the number of binary collisions (). The systematics of versus centrality and the constant {psi}/K{sup -} ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for {psi} production.« less

  16. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  17. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles.

    PubMed

    Li, Yang; Monteiro-Riviere, Nancy A

    2016-12-01

    To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.

  18. The landscape of particle production: results from PHOBOS

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Recent results from the PHOBOS experiment at RHIC are presented, both from Au+Au collisions from the 2001 run and p+p and d+Au collisions from 2003. The centrality dependence of the total charged-particle multiplicity in p+p and d+Au shows features, such as Npart scaling and limiting fragmentation, similar to p+A collisions at lower energies. Multiparticle physics in Au+Au is found to be local in (pseudo)rapidity, both when observed by HBT correlations and by forward-backward pseudorapidity correlations. The shape of elliptic flow in Au+Au, measured over the full range of pseudorapidity, appears to have a very weak centrality dependence. Identified particle ratios in d+Au reactions show little difference between the shape of proton and anti-proton spectra, while the absolute yields show an approximate mT scaling. Finally, results on RdAu as a function of pseudorapidity show that this ratio decreases monotonically with η, even between 0.2 < η < 1.4.

  19. The diagnostic and clinical significance of café-au-lait macules.

    PubMed

    Shah, Kara N

    2010-10-01

    Café-au-lait, also referred to as café-au-lait spots or café-au-lait macules, present as well-circumscribed, evenly pigmented macules and patches that range in size from 1 to 2 mm to greater than 20 cm in greatest diameter. Café-au-lait are common in children. Although most café-au-lait present as 1 or 2 spots in an otherwise healthy child, the presence of multiple café-au-lait, large segmental café-au-lait, associated facial dysmorphism, other cutaneous anomalies, or unusual findings on physical examination should suggest the possibility of an associated syndrome. While neurofibromatosis type 1 is the most common syndrome seen in children with multiple café-au-lait, other syndromes associated with one or more café-au-lait include McCune-Albright syndrome, Legius syndrome, Noonan syndrome and other neuro-cardio-facialcutaneous syndromes, ring chromosome syndromes, and constitutional mismatch repair deficiency syndrome. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06847a

Top