Sample records for au nps functionalized

  1. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  2. Gold nanoparticles on titanium and interaction with prototype protein.

    PubMed

    Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng

    2010-10-01

    Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  3. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    PubMed Central

    Rianasari, Ina; de Jong, Michel P.; Huskens, Jurriaan; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate. PMID:23434666

  4. 2,3-Pyridine dicarboxylic acid functionalized gold nanoparticles: Insight into experimental conditions for Cr3 + sensing

    NASA Astrophysics Data System (ADS)

    Shaikh, Ruqaya; Memon, Najma; Solangi, Amber R.; Shaikh, Huma I.; Agheem, Muhammad Hassan; Ali, Syed Abid; Shah, Muhammad Raza; Kandhro, Aftab

    2017-02-01

    Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3 +. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11 nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3 + induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3 + shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518 nm). Moreover, to demonstrate the applicability of method, Cr3 + was determined in the presence of Cr (VI) which shows 96% recovery.

  5. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  6. Multitechnique characterization of oligo(ethylene glycol) functionalized gold nanoparticles.

    PubMed

    Rafati, Ali; Shard, Alexander G; Castner, David G

    2016-11-09

    Gold nanoparticles (AuNPs) with average diameters of ∼14 and ∼40 nm, as well as flat gold coated silicon wafers, were functionalized with oligo ethylene glycol (OEG) terminated 1-undecanethiol (HS-CH 2 ) 11 self-assembled monolayers (SAMs). Both hydroxyl [(OEG) 4 OH] and methoxy [(OEG) 4 OMe] terminated SAMs were prepared. The AuNPs were characterized with transmission electron microscopy (TEM), time of flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier infrared spectroscopy (ATR-FTIR), and low-energy ion scattering (LEIS). These studies provided quantitative information about the OEG functionalized AuNPs. TEM showed the 14 nm AuNPs were more spherical and had a narrower size distribution than the 40 nm AuNPs. ToF-SIMS clearly differentiated between the two OEG SAMs based on the C 3 H 7 O + peak attributed to the methoxy group in the OMe terminated SAMs as well as the different masses of the [Au + M] - ion (M = mass of the thiol molecule) from each type of SAM. Overlayer/substrate ratios quantitatively determined with XPS show a greater proportion of OEG units at the surface of 40 nm AuNPs compared to the 14 nm AuNPs. ATR-FTIR suggested the C11 backbone of the two SAMs on both AuNPs are similar and crystalline, but the OEG head groups are more crystalline on the 40 nm AuNPs compared to the 14 nm AuNPs. This indicated a better ordered SAM present at the surface of the larger, more irregular particles due to greater ordering of the OEG groups. This was consistent with the XPS and LEIS results, which showed a 30% thicker SAM was formed on the 40 nm AuNPs compared to the 14 nm AuNPs. The OH or OMe functionality did not have a significant effect on the ordering and thickness of the OEG SAMs.

  7. Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-11-01

    In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, l-cysteine-AuNPs and l-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, l-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was 11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

  8. Functionalization and Characterization of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Techane, Sirnegeda D.

    2011-12-01

    Surface characterization of gold nanoparticles (AuNPs) is necessary to obtain a thorough understanding of the AuNP properties and ultimately realize their full potential in applications. The work described in this dissertation strives to the structure and composition of AuNPs using highly surface sensitive techniques such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) in addition to the more widely used characterization techniques such as transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and UV-VIS spectroscopy. Self-assembled monolayers (SAMs) of alkanethiols were used to modify AuNPs surfaces to create positively and negatively charged surfaces. Functionalization with carboxylic acid terminated alkanethiol SAMs (COON-SAMs) was first optimized to produce clean and stable negatively charged AuNPs. Using 14nm and 40nm diameter AuNPs in combination with C11 and C16 chain length COOH-SAMs, it was found that addition of NH4OH during functionalization coupled with dialysis purification produced AuNPs that did not aggregate and did not have unbound thiols. Effects of AuNP size and COOH-SAM chain lengths were studied using 14, 25 and 40nm average diameter AuNPs functionalized with C6, C8, C11 and C16 COOH-SAMs. Flat Au surfaces were also functionalized with the COOH-SAMs for comparison. It was shown that the 14nm AuNPs with C16 COOH-SAMs were the most stable and had crystalline-like, well-ordered SAM structures. The SAMs on the 40nm AuNPs had similar surface chemistry as the SAMs on the flat Au surfaces. The effective photoelectron take-off angle of the C16 COOH-SAM decreased when the size of the AuNP increased. It was also shown that when using Kratos AxisUltra DLD XPS instrument in the hybrid mode, it was important to consider effects of both the hybrid mode and the AuNPs curvature when calculating overlayer thickness of the SAMs on AuNPs. Using the Kratos in the electrostatic mode, the overlayer thickness of C16 COON-SAM was 21A on a flat Au surface, which was comparable with previously reported values. However, the apparent thickness of the same SAM on the 14nm AuNPs was 31A, indicating the curvature of the AuNPs had an effect on the XPS measurements. To produce the positively charged AuNP surfaces, amine terminated alkanethiols (NH2 -thiols) with a C2 chain length were used in one-step AuNP synthesis and functionalization process followed by a ligand-exchange reaction with C11 chain length NH2-thiols. It was found that 14 days were needed for the ligand-exchange to be complete. After the ligand-exchange, it was found that the AuNPs with C11 NH2-SAMs were stable and could be purified, unlike AuNPs with C2 NH2-SAMs which aggregated upon purification. The C11 NH2-SAMs had both unbound and oxidized sulfur, which could be removed/converted after hydrochloric acid treatment. SESSA (simulation of electron spectra for surface analysis) allowed better interpretation of the XPS data of SAMs on AuNPs and flat Au. Comparing SESSA and experimental XPS data, it was found that C16 COON-SAM on a flat Au surface was 20A thick with a 1.5A hydrocarbon contamination overlayer and 1.05 relative surface roughness. After geometric weighing of angle-resolved XPS and SESSA data, it was found that C16 COOH-SAMs on 14nm AuNPs were 17A thick with a 1.5A hydrocarbon contamination. The decreased SAM thickness on the AuNPs is likely due to an increased tilt angle of the alkane chains or increased disorder in the SAM.

  9. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    PubMed

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  10. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.

    PubMed

    Tlotleng, Nonhlanhla; Vetten, Melissa A; Keter, Frankline K; Skepu, Amanda; Tshikhudo, Robert; Gulumian, Mary

    2016-08-01

    Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs.

  11. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    PubMed Central

    Huang, Jian-Lin

    2013-01-01

    Summary We decorated HS-functionalized cellulose nanocrystallite (CNC) films with monodisperse Au nanoparticles (AuNPs) to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS-) group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS), TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling) either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis. PMID:23946833

  12. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy.

    PubMed

    Qiao, Yuhui; Zhu, Baoling; Tian, Aiju; Li, Zijian

    2017-01-01

    Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β 1 -AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).

  13. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    PubMed

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    NASA Astrophysics Data System (ADS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-09-01

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  15. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  16. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

    PubMed Central

    Techane, Sirnegeda D.; Gamble, Lara J.; Castner, David G.

    2011-01-01

    Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (∼15%) and oxidized sulfur (∼20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. PMID:21974680

  17. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart.

    PubMed

    Yang, Chengzhi; Yang, Hui; Wu, Jimin; Meng, Zenghui; Xing, Rui; Tian, Aiju; Tian, Xin; Guo, Lijun; Zhang, Youyi; Nie, Guangjun; Li, Zijian

    2013-10-24

    In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. A biomolecular recognition approach for the functionalization of cellulose with gold nanoparticles.

    PubMed

    Almeida, A; Rosa, A M M; Azevedo, A M; Prazeres, D M F

    2017-09-01

    Materials with new and improved functionalities can be obtained by modifying cellulose with gold nanoparticles (AuNPs) via the in situ reduction of a gold precursor or the deposition or covalent immobilization of pre-synthesized AuNPs. Here, we present an alternative biomolecular recognition approach to functionalize cellulose with biotin-AuNPs that relies on a complex of 2 recognition elements: a ZZ-CBM3 fusion that combines a carbohydrate-binding module (CBM) with the ZZ fragment of the staphylococcal protein A and an anti-biotin antibody. Paper and cellulose microparticles with AuNPs immobilized via the ZZ-CBM3:anti-biotin IgG supramolecular complex displayed an intense red color, whereas essentially no color was detected when AuNPs were deposited over the unmodified materials. Scanning electron microscopy analysis revealed a homogeneous distribution of AuNPs when immobilized via ZZ-CBM3:anti-biotin IgG complexes and aggregation of AuNPs when deposited over paper, suggesting that color differences are due to interparticle plasmon coupling effects. The approach could be used to functionalize paper substrates and cellulose nanocrystals with AuNPs. More important, however, is the fact that the occurrence of a biomolecular recognition event between the CBM-immobilized antibody and its specific, AuNP-conjugated antigen is signaled by red color. This opens up the way for the development of simple and straightforward paper/cellulose-based tests where detection of a target analyte can be made by direct use of color signaling. Copyright © 2017 John Wiley & Sons, Ltd.

  19. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Nan; Zhang, Xia; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2015-01-01

    A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O82-/O2) system. For signal tag fabrication, the C60 nanoparticles (C60NPs) were prepared and then coated with 3,4,9,10-perylene tetracarboxylic acid (PTCA) by π-π stacking interactions. Afterwards, thiosemicarbazide (TSC) was linked with PTCA functionalized C60NPs via amidation for further assembling Au nanoparticles (AuNPs). Finally, detection aptamer of thrombin (TBA 2) was labeled on the ECL signal amplification tag of AuNPs/TSC-PTC/C60NPs. Herein, TSC, with the active groups of -NH2 and -SH, was selected and introduced into the ECL S2O82-/O2 system for the first time, which could not only offer the active groups of -SH to absorb AuNPs for TBA 2 anchoring but also remarkably enhance the ECL signal of the S2O82-/O2 system by the formation of TSC-PTC/C60NPs for signal amplification. Meanwhile, the sensing interface of a glassy carbon electrode (GCE) was modified by AuNPs/graphene (AuNPs/GR) nanocomposites with the large specific surface area and the active sites, followed by immobilization of thiol-terminated thrombin capture aptamer (TBA 1). With the formation of the sandwich-type structure of TBA 1, TB, and TBA 2 signal probes, a desirable enhanced ECL signal was measured in the testing buffer of an S2O82-/O2 solution for detecting TB. The aptasensor exhibited a good linear relationship for TB detection in the range of 1 × 10-5-10 nM with a detection limit of 3.3 fM.A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O82-/O2) system. For signal tag fabrication, the C60 nanoparticles (C60NPs) were prepared and then coated with 3,4,9,10-perylene tetracarboxylic acid (PTCA) by π-π stacking interactions. Afterwards, thiosemicarbazide (TSC) was linked with PTCA functionalized C60NPs via amidation for further assembling Au nanoparticles (AuNPs). Finally, detection aptamer of thrombin (TBA 2) was labeled on the ECL signal amplification tag of AuNPs/TSC-PTC/C60NPs. Herein, TSC, with the active groups of -NH2 and -SH, was selected and introduced into the ECL S2O82-/O2 system for the first time, which could not only offer the active groups of -SH to absorb AuNPs for TBA 2 anchoring but also remarkably enhance the ECL signal of the S2O82-/O2 system by the formation of TSC-PTC/C60NPs for signal amplification. Meanwhile, the sensing interface of a glassy carbon electrode (GCE) was modified by AuNPs/graphene (AuNPs/GR) nanocomposites with the large specific surface area and the active sites, followed by immobilization of thiol-terminated thrombin capture aptamer (TBA 1). With the formation of the sandwich-type structure of TBA 1, TB, and TBA 2 signal probes, a desirable enhanced ECL signal was measured in the testing buffer of an S2O82-/O2 solution for detecting TB. The aptasensor exhibited a good linear relationship for TB detection in the range of 1 × 10-5-10 nM with a detection limit of 3.3 fM. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05918b

  20. Surface functionalities of gold nanoparticles impact embryonic gene expression responses

    PubMed Central

    Truong, Lisa; Tilton, Susan C.; Zaikova, Tatiana; Richman, Erik; Waters, Katrina M.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Incorporation of gold nanoparticles (AuNPs) into consumer products is increasing; however, there is a gap in available toxicological data to determine the safety of AuNPs. In this study, we utilised the embryonic zebrafish to investigate how surface functionalisation and charge influence molecular responses. Precisely engineered AuNPs with 1.5 nm cores were synthesised and functionalized with three ligands: 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol. Developmental assessments revealed differential biological responses when embryos were exposed to the functionalised AuNPs at the same concentration. Using inductively coupled plasma–mass spectrometry, AuNP uptake was confirmed in exposed embryos. Following exposure to MES- and TMAT-AuNPs from 6 to 24 or 6 to 48 h post fertilisation, pathways involved in inflammation and immune response were perturbed. Additionally, transport mechanisms were misregulated after exposure to TMAT and MES-AuNPs, demonstrating that surface functionalisation influences many molecular pathways. PMID:22263968

  1. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  2. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  3. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a

  4. Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles

    PubMed Central

    Kodiha, Mohamed; Wang, Yi Meng; Hutter, Eliza; Maysinger, Dusica; Stochaj, Ursula

    2015-01-01

    Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment. PMID:25699096

  5. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  6. Bio-prospective of Polyscias fruticosa leaf extract as redactor and stabilizer of gold nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Yulizar, Y.; Ayun, Q.

    2017-03-01

    Metal nanoparticle is a great interest to researches due to its applications toward catalysis, sensors, and drug delivery. Biosynthesis of gold nanoparticles (AuNPs) using aqueous leaf extract of Polycias fruticosa (PFE) is reported in this article. PFE plays a role as reductor and stabilizer of AuNPs. The formation of PFE-AuNPs under radiation of natrium lamp for 15 min was monitored by UV - Vis spectrophotometer. The growth process and stability of PFE-AuNPs was observed from the colour and absorbance change in the wavelength range of 529-533 nm. The optimum synthesis condition of PFE-AuNPs was obtained at 0.06% (w/v) of PFE concentration. Size and its distribution of PFE-AuNPs were identified by particle size analyzer (PSA) as 35.02 nm and stable up until 21 days. The stable PFE-AuNPs was further characterized by Fourier transform infrared (FT-IR) spectroscopy to identify the functional group in phenolic compound of PFE interact with AuNps.

  7. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  8. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.

    PubMed

    Willner, Itamar; Baron, Ronan; Willner, Bilha

    2007-04-15

    The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue, was incorporated into a CdS-duplex DNA monolayer associated with a Au electrode, and this facilitated the electron transfer between the electrode and the CdS NPs. The direction of the photocurrent was controlled by the oxidation state of the intercalator. (iii) Biocatalysts grow metallic NPs, and the absorbance of the NPs provides a means to assay the biocatalytic transformations. This is exemplified with the glucose oxidase-induced growth of Au NPs and with the tyrosinase-stimulated growth of Au NPs, in the presence of glucose or tyrosine, respectively. The biocatalytic growth of the metallic NPs is used to grow nanowires on surfaces. Glucose oxidase or alkaline phosphatase functionalized with Au NPs (1.4 nm) acted as 'biocatalytic inks' for the synthesis of metallic nanowires. The deposition of the Au NP-modified glucose oxidase, or the Au NP-modified alkaline phosphatase on Si surfaces by dip-pen nanolithography led to biocatalytic templates, that after interaction with glucose/AuCl4- or p-aminophenolphosphate/Ag+, allowed the synthesis of Au nanowires or Ag nanowires, respectively.

  9. Size control of Au NPs supported by pH operation

    NASA Astrophysics Data System (ADS)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  10. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.

    PubMed

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar

    2015-12-01

    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  11. Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity

    PubMed Central

    Moolani, Harsh V; Tockstein, Sarah; Thompson, David H; Dakshinamurthy, Rajalingam

    2018-01-01

    Background Phloridzin, an antidiabetic and antineoplastic agent usually found in fruit trees, is a dihydrochalcone constituent that has a clinical/pharmaceutical significance as a sodium-glucose linked transport 2 (SGLT2) inhibitor. While the aglycone metabolite of phloridzin, phloretin, displays a reduced capacity of SGLT2 inhibition, this nutraceutical displays enhanced antineoplastic activity in comparison to phloridzin. Purpose The objective of this study was to develop gold nanoparticle (AuNP) mediated delivery of phloridzin and phloretin and explore their anticancer mechanism through conjugation of the dihydrochalcones and the AuNP cores. Methods Phloridzin and phloretin conjugated AuNPs (Phl-AuNP and Pht-AuNP) were synthesized in single-step, rapid, biofriendly processes. The synthesized AuNPs morphology was characterized via transmission electron microscopy and ultraviolet-visible spectroscopy. The presence of phloridzin or phloretin was confirmed using scanning electron microscopy-energy dispersive x-ray spectroscopy. The percentage of organic component (phloridzin/phloretin) onto AuNPs surface was characterized using thermogravimetric analysis. Assessment of the antineoplastic potency of the dihydrochalcones conjugated AuNPs against cancerous cell lines (HeLa) was accomplished through monitoring via flow cytometry. Results The functionalized AuNPs were synthesized via a single-step method that relied only upon the redox potential of the conjugate itself and required no toxic chemicals. The synthesized Phl-AuNPs were found to be in the size range of 15±5 nm, whereas the Pht-AuNP were found to be 8±3 nm, placing both conjugated AuNPs well within the size range necessary for successful pharmaceutical applications. These assays demonstrate a significant increase in the cancerous cell toxicities as a result of the conjugation of the drugs to AuNPs, as indicated by the 17.45-fold increase in the efficacy of Pht-AuNPs over pure phloretin, and the 4.49-fold increase in efficacy of Phl-AuNP over pure phloridzin. Conclusion We report a simple, biofriendly process using the reducing and capping potential of the dihydrochalcones, phloridzin and phloretin, to synthesize stable AuNPs that have promising futures as potential antineoplastic agents. PMID:29636609

  12. Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity.

    PubMed

    Payne, Jason N; Badwaik, Vivek D; Waghwani, Hitesh K; Moolani, Harsh V; Tockstein, Sarah; Thompson, David H; Dakshinamurthy, Rajalingam

    2018-01-01

    Phloridzin, an antidiabetic and antineoplastic agent usually found in fruit trees, is a dihydrochalcone constituent that has a clinical/pharmaceutical significance as a sodium-glucose linked transport 2 (SGLT2) inhibitor. While the aglycone metabolite of phloridzin, phloretin, displays a reduced capacity of SGLT2 inhibition, this nutraceutical displays enhanced antineoplastic activity in comparison to phloridzin. The objective of this study was to develop gold nanoparticle (AuNP) mediated delivery of phloridzin and phloretin and explore their anticancer mechanism through conjugation of the dihydrochalcones and the AuNP cores. Phloridzin and phloretin conjugated AuNPs (Phl-AuNP and Pht-AuNP) were synthesized in single-step, rapid, biofriendly processes. The synthesized AuNPs morphology was characterized via transmission electron microscopy and ultraviolet-visible spectroscopy. The presence of phloridzin or phloretin was confirmed using scanning electron microscopy-energy dispersive x-ray spectroscopy. The percentage of organic component (phloridzin/phloretin) onto AuNPs surface was characterized using thermogravimetric analysis. Assessment of the antineoplastic potency of the dihydrochalcones conjugated AuNPs against cancerous cell lines (HeLa) was accomplished through monitoring via flow cytometry. The functionalized AuNPs were synthesized via a single-step method that relied only upon the redox potential of the conjugate itself and required no toxic chemicals. The synthesized Phl-AuNPs were found to be in the size range of 15±5 nm, whereas the Pht-AuNP were found to be 8±3 nm, placing both conjugated AuNPs well within the size range necessary for successful pharmaceutical applications. These assays demonstrate a significant increase in the cancerous cell toxicities as a result of the conjugation of the drugs to AuNPs, as indicated by the 17.45-fold increase in the efficacy of Pht-AuNPs over pure phloretin, and the 4.49-fold increase in efficacy of Phl-AuNP over pure phloridzin. We report a simple, biofriendly process using the reducing and capping potential of the dihydrochalcones, phloridzin and phloretin, to synthesize stable AuNPs that have promising futures as potential antineoplastic agents.

  13. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM.

    PubMed

    Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza

    2017-10-15

    Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets.

    PubMed

    Zhang, Yan; He, Yun; Yan, Nan; Zhu, Yutian; Hu, Yuexin

    2017-09-07

    Recently, it has been reported that the incorporation of functional inorganic nanoparticles (NPs) into the three-dimensional (3D) confined self-assembly of block copolymers (BCPs) creates the unique nanostructured hybrid composites, which can not only introduce new functions to BCPs but also induce some interesting morphological transitions of BCPs. In the current study, we systematically investigate the cooperative self-assembly of a series of size-controlled and surface chemistry-tunable gold nanoparticles (AuNPs) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer within the emulsion droplets. The influences of the size, content, and surface chemistry of the AuNPs on the coassembled nanostructures as well as the spatial distribution of AuNPs in the hybrid particles are examined. It is found that the size and content of the AuNPs are related to the entropic interaction, while the surface chemistry of AuNPs is related to the enthalpic interaction, which can be utilized to tailor the self-assembled morphologies of block copolymer confined in the emulsion droplets. As the content of PS-coated AuNPs increases, the morphology of the resulting AuNPs/PS-b-P2VP hybrid particles changes from the pupa-like particles to the bud-like particles and then to the onion-like particles. However, a unique morphological transition from the pupa-like particles to the mushroom-like particles is observed as the content of P4VP-coated AuNPs increases. More interestingly, it is observed that the large AuNPs are expelled to the surface of the BCP particles to reduce the loss in the conformational entropy of the block segment, which can arrange into the strings of necklaces on the surfaces of the hybrid particles.

  15. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  16. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters

    NASA Astrophysics Data System (ADS)

    Ning, Xuhui; Peng, Chuanqi; Li, Eric S.; Xu, Jing; Vinluan, Rodrigo D.; Yu, Mengxiao; Zheng, Jie

    2017-05-01

    Efficient renal clearance has been observed from ultrasmall zwitterionic glutathione-coated gold nanoparticles (GS-AuNPs), which have broad preclinical applications in cancer diagnosis and kidney functional imaging. However, origin of such efficient renal clearance is still not clear. Herein, we conducted head-to-head comparison on physiological stability and renal clearance of two zwitterionic luminescent AuNPs coated with cysteine and glycine-cysteine (Cys-AuNPs and Gly-Cys-AuNPs), respectively. While both of them exhibited similar surface charges and the same core sizes, additional glycine slightly increased the hydrodynamic diameter of the AuNPs by 0.4 nm but significantly enhanced physiological stability of the AuNPs as well as altered their clearance pathways. These studies indicate that the ligand length, in addition to surface charges and size, also plays a key role in the physiological stability and renal clearance of ultrasmall zwitterionic inorganic NPs.

  17. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.

    PubMed

    Shen, Wenli; Qu, Yuanyuan; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-05

    A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV-vis spectrum at 532nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4nm to 29nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as OH, NH, CO, CH, COH and COC groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59min -1 to 1.51min -1 with the amount of AuNPs increasing form 1.46×10 -6 to 17.47×10 -6 mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04×10 5 min -1 mol -1 ), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  19. Ionic liquid functionalized synthesis of gold nanoparticles in response to Elaise Guineensis (oil palm) leaves amount

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi

    2018-05-01

    A modified bio-synthesis method was developed to synthesize gold nanoparticles (AuNPs) using Elaeis Guineensis (oil palm) leaves (OPL) extract prepared in aqueous solution of IL, [EMIM][OAc]. The strong interaction and capping ability of IL at surface of AuNPs was examined through XPS analysis. The effect of OPL powder to liquid (P/L) ratio on absorbance, maximum wavelength (λmax) and size variation of AuNPs was observed through UV-vis. TEM analysis indicated predominantly spherical shape AuNPs with mean diameter of 15.76 nm. This study exhibits a rapid, cheap and efficient method to achieve stable AuNPs using bio-waste material.

  20. Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.

    2016-12-01

    In this research work, extracellular biosynthesis of gold nanoparticles (AuNPs) using marine bacterial isolates (Streptomyces sp.) as a reducing/capping/stabilizing bio-agent and chlolauric acid (HAuCl4) as a precursor has been investigated. Surface modification of cotton and viscose knitted fabrics using O2-plasma followed by subsequent treatment with bio-synthesized AuNPs alone and in combination with TiO2NPs or ZnONPs to impart new functional properties namely antibacterial and UV-blocking were studied. The results show that loading of nominated nanomaterials onto the activated fabric samples results in a significant improvement in antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) along with a remarkable enhancement in the UV-protection functionality of the treated fabrics. The highest antibacterial and anti-UV values were obtained when O2-plasma treated fabrics were loaded with AuNPs/ZnONPs combination, irrespective of the used substrate. The imparted functional properties demonstrated remarkable retention even after 15 washings.

  1. Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites

    NASA Astrophysics Data System (ADS)

    Babu, Punuri Jayasekhar; Saranya, Sibyala; Sharma, Pragya; Tamuli, Ranjan; Bora, Utpal

    2012-09-01

    Gold nanoparticles (AuNPs) were synthesized by sonication using ethanolic leaf extract of Andrographis paniculata. We investigated the optimum parameters for AuNP synthesis and functionalization with polycaprolactone-gelatin (PCL-GL) composites. The AuNPs were characterized with various biophysical techniques such as TEM, XRD, FT-IR and EDX spectroscopy. TEM images showed that nanoparticles were spherical in shape with a size range from 5 to 75 nm. EDX analysis revealed the presence of molecular oxygen and carbon on the surface of AuNPs. The synthesized AuNPs were tested for their effect on HeLa (human cervical cancer) and MCF-7 (human breast cancer) cell lines and found to be nontoxic and biocompatible, which are potential carriers for hydrophobic drugs.

  2. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.

    PubMed

    Baldock, Brandi L; Hutchison, James E

    2016-12-20

    DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.

  3. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Foo Yiing; Malek, Sri Nurestri Abd; Periasamy, Vengadesh

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorptionmore » band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl{sub 4}.3H{sub 2}O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.« less

  4. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    NASA Astrophysics Data System (ADS)

    Yee, Foo Yiing; Periasamy, Vengadesh; Malek, Sri Nurestri Abd

    2015-04-01

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorption band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl4.3H2O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.

  5. Spontaneous grafting: a novel approach to graft diazonium cations on gold nanoparticles in aqueous medium and their self-assembly on electrodes.

    PubMed

    Kesavan, Srinivasan; John, S Abraham

    2014-08-15

    The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.

  6. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus.

    PubMed

    Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet

    2017-11-01

    In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line

    NASA Astrophysics Data System (ADS)

    Sharma, Monita; Salisbury, Richard L.; Maurer, Elizabeth I.; Hussain, Saber M.; Sulentic, Courtney E. W.

    2013-04-01

    Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.

  8. Speciation of nanoscale objects by nanoparticle imprinted matrices

    NASA Astrophysics Data System (ADS)

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-07-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects. Electronic supplementary information (ESI) available: S1 - instrumentation, S2 - immobilization of AuNPs, S3 - time dependent immobilization, S4 - CVs at matrix-coated substrates, S5 - CVs at AuNP-loaded matrices, S6 - peak potentials for the oxidation of AuNPs of different sizes, S7 - schematics for the change of conductive area of the matrices, S8 - probe CVs before and after AuNPs oxidation, S9 - calculation of adsorbed and reuptaken AuNPs, S10 - CVs of AuNPs adsorbed on non-imprinted matrices, S11 - SEM images of AuNPs adsorbed on non-imprinted matrices, S12 - SEM images after reuptake of AuNPs, S13 - schematic of the effect of thickening the matrix. See DOI: 10.1039/c6nr01106c

  9. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Mao, Li; Niu, Huan; Liu, Huijing; Zhuo, Ying

    2012-01-15

    In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2016-04-01

    Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications. Electronic supplementary information (ESI) available: Additional experimental results. See DOI: 10.1039/c5nr08808a

  11. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii.

    PubMed

    Balalakshmi, Chinnasamy; Gopinath, Kasi; Govindarajan, Marimuthu; Lokesh, Ravi; Arumugam, Ayyakannu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-08-01

    The impact of green-fabricated gold nanoparticles on plant cells and non-target aquatic species is scarcely studied. In this research, we reported an environment friendly technique for the synthesis of gold nanoparticles (Au NPs) using the Sphaeranthus indicus leaf extract. The formation of the metal NPs was characterized by UV-Visible and FT-IR spectroscopy, XRD, SEM and TEM analyses. The UV-Visible spectra of Au NPs showed a surface plasmon resonance peak at 531nm. FT-IR analysis indicated functional bio-molecules associated with Au NPs formation. The crystalline nature of Au nanoparticles was confirmed by their XRD diffraction pattern. TEM revealed the spherical shape with a mean particle size of 25nm. Au NPs was tested at 0, 1, 3, 5, 7 and 10% doses in mitotic cell division assays, pollen germination experiments, and in vivo toxicity trials against the aquatic crustacean Artemia nauplii. Au NPs did not show any toxic effects on plant cells and aquatic invertebrates. Notably, Au NPs promoted mitotic cell division in Allium cepa root tip cells and germination of Gloriosa superba pollen grains. Au NPs showed no mortality on A. nauplii, all the tested animals showed 100% survivability. Therefore, these Au NPs have potential applications in the development of pollen germination media and plant tissue culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities.

    PubMed

    Hoshyar, Reyhane; Khayati, Gholam Reza; Poorgholami, Maliheh; Kaykhaii, Massoud

    2016-06-01

    Functionalized nanoparticles are specifically designed to deliver drugs at tumor cells and can potentially enhance anticancer activity of drugs such as crocin. In the present study, we have applied antioxidant crocin as a reducing agent for one pot green synthesis of controlled size gold nanoparticles (AuNPs). Spherical, stable and uniform AuNPs were synthesized using crocin. These AuNPs are characterized by UV-Vis, TEM and XRD techniques. The prepared AuNPs showed surface plasm on resonance centered at 520nm with the average particle size of about 4-10nm. The anti-cancer effect of AuNPs was determined using MTT and LDH tests. The cellular data showed that these AuNPs significantly decreased cancerous cells' growth after 24 and 48hours in a time- and dose-dependent manner (P<0.05). The results suggest that such AuNPs can be synthesized simply and quickly with invaluable clinical as well as pharmaceutical activities which can help to treat human breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  14. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  15. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations.

    PubMed

    Medhat, Dalia; Hussein, Jihan; El-Naggar, Mehrez E; Attia, Mohamed F; Anwar, Mona; Latif, Yasmine Abdel; Booles, Hoda F; Morsy, Safaa; Farrag, Abdel Razik; Khalil, Wagdy K B; El-Khayat, Zakaria

    2017-07-01

    Dextran-capped gold nanoparticles (Au-dextran NPs) were prepared exploiting the natural polysaccharide polymer as both reducing and stabilizing agent in the synthesis process, aiming at studying their antitumor effect on solid carcinoma and EAC-bearing mice. To this end, Au-dextran NPs were designed via simple eco-friendly chemical reaction and they were characterized revealing the monodispersed particles with narrow distributed size of around 49nm with high negative charge. In vivo experiments were performed on mice. Biochemical analysis of liver and kidney functions and oxidation stress ratio in addition to histopathological investigations of such tumor tissues were done demonstrating the potentiality of Au-dextran NPs as antitumor agent. The obtained results revealed that EAC and solid tumors caused significant increase in liver and kidney functions, liver oxidant parameters, alpha feto protein levels and diminished liver antioxidant accompanied by positive expression of tumor protein p53 of liver while the treatment with Au-dextran NPs for both types caused improvement in liver and kidney functions, increased liver antioxidant, increased the expression level of B-cell lymphoma 2 gene and subsequently suppressed the apoptotic pathway. As a result, the obtained data provides significant antitumor effects of the Au-dextran NPs in both Ehrlich ascites and solid tumor in mice models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Elumalai; Karuppaiya, Palaniyandi; Sivashanmugan, Kundan; Chao, Wei-Ting; Tsay, Hsin-Sheng; Yoshimura, Masahiro

    2017-06-01

    A novel, low-cost and biocompatible three-dimensional (3D) substrate for surface-enhanced Raman spectroscopy (SERS) is fabricated using gold nanoparticles (AuNPs) loaded on cellulose paper for detection of amino acids and melamine. Dysosma pleiantha rhizome (Dp-Rhi) capped AuNPs (Dp-Rhi_AuNPs) were prepared by in situ using aqueous extract of Dp-Rhi and in situ functionalized Dp-Rhi on AuNPs surface was verified by Fourier transform infrared spectroscopy and zeta potentials analysis shows a negative (- 18.4 mV) surface charges, which confirm that presence of Dp-Rhi on AuNPs. The biocompatibility of Dp-Rhi_AuNPs is also examined by cell viability of FaDu cells using MTS assay and compared to control group. In conclusion, the SERS performance of AuNPs@cellulose paper substrates were systematically demonstrated and examined with different excitation wavelengths (i.e. 532, 632.8 and 785 nm lasers) and the as-prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity using para-nitrothiophenol (p-NTP), para-aminothiophenol (p-ATP) and para-mercaptobenzoic acid (p-MBA) as probe molecules. The strong electromagnetic effect was generated at the interface of AuNPs and pre-treated roughened cellulose paper is also investigated by simulation in which the formation of possible Raman hot-spot zone in fiber-like microstructure of cellulose paper decorated with AuNPs. Notably, with optimized condition of as-prepared 3D AuNPs@cellulose paper is highly sensitive in the SERS detection of aqueous tyrosine (10- 10 M) and melamine (10- 9 M).

  17. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells).

    PubMed

    Kumar, C Senthil; Raja, M D; Sundar, D Sathish; Gover Antoniraj, M; Ruckmani, K

    2015-09-05

    In this study, green synthesis of gold nanoparticles (AuNPs) was achieved using the extract of eggplant as a reducing agent. Hyaluronic acid (HA) serves as a capping and targeting agent. Metformin (MET) was successfully loaded on HA capped AuNPs (H-AuNPs) and this formulation binds easily on the surface of the liver cancer cells. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, HR-TEM, particle size analyser and zeta potential measurement. Toxicity studies of H-AuNPs in zebra fish confirmed the in vivo safety of the AuNPs. The in vitro cytotoxicity results showed that the amount of MET-H-AuNPs enough to achieve 50% inhibition (IC50) was much lower than free MET. Flow cytometry analysis showed the significant reduction in G2/M phase after treatment with MET-H-AuNPs, and molecular level apoptosis were studied using western blotting. The novelty of this study is the successful synthesis of AuNPs with a higher MET loading and this formulation exhibited better targeted delivery as well as increased regression activity than free MET in HepG2 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Agglomeration behavior of lipid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajeev; Kirillova, Maria A.; Esimbekova, Elena N.; Zharkov, Sergey M.; Kratasyuk, Valentina A.

    2018-04-01

    The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100-400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525-533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35 ± 5 nm, AuNP2 15 ± 5 nm, AuNP3 30 ± 5 nm, and AuNP4 30 ± 5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1 x/200, - 17.93 ± 1.02 mV; AuNP2-L-1 x/200, - 21.63 ± 0.70; AuNP3-L-1 x/200, - 14.54 ± 0.90; AuNP3-L-1 x/200 - 13.77 ± 0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1 x/200 or 1 x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling. [Figure not available: see fulltext.

  19. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.

    PubMed

    Shi, Yupeng; Pan, Yi; Zhang, Heng; Zhang, Zhaomin; Li, Mei-Jin; Yi, Changqing; Yang, Mengsu

    2014-06-15

    Glutathione (GSH) plays key roles in biological systems and serves many cellular functions. Since biothiols all incorporate thiol, carboxylic and amino groups, discriminative detection of GSH over cysteine (Cys) and homocysteine (Hcy) is still challenging. We herein report a dual-mode nanosensor with both colorimetric and fluorometric readout based on carbon quantum dots and gold nanoparticles for discriminative detection of GSH over Cys/Hcy. The proposed sensing system consists of AuNPs and fluorescent carbon quantum dots (CQDs), where CQDs function as fluorometric reporter, and AuNPs serve a dual function as colorimetric reporter and fluorescence quencher. The mechanism of the nanosensor is based on two distance-dependent phenomenons, color change of AuNPs and FRET. Through controlling the surface properties of as-prepared nanoparticles, the addition of CQDs into AuNPs colloid solution might induce the aggregation of AuNPs and CQDs, leading to AuNPs color changing from red to blue and CQDs fluorescence quench. However, the presence of GSH can protect AuNPs from being aggregated and enlarge the inter-particle distance, which subsequently produces color change and fluorescent signal recovery. The nanosensor described in this report reflects on its simplicity and flexibility, where no further surface functionalization is required for the as-prepared nanoparticles, leading to less laborious and more cost-effective synthesis. The proposed dual-mode nanosensor demonstrated highly selectivity toward GSH, and allows the detection of GSH as low as 50 nM. More importantly, the nanosensor could not only function in aqueous solution for GSH detection with high sensitivity but also exhibit sensitive responses toward GSH in complicated biological environments, demonstrating its potential in bioanalysis and biodection, which might be significant in disease diagnosis in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    NASA Astrophysics Data System (ADS)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system. Electronic supplementary information (ESI) available: In vitro assays of the stimulatory activity of the L1-peptide, in vitro assays comparing the stimulatory activity of the L1-peptide coupled and not coupled to AuNPs, TEM characterization of AuNPs, additional results of aggregation experiments including an explanatory figure, UV-vis data proving the stability of AuNP@L1/PEGMUA-conjugates in relevant buffers, simple structure modeling of a L1-peptide and PEGMUA on AuNPs, and structure modeling of L1-peptides. See DOI: 10.1039/c3nr02707d

  1. On the application potential of gold nanoparticles in nanoelectronics and biomedicine.

    PubMed

    Homberger, Melanie; Simon, Ulrich

    2010-03-28

    Ligand-stabilized gold nanoparticles (AuNPs) are of high interest to research dedicated to future technologies such as nanoelectronics or biomedical applications. This research interest arises from the unique size-dependent properties such as surface plasmon resonance or Coulomb charging effects. It is shown here how the unique properties of individual AuNPs and AuNP assemblies can be used to create new functional materials for applications in a technical or biological environment. While the term technical environment focuses on the potential use of AuNPs as subunits in nanoelectronic devices, the term biological environment addresses issues of toxicity and novel concepts of controlling biomolecular reactions on the surface of AuNPs.

  2. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-03

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time.

  3. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  4. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury.

    PubMed

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-06-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules.

  5. Gold nanoparticles paper as a SERS bio-diagnostic platform.

    PubMed

    Ngo, Ying Hui; Then, Whui Lyn; Shen, Wei; Garnier, Gil

    2013-11-01

    Bioactive papers are usually challenged by four major limitations: sensitivity, selectivity, simplicity and strength (4S). Gold nanoparticles (AuNPs) treated paper has previously been demonstrated as a Surface Enhanced Raman Scattering (SERS) active substrate, capable of addressing the 4S issues. In this study, AuNPs on paper substrate were functionalized by a series of biomolecules to develop a generic SERS platform for antibody-antigen detection. The functionalization steps were performed by taking advantage of the high affinity association between Streptomyces avidinii-derived protein, streptavidin, and biotin. Streptavidin was firstly bound onto the AuNPs treated paper using biotinylated-thiol. Subsequently, desired biotinylated-antibody was bound onto the streptavidin. SERS spectra of each functionalization step were obtained to ensure specific adsorption of the bio-molecules. The binding interaction of the antibody with its specific antigen was detected using SERS. Shifts of Raman band associated with α-helix and β-sheet structures indicated structural modification of the antibody upon interaction with its antigen. Predominant tryptophan and tyrosine residue bands were also detected, confirming the presence of antigen. Reproducible spectral features were quantified as AuNP papers were subjected to different concentrations of antigen; the spectra intensity increased as a function of the antigen concentration. The retention of AuNPs on paper remained constant after all the consecutive washing and functionalization steps. The feasibility of AuNPs paper as a low-cost and generic SERS platform for bio-diagnostic applications was demonstrated. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation.

    PubMed

    Hwang, Su Jung; Jun, Sang Hui; Park, Yohan; Cha, Song-Hyun; Yoon, Minho; Cho, Seonho; Lee, Hyo-Jong; Park, Youmie

    2015-10-01

    Here we developed a novel green synthesis method for gold nanoparticles (CGA-AuNPs) using chlorogenic acid (CGA) as reductants without the use of other chemicals and validated the anti-inflammatory efficacy of CGA-AuNPs in vitro and in vivo. The resulting CGA-AuNPs appeared predominantly spherical in shape with an average diameter of 22.25±4.78nm. The crystalline nature of the CGA-AuNPs was confirmed by high-resolution X-ray diffraction and by selected-area electron diffraction analyses. High-resolution liquid chromatography/electrospray ionization mass spectrometry revealed that the caffeic acid moiety of CGA forms quinone structure through a two-electron oxidation causing the reduction of Au(3+) to Au(0). When compared to CGA, CGA-AuNPs exhibited enhanced anti-inflammatory effects on NF-κB-mediated inflammatory network, as well as cell adhesion. Collectively, green synthesis of CGA-AuNPs using bioactive reductants and mechanistic studies based on mass spectrometry may open up new directions in nanomedicine and CGA-AuNPs can be an anti-inflammatory nanomedicine for future applications. Gold nanoparticles (Au NPs) have been shown to be very useful in many applications due to their easy functionalization capability. In this article, the authors demonstrated a novel method for the synthesis of gold nanoparticles using chlorogenic acid (CGA) as reductants. In-vitro experiments also confirmed biological activity of the resultant gold nanoparticles. Further in-vivo studies are awaited. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria.

    PubMed

    Kuo, Yen-Ling; Wang, Sin-Ge; Wu, Ching-Yi; Lee, Kai-Chieh; Jao, Chan-Jung; Chou, Shiu-Huey; Chen, Yu-Chie

    2016-10-01

    Medical treatments for bacterial-infections have become challenging because of the emergence of antibiotic-resistant bacterial strains. Thus, new therapeutics and antibiotics must be developed. Arginine and tryptophan can target negatively-charged bacteria and penetrate bacterial cell membrane, respectively. Synthetic-peptides containing arginine, tryptophan and cysteine termini, in other words, (DVFLG)2REEW4C and (DVFLG)2REEW2C, as starting materials were mixed with aqueous tetrachloroauric acid to generate peptide-immobilized gold nanoparticles (i.e., [DVFLG]2REEW4C-AuNPs and [DVFLG]2REEW2C-AuNPs) through one-pot reactions. The peptide immobilized AuNPs exhibit targeting capacity and antibacterial activity. Furthermore, (DVFLG)2REEW4C-AuNPs immobilized with a higher number of tryptophan molecules possess more effective antibacterial capacity than (DVFLG)2REEW2C-AuNPs. Nevertheless, they are not harmful for animal cells. The feasibility of using the peptide-AuNPs to inhibit the cell growth of bacterium-infected macrophages was demonstrated. These results suggested that the proposed antibacterial AuNPs are effective antibacterial agents for Staphylococci, Enterococci and antibiotic-resistant bacterial strains. [Formula: see text].

  8. Calix[4]arene-Functionalised Silver Nanoparticles as Hosts for Pyridinium-Loaded Gold Nanoparticles as Guests.

    PubMed

    Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea

    2015-10-19

    A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stability, cytotoxicity and cell uptake of water-soluble dendron–conjugated gold nanoparticles with 3, 12 and 17 nm cores† †Electronic supplementary information (ESI) available: Additional characterization methods and procedures in addition to the data for the characterization of glutathione-capped gold nanoparticles and dendron-conjugated gold nanoparticles including FT-IR spectra (Fig. S1 and S2), UV-vis spectra (Fig. S3 and S6), TEM images (Fig. S4), MALDI-TOF/TOF spectra (Fig. S5), fluorescence spectra (Fig. S6 and S7), In vitro cytotoxic assay results (Fig. S9) and ICP-MS results (Tables 1 and 2). DOI: 10.1039/c5tb00608b Click here for additional data file.

    PubMed Central

    Deol, Suprit; Weerasuriya, Nisala

    2015-01-01

    This article describes the synthesis of water-soluble dendron–conjugated gold nanoparticles (Den–AuNPs) with various average core sizes and the evaluation of stability, cytotoxicity, cell permeability and uptake of these materials. The characterization of Den–AuNPs using various techniques including transmission electron microscopy (TEM), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), 1H NMR, FT-IR, and UV-vis spectroscopy confirms the dendron conjugation to the glutathione-capped gold nanoparticles (AuNPs). The stability of AuNPs and Den–AuNPs in solutions of different pH and salt concentration is determined by monitoring the changes in surface plasmon bands of gold using UV-vis spectroscopy. The stability of Den–AuNPs at different pH remained about the same compared to that of AuNPs. In comparison, the Den–AuNPs are found to be more stable than the precursor AuNPs maintaining their solubility in the aqueous solution with the salt concentration of up to 100 mM. The improved stability of Den–AuNPs suggests that the post-functionalization of thiol-capped gold nanoparticle surfaces with dendrons can further improve the physiological stability and biocompatibility of gold nanoparticle-based materials. Cytotoxicity studies of AuNPs and Den–AuNPs with and without fluorophores are also performed by examining cell viability for 3T3 fibroblasts using a MTT cell proliferation assay. The conjugation of dendrons to the AuNPs with a fluorophore is able to decrease the cytotoxicity brought about by the fluorophore. The successful uptake of Den–AuNPs in mouse fibroblast 3T3 cells shows the physiological viability of the hybrid materials. PMID:26366289

  10. Gold nanoparticles enlighten the future of cancer theranostics

    PubMed Central

    Guo, Jianfeng; Rahme, Kamil; He, Yan; Li, Lin-Lin; Holmes, Justin D; O’Driscoll, Caitriona M

    2017-01-01

    Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed “theranostics,” multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed. PMID:28883725

  11. Gold nanoparticles for cancer theranostics — A brief update

    DOE PAGES

    Zhao, Ning; Pan, Yongxu; Cheng, Zhen; ...

    2016-03-04

    Gold nanoparticles (AuNPs) exhibit superior optical and physical properties for more effective treatment of cancer through incorporating both diagnostic and therapeutic functions into one single platform. The ability to passively accumulate on tumor cells provides AuNPs the opportunity to become an attractive contrast agent for X-ray based computed tomography (CT) imaging in vivo. Because of facile surface modification, various size and shape of AuNPs have been extensively functionalized and applied as active nanoprobes and drug carriers for cancer targeted theranostics. Moreover, their capabilities on producing photoacoustic (PA) signals and photothermal effects have been used to image and treat tumor progression,more » respectively. Furthermore, we review the developments of AuNPs as cancer diagnostics and chemotherapeutic drug vector, summarizing strategies for tumor targeting and their applications in vitro and in vivo.« less

  12. Sunlight Induced Preparation of Functionalized Gold Nanoparticles as Recyclable Colorimetric Dual Sensor for Aluminum and Fluoride in Water.

    PubMed

    Kumar, Anshu; Bhatt, Madhuri; Vyas, Gaurav; Bhatt, Shreya; Paul, Parimal

    2017-05-24

    A sunlight induced simple green route has been developed for the synthesis of polyacrylate functionalized gold nanoparticles (PAA-AuNPs), in which poly(acrylic acid) functions as a reducing as well as stabilizing agent. This material has been characterized on the basis of spectroscopic and microscopic studies; it exhibited selective colorimetric detection of Al 3+ in aqueous media, and the Al 3+ induced aggregated PAA-AuNPs exhibited detection of F - with sharp color change and high selectivity and sensitivity out of a large number of metal ions and anions tested. The mechanistic study revealed that, for Al 3+ , the color change is due to a shift of the SPR band because of the Al 3+ induced aggregation of PAA-AuNPs, whereas for F - , the reverse color change (blue to red) with return of the SPR band to its original position is due to dispersion of aggregated PAA-AuNPs, as F - removes Al 3+ from the aggregated species by complex formation. Only concentration-dependent fluoride ion can prevent Al 3+ from aggregating PAA-AuNPs. The method is successfully used for the detection of F - in water collected from various sources by the spiking method, in toothpastes of different brands by the direct method. The solid Al 3+ -PAA-AuNPs were isolated, adsorbed on ZIF@8 (zeolitic imidazolate framework) and on a cotton strip, and applied as solid sensing material for detection of F - in aqueous media.

  13. Use of gold nanoparticles to detect water uptake in vascular plants.

    PubMed

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  14. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.

    PubMed

    Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang

    2016-12-15

    An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Colorimetric determination of Al(III) based on the aggregation of gold nanoparticles functionalized with novel 4-benzoyl pyrazolone derivative

    NASA Astrophysics Data System (ADS)

    Abubaker, Mariam; Ngah, Che Wan Zanariah Che Wan; Ahmad, Musa; Kuswandi, Bambang

    2018-06-01

    A sensitive and selective colorimetric method has been developed for detection of Al3+ ion using 4-benzoyl pyrazolone-functionalized gold nanoparticles (BMPBP-AuNPs) as novel colorimetric probes. The BMPBP-AuNPs were characterized by UV-visible spectrometry and transmission electron microscopy (TEM). It was found that the addition of the Al3+ ions led to a rapid aggregation of the BMPBP-AuNPs, which changed the color of the mixture from red to blue. Furthermore, there was a shift in the characteristic surface plasmon resonance (SPR) peak from 524 to 650 nm of BMPBP-AuNPs, which confirmed that a good linear relation (R2 = 0.9935) was present between the absorption ratio of 524 and 650 nm. Also, the assay detected the Al3+ ion concentrations in the linear range 0-12 ppm with the detection limit is 0.05 ppm. Finally, the synthesized BMPBP-AuNPs were successfully used as a colorimetric sensor for the selective and sensitive detection of the Al3+ ions in water samples.

  16. Naked eye and spectrophotometric detection of chromogenic insecticide in aquaculture using amine functionalized gold nanoparticles in the presence of major interferents

    NASA Astrophysics Data System (ADS)

    Loganathan, C.; John, S. Abraham

    2017-02-01

    Detection of a chromogenic insecticide, malachite green (MG) using 3,5-diamino-1,2,4-triazole capped gold nanoparticles (DAT-AuNPs) by both naked eye and spectrophotometry was described in this paper. The DAT-AuNPs were prepared by wet chemical method and show absorption maximum at 518 nm. The zeta potential of DAT-AuNPs was found to be - 39.9 mV, suggesting that one of the amine groups of DAT adsorbed on the surface of AuNPs and the other amine group stabilizes the AuNPs from aggregation. The wine red color DAT-AuNPs changes to violet while adding 25 μM MG whereas the absorption band at 518 nm was increased and shifted towards longer wavelength. However, addition of 70 μM MG leads to the aggregation of DAT-AuNPs. This is due to strong electrostatic interaction between ammonium ion of MG and the free amine group of DAT. Based on the color change and shift in SPR band, 25 and 5 μM MG can be easily detected by naked eye and spectrophotometry. The DAT-AuNPs show high selectivity towards MG even in the presence of 5000-fold higher concentrations of common interferents. The practical application was successfully demonstrated by determining MG in fish farm water.

  17. Functionalized gold nanoparticles for the detection of arsenic in water.

    PubMed

    Domínguez-González, R; González Varela, L; Bermejo-Barrera, P

    2014-01-01

    Gold nanoparticles are attractive as sensing materials because of their size and shape are related with their optical properties. The color change produced by the aggregation of functionalized AuNPs allows the detection of arsenic at low levels. A simple, cheap and fast analytical procedure to perform arsenic determination using functionalized gold nanoparticles (AuNPs) and VIS spectrometry as a detection technique is studied. Three different synthesis procedures to obtain the AuNPs and two different functionalization modes were studied. AuNPs functionalized with GSH-DTT-CYs-PDCA were selected as the most adequate. The correlation between the decrease in the absorbance signal and the arsenic concentration was good in the 2-20 µg l(-1)interval. Repeatability, expressed as average of RSD (%), obtained for the different arsenic concentrations studied was 0.6%. The average value of the analytical recovery was 99.7%. The detection and quantifications limits were 2.5 and 8.4 µg l(-1) respectively. These limits are sufficient to detect World Health Organization's guideline value of 10 µg l(-1). © 2013 Published by Elsevier B.V.

  18. Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles.

    PubMed

    Choudhary, Bharat C; Paul, Debajyoti; Gupta, Tarun; Tetgure, Sandesh R; Garole, Vaman J; Borse, Amulrao U; Garole, Dipak J

    2017-05-01

    We report a rapid method of green chemistry approach for synthesis of gold nanoparticles (AuNPs) using Lagerstroemia speciosa leaf extract (LSE). L. speciosa plant extract is known for its effective treatment of diabetes and kidney related problems. The green synthesis of AuNPs was complete within 30min at 25°C. The same could also be achieved within 2min at a higher reaction temperature (80°C). Both UV-visible spectroscopy and transmission electron microscopy results suggest that the morphology and size distribution of AuNPs are dependent on the pH of gold solution, gold concentration, volume of LSE, and reaction time and temperature. Comparison between Fourier transform infrared spectroscopy (FT-IR) spectra of LSE and the synthesized AuNPs indicate an active role of polyphenolic functional groups (from gallotannins, lagerstroemin, and corosolic acid) in the green synthesis and capping of AuNPs. The green route synthesized AuNPs show strong photocatalytic activity in the reduction of dyes viz., methylene blue, methyl orange, bromophenol blue and bromocresol green, and 4-nitrophenol under visible light in the presence of NaBH 4 . The non-toxic and cost effective LSE mediated AuNPs synthesis proposed in this study is extremely rapid compared to the other reported methods that require hours to days for complete synthesis of AuNPs using various plant extracts. Strong and stable photocatalytic behavior makes AuNPs attractive in environmental applications, particularly in the reduction of organic pollutants in wastewater. Copyright © 2016. Published by Elsevier B.V.

  19. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  20. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells

    PubMed Central

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Background Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. Methods The formation of AuNPs was characterized by UV–visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. Results The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV–visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20–40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2–2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. Conclusion In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water-soluble bioconstituents could be responsible for the neuroactivity. This is the first report for the biosynthesis of AuNPs using the hot aqueous extract of H. erinaceus. PMID:26425086

  1. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    PubMed

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water-soluble bioconstituents could be responsible for the neuroactivity. This is the first report for the biosynthesis of AuNPs using the hot aqueous extract of H. erinaceus.

  2. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Chen, Nan; Wei, Yingliang; Li, Jiang; Sun, Li; Wu, Jiarui; Huang, Qing; Liu, Chang; Fan, Chunhai; Song, Haiyun

    2012-08-01

    Gold nanoparticles (AuNPs) are often used as vehicles to deliver drugs or biomolecules, due to their mild effect on cell survival and proliferation. However, little is known about their effect on cellular metabolism. Here we examine the in vivo effect of AuNPs on metabolism using Drosophila as a model. Drosophila and vertebrates possess similar basic metabolic functions, and a highly conserved PI3K/Akt/mTOR signaling pathway plays a central role in the regulation of energy metabolism in both organisms. We show that dietary AuNPs enter the fat body, a key metabolic tissue in Drosophila larvae. Significantly, larvae fed with AuNP show increased lipid levels without triggering stress responses. In addition, activities of the PI3K/Akt/mTOR signaling pathway and fatty acids synthesis are increased in these larvae. This study thus reveals a novel function of AuNPs in influencing animal metabolism and suggests its potential therapeutic applications for metabolic disorders.

  3. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae.

    PubMed

    Zhou, Ya; Xiao, Jingfan; Ma, Xin; Wang, Qiyao; Zhang, Yuanxing

    2018-06-01

    In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 10 2 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.

  4. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    PubMed Central

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-01-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648

  5. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  6. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles.

    PubMed

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-17

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  7. Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study

    NASA Astrophysics Data System (ADS)

    Darjee, Savan M.; Bhatt, Keyur; Kongor, Anita; Panchal, Manthan K.; Jain, Vinod K.

    2017-01-01

    Thiacalix[4]arenes comes under heteracalixarene class which has notable utility in the area of nanoscience. This stimulation has led to the synthesis of water-dispersible gold nanoparticles (AuNps) using thiacalix[4]arene tetrahydrazide (TCTH) as both reducing as well as stabilizing agent. The synthesized nanoparticles (TCTH-AuNps) were characterized by SPR, TEM and EDX. TCTH-AuNps were found to be selective and sensitive for isoleucine. The concentration of isoleucine was detected in the limit of 1 nM to 1.2 μM based on fluorescence enhancement. TCTH-AuNps were also used to measure antioxidant capacity against the standard ascorbic acid.

  8. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    PubMed Central

    Ouyang, Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue, Zi-Ling

    2012-01-01

    We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNPs layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol-gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNPs layer is then self-assembled on the surface of the sol-gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1,200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy. PMID:22444528

  9. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    NASA Astrophysics Data System (ADS)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  10. Enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by coupling to Au-nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Xing, Jieying; Chen, Yinsong; Liu, Yuebo; Liang, Jiezhi; Chen, Jie; Ren, Yuan; Han, Xiaobiao; Zhong, Changming; Yang, Hang; Huang, Dejia; Hou, Yaqian; Wu, Zhisheng; Liu, Yang; Zhang, Baijun

    2018-05-01

    We demonstrate the enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by nearly a factor of 2 by coupling them to localized surface plasmons of Au nano-particles (NPs). The Au NPs are fabricated in situ on the nanorods using a Ni/SiO2/Au/SiNx compound functional layer. This layer serves as a combination dry-etch mask for fabricating the nanorods and the Au NPs, as well as providing isolation necessary to prevent fluorescence quenching. Time-resolved photoluminescence measurements confirm that emission enhancement originates from the coupling.

  11. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Spectral Probe for Detection of Aluminum (III) Ions Using Surface Functionalized Gold Nanoparticles.

    PubMed

    Shinde, Surendra; Kim, Dae-Young; Saratale, Rijuta Ganesh; Syed, Asad; Ameen, Fuad; Ghodake, Gajanan

    2017-09-22

    A simple green route has been developed for the synthesis of casein peptide functionalized gold nanoparticles (AuNPs), in which casein peptide acts as a reducing as well as the stabilizing agent. In this report, AuNPs have been characterized on the basis of spectroscopic and microscopic results; which showed selective and sensitive response toward Al 3+ in aqueous media, and Al 3+ induces aggregation of AuNPs. The sensing study performed for Al 3+ revealed that the color change from red to blue was due to a red-shift in the surface plasmon resonance (SPR) band and the formation of aggregated species of AuNPs. The calibration curve determines the detection limit (LOD) for Al 3+ about 20 ppb (0.067 μM) is presented using both decrease and increase in absorbance at 530 and 700 nm, respectively. This value is considerably lower than the higher limit allowed for Al 3+ in drinking water by the world health organization (WHO) (7.41 μM), representing enough sensitivity to protect water quality. The intensity of the red-shifted band increases with linear pattern upon the interaction with different concentrations of Al 3+ , thus the possibility of producing unstable AuNPs aggregates. The method is successfully used for the detection of Al 3+ in water samples collected from various sources, human urine and ionic drink. The actual response time required for AuNPs is about 1 min, this probe also have several advantages, such as ease of synthesis, functionalization and its use, high sensitivity, and enabling on-site monitoring.

  13. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    PubMed

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-02

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    NASA Astrophysics Data System (ADS)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  15. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    PubMed Central

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  16. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    PubMed

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.

  17. Highly selective and sensitive colorimetric determination of Cr3 + ion by 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol functionalized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahrivari, Shima; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2018-02-01

    In this work, a rapid, selective naked eyes colorimetric chemical probe for the detection of Cr3 + was developed based on functionalization of gold nanoparticles. For this purpose, surface of Au NPs was functionalized using 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol (AMTT). Through colorimetric studies, it was found that in the presence of Cr3 + ions, AMTT-Au NPs instantly aggregated and resulted in a color change of the solution from red to blue. The color change of AMTT-Au NPs due to the aggregation induced by Cr3 + can be seen with even naked eyes and also by UV-Vis spectroscopy with a detection limit of 1.8 μM and 0.1 μM, respectively. AMTT-Au NPs showed excellent selectivity toward Cr3 + compared to other cations tested, including K+, Na+, Cs+, Fe3 +, Ni2 +, Cu2 +, Co2 +, Zn2 +, Ba2 +, Ca2 +, Mg2 +, Cd2 +, Pb2 +, Hg2 + ions and especially all trivalent lanthanide ions. The absorbance ratio (A650/A525) was linear toward Cr3 + concentrations in the range of 0.6-6.1 μM (R2 = 0.996). The best response was achieved over a pH range of 3-5. Furthermore, the proposed colorimetric method based on AMTT-Au NPs was successfully used for Cr3 + ion detection in plasma sample and some water samples.

  18. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors.

    PubMed

    Zhang, Minwei; Halder, Arnab; Hou, Chengyi; Ulstrup, Jens; Chi, Qijin

    2016-06-01

    We have explored AuNPs (13 nm) both as a catalyst and as a core for synthesizing water-dispersible and highly stable core-shell structural gold@Prussian blue (Au@PB) nanoparticles (NPs). Systematic characterization by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) disclosed AuNPs coated uniformly by a 5 nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and free-standing GO paper, which was further converted into conductive reduced GO (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical strength, which can be cut into free-standing electrodes. Such electrodes, used as non-enzymatic electrochemical sensors, were tested systematically for electrocatalytic sensing of hydrogen peroxide. The high performance was indicated by some of the key parameters, for example the linear H2O2 concentration response range (1-30 μM), the detection limit (100 nM), and the high amperometric sensitivity (5 A cm(-2) M(-1)). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie

    2015-02-01

    Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07056a

  20. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy

    PubMed Central

    Ashton, Jeffrey R.; Castle, Katherine D.; Qi, Yi; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2018-01-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics, which has the potential to significantly improve tumor response and reduce the side effects of both RT and chemotherapy. PMID:29556356

  1. Ultrasound-aided formation of gold nanoparticles on multi-walled carbon nanotubes functionalized with mercaptobenzene moieties.

    PubMed

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun

    2011-07-01

    A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.

  2. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  3. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract

    PubMed Central

    Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-01-01

    A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248

  5. Anti-proliferative effects of gold nanoparticles functionalized with Semaphorin 3F

    NASA Astrophysics Data System (ADS)

    Tan, Gamze; Onur, Mehmet Ali

    2017-08-01

    The new vessel formations play a vital role in growth and spread of cancer. Current anti-angiogenic therapies, predominantly based on vascular endothelial growth factor (VEGF) inhibition, can inhibit vascular development; however, they are usually ineffective against the primary tumor occurrence. The aim of this study was to assess anti-angiogenic effects of gold nanoparticles (AuNPs) functionalized with Semaphorin (Sema) 3F protein. The polyethylene glycol (PEG)-coated AuNPs were covalently functionalized with Sema 3F and labeled with the TAMRA fluorescent dye. The effect of the NPs on human umbilical vein endothelial cells (HUVECs) is probed in the way of internalization and viability assays. AuNP-Sema 3F bioconjugates showed great endothelial cell uptake. AuNP-Sema 3F bioconjugates reduced VEGF165-induced endothelial cell proliferation more effectively than Sema 3F alone, suggesting that the therapeutic effects of Sema 3F can be improved by conjugation to AuNPs. Also, no significant toxicity effect was induced by bioconjugates. This is the first study that reports a covalent binding of full length Sema 3F to NPs. The exogenously administration of Sema 3F, which has both anti-angiogenic and anti-tumoral activity, to tumor vasculature via a carrying platform may not only lead to more effective anti-angiogenic treatment but also may make current approach more applicable in clinical use like drug delivery system. [Figure not available: see fulltext.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less

  7. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.

    PubMed

    Soh, Jun Hui; Lin, Yiyang; Rana, Subinoy; Ying, Jackie Y; Stevens, Molly M

    2015-08-04

    A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17β-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.

  8. Bioactive glasses containing Au nanoparticles. Effect of calcination temperature on structure, morphology, and surface properties.

    PubMed

    Lusvardi, Gigliola; Malavasi, Gianluca; Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Magnacca, Giuliana; Morterra, Claudio; Menabue, Ledi

    2010-06-15

    Bioactive glasses containing gold nanoparticles (AuNPs) have been synthesized via the sol-gel route using HAuCl(4) x 3 H(2)O as gold precursor. The formation process of AuNPs was studied as a function of the thermal treatment, which induces nucleation of Au particles and influences their nature, optical properties, shape, size, and distribution. The physicochemical characterization indicates that the sample treated at 600 degrees C presents the best characteristics to be used as a bioactive material, namely high surface area, high amount of AuNPs located at the glass surface, presence of micropores, and abundant surface OH groups. In the case of samples either aged at 60 degrees C or calcined at 150 degrees C, AuNPs just begin their formation, and at this stage the gel is not completely polymerized and dried yet. A thermal treatment at higher temperatures (900 degrees C) causes the aggregation of AuNPs, forming "AuMPs" (i.e., Au microparticles) in a densified glass-ceramic material with low surface area, absence of pores, and low number of surface OH groups. These features induce in the glass-ceramic materials treated at high-temperatures a lower bioactivity (evidenced by SBF reaction), as compared with that exhibited by the glass samples treated at 600 degrees C.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumert, Delphine; Larsen, George; Coopersmith, Kaitlin

    A straightforward approach was developed for the synthesis of Pd, Pd-Fe 2O 3, Au-Fe 2O 3, and Au-Pd-Fe 2O 3 nanothermometers, using a single SL DNA. These NP-DNA conjugates were characterized using techniques including EDX measurements, ζ-potential of NPs before and after DNA functionalization, electron microscopy studies and fluorescence spectroscopy. The fluorescence studies of the NP-DNA demonstrate the interaction between the NP and the fluorophore, which is quenched in the case of Au-Pd-Fe 2O 3 NPs and is perhaps enhanced (when compared to AuNPs) in the case of Pd and Pd-Fe 2O 3 NPs. In order to achieve more accuratemore » and reproducible measurements, designing a system that is able to hold the NP-DNA conjugates at a temperature for a longer period of time to allow them to 12 equilibrate is currently underway. Our studies show that Au-Pd-Fe 2O 3 NPs are the best candidate material to serve as nanothermometers when compared to Pd, Pd-Fe 2O 3, and Au-Fe 2O 3 materials.« less

  10. Two-dimensional self-assembly of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David

    2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  11. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities.

    PubMed

    Kang, Jong Pyo; Kim, Yeon Ju; Singh, Priyanka; Huo, Yue; Soshnikova, Veronika; Markus, Josua; Ahn, Sungeun; Chokkalingam, Mohan; Lee, Hyun A; Yang, Deok Chun

    2017-09-18

    This research article investigates the one-pot synthesis of gold and silver chloride nanoparticles functionalized by fruit extract of Crataegus pinnatifida as reducing and stabilizing agents and their possible roles as novel anti-inflammatory agents. Hawthorn (C. pinnatifida) fruits are increasingly popular as raw materials for functional foods and anti-inflammatory potential agents because of abundant flavonoids. The reduction of auric chloride and silver nitrate by the aqueous fruit extract led to the formation of gold and silver chloride nanoparticles. The nanoparticles were further characterized by field emission transmission electron microscopy indicated that CP-AuNps and CP-AgClNps were hexagonal and cubic shape, respectively. According to X-ray diffraction results, the average crystallite sizes of CP-AuNps and CP-AgClNps were 14.20 nm and 24.80 nm. The biosynthesized CP-AgClNps served as efficient antimicrobial agents against Escherichia coli and Staphylococcus aureus. Furthermore, CP-AuNps and CP-AgClNps enhanced the DPPH radical scavenging activity of the fruit extract. Lastly, MTT assay of nanoparticles demonstrated low toxicity in murine macrophage (RAW264.7). Biosynthesized nanoparticles also reduced the production of the inflammatory cytokines including nitric oxide and prostaglandin E2 in lipopolysaccharide-induced RAW264.7 cells. Altogether, these findings suggest that CP-AuNps and CP-AgClNps can be used as novel drug carriers or biosensors with intrinsic anti-inflammatory activity.

  12. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles

    PubMed Central

    Prigodich, Andrew E.; Alhasan, Ali H.

    2011-01-01

    We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581

  13. Self-organization of gold nanoparticles on silanated surfaces.

    PubMed

    Kyaw, Htet H; Al-Harthi, Salim H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications.

  14. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.

    PubMed

    Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling

    2014-05-15

    Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  16. Recent Advances in Cancer Therapy Based on Dual Mode Gold Nanoparticles

    PubMed Central

    Spyratou, Ellas; Makropoulou, Mersini; Sihver, Lembit

    2017-01-01

    Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT), etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT) is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs). Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs), designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment. PMID:29257070

  17. Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan-functionalized gold nanoparticles and botanical adjuvant: characterization, immunogenicity, and stability assessment.

    PubMed

    Barhate, Ganesh; Gautam, Manish; Gairola, Sunil; Jadhav, Suresh; Pokharkar, Varsha

    2014-11-01

    Approaches based on combined use of delivery systems and adjuvants are being favored to maximize efficient mucosal delivery of antigens. Here, we describe a novel delivery system comprised of chitosan-functionalized gold nanoparticles (CsAuNPs) and saponin-containing botanical adjuvant; Asparagus racemosus extract (ARE) for oral delivery of tetanus toxoid (TT). A significant increase in TT-specific IgG (34.53-fold) and IgA (43.75-fold) was observed when TT-CsAuNPs were formulated with ARE (TT-ARE-CsAuNPs). The local IgA immune responses for TT also showed a significant increase (106.5-fold in intestine washes and 99.74-fold in feces) with ARE-based formulations as compared with plain TT group. No effect of ARE was observed on size, charge, and loading properties of CsAuNPs. Additionally, no effect of ARE and CsAuNPs was observed on antigenicity and secondary structure of TT as determined by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. The stability studies demonstrated excellent stability profile of formulation at recommended storage conditions. The study establishes the possible role of immunomodulatory adjuvants in particulate delivery systems for mucosal delivery of vaccines. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen.

    PubMed

    Cai, Guoneng; Yu, Zhengzhong; Ren, Rongrong; Tang, Dianping

    2018-03-23

    A competitive-displacement reaction strategy based on target-induced dissociation of gold nanoparticle coated graphene nanosheet (AuNPs/GN) from CdS quantum dot functionalized mesoporous titanium dioxide (CdS QDs/TiO 2 ) was designed for the sensitive photoelectrochemical (PEC) aptasensing of prostate-specific antigen (PSA) through the exciton-plasmon interaction (EPI) between CdS QDs and AuNPs. To construct such an aptasensing system, capture DNA was initially conjugated covalently onto CdS QDs/TiO 2 -modified electrode, and then AuNPs/GN-labeled PSA aptamer was bound onto biofunctionalized CdS QDs/TiO 2 via hybridization chain reaction of partial bases with capture DNA. Introduction of AuNPs/GN efficiently quenched the photocurrent of CdS QDs/TiO 2 thanks to energy transfer. Upon addition of target PSA, the sandwiched aptamer between CdS QDs/TiO 2 and AuNPs/GN reacted with the analyte analyte, thus resulting in the dissociation of AuNPs/GN from the CdS QDs/TiO 2 to increase the photocurrent. Under optimum conditions, the aptasensing platform exhibited a high sensitivity for PSA detection within a dynamic linear range of 1.0 pg/mL to 8.0 ng/mL at a low limitat of detection of 0.52 pg/mL. The interparticle distance of exciton-plasmon interaction and contents of AuNPs corresponding to EPI effect in this system were also studied. Good selectivity and high reproducibility were obtained for the analysis of target PSA. Importantly, the accuracy and matrix effect of PEC aptasensor was evaluated for the determination of human serum specimens and newborn calf serum-diluted PSA standards, giving a well-matched result with the referenced PSA ELISA kit.

  19. Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline

    NASA Astrophysics Data System (ADS)

    Shi, Chaohong; Zhu, Nengwu; Cao, Yanlan; Wu, Pingxiao

    2015-03-01

    The development of green procedure for the synthesis of gold nanoparticles (AuNPs) has gained great interest in the field of nanotechnology. Biological synthetic routes are considered to be environmentally benign and cost-effective. In the present study, the feasibility of AuNPs' synthesis via intracellular protein extract (IPE) of Pycnoporus sanguineus was explored. The characteristics of generated particles of formation, crystalline nature, and morphology and dimension were analyzed by UV-vis spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. UV-vis spectra exhibited strong absorption peaks in 520 to 560 nm, indicating the formation of AuNPs. XRD analysis revealed that the formed AuNPs were purely crystalline in nature. TEM observation showed that AuNPs with various shapes including spherical, pseudo-spherical, triangular, truncated triangular, pentagonal, and hexagonal, ranging from several to several hundred nanometers, were synthesized under different conditions. The average size of AuNPs decreased from 61.47 to 29.30 nm as the IPE addition increased from 10 to 80 mL. When the initial gold ion concentration changed from 0.5 to 2.0 mM, the average size rose from 25.88 to 51.99 nm. As in the case of solution pH, the average size was 84.29 nm with solution pH of 2.0, which diminished to 6.07 nm with solution pH of 12.0. Fourier transform infrared (FTIR) analysis implied that the functional groups including hydroxyl, amine, and carboxyl were involved in the reduction of gold ions and stabilization of AuNPs. The catalysis results showed that 0.019 mg of AuNPs with average size of 6.07 nm could catalyze the complete degradation of 12.5 μmol of 4-nitroaniline within 6 min and the degradation rate increased drastically with the addition of AuNPs. All the results suggested that the IPE of P. sanguineus could be potentially applied for the eco-friendly synthesis of AuNPs.

  20. Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin.

    PubMed

    Raju, Gayathri; Katiyar, Neeraj; Vadukumpully, Sajini; Shankarappa, Sahadev A

    2018-02-01

    Transdermal particulate penetration across thick-skin, such as that of palms and sole, is particularly important for drug delivery for disorders such as small fiber neuropathies. Nanoparticle-based drug delivery across skin is believed to have much translational applications, but their penetration especially through thick-skin, is not clear. This study specifically investigates the effectiveness of gold nanoparticles (AuNPs) for thick-skin penetration, especially across the stratum corneum (SC) as a function of particle size. The thick-skinned hind-paw of rat was used to characterize depth and distribution of AuNPs of varying sizes, namely, 22±3, 105±11, and 186±20nm. Epidermal penetration of AuNPs was characterized both, in harvested skin from the hind-paw using a diffusion chamber, as well as in vivo. Harvested skin segments exposed to 22nm AuNPs for only 3h demonstrated higher penetration (p<0.05) as compared to the 105 and 186nm particles. In animal studies, hind-paw skin of adult rats exposed to AuNPs solution for the same time, demonstrated nanoparticles in blood on the 4th day, and histological analysis revealed AuNPs in epidermal layers just below the SC, with no apparent tissue response. We conclude that the thick-skin allows nanoparticle penetration and acts as a depot for release of AuNPs into circulation long after the initial exposure has ceased. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Ligand-modulated interactions between charged monolayer-protected Au144 (SR)60 gold nanoparticles in physiological saline

    NASA Astrophysics Data System (ADS)

    Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel

    2015-03-01

    We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.

  2. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    NASA Astrophysics Data System (ADS)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  3. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  4. Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng

    PubMed Central

    Bae, Song-Hwa; Yu, Jin; Go, Mi-Ran; Kim, Hyun-Jin; Hwang, Yun-Gu; Choi, Soo-Jin

    2016-01-01

    (1) Background: Application of nanotechnology or nanomaterials in agricultural food crops has attracted increasing attention with regard to improving crop production, quality, and nutrient utilization. Gold nanoparticles (Au-NPs) have been reported to enhance seed yield, germination rate, and anti-oxidant potential in food crops, raising concerns about their toxicity potential. In this study, we evaluated the oral toxicity of red ginseng exposed to colloidal Au-NPs during cultivation (G-red ginseng) in rats and their intestinal transport mechanism. (2) Methods: 14-day repeated oral administration of G-red ginseng extract to rats was performed, and body weight, hematological, serum biochemical, and histopathological values were analyzed. An in vitro model of human intestinal follicle-associated epithelium (FAE) and an intestinal epithelial monolayer system were used for intestinal transport mechanistic study. (3) Results: No remarkable oral toxicity of G-red ginseng extract in rats was found, and Au-NPs did not accumulate in any organ, although Au-NP transfer to G-red ginseng and some increased saponin levels were confirmed. Au-NPs were transcytozed by microfold (M) cells, but not by a paracellular pathway in the intestinal epithelium. (4) Conclusion: These findings suggest great potential of Au-NPs for agricultural food crops at safe levels. Further study is required to elucidate the functional effects of Au-NPs on ginseng and long-term toxicity. PMID:28335336

  5. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.

    PubMed

    Li, Jiuxing; Zhu, Binqing; Yao, Xiujie; Zhang, Yicong; Zhu, Zhi; Tu, Song; Jia, Shasha; Liu, Rudi; Kang, Huaizhi; Yang, Chaoyong James

    2014-10-08

    Attaching thiolated DNA on gold nanoparticles (AuNPs) has been extremely important in nanobiotechnology because DNA-AuNPs combine the programmability and molecular recognition properties of the biopolymers with the optical, thermal, and catalytic properties of the inorganic nanomaterials. However, current standard protocols to attach thiolated DNA on AuNPs involve time-consuming, tedious steps and do not perform well for large AuNPs, thereby greatly restricting applications of DNA-AuNPs. Here we demonstrate a rapid and facile strategy to attach thiolated DNA on AuNPs based on the excellent stabilization effect of mPEG-SH on AuNPs. AuNPs are first protected by mPEG-SH in the presence of Tween 20, which results in excellent stability of AuNPs in high ionic strength environments and extreme pHs. A high concentration of NaCl can be applied to the mixture of DNA and AuNP directly, allowing highly efficient DNA attachment to the AuNP surface by minimizing electrostatic repulsion. The entire DNA loading process can be completed in 1.5 h with only a few simple steps. DNA-loaded AuNPs are stable for more than 2 weeks at room temperature, and they can precisely hybridize with the complementary sequence, which was applied to prepare core-satellite nanostructures. Moreover, cytotoxicity assay confirmed that the DNA-AuNPs synthesized by this method exhibit lower cytotoxicity than those prepared by current standard methods. The proposed method provides a new way to stabilize AuNPs for rapid and facile loading thiolated DNA on AuNPs and will find wide applications in many areas requiring DNA-AuNPs, including diagnosis, therapy, and imaging.

  6. Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).

    PubMed

    Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E

    2017-12-13

    Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

  7. Self-organization of gold nanoparticles on silanated surfaces

    PubMed Central

    Kyaw, Htet H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    Summary The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications. PMID:26734526

  8. Metallic nanoparticles reduce the migration of human fibroblasts in vitro.

    PubMed

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; Dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma Dos Santos

    2017-12-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α 2 β 1 integrin (VLA-2) and the laminin receptor very late antigen 6, α 6 β 1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  9. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    NASA Astrophysics Data System (ADS)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  10. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice

    PubMed Central

    Zhang, Guodong; Yang, Zhi; Lu, Wei; Zhang, Rui; Huang, Qian; Tian, Mei; Li, Li; Liang, Dong; Li, Chun

    2009-01-01

    Polyethylene glycol (PEG)-coated (pegylated) gold nanoparticles (AuNPs) have been proposed as drug carriers and diagnostic contrast agents. However, the impact of particle characteristics on the biodistribution and pharmacokinetics of pegylated AuNPs is not clear. We investigated the effects of PEG molecular weight, type of anchoring ligand, and particle size on the assembly properties and colloidal stability of PEG-coated AuNPs. The pharmacokinetics and biodistribution of the most stable PEG-coated AuNPs in nude mice bearing subcutaneous A431 squamous tumors were further studied using 111In-labeled AuNPs. AuNPs coated with thioctic acid (TA)-anchored PEG exhibited higher colloidal stability in phosphate-buffered saline in the presence of dithiothreitol than did AuNPs coated with monothiol-anchored PEG. AuNPs coated with high-molecular-weight (5000 Da) PEG were more stable than AuNPs coated with low-molecular-weight (2000 Da) PEG. Of the 20-nm, 40-nm, and 80-nm AuNPs coated with TA-terminated PEG5000, the 20-nm AuNPs exhibited the lowest uptake by reticuloendothelial cells and the slowest clearance from the body. Moreover, the 20-nm AuNPs coated with TA-terminated PEG5000 showed significantly higher tumor uptake and extravasation from the tumor blood vessels than did the 40- and 80-nm AuNPs. Thus, 20-nm AuNPs coated with TA-terminated PEG5000 are promising potential drug delivery vehicles and diagnostic imaging agents. PMID:19131103

  11. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj K.; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj

    2013-02-01

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33776b

  12. Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.

    PubMed

    Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang

    2015-02-07

    In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.

  13. The Study of Non-Viral Nanoscale Delivery Systems for Islet Transplantation

    NASA Astrophysics Data System (ADS)

    Gutierrez, Diana

    Due to safety concerns associated with using viral systems clinically to expand islet cells and make them available to many more patients, significant emphasis has been placed on producing a safe and effective non-viral delivery system for biological research and gene therapy. To obtain this goal, we propose the use of an innovative technology that utilizes gold nanoparticles (AuNPs) as a non-viral method of delivery. Our laboratory was one of the first to describe the use of AuNPs in human islets and observe AuNPs can penetrate into the core of islets to deliver a gene to the vast majority of the cells, without damaging the cell. Gold nanoparticles proved to be a biocompatible delivery system both in vitro and in vivo. Thus far, gene therapy and molecular biology have focused primarily on delivering DNA of a specific gene into cells. The risk of this approach is that the DNA can be permanently incorporated into the genome and lead to damages in the cell that could result in overexpression of cancerous tumor cells. This risk does not exist with the use of mRNA. Many researchers believe mRNA is too unstable to be used as a molecular tool to overexpress specific proteins. With advances in nanotechnology, and better understanding of the translation process, methods have been developed that allow for expression of specific proteins by intracellular delivery of protein-encoding mRNA. We used AuNPs conjugated to mCherry mRNA to establish a proof of concept of the feasibility of using AuNP-mRNA to achieve increased expression of a specific protein within cells. To do this, we conjugated mCherry mRNA to AuNPs and tested the feasibility for increasing delivery efficacy and preserve functionality of human pancreatic islets. We believe that with this novel technology we can create AuNPs that allow specific mRNA to enter islets and lead to the production of a specific protein within the cell, with the aim to induce beta cell proliferation. In a previous experiment with single cells, the highest amount of protein expression was observed after 24 hours incubation with mCherry conjugated AuNPs. Based on this, human islets were treated with 12 nm, 7 nm and 2 nm mCherry AuNPs for 24 hours. The expression of mCherry protein in human islets was analyzed by 3D image reconstruction of z-stack images acquired by confocal microscopy. A minimal amount of mCherry protein was expressed in human islets when treated with mCherry mRNA coupled to the 12 nm size AuNP. Decreasing the size of the AuNPs to 7 nm or 2 nm resulted in substantial increase in mCherry protein expression throughout human pancreatic islets when treated at concentrations of 20 nM and 50 nM with mCherry mRNA AuNPs for 24 hours. We used measurements of calcium influx, KCL and mitochondrial potential to determine the effect of AuNP-mCherry mRNA treatment on islet cell function. The area under the curve was computed for intracellular calcium influx of three different islet preparations. There was no statistically significance difference between (2 nm) 20 nM versus (7 nm) 20 nM, (2 nm) 20 nM versus (7 nm) 50 nM, (2 nm) 50 nM versus (7 nm) 20 nM, (2 nm) 50 nM versus (7 nm) 50 nM. For the area under the curve for the KCL there was no significant statistical difference between the groups. In addition, mitochondrial potential indices demonstrated similarity between the control group and mCherry mRNA AuNPs treated human pancreatic islets, there was no statistical difference between the three different sizes and concentrations when compared to the non-treated group. Taken together, AuNP did not impair islet function when concentration was increased. Although, the optimal size of AuNP that was easily seen to express mCherry protein was 7 nm, when human islet cells were treated with AuNP coupled to mRNA for E2F3 (the beta-cell proliferation inducing protein), to observe whether there was any sign of enhanced beta-cell proliferation, the 12 nm sized AuNP seemed to give a slight increase in beta-cell proliferation. Transmission electron microscopy (TEM) was used to determine where within the islets the AuNPs were localized. This validated that both the 12 nm and 7 nm size AuNPs crossed the cell membrane and were found within vesicles, mitochondria and in one case the insulin granules of the islets. A notable difference that was detected under TEM for the two size of AuNPs was that the 12nm appeared predominantly in clusters where as the 7nm AuNP was more evenly distributed within the cell. Further analysis with TEM may provide insight on how the size, concentration and kinetics of the AuNPs will influence protein expression and beta-cell expansion within human pancreatic islets. (Abstract shortened by UMI.).

  14. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  15. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials.

    PubMed

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38-20.45 mm inhibition zones) and rifampicin (9.52-25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09-15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation highlighted a novel green technology for the synthesis of AuNPs using food waste materials and their potential applications in the biomedical, pharmaceutical, and cosmetic industries.

  16. Knockdown of TNF-α by DNAzyme Gold Nanoparticles as an Anti-inflammatory Therapy for Myocardial Infarction

    PubMed Central

    Somasuntharam, Inthirai; Yehl, Kevin; Carroll, Sheridan L.; Maxwell, Joshua T.; Martinez, Mario D.; Che, Pao-Lin; Brown, Milton E.; Salaita, Khalid; Davis, Michael E.

    2017-01-01

    In this study, we used deoxyribozyme (DNAzyme) functionalized gold nanoparticles (AuNPs) to catalytically silence tumor necrosis factor-α (TNF-α) in vivo as a potential therapeutic for myocardial infarction (MI). Using primary macrophages as a model, we demonstrated 50% knockdown of TNF-α, which was not attainable using Lipofectamine-based approaches. Local injection of DNAzyme conjugated to gold particles (AuNPs) in the rat myocardium yielded TNF-α knockdown efficiencies of 50%, which resulted in significant anti-inflammatory effects and improvement in acute cardiac function following MI. Our results represent the first example showing the use of DNAzyme AuNP conjugates in vivo for viable delivery and gene regulation. This is significant as TNF-α is a multibillion dollar drug target implicated in many inflammatory-mediated disorders, thus underscoring the potential impact of DNAzyme-conjugated AuNPs. PMID:26773660

  17. Assembling Bare Au Nanoparticles at Positively Charged Templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; ...

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less

  18. Non-covalent binding of nucleic acids with gold nanoparticles provides their stability and effective desorption in environment mimicking biological media.

    PubMed

    Epanchintseva, Anna; Dolodoev, Anton; Grigor'eva, Alina; Chelobanov, Boris; Pyshnyi, Dmitrii; Ryabchikova, Elena; Pyshnaya, Inna

    2018-08-31

    The ability of gold nanoparticles to bind different substances has resulted in the high interest of researchers determining their usage as a promising carrier of various biological substances including nucleic acids (NAs) for therapeutic applications. Most publications report covalent binding (conjugation) of an NA to spherical AuNPs via the Au-S bond. In this work, we obtained non-covalent associates of different ssDNA, ssRNA and siRNAs with spherical gold nanoparticles (AuNPs) and examined their physico-chemical properties and stability in media mimicking intracellular space (bacterial 'cytosol') and cell culture media (10% FBS in DMEM). The 'cytosol' was obtained from E. coli and possessed nuclease activity. For the first time, we used the phosphoryl guanidine (dimethylimidazolidin-2-imine, Dmi) group for modification of 3'-ends to enhance the stability of ssRNAs and siRNAs against nuclease destruction. Trying to evaluate the material balance, we analyzed the whole nucleotide species obtained after incubation of NA-AuNPs associates in 'cytosol' and FBS and evaluated the degree of NAs destruction, a share of full-size NAs remained on the surface of the AuNPs and in the solution. Native ss- and siRNAs, both free and in composition of non-covalent associates with AuNPs, were less resistant to degrading factors than ssDNA. The introduction of two Dmi-groups into the ssDNA increased its stability in 'cytosol' three times within 2.5 h. Dmi-modified siRNAs in non-covalent associates with AuNPs were two times more stable than unmodified siRNA within 4 h. We showed that non-covalent siRNA-AuNPs associates serve as a kind of storage for full-size NAs and thereby prolong their presence in nuclease-active media. Our study showed that non-covalent binding of siRNAs with a surface of AuNPs provides desorption of both strands, which is necessary for siRNA functioning in living cells, and could be considered as an important way to construct siRNA and ssDNA delivery systems based on AuNPs.

  19. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.

    PubMed

    Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui

    2018-04-18

    One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.

  20. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers

    PubMed Central

    Tintoré, Maria; Mazzini, Stefania; Polito, Laura; Marelli, Marcello; Latorre, Alfonso; Somoza, Álvaro; Aviñó, Anna; Fàbrega, Carme; Eritja, Ramon

    2015-01-01

    Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection. PMID:26593913

  1. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle.

    PubMed

    Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang

    2014-02-15

    Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.

  2. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    NASA Astrophysics Data System (ADS)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  3. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  4. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    NASA Astrophysics Data System (ADS)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  5. A remote-controlled generation of gold@polydopamine (core@shell) nanoparticles via physical-chemical stimuli of polydopamine/gold composites

    NASA Astrophysics Data System (ADS)

    Lee, Yi Seul; Bae, Ji Young; Koo, Hye Young; Lee, Young Boo; Choi, Won San

    2016-03-01

    We present the synthesis of polydopamine particle-gold composites (PdopP-Au) and unique release of Au@Pdop core@shell nanoparticles (NPs) from the PdopP-Au upon external stimuli. The PdopP-Au was prepared by controlled synthesis of AuNPs on the Pdop particles. Upon near infrared (NIR) irradiation or NaBH4 treatment on the PdopP-Au, the synthesized AuNPs within the PdopPs could be burst-released as a form of Au@Pdop NPs. The PdopP-Au composite showed outstanding photothermal conversion ability under NIR irradiation due to the ultrahigh loading of the AuNPs within the PdopPs, leading to a remote-controlled explosion of the PdopP-Au and rapid formation of numerous Au@Pdop NPs. The release of the Au@Pdop NPs could be instantly stopped or re-started by off or reboot of NIR, respectively. The structure of the released Au@Pdop NPs is suitable for a catalyst or adsorbent, thus we demonstrated that the PdopP-Au composite exhibited excellent and sustained performances for environmental remediation due to its capability of the continuous production of fresh catalysts or adsorbents during the reuse.

  6. Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Ha, Wei; Kang, Yang; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-12-01

    We have developed a kind of gold nanoparticle (AuNP) in which polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) are attached on the surface of a gold nanocrystal through the host-guest inclusion between adamantane groups (ADA) and β-cyclodextrin (β-CD). The resulting AuNPs become amphiphilic in water above body temperature and self-assemble into vesicles. It is found that these vesicles can load doxorubicin (Dox) effectively. With a decrease in temperature, the PNIPAM shifted from hydrophobic to hydrophilic, causing Au vesicles to disassemble into stable small AuNPs, triggering the release of Dox. These hybrid vesicles, combining polymer functionality with the intriguing properties of AuNPs, can first release free Dox and AuNP/Dox at a site of a tumor through the application of either simple ice packs or deeply penetrating cryoprobes, then the AuNP/Dox can be taken in by tumor cells and destroy them like miniature munitions. Furthermore, these vesicles showed other therapeutic possibilities due to the presence of gold. We believe that the development of such multi-functional vesicles will provide new and therapeutically useful means for medical applications.

  7. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in pharmacokinetics while remaining renal clearable. With a rapid distribution half-life and a desirable elimination half-life, these NPs are highly promising for single-photon emission computed tomography (SPECT) and fluorescence dual-modality imaging.

  8. Synthesis and Characterization of Biomimetic High Density Lipoprotein Nanoparticles To Treat Lymphoma

    NASA Astrophysics Data System (ADS)

    Damiano, Marina Giacoma

    High density lipoproteins (HDLs), natural nanoparticles that function as vehicles for cholesterol transport, have enhanced uptake by several human cancers. This uptake is mediated, in part, by the high affinity HDL receptor, scavenger receptor B-1 (SR-B1). More specifically, studies show that the rate of cellular proliferation of lymphoma, a cancer of the lymphocytes, is directly proportional to the amount of HDL-cholesterol available. Thus, targeting of HDL-cholesterol uptake by these cells could be an effective therapeutic approach that may have lower toxicity to healthy cells compared to conventional therapies. Biomimetic HDL can be synthesized using a gold nanoparticle template (HDL-AuNPs), which provides control over size, shape, and surface chemistry. Like their natural counterparts, HDL-AuNPs sequester cholesterol. However, since the gold nanoparticle replaces the cholesterol core of natural HDL, HDL-AuNPs inherently deliver less cholesterol. We show that HDL-AuNPs are able to induce dose dependent apoptosis in B cell lymphoma cell lines and reduce tumor volume following systemic administration to mice bearing B cell lymphoma tumors. Furthermore, HDL-AuNPs are neither toxic to healthy human lymphocytes (SR-B1-), nor to hepatocytes and macrophages (SR-B1+), which are cells naturally encountered by HDLs. Manipulation of cholesterol flux and targeting of SR-B1 are responsible for the efficacy of HDL-AuNPs against B cell lymphoma. HDL-AuNPs could be used to treat B cell lymphomas and other diseases that involve pathologic accumulation of cholesterol. Titanium dioxide nanoparticle (TiO2 NP) core HDLs (HDL-TiO 2 NPs) have been synthesized for high resolution cellular localization studies and for future use as a therapeutic and imaging agent. In initial studies, HDL-TiO(2 NPs display maximum uptake in B cell lymphoma cell lines. X-ray fluorescence microscopy studies show interaction between HDL-TiO2 NPs and cells 10 minutes after treatment and internalization after 1 hour. HDL-TiO2 NPs induce apoptosis in B cell lymphoma cell lines. These results suggest that HDL-TiO2 NPs may be used as therapeutics for lymphoma and other cancers by inducing apoptosis through manipulation of cellular cholesterol flux.

  9. Reductive surface synthesis of gold nanoparticles on silicate glass and their biochemical sensor applicationsa

    PubMed Central

    Li, M.; Kim, D.-P.; Jeong, G.-Y.; Seo, D.-K.; Park, C.-P.

    2012-01-01

    Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip. PMID:24324531

  10. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials

    PubMed Central

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2016-01-01

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38–20.45 mm inhibition zones) and rifampicin (9.52–25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09–15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation highlighted a novel green technology for the synthesis of AuNPs using food waste materials and their potential applications in the biomedical, pharmaceutical, and cosmetic industries. PMID:27695326

  11. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  12. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  13. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  14. Gold nanoparticles: From nanomedicine to nanosensing

    PubMed Central

    Chen, Po C; Mwakwari, Sandra C; Oyelere, Adegboyega K

    2008-01-01

    Because of their photo-optical distinctiveness and biocompatibility, gold nanoparticles (AuNPs) have proven to be powerful tools in various nanomedicinal and nanomedical applications. In this review article, we discuss recent advances in the application of AuNPs in diagnostic imaging, biosensing and binary cancer therapeutic techniques. We also provide an eclectic collection of AuNPs delivery strategies, including assorted classes of delivery vehicles, which are showing great promise in specific targeting of AuNPs to diseased tissues. However, successful clinical implementations of the promised applications of AuNPs are still hampered by many barriers. In particular, more still needs to be done regarding our understanding of the pharmacokinetics and toxicological profiles of AuNPs and AuNPs-conjugates. PMID:24198460

  15. Systematic Control of Self-Assembled Au Nanoparticles and Nanostructures Through the Variation of Deposition Amount, Annealing Duration, and Temperature on Si (111).

    PubMed

    Li, Ming-Yu; Sui, Mao; Pandey, Puran; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-12-01

    The size, density, and configurations of Au nanoparticles (NPs) can play important roles in controlling the electron mobility, light absorption, and localized surface plasmon resonance, and further in the Au NP-assisted nanostructure fabrications. In this study, we present a systematical investigation on the evolution of Au NPs and nanostructures on Si (111) by controlling the deposition amount (DA), annealing temperature (AT), and dwelling time (DT). Under an identical growth condition, the morphologies of Au NPs and nanostructures drastically evolve when the DA is only slightly varied, based on the Volmer-Weber and coalescence models: i.e. I: mini NPs, II: mid-sized round dome-shaped Au NPs, III: large Au NPs, and IV: coalesced nanostructures. With the AT control, three distinctive ranges are observed: i.e., NP nucleation, Au NPs maturation and melting. The gradual dimensional expansion of Au NPs is always compensated with the density reduction, which is explained with the thermodynamic theory. The DT effect is relatively minor on Au NPs, a sharp contrast to other metallic NPs, which is discussed based on the Ostwald-ripening.

  16. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M.; Sapieha, Przemyslaw; Meunier, Michel

    2015-10-01

    Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions. Electronic supplementary information (ESI) available: Characterization of functionalized gold nanoparticles by UV-visible-NIR spectroscopy and zeta potential measurements; selectivity of cell targeting with functionalized gold nanoparticles by immunofluorescence, flow cytometry and scanning electron microscopy; selective treatment of targeted cells with functionalized gold nanoparticles and ultrafast laser. See DOI: 10.1039/c5nr05650k

  17. Supramolecular Assembly of Gold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Hawker, Craig J.; Kramer, Edward J.

    2011-03-01

    We report a simple route to control the spatial distribution of Au nanoparticles (Au-NPs) in PS- b -P2VP diblock copolymers using hydrogen bonding between P2VP and the hydroxyl-containing (PI-OH) units in PS- b -PIOH thiol-terminated ligands on Au-NP. End-functional thiol ligands of poly(styrene- b -1,2&3,4-isoprene-SH) are synthesized by anionic polymerization. After synthesis of Au-NPs, the inner PI block is hydroxylated by hydroboration and the resulting micelle-like Au-NPs consist of a hydrophobic PS outer brush and a hydrophilic inner PI-OH block. The influence of the hydroxyl groups is significant with strong segregation being observed to the PS/P2VP interface and then to the P2VP domain of lamellar-forming PS-b-P2VP diblock copolymers as the length of the PI-OH block is increased. The strong hydrogen bonding between nanoparticle block copolymer ligands and the P2VP block allows the Au-NPs to be incorporated within the P2VP domain to high Au--NP volume fractions ϕp without macrophase separation, driving transitions from lamellar to bicontinuous morphologies as ϕp increases.

  18. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    PubMed

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  20. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review.

    PubMed

    Libralato, Giovanni; Galdiero, Emilia; Falanga, Annarita; Carotenuto, Rosa; de Alteriis, Elisabetta; Guida, Marco

    2017-08-31

    Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae , fresh- (F) and saltwater (S) microalgae ( Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna , and Xenopus laevis . QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH₂ - for cationic and COOH - for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.

  1. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.

    PubMed

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Hsu, Ting-Chu

    2012-05-01

    As shown in the literature, additional energies are necessary for the reduction of positively charged noble metal ions to prepare metal nanoparticles (NPs). In this work, we report a new green pathway to prepare Au NPs in neutral 0.1M NaCl aqueous solutions from bulk Au substrates without addition of any stabilizer and reductant just via aid of natural chitosan (Ch) at room temperature. Au- and Ch-containing complexes in aqueous solution were electrochemically prepared. The role of Ch is just an intermediate to perform electron transfer with Au NPs. The stability of these prepared Au NPs is well maintained by Au NPs themselves with slightly positively charged Au remained on the surface of Au NPs. The particle size of prepared spherical Au (111) NPs is ca. 15 nm in diameter. Moreover, increasing the pH of preparation solutions can be contributive to preparing concentrated Au NPs in solutions. The prepared Au NPs are surface-enhanced Raman scattering (SERS)-active for probe molecules of Rhodamine 6G. They also demonstrate significantly catalytic activity for decomposition of acetaldehyde in rice wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy.

    PubMed

    Al-Yasiri, A Y; Khoobchandani, M; Cutler, C S; Watkinson, L; Carmack, T; Smith, C J; Kuchuk, M; Loyalka, S K; Lugão, A B; Katti, K V

    2017-10-31

    We report here an innovative feature of green nanotechnology-focused work showing that mangiferin-a glucose functionalized xanthonoid, found in abundance in mango peels-serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF- 198 AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors (PC-3) of human prostate tumor origin induced in mice which overexpress this receptor subtype. Detailed in vivo therapeutic efficacy studies, through the intratumoral delivery of MGF- 198 AuNPs, show the retention of over 80% of the injected dose (ID) in prostate tumors up to 24 h. By three weeks post treatment, tumor volumes of the treated group of animals showed an over 5 fold reduction as compared to the control saline group. New opportunities for green nanotechnology and a new paradigm of using mangiferin as a tumor targeting agent in oncology for the application of MGF- 198 AuNPs in the treatment of cancer are discussed.

  3. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  4. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE PAGES

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.; ...

    2018-02-13

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  5. One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities

    DTIC Science & Technology

    2010-01-01

    groups for further coupling to target molecules. Since the classic citrate reduction of aurate to prepare citrate - stabilized AuNPs was pioneered by the...reduced stability against excess salts and changes in solution pH (e.g., citrate -stabilized NPs); (2) the inability to prepare nanocrystals over a wide...size regime ( citrate reduction usually producesAuNPs smaller than 10 nm, but larger sizes require additional refluxing in the presence of sodium citrate

  6. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.

    PubMed

    Liu, Cheng-Hao; Tseng, Wei-Lung

    2011-10-03

    This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer

    NASA Astrophysics Data System (ADS)

    Swami Muddineti, Omkara; Kumari, Preeti; Ajjarapu, Srinivas; Manish Lakhani, Prit; Bahl, Rishabh; Ghosh, Balaram; Biswas, Swati

    2016-08-01

    In recent years, gold nanoparticles (AuNPs) have received immense interest in various biomedical applications including drug delivery, photothermal ablation of cancer and imaging agent for cancer diagnosis. However, the synthesis of AuNPs poses challenges due to the poor reproducibility and stability of the colloidal system. In the present work, we developed a one step, facile procedure for the synthesis of AuNPs from hydrogen tetrachloroaurate (III) hydrate (HAuCl4. 3H2O) by using ascorbic acid and xanthan gum (XG) as reducing agent and stabilizer, respectively. The effect of concentrations of HAuCl4, 3H2O, ascorbic acid and methoxy polyethylene glycol-thiol (mPEG800-SH) were optimized and it was observed that stable AuNPs were formed at concentrations of 0.25 mM, 50 μM and 1 mM for HAuCl4.3H2O, ascorbic acid, and mPEG800-SH, respectively. The XG stabilized, deep red wine colored AuNPs (XG-AuNPs) were obtained by drop-wise addition of aqueous solution of ascorbic acid (50 mM) and XG (1.5 mg ml-1). Synthesized XG-AuNPs showed λmax at 540 nm and a mean hydrodynamic diameter of 80 ± 3 nm. PEGylation was performed with mPEG800-SH to obtain PEGylated XG-AuNPs (PX-AuNPs) and confirmed by Ellman’s assay. No significant shift observed in λmax and hydrodynamic diameter between XG-AuNPs and PX-AuNPs. Colloidal stability of PX-AuNPs was studied in normal saline, buffers within a pH range of 1.2-7.4, DMEM complete medium and in normal storage condition at 4 ˚C. Further, water soluble curcumin was prepared using PVP-K30 as solid dispersion and loaded on to PX-AuNPs (CPX-AuNPs), and evaluated for cellular uptake and cytotoxicity in Murine melanoma (B16F10) cells. Time and concentration dependent studies using CPX-AuNPs showed efficient uptake and decreased cell viability compared to free curcumin.

  8. Recyclable colorimetric sensor of Cr3 + and Pb2 + ions simultaneously using a zwitterionic amino acid modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sang, Fuming; Li, Xin; Zhang, Zhizhou; Liu, Jia; Chen, Guofu

    2018-03-01

    In this work, a rapid, simple and sensitive colorimetric sensor for simultaneous (or respective) detection of Cr3 + and Pb2 + using tyrosine functionalized gold nanoparticles (AuNPsTyr) has been developed. Tyrosine, a natural and zwitterionic amino acid, could be as a reducing and capping agent to synthesise AuNPs and allow for the simultaneous and selective detection of Cr3 + and Pb2 +. Upon the addition of Cr3 + or Pb2 + (a combination of them), the color of AuNPsTyr solution changes from red to blue grey and the characteristic surface plasmon resonance (SPR) band is red-shifted to 580 nm due to the aggregation of AuNPs. Interestingly, the aggregated AuNPsTyr can be regnerated and recycled by removing Pb2 + and Cr3 +. Even after 3 rounds, AuNPsTyr show almost the same A580 nm / A520 nm value for the assays of Pb2 + and Cr3 +, indicating the good recyclability of the colorimetric sensor. The responding time (within 1 min) and sensitivity of the colorimetric sensor are largely improved after the addition of 0.1 M NaCl. Moreover, the AuNPsTyr aggregated by Cr3 + or Pb2 + (a combination of them) show excellent selectivity compared to other metal ions (Cr3 +, Pb2 +, Fe2 +,Cu2 +,Zn2 +,Cr6 +,Ni2 +,Co2 +,Hg2 +,Mn2 +,Mg2 +,Ca2 +,Cd2 +). More importantly, the developed sensor manifests good stability at room temperature for 3 months, which has been successfully used to determine Cr3 + and Pb2 + in the real water samples with a high sensitivity.

  9. Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards

    NASA Astrophysics Data System (ADS)

    Alkubaisi, Noorah A.; Aref, Nagwa M. A.

    2017-02-01

    Gold nanoparticles (AuNPs) application melted barley yellow dwarf virus-PAV (BYDV-PAV) spherical nanoparticle capsids. Synergistic therapeutic effects for plant virus resistance were induced by interaction with binding units of prepared AuNPs in a water solution which was characterized and evaluated by zeta sizer, zeta potential and transmission electron microscopy (TEM). The yield of purified nanoparticles of BYDV-PAV was obtained from Hordeum vulgare (Barley) cultivars, local and Giza 121/Justo. It was 0.62 mg/ml from 27.30 g of infected leaves at an A260/A280 ratio. Virus nanoparticle has a spherical shape 30 nm in size by TEM. BYDV-PAV combined with AuNPs to challenge virus function in vivo and in vitro. Dual AuNPs existence in vivo and in vitro affected compacted configuration of viral capsid protein in the interior surface of capsomers, the outer surface, or between the interface of coat protein subunits for 24 and 48 h incubation period in vitro at room temperature. The sizes of AuNPs that had a potentially dramatic deteriorated effect are 3.151 and 31.67 nm with a different intensity of 75.3% for the former and 24.7% for the latter, which enhances optical sensing applications to eliminate virus infectivity. Damages of capsid protein due to AuNPs on the surface of virus subunits caused variable performance in four different types of TEM named puffed, deteriorated and decorated, ruined and vanished. Viral yield showed remarkably high-intensity degree of particle symmetry and uniformity in the local cultivar greater than in Giza 121/Justo cultivar. A high yield of ruined VLPs in the local cultivar than Justo cultivar was noticed. AuNPs indicated complete lysed VLPs and some deteriorated VLPs at 48 h.

  10. Advances in Gold Catalysis and Understanding the Catalytic Mechanism.

    PubMed

    Ishida, Tamao; Koga, Hiroaki; Okumura, Mitsutaka; Haruta, Masatake

    2016-10-01

    When gold is deposited as nanoparticles (NPs) with mean diameters of 2-5 nm or clusters with mean diameters below 2 nm onto a variety of supports such as metal oxides, carbons, polymers, etc., the supported Au NPs exhibit unique catalytic properties, while bulk Au is almost inert as a catalyst. A lot of research works indicate that the key factors of the catalysis by supported Au NPs are the selection of the supports, the control of the Au NP size, the shape of the Au NPs, and the strong junction between Au NPs and the supports, because the perimeter zone around Au NPs acts as the active site for many reactions. In order to elucidate the origin of catalysis by supported Au NPs, the interplay between physicochemical analysis, computational studies, and rational experiments for catalysis by supported Au NPs is becoming more and more important. This article summarizes our experiences and progress in such interplay. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation.

    PubMed

    Singh, Dheeraj K; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj

    2013-03-07

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl(4) using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au(3+) ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au(3+) ions are reduced to Au(0). Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.

  12. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  13. Radiation synthesis and characterization of hyaluronan capped gold nanoparticles.

    PubMed

    Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Quoc, Le Anh

    2012-06-20

    Gold nanoparticles (AuNPs) with diameter from 4 to 10nm, capping by hyaluronan (HA) were synthesized using a γ-irradiation method. The maximum absorption wavelengths at 517-525 nm of colloidal AuNPs/HA solutions were measured by UV-vis spectroscopy. The size and size distribution of AuNPs were determined from TEM images. The influence of various factors on the size of AuNPs particularly the concentration of Au3+ and HA, and dose rate were also investigated. Results indicated that higher dose rate and HA concentration favor smaller sizes of AuNPs whereas the size increases with Au3+ concentration. The colloidal AuNPs/HA solution was fairly stable more than 6 months under storage at ambient condition. The AuNPs stabilized by biocompatible HA with the size less than 10nm as prepared can potentially be applied in biomedicines and cosmetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  15. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna.

    PubMed

    Lee, Byung-Tae; Ranville, James F

    2012-04-30

    The stability and uptake by Daphnia magna of citrate-stabilized gold nanoparticles (AuNPs) in three different hardness-adjusted synthetic waters were investigated. Negatively charged AuNPs were found to aggregate and settle in synthetic waters within 24 h. Sedimentation rates depended on initial particle concentrations of 0.02, 0.04, and 0.08 nM AuNPs. Hardness of the synthetic waters affected the aggregation of AuNPs and is explained by the compression of diffuse double layer of AuNPs due to the increasing ionic strength. The fractal dimension of AuNPs in the reaction-limited regime of synthetic waters averaged 2.228±0.126 implying the rigid structures of aggregates driven by the collision of small particles with the growing aggregates. Four-day old D. magna accumulated more than 90% of AuNPs in 0.04 nM AuNP suspensions without any observed mortality. Exposure to pre-aggregated AuNP for 48 h in hard water did not show any significant difference in uptake, suggesting D. magna can also ingest settled AuNP aggregates. D. magna exposed to AuNPs shed their exoskeleton whereas the control did not generate any molts over 48 h. This implies that D. magna removed AuNPs on their exoskeleton by producing molts to decrease any adverse effects of adhered AuNPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. LSPR Tuning from 470 to 800 nm and Improved Stability of Au-Ag Nanoparticles Formed by Gold Deposition and Rebuilding in the Presence of Poly(styrenesulfonate).

    PubMed

    Cathcart, Nicole; Chen, Jennifer I L; Kitaev, Vladimir

    2018-01-16

    Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.

  17. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  18. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens.

    PubMed

    Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-02-01

    In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.

  19. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

    PubMed

    El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A

    2016-01-20

    Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to significant decrease in zeta potential of the formed bimetallic core-shell. FT-IR discloses the interaction between CRD and metal nanoparticles, which could be the question of reducing and stabilizing metal and bimetallic nanoparticles. XRD patterns assume insufficient difference for the AuNPs and AgNPs-AuNPs core-shell samples due to close lattice constants of Ag and Au. Based on AFM, AuNPs and AgNPs-AuNPs core-shell exhibited good monodispersity with spherical particles possessing different sizes in the studied samples. The average sizes of both metal and bimetallic core-shell were found to be 52 and 45 nm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The effects of colorimetric detection of heavy metal ions based on Au nanoparticles (NPs): size and shape—a case of Co2+

    NASA Astrophysics Data System (ADS)

    Leng, Yumin; He, Junbao; Li, Bo; Xing, Xiaojing; Guo, Yongming; Ye, Liqun; Lu, Zhiwen

    2017-09-01

    The different sized and shaped Au NPs have intrigued considerable attention, because they possess different surface plasma resonance (SPR) absorption bands and thus result in many colorimetric Au NP-based detection applications. In this article, four different sized and shaped Au NPs of nanodots/rods were prepared and characterized. The as-prepared Au NPs were modified by the negatively charged anions of [SCH2CO2]2- to investigate both the size and shape effects of modified Au NPs on colorimetric detection of Co2+ and the corresponding SPR absorption properties. The different-shaped Au NPs possess different SPR absorption properties. The Au nanorods appeared to be colorimetric sensitive for Co2+ sensing.

  1. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers

    NASA Astrophysics Data System (ADS)

    Du, Xin; He, Junhui

    2012-01-01

    Our previously fabricated amino-functionalized silica nanoparticles (NPs) with center-radially hierarchical mesopores (NH2-HMSNs) were purified by a filtration membrane and used as catalyst carriers in the current article. Noble metal NPs (Au, Pd, Pt and Au & Pt) with small sizes (3-8 nm) were successfully immobilized into the NH2-HMSNs via the deposition-precipitation method. These noble metal NPs with readily adjusted small sizes have high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Among them, Au-NH2-HMSNs were investigated as the composite catalyst in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction and exhibited excellent catalytic activity and stability. The presence of center-radially large mesopores in the NH2-HMSNs may favor the loading of noble metal NPs with high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Metal-NH2-HMSNs may be more promising composite catalysts due to their superstructure of center-radially hierarchical mesopores that maybe significantly enhance and harmonize the diffusion of guest molecules of different sizes through the porous matrices.Our previously fabricated amino-functionalized silica nanoparticles (NPs) with center-radially hierarchical mesopores (NH2-HMSNs) were purified by a filtration membrane and used as catalyst carriers in the current article. Noble metal NPs (Au, Pd, Pt and Au & Pt) with small sizes (3-8 nm) were successfully immobilized into the NH2-HMSNs via the deposition-precipitation method. These noble metal NPs with readily adjusted small sizes have high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Among them, Au-NH2-HMSNs were investigated as the composite catalyst in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction and exhibited excellent catalytic activity and stability. The presence of center-radially large mesopores in the NH2-HMSNs may favor the loading of noble metal NPs with high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Metal-NH2-HMSNs may be more promising composite catalysts due to their superstructure of center-radially hierarchical mesopores that maybe significantly enhance and harmonize the diffusion of guest molecules of different sizes through the porous matrices. Electronic supplementary information (ESI) available: Detailed synthesis procedures of NH2-MCM-41 and NH2-SBA-15; additional SEM images of as-prepared NH2-HMSNs; TEM images of calcined NH2-HMSNs and recovered Au-NH2-HMSNs after catalytic reaction; FTIR spectra of the extracted and purified NH2-HMSNs and Au-NH2-HMSNs and UV-vis absorption spectra of noble metal-NH2-HMSNs suspension, Au-NH2-MCM-41 and Au-NH2-SBA-15, and the reaction mixture in the catalytic reaction. See DOI: 10.1039/c1nr11504a

  2. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    PubMed Central

    Zhang, Min; Lin, Cunchong; Zhang, Jun

    2018-01-01

    A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO) nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs) display a change three orders higher than that of pure ZnO with relative humidity (RH) ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance. PMID:29342860

  3. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing.

    PubMed

    Zhang, Hongyan; Zhang, Min; Lin, Cunchong; Zhang, Jun

    2018-01-13

    A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO) nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs) display a change three orders higher than that of pure ZnO with relative humidity (RH) ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  4. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    PubMed Central

    Correard, Florian; Maximova, Ksenia; Estève, Marie-Anne; Villard, Claude; Roy, Myriam; Al-Kattan, Ahmed; Sentis, Marc; Gingras, Marc; Kabashin, Andrei V; Braguer, Diane

    2014-01-01

    Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs) are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. PMID:25473280

  5. Detection of urinary creatinine using gold nanoparticles after solid phase extraction

    NASA Astrophysics Data System (ADS)

    Sittiwong, Jarinya; Unob, Fuangfa

    2015-03-01

    Label-free gold nanoparticles (AuNPs) were utilized in the detection of creatinine in human urine after a sample preparation by extraction of creatinine on sulfonic acid functionalized silica gel. With the proposed sample preparation method, the interfering effects of the urine matrix on creatinine detection by AuNPs were eliminated. Parameters affecting creatinine extraction were investigated. The aggregation of AuNPs induced by creatinine resulted in a change in the surface plasmon resonance signal with a concomitant color change that could be observed by the naked eye and quantified spectrometrically. The effect of AuNP concentration and reaction time on AuNP aggregation was investigated. The method described herein provides a determination of creatinine in a range of 15-40 mg L-1 with a detection limit of 13.7 mg L-1 and it was successfully used in the detection of creatinine in human urine samples.

  6. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  7. n vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake

    USGS Publications Warehouse

    Khan, Farhan R.; Kennaway, Gabrielle M.; Croteau, Marie-Noële; Dybowska, Agnieszka; Smith, Brian D.; Nogueira, António J.A.; Rainbow, Philip S.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L−1) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted −1 (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24 h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.

  8. Preparation of Chitin Nanofibers-Gold Metallic Nanocomposite by Phase Transfer Method

    NASA Astrophysics Data System (ADS)

    Shervani, Zameer; Taisuke, Yukawa; Ifuku, Shinsuke; Saimoto, Hiroyuki; Morimoto, Minoru

    2012-10-01

    Chitin nanofibers (CNFs)-Au(0) nanoparticles (Au NPs) blends in dispersion, flakes and thin film or sheet forms were first prepared by mixing pre-organized Au NPs prepared in triblock copolymer with diluted CNFs suspension. Water soluble polymer triblock copolymer poly (methyl vinyl ether, PMVE) in the amount 0.6 wt.% was used to prepare NPs and 0.12 wt.% net chitin content was used as CNFs suspension to prepare the blended composite. Au NPs of size 4.4 nm (σ = 1.2) were obtained when Au salt (HAuCl4ṡ3H2O (hydrogen tetrachloroaurate (III) trihydrate) was reduced by 5 equivalents of NaBH4. PMVE polymer acted as a stabilizing or capping agent for pre-organized NPs. Completion of reaction was fast, all salt reduced to metallic form in just 15 min after the addition of NaBH4. CNFs (1 wt.% chitin) which was used to prepare CNFs-Au NPs blend composite were prepared from crab shell in never dried acidic condition by established combination of chemical and mechanical processes that gave 25-40 nm width and high aspect ratio CNFs. When polymer capped Au NPs mixed with CNF suspension, all Au NPs and 56% polymer were mass transferred from water phase to entangle with more polar moieties of CNFs-water suspension as no trace of Au NPs were noticed in water-polymer mother liquor after blending with CNFs suspension. Particles size of CNFs-Au NPs composite was measured by employing TEM, SAXS and SEM techniques. CNFs-Au NPs composite were characterized in solution and compressed dried sheet form by recording digital images, UV-vis and XRD spectroscopies. CNFs-Au NPs suspension had antibacterial activity against gram positive bacteria S. aureus.

  9. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag.

    PubMed

    Pan, Yuxiang; Wan, Zijian; Zhong, Longjie; Li, Xueqin; Wu, Qi; Wang, Jun; Wang, Ping

    2017-06-01

    Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H 2 O 2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  10. Small gold nanoparticles presenting linear and looped Cilengitide analogues as radiosensitizers of cells expressing ανβ3 integrin

    NASA Astrophysics Data System (ADS)

    Travis, Adam R.; Liau, Virginia A.; Agrawal, Amanda C.; Cliffel, David E.

    2017-11-01

    This work uses linear and looped RGDfV sequences attached to the surface of small (1.8 nm in diameter) gold nanoparticles (AuNPs) to enhance the radiosensitizating effects of Cilengitide, a cyclic RGDf ( NMe)V pentapeptide that targets αvβ3 integrin which is overexpressed in certain cancers. Following synthesis and purification, the AuNPs were evaluated in vitro against HUVEC, H460, and MCF7 cells in clonogenic assays using a 137Cs irradiator. Untargeted AuNPs induced no significant dose enhancement factors (DEFs) in any of the cell types when compared to radiation treatment alone, whereas all evaluated AuNPs functionalized with targeting peptides performed at least as well as controls (irradiation after Cilengitide treatment). The observed DEFs also suggest that cyclizing the linear peptides into more spatially constrained, looped structures may facilitate target binding. These greater dose enhancements merit future in vivo studies of drug-AuNP conjugates to assess the ability of the nanostructures to provide an improved therapeutic benefit over treatment with drug candidates and radiation alone. [Figure not available: see fulltext.

  11. Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alizadeh, A.; Khodaei, M. M.; Karami, Ch; Workentin, M. S.; Shamsipur, M.; Sadeghi, M.

    2010-08-01

    A gold nanoparticle (AuNPs)-based simple and fast colorimetric sensor for selective detecting of Pb(II) in aqueous solution has been developed. Monodisperse AuNPs (approx. 2.0 nm diameter) has been prepared facilely and further modified with an alkanethiol-bearing monoazacrown ether terminus. These AuNPs are shown to selectively sense Pb2 + through color change, which is visually discernible by an appearance of the surface plasmon band (SPB) at 520 nm. The recognition mechanism is attributed to the unique structure of the monoazacrown ether attached to AuNPs and metal sandwich coordination between two azacrown ether moieties that are attached to separate nanoparticles. This inter-particle cross-linking results in an aggregation and apparent color change from brown to purple. Additionally, TEM experiments support the optical absorption data proving the aggregation between azacrown ether-capped gold nanoparticles. This AuNP-based colorimetric assay is a facile and robust method and allows fast detection of Pb2 + at ambient temperatures. More importantly, the developed technique does not utilize enzymatic reactions, light-sensitive dye molecules, lengthy protocols or sophisticated instrumentation.

  12. Construction of Au@Pt core—satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Wenlan; Li, Junbo; Zou, Sheng; Guo, Jinwu; Zhou, Huiyun

    2017-03-01

    A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size ( 2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

  13. The effect of SiO2/Au core-shell nanoparticles on breast cancer cell's radiotherapy.

    PubMed

    Darfarin, Ghazal; Salehi, Roya; Alizadeh, Effat; Nasiri Motlagh, Behnam; Akbarzadeh, Abolfazl; Farajollahi, Alireza

    2018-05-09

    Recently it has been shown that radiation dose enhancement could be achievable in radiotherapy using nanoparticles (NPs). In this study, evaluation was made to determine efficiency of gold-silica shell-core NP in megavoltage irradiation of MCF7 breath cancer cells. Gold-silicon oxide shell-core NPs were obtained by conjugation of gold NP with amine or thiol functionalized silica NPs (AuN@SiO 2 and AuS@SiO 2 ). Cellular uptake and cytotoxicity of NPs were examined by fluorescent microscopy and MTT assay, respectively. MCF-7 breast cancer cells were treated with both NPs and irradiation was made with X-ray energies of 6 and 18 MV to the absorbed dose of 2, 4 and 8 Gy using Simense linear accelerator. The efficiency of radiation therapy was then evaluated by MTT and Brdu assay, DAPI staining and cell cycle analysis. TEM images indicated that synthesized NPs had average diameter of 25 nm. Cellular uptake demonstrated that the internalization of AuS@SiO 2 and AuN@SiO 2 NPs amounted to 18% and 34%, 3 h post treatment, respectively. Nontoxicity of prepared NPs on MCF-7 cells was proved by MTT and Brdu assays as well as DAPI staining and cell cycle studies. The highest enhancement in radiation dose was observed in the cells that irradiated with radiation energy of 18 MV and absorbed of 8 Gy at NPs concentration of 200 ppm. The Brdu findings revealed that the cytotoxicity and apoptosis on MCF-7 cells are dose dependent with a significantly more death in AuN@SiO 2 (amine) exposed cells (p < .05). Analysis also revealed interruption in cell cycle by demonstrating lack of cells, in S phase in amine treated cells (AuN@SiO 2 ) at given dose of 8 Gy using 18 MV X-ray in comparison to thiol treated cells. Based on the results of the study it can be concluded that the gold-silicon oxide shell-core NPs could play an effective role in radiotherapy of MCF-7 breast cancer cells.

  14. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.

    PubMed

    Pandey, Prem C; Pandey, Govind; Narayan, Roger J

    2017-03-27

    Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H 2 O 2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to 800 μM and a detection limit as low as 80 μM were observed. The mesoscale pores of the as developed AuNP-inserted MSNPs were also used to entrap the hydrophobic drug paclitaxel. The results of this study indicate the potential use of the AuNP-inserted MSNPs in biocatalysis and drug delivery.

  15. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tractmore » as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.« less

  16. Gold nanoparticle should understand protein corona for being a clinical nanomaterial.

    PubMed

    Charbgoo, Fahimeh; Nejabat, Mojgan; Abnous, Khalil; Soltani, Fatemeh; Taghdisi, Seyed Mohammad; Alibolandi, Mona; Thomas Shier, W; Steele, Terry W J; Ramezani, Mohammad

    2018-02-28

    Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as "bio-identity". These proteins attach onto the AuNPs surface forming protein corona that makes the first step of nano-bio interface and dictates the subsequent AuNPs fate. Protein corona formation even stealth active targeting effect of AuNPs. Manipulating the protein corona identity based on the researcher goal is the way to employ corona to achieve maximum effect in therapy or other applications. In this review, we provide details on the biological identity of AuNPs under various environmental- and/or physiological conditions. We also highlight how the particular corona can direct the biodistribution of AuNPs. We further discuss the strategies available for controlling or reducing corona formation on AuNPs surface and achieving desired effects using AuNPs in vivo by engineering protein corona on their surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  18. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    NASA Astrophysics Data System (ADS)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  19. Green synthesis of size controllable gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Kiran Kumar, Hoskote A.; Maddinedi, Sireesh Babu

    2013-12-01

    A facile rapid green eco-friendly method to synthesize gold nanoparticles (Au NPs) of tunable size using aqueous Terminalia arjuna fruit extracts has been demonstrated herein. Formation of Au NPs was confirmed by Surface Plasmon Resonance (SPR) study at 528 nm using UV-visible spectrophotometer. The time of reduction, size and morphological variations of Au NPs were studied with varying quantities of T. arjuna fruit aqueous extracts. Synthesized Au NPs were characterized using UV-visible spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy dispersive X-ray spectroscopy (EDAX). Polyphenols responsible for reduction of Au3+ to Au0 were identified using High Performance Liquid Chromatography (HPLC) as ascorbic acid, gallic acid and pyrogallol. The oxidized forms of polyphenols formed coordination with surface of Au NPs which protected their further growth and aggregation. We also propose a plausible mechanism how to tune size and shape of Au NPs by varying the quantity of extracts. Thus obtained Au NPs were stable for more than four months.

  20. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lai, Hong-Zheng; Wang, Sin-Ge; Wu, Ching-Yi; Chen, Yu-Chie

    2015-02-17

    Staphylococcus aureus is one of the common pathogenic bacteria responsible for bacterial infectious diseases and food poisoning. This study presents an analytical method based on the affinity nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples. A peptide aptamer DVFLGDVFLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the reducing agent and protective group to generate DD-immobilized gold nanoparticles (AuNPs@DD) from one-pot reactions. The thiol group from cysteine in the peptide aptamer, i.e., DD, can interact with gold ions to generate DD-immobilized AuNPs in an alkaline solution. The generated AuNPs@DD has an absorption maximum at ∼518 nm. The average particle size is 7.6 ± 1.2 nm. Furthermore, the generated AuNPs@DD can selectively bind with S. aureus and MRSA. The conjugates of the target bacteria with AuNPs were directly analyzed by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The gold ions generated from the AuNPs@DD anchored on the target bacteria were monitored. Gold ions (m/z 197 and 394) were only generated from the conjugates of the target bacterium-AuNP@DD in the SALDI process. Thus, the gold ions could be used as the indicators for the presence of the target bacteria. The detection limit of S. aureus using this method is in the order of a few tens of cells. The low detection limit is due to the ease of generation of gold cluster ion derived from AuNPs under irradiation with a 355 nm laser beam. Apple juice mixed with S. aureus was used as the sample to demonstrate the suitability of the method for real-world application. Because of its low detection limit, this approach can potentially be used to screen the presence of S. aureus in complex samples.

  1. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sulalit; Singh, Gurvinder; Sandvig, Ioanna; Sandvig, Axel; Mathieu, Roland; Anil Kumar, P.; Glomm, Wilhelm Robert

    2014-10-01

    Fe@Au core-shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV-vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  2. Synthesis of CO2/N2-triggered reversible stability-controllable poly(2-(diethylamino)ethyl methacrylate)-grafted-AuNPs by surface-initiated atom transfer radical polymerization.

    PubMed

    Kitayama, Yukiya; Takeuchi, Toshifumi

    2014-10-28

    CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.

  3. New Surface-Enhanced Raman Sensing Chip Designed for On-Site Detection of Active Ricin in Complex Matrices Based on Specific Depurination.

    PubMed

    Tang, Ji-Jun; Sun, Jie-Fang; Lui, Rui; Zhang, Zong-Mian; Liu, Jing-Fu; Xie, Jian-Wei

    2016-01-27

    Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.

  4. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique

    NASA Astrophysics Data System (ADS)

    Khatoon, N.; Yasin, H. M.; Younus, M.; Ahmed, W.; Rehman, N. U.; Zakaullah, M.; Iqbal, M. Zafar

    2018-01-01

    Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs) by Plasma-Liquid Interaction (PLI) technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectroscopy (OES) was employed to estimate the UV radiation intensity and OH radical density. Scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) optical spectroscopy were employed to study the morphology and structure of AuNPs. The normalized intensities of UV radiation and OH radical density found to increase with increase in discharge current. We observed that the particle size can be tuned by controlling any of the following parameters: intensity of the UV radiation, OH radical density, and concentration of the Au precursor. Interestingly, we found that addition of 1% Ar in the feedstock gas results in formation of relatively uniform size distribution of nanoparticles. The surfactant-free AuNPs, due to their bare-surface, exhibit excellent surface-enhanced Raman scattering (SERS) properties. The SERS study of Rhodamine 6G using AuNPs as substrates, shows significant Raman enhancement and fluorescence quenching, which makes our technique a potentially powerful route to detection of trace amounts of dangerous explosives and other materials.

  5. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles

    PubMed Central

    Aruda, Kenneth O.; Tagliazucchi, Mario; Sweeney, Christina M.; Hannah, Daniel C.; Schatz, George C.; Weiss, Emily A.

    2013-01-01

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron–phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron–phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron–phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  7. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant

    NASA Astrophysics Data System (ADS)

    Huang, Youju; Kim, Dong-Hwan

    2012-09-01

    We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications.We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications. Electronic supplementary information (ESI) available: The UV-vis spectra, representative field-emission scanning electron microscopy (FESEM) images and size distributions of Au seeds (18 nm) and spherical AuNPs (50 nm), photograph images of AuNPs solution and TEM images of blackberry-like AuNPs. See DOI: 10.1039/c2nr31717f

  8. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  9. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  10. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.

    PubMed

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-09-07

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.

  11. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    PubMed

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  13. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  14. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    PubMed

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  16. Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity

    NASA Astrophysics Data System (ADS)

    Leifert, Annika; Pan-Bartnek, Yu; Simon, Ulrich; Jahnen-Dechent, Willi

    2013-06-01

    Gold nanoparticles (AuNPs) are widely used as contrast agents in electron microscopy as well as for diagnostic tests. Due to their unique optical and electrical properties and their small size, there is also a growing field of potential applications in medical fields of imaging and therapy, for example as drug carriers or as active compounds in thermotherapy. Besides their intrinsic optical properties, facile surface decoration with (bio)functional ligands renders AuNPs ideally suited for many industrial and medical applications. However, novel AuNPs may have toxicological profiles differing from bulk and therefore a thorough analysis of the quantitative structure-activity relationship (QSAR) is required. Several mechanisms are proposed that cause adverse effects of nanoparticles in biological systems. Catalytic generation of reactive species due to the large and chemically active surface area of nanomaterials is well established. Because nanoparticles approach the size of biological molecules and subcellular structures, they may overcome natural barriers by active or passive uptake. Ultrasmall AuNPs with sizes of 2 nm or less may even behave as molecular ligands. These types of potential interactions would imply a size and ligand-dependent behaviour of any nanomaterial towards biological systems. Thus, to fully understand their QSAR, AuNPs bioactivity should be analysed in biological systems of increasing complexity ranging from cell culture to whole animal studies.

  17. Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ballarin, Barbara; Barreca, Davide; Cassani, Maria Cristina; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Lazzari, Dario; Bertola, Maurizio

    2016-01-01

    Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): RFC(O)N(H)(CH2)3Si(OMe)3 (1, RF = C5F11), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and RF(CH2)2Si(OEt)3 (2, RF = C6F13). Subsequently, Au nanoparticles (AuNPs) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized AuNPs. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and AuNPs in promoting a remarkable electrocatalytic activity.

  18. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene.

    PubMed

    Fu, Xiuli; Lou, Tingting; Chen, Zhaopeng; Lin, Meng; Feng, Weiwei; Chen, Lingxin

    2012-02-01

    A novel platform for effective "turn-on" fluorescence sensing of lead ions (Pb(2+)) in aqueous solution was developed based on gold nanoparticle (AuNP)-functionalized graphene. The AuNP-functionalized graphene exhibited minimal background fluorescence because of the extraordinarily high quenching ability of AuNPs. Interestingly, the AuNP-functionalized graphene underwent fluorescence restoration as well as significant enhancement upon adding Pb(2+), which was attributed to the fact that Pb(2+) could accelerate the leaching rate of the AuNPs on graphene surfaces in the presence of both thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Consequently, this could be utilized as the basis for selective detection of Pb(2+). With the optimum conditions chosen, the relative fluorescence intensity showed good linearity versus logarithm concentration of Pb(2+) in the range of 50-1000 nM (R = 0.9982), and a detection limit of 10 nM. High selectivity over common coexistent metal ions was also demonstrated. The practical application had been carried out for determination of Pb(2+) in tap water and mineral water samples. The Pb(2+)-specific "turn-on" fluorescence sensor, based on Pb(2+) accelerated leaching of AuNPs on the surface of graphene, provided new opportunities for highly sensitive and selective Pb(2+) detection in aqueous media.

  19. Dithiothreitol-Regulated Coverage of Oligonucleotide-Modified Gold Nanoparticles To Achieve Optimized Biosensor Performance.

    PubMed

    Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi

    2018-01-31

    DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.

  20. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00933f

  1. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    PubMed

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2018-02-01

    A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  2. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation.

    PubMed

    Liu, Xiangsheng; Li, Huan; Chen, Yangjun; Jin, Qiao; Ren, Kefeng; Ji, Jian

    2014-09-01

    Mixed-charge zwitterionic surface modification shows great potential as a simple strategy to fabricate nanoparticle (NP) surfaces that are nonfouling. Here, the in vivo fate of 16 nm mixed-charge gold nanoparticles (AuNPs) is investigated, coated with mixed quaternary ammonium and sulfonic groups. The results show that mixed-charge AuNPs have a much longer blood half-life (≈30.6 h) than do poly(ethylene glycol) (PEG, M¯w = 2000) -coated AuNPs (≈6.65 h) and they accumulate in the liver and spleen far less than do the PEGylated AuNPs. Using transmission electron microscopy, it is further confirmed that the mixed-charge AuNPs have much lower uptake and different existing states in liver Kupffer cells and spleen macrophages one month after injection compared with the PEGylated AuNPs. Moreover, these mixed-charge AuNPs do not cause appreciable toxicity at this tested dose to mice in a period of 1 month as evidenced by histological examinations. Importantly, the mixed-charge AuNPs have higher accumulation and slower clearance in tumors than do PEGylated AuNPs for times of 24-72 h. Results from this work show promise for effectively designing tumor-targeting NPs that can minimize reticuloendothelial system clearance and circulate for long periods by using a simple mixed-charge strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile preparation of surfactant-free Au NPs/RGO/Ni foam for degradation of 4-nitrophenol and detection of hydrogen peroxide.

    PubMed

    Liu, Y Y; Guo, X L; Zhao, L; Zhu, L; Chen, Z T; Chen, J; Zhang, Y; Sun, L T; Zhao, Y H

    2018-06-08

    The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min -1 (0.15 cm 3 catalysis) but also a sensitive and selective detection of H 2 O 2 with a detection limit of ∼1.60 μM.

  4. Facile preparation of surfactant-free Au NPs/RGO/Ni foam for degradation of 4-nitrophenol and detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Guo, X. L.; Zhao, L.; Zhu, L.; Chen, Z. T.; Chen, J.; Zhang, Y.; Sun, L. T.; Zhao, Y. H.

    2018-06-01

    The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min‑1 (0.15 cm3 catalysis) but also a sensitive and selective detection of H2O2 with a detection limit of ∼1.60 μM.

  5. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    PubMed

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.

  6. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Department of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul 122-704; Cho, Minjung

    2010-05-15

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesentericmore » lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (approx 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.« less

  7. Synthesis and characterization of gold nanoparticles in a self-assembled ionic liquid polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Magurudeniya, Harsha; Ringstrand, Bryan; Jungjohann, Katherine; Firestone, Millicent

    Incorporation of nanoparticles(NPs) into polymer matrices has attracted interest, offering a means to create multi-functional materials combining the attributes of polymers (flexibility, processability, mechanical durability) with the opto-electrical properties of NPs. Synthesis of a self-supporting, hierarchically structured Au NP-network polymer was accomplished via a ``one-pot'' reaction employing a mesophase of AuCl3 and an imidazolium based-ionic liquid (IL) containing a acrylate group. In-situ generation of NPs was achieved by reduction of Au3+which in turn yields concomitant initiation of the polymerization of the mesophase. FT-IR and thermal analysis confirmed acrylate cross-linking. X-ray scattering confirms preservation of the mesophase within the NP composite. TEM showed a distribution of the NPs within the composite of primarily non-spherical morphologies. The co-integration of a macromer, PEG diacrylate, served as a reducing agent for the Au and the amount incorporated into the mesophase allowed for manipulation of the swelling factor of the resultant nanocomposite in a ethanol, providing means to modulate the plasmonic resonance of the NPs. This methodology provides means for organizing NPs within the structured regions of the poly(IL) matrix. Such composites may be of interest for photonic/sensing applications.

  8. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Sushma, V.; Patra, Sujata; Barui, Ayan Kumar; Pal Bhadra, Manika; Sreedhar, Bojja; Ranjan Patra, Chitta

    2012-11-01

    The biological approach to synthesis of AuNPs is eco-friendly and an ideal method to develop environmentally sustainable nanoparticles alternative to existing methods. We have developed a simple, fast, clean, efficient, low-cost and eco-friendly single-step green chemistry approach for the synthesis of biocompatible gold nanoparticles (AuNPs) from chloroauric acid (HAuCl4) using a water extract of Eclipta Alba leaves at room temperature. The AuNPs using Eclipta extract have been formed in very short time, even in less than 10 min. The as-synthesized AuNPs were thoroughly characterized by several physico-chemical techniques. The in vitro stability of as-synthesized AuNPs was studied in different buffer solutions. A plausible mechanism for the synthesis of AuNPs by Eclipta extract has been discussed. The biocompatibility of AuNPs was observed by in vitro cell culture assays. Finally, we have designed and developed a AuNPs-based drug delivery system (DDS) (Au-DOX) containing doxorubicin (DOX), a FDA approved anticancer drug. Administration of this DDS to breast cancer cells (MCF-7 and MDA-MB-231) shows significant inhibition of breast cancer cell proliferation compared to pristine doxorubicin. Therefore we strongly believe that the use of Eclipta Alba offers large-scale production of biocompatible AuNPs that can be used as a delivery vehicle for the treatment of cancer diseases.

  9. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  10. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties.

    PubMed

    Li, Jiulong; Li, Qinghao; Ma, Xiaoqiong; Tian, Bing; Li, Tao; Yu, Jiangliu; Dai, Shang; Weng, Yulan; Hua, Yuejin

    Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III) and biosynthesize gold nanoparticles (AuNPs) was investigated in aqueous solution by ultraviolet and visible (UV/Vis) absorption spectroscopy, electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III) solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III) may be reduced to Au(I), and further reduced to Au(0) with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria by damaging their cytoplasmic membrane. Therefore, the extreme bacterium D. radiodurans can be used as a novel bacterial candidate for efficient biosynthesis of AuNPs, which exhibited potential in biomedical application as an antibacterial agent.

  11. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  12. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Forcherio, Gregory T.; Roper, D. Keith

    2015-08-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer-Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP-PDMS films and Mie scattering in 76 nm AuNP-PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner-Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner-Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner-Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs.

  13. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-06-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  14. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-04-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  15. Design of functionalized gold nanoparticle probes for computed tomography imaging.

    PubMed

    Silvestri, Alessandro; Zambelli, Vanessa; Ferretti, Anna M; Salerno, Domenico; Bellani, Giacomo; Polito, Laura

    2016-09-01

    The development of new molecules able to efficiently act as long-circulating computed tomography (CT) contrast agents is one of the most crucial topics in the biomedical field. In the last years, the chance to manipulate materials at the nano-size level gave new boost to this research, with the specific aim to design innovative nanoprobes. Gold nanoparticles (AuNPs) have showed unique X-rays attenuation properties which, combined with their easy surface functionalization, makes them ideal candidates for the next generation of contrast agents. In this paper, we present a rational and facile approach to synthesize engineered and water-stable AuNPs, achieving concentrated colloidal solution with high Hounsfield Units (HU). An accurate control of reagents ratio allowed us to design AuNPs with different shapes, from symmetrical to anisotropic morphology, in a convenient 'one-pot' fashion. Their activity as efficient and reliable CT contrast agents has been evaluated and compared. Moreover, glucosamine-functionalized gold nanoparticles have been developed ([Au] = 31.20 mg/mL; HU = 2453), in order to obtain a CT contrast agent able to combine spatial resolution with metabolic information. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    PubMed

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  17. Retraction: Gold nanoparticles immobilized on electrospun titanium dioxide nanofibers for catalytic reduction of 4-nitrophenol.

    PubMed

    Cavusoglu, Halit; Buyukbekar, Burak Zafer; Sakalak, Huseyin; Kohsakowski, Sebastian

    2017-02-13

    This study involves the preparation and catalytic properties of anatase titanium dioxide nanofibers (TiO2 NFs) supported gold nanoparticles (Au NPs) using a model reaction based on the reduction of 4-nitrophenol (NP) into 4-aminophenol (AP) by sodium borohydride (NaBH4). The fabrication of surfactant-free Au NPs was performed using pulsed laser ablation in liquid (PLAL) technique. The TiO2 NFs were fabricated by a combination of electrospinning and calcination process using a solution containing poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. The adsorption efficiency of laser-generated surfactant-free Au NPs to TiO2 NF supports as a function of pH was analyzed. Our results show that the electrostatic interaction mainly controls the adsorption of the nanoparticles. Au NPs/TiO2 NFs composite exhibited good catalytic activity for the reduction of 4-NP to 4-AP. The unique combination of these materials leads to the development of highly efficient catalysts. Our heterostructured nanocatalysts possibly form an efficient path to fabricate various metal NP/metal-oxide supported catalysts. Thus the applications of PLAL-noble metal NPs can widely broaden. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applications of gold nanoparticles in virus detection

    PubMed Central

    Draz, Mohamed Shehata; Shafiee, Hadi

    2018-01-01

    Viruses are the smallest known microbes, yet they cause the most significant losses in human health. Most of the time, the best-known cure for viruses is the innate immunological defense system of the host; otherwise, the initial prevention of viral infection is the only alternative. Therefore, diagnosis is the primary strategy toward the overarching goal of virus control and elimination. The introduction of a new class of nanoscale materials with multiple unique properties and functions has sparked a series of breakthrough applications. Gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence in biomedical and diagnostic applications. Here, we review the applications of AuNPs in virus testing and detection. The developed AuNP-based detection techniques are reported for various groups of clinically relevant viruses with a special focus on the applied types of bio-AuNP hybrid structures, virus detection targets, and assay modalities and formats. We pay particular attention to highlighting the functional role and activity of each core Au nanostructure and the resultant detection improvements in terms of sensitivity, detection range, and time. In addition, we provide a general summary of the contributions of AuNPs to the mainstream methods of virus detection, technical measures, and recommendations required in guidance toward commercial in-field applications. PMID:29556369

  19. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paul

    2016-04-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

  20. In Situ Synthesis of Gold Nanoparticles on Wool Powder and Their Catalytic Application.

    PubMed

    Tang, Bin; Zhou, Xu; Zeng, Tian; Lin, Xia; Zhou, Ji; Ye, Yong; Wang, Xungai

    2017-03-15

    Gold nanoparticles (AuNPs) were synthesized in situ on wool powder (WP) under heating conditions. Wool powder not only reduced Au ions to AuNPs, but also provided a support for as-synthesized AuNPs. WPs were treated under different concentrations of Au ions, and corresponding optical features and morphologies of the treated WPs were investigated by UV-VIS diffuse reflectance absorption spectroscopy and scanning electron microscopy (SEM). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM) were also employed to characterize the WP treated with AuNPs. The results demonstrate that AuNPs were produced in the presence of WP and distributed over the wool particles. The porous structure led to the synthesis of AuNPs in the internal parts of WP. Acid conditions and high temperature facilitated the synthesis of AuNPs by WP in aqueous solution. The reducibility of wool was improved after being converted to powder from fibers, due to exposure of more active groups. Moreover, the obtained AuNP-WP complexes showed significant catalytic activity to accelerate the reduction reaction of 4-nitrophenol (4-NP) by sodium borohydride (NaBH₄).

  1. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy compositions. Our findings are corroborated by DFT calculations based on a refined version of d-band center theory on the catalytic properties of late transition metals and alloys. Here, we discuss opportunities for improving the accuracy of current theory on surface-controlled properties of metallic NPs through augmenting the theory with surface structure data obtained by resonant XRD.« less

  2. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE PAGES

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit; ...

    2017-03-23

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy compositions. Our findings are corroborated by DFT calculations based on a refined version of d-band center theory on the catalytic properties of late transition metals and alloys. Here, we discuss opportunities for improving the accuracy of current theory on surface-controlled properties of metallic NPs through augmenting the theory with surface structure data obtained by resonant XRD.« less

  3. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    PubMed Central

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2017-01-01

    The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode-respiring Geobacter sulfurreducens biofilms. We found that AuNPs are generated in the extracellular matrix of Geobacter biofilms and have an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode-respiring G. sulfurreducens biofilms reduce Au3+ to AuNPs. From FTIR spectra, it appears that reduced sugars were involved in the bioreduction and synthesis of AuNPs and that amine groups acted as the major biomolecules involved in binding. PMID:27866628

  4. DNA sensors and aptasensors based on the hemin/G-quadruplex-controlled aggregation of Au NPs in the presence of L-cysteine.

    PubMed

    Niazov-Elkan, Angelica; Golub, Eyal; Sharon, Etery; Balogh, Dora; Willner, Itamar

    2014-07-23

    L-cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme catalyzes the aerobic oxidation of L-cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer-substrate complexes, and for the analysis of L-cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G-quadruplex sequence, is opened in the presence of the target DNA. The resulting self-assembled hemin/G-quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin-binding aptamer folds into a G-quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G-quadruplex aptamer-thrombin complex leads to a catalytic label that controls the L-cysteine-mediated aggregation of the Au NPs. The hemin/G-qaudruplex-controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L-cysteine concentration in urine samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choi, Yoonho; Kang, Sehyeon; Cha, Song-Hyun; Kim, Hyun-Seok; Song, Kwangho; Lee, You Jeong; Kim, Kyeongsoon; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2018-01-01

    A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of -OH, aromatic C=C, C-O, and C-H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy reported in this study using saponins as reducing agents will pave new roads to develop novel nanomaterials with versatile applications.

  6. Effects of Au content on the structure and magnetic properties of L1{sub 0}-FePt nanoparticles synthesized by the sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013; Jiang, Yuhong

    2014-07-01

    (FePt){sub 100−x}Au{sub x} (x=0, 5, 10, and 20) nanoparticles were synthesized by the sol–gel method, and effects of Au content on the structural and magnetic properties of samples were investigated. Au doping reduced the phase transition temperature from face-centered cubic (FCC) to face-centered tetragonal (FCT) structure. In addition, additive Au promotes the chemical ordering of L1{sub 0} FePt NPs and increases the grain size of L1{sub 0} FePt NPs. When Au content increased from 0 to 10 at%, the coercivity (H{sub c}) increased due to the increase in degree of ordering S and grain size of L1{sub 0} FePt NPs.more » By increasing the Au content to 20 at%, H{sub c} decreased. - Graphical abstract: (FePt){sub 100}Au{sub 0} NPs are the coexistence of FCT and FCC phases. However, no hints of FCC phase were found for the (FePt){sub 100−x}Au{sub x} NPs (x=5, 10 and 20), which indicates that addition of gold greatly promotes the FCC to FCT phase transition. - Highlights: • (FePt){sub 100−x}Au{sub x} (x=0, 5, 10 and 20) nanoparticles (NPs) were synthesized. • Au addition promotes the chemical ordering of L1{sub 0} FePt NPs. • Au addition reduces ordering temperature of L1{sub 0} FePt NPs from FCC to FCT phase. • (FePt){sub 90}Au{sub 10} NPs show a high coercivity of 9585 Oe at room temperature.« less

  7. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles.

    PubMed

    Zhang, Yujie; Leng, Yumin; Miao, Lijing; Xin, Junwei; Wu, Aiguo

    2013-04-21

    A simple, rapid colorimetric detection method for Pb(2+) in aqueous solution has been developed by using sodium thiosulfate (Na2S2O3) and hexadecyl trimethyl ammonium bromide (CTAB) modified gold nanoparticles (Au NPs). Na2S2O3 was added into the Au NP solution and thiosulfate ions (S2O3(2-)) were adsorbed on the surface of the Au NPs due to electrostatic interactions. Au atoms on the surface of the Au NPs were then oxidized to Au(i) by the O2 that existed in the solution in presence of thiosulfate. The addition of Pb(2+) (the final concentration was lower than 10 μM), accelerated the leaching of the Au NPs, and Pb-Au alloys also formed on the surface of the Au NPs. There was an obvious decrease in the surface plasmon resonance (SPR) absorption of the Au NPs. The lowest concentration for Pb(2+) that could be detected by the naked eye was 0.1 μM and using UV-vis spectroscopy was 40 nM. This is lower than the lead toxic level defined by the US Environmental Protection Agency (US EPA), which is 75 nM. In this method, CTAB, as a stabilizing agent for Au NPs, can accelerate the adsorption of S2O3(2-) on the surface of the Au NPs, which shortened the detection time to within 30 min. Moreover, this detection method is simple, cheap and environmentally friendly.

  8. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing.

    PubMed

    Roma-Rodrigues, Catarina; Pereira, Francisca; Alves de Matos, António P; Fernandes, Marta; Baptista, Pedro V; Fernandes, Alexandra R

    2017-05-01

    Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells' phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d

  10. Novel photocatalyst gold nanoparticles with dumbbell-like structure and their superiorly photocatalytic performance for ammonia borane hydrolysis

    NASA Astrophysics Data System (ADS)

    Zhu, Mingyun; Dai, Yunqian; Fu, Wanlin; Wu, Yanan; Zou, Xixi; You, Tengye; Sun, Yueming

    2018-04-01

    Gold nanoparticles (Au NPs) have attracted remarkable research interest in heterogeneous catalysis due to their unique physical and chemical properties. However, only small-sized Au NPs (<7 nm) exhibit promising catalytic activity. In this work, dumbbell-like Au NPs (D-Au NPs) with an average size of 37 × 11 nm were prepared by a secondary seed-mediated growth method to serve as novel photocatalysts for ammonia borane (AB) hydrolysis in a solution with a specific pH value. Our results demonstrate that (i) the strengthened localized surface plasmon resonance (LSPR) compensation effect could effectively remedy the loss of catalytic activity resulting from the size enlarging of D-Au NPs, proved by the observation that the heating power of a single Au nanoparticle (Ps) and turnover frequency of AB molecules within 10 min of D-Au NPs are 52.5 and 3.89 times higher, respectively, than those of spherical Au NPs; (ii) the extinction coefficient and Ps of D-Au NPs are almost 2.72 and 2.42 times as high, respectively, as those of rod-like Au NPs, demonstrating the promoting structure-property relationship of the dumbbell-like structure; (iii) when the pH value of the AB solution was lower than 6.0, the hydrolysis rate was highly promoted, indicating that H+ ions play an active role in the hydrolysis process. This work greatly extends the application of noble metals and provides a new insight into AB hydrolysis.

  11. An Electrochemical Genosensing Assay Based on Magnetic Beads and Gold Nanoparticle-Loaded Latex Microspheres for Vibrio cholerae Detection.

    PubMed

    Low, Kim-Fatt; Rijiravanich, Patsamon; Singh, Kirnpal Kaur Banga; Surareungchai, Werasak; Yean, Chan Yean

    2015-04-01

    An ultrasensitive electrochemical genosensing assay was developed for the sequence-specific detection of Vibrio cholerae DNA using magnetic beads as the biorecognition surface and gold nanoparticle-loaded latex microspheres (latex-AuNPs) as a signal-amplified hybridization tag. This biorecognition surface was prepared by immobilizing specific biotinylated capturing probes onto the streptavidin-coupled magnetic beads. Fabricating a hybridization tag capable of amplifying the electrochemical signal involved loading multiple AuNPs onto polyelectrolyte multilayer film-coated poly(styrene-co-acrylic acid) latex microspheres as carrier particles. The detection targets, single-stranded 224-bp asymmetric PCR amplicons of the V. cholerae lolB gene, were sandwich-hybridized to magnetic bead-functionalized capturing probes and fluorescein-labeled detection probes and tagged with latex-AuNPs. The subsequent electrochemical stripping analysis of chemically dissolved AuNPs loaded onto the latex microspheres allowed for the quantification of the target amplicons. The high-loading capacity of the AuNPs on the latex microspheres for sandwich-type dual-hybridization genosensing provided eminent signal amplification. The genosensing variables were optimized, and the assay specificity was demonstrated. The clinical applicability of the assay was evaluated using spiked stool specimens. The current signal responded linearly to the different V. cholerae concentrations spiked into stool specimens with a detection limit of 2 colony-forming units (CFU)/ml. The proposed latex-AuNP-based magnetogenosensing platform is promising, exhibits an effective amplification performance, and offers new opportunities for the ultrasensitive detection of other microbial pathogens.

  12. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application

    NASA Astrophysics Data System (ADS)

    Gao, Nan; Huang, Pengcheng; Wu, Fangying

    2018-03-01

    In this study, we have developed a method for rapid, highly efficient and selective detection of melamine. The negatively charged citrate ions form an electrostatic layer on gold nanoparticles (AuNPs) and keep the NPs dispersed and stable. When citrate-capped AuNPs were further modified with Triton X-100, it stabilized the AuNPs against the conditions of high ionic strength and a broad pH range. However, the addition of melamine caused the destabilization and aggregation of NPs. This may be attributed to the interaction between melamine and the AuNPs through the ligand exchange with citrate ions on the surface of AuNPs leading Triton X-100 to be removed. As a result, the AuNPs were unstable, resulting in the aggregation. The aggregation induced a wine red-to-blue color change, and a new absorption peak around 630 nm appeared. Triton X-100-AuNPs could selectively detect melamine at the concentration as low as 5.1 nM. This probe was successfully applied to detect melamine in milk. Furthermore, paper-based quantitative detection system using this colorimetric probe was also demonstrated by integrating with a smartphone.

  13. Interactions between citrate-capped gold nanoparticles and polymersomes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Lopez, Anand; Liu, Yibo; Wang, Feng; Liu, Juewen

    2018-06-01

    Polymersomes are vesicles formed by self-assembled amphiphilic block copolymers. Polymersomes generally have better stability than liposomes and they have been widely used in making drug delivery vehicles. In this work, the interaction between two types of polymersomes and citrate-capped gold nanoparticles (AuNPs) was studied. The following two polymers: poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) (called P1) and poly(butadiene-b-ethylene oxide) (called P2) were respectively used to form polymersomes. While P1 only formed spherical vesicle structures, worm-like structures were also observed with P2 as indicated by cryo-TEM. Both polymersomes adsorbed AuNPs leading to their subsequent aggregation. A lower polymersome concentration produced more obvious aggregation of AuNPs as judged from the color change. Capping AuNPs with glutathione inhibited adsorption of AuNPs. Considering the surface property of the polymers, the interaction with AuNPs was likely due to van der Waals forces. P1 polymersomes encapsulated calcein stably and AuNPs did not induce leakage. The P1/AuNP complex was more efficiently internalized by HeLa cells compared to free P1 polymersomes, further indicating a stable adsorption under cell culture conditions. In summary, this work indicates citrate-capped AuNPs form stable adsorption complexes with these polymersomes and their interactions have been explored.

  14. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    NASA Astrophysics Data System (ADS)

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  15. Study of Colloidal Gold Synthesis Using Turkevich Method

    NASA Astrophysics Data System (ADS)

    Rohiman, Asep; Anshori, Isa; Surawijaya, Akhmadi; Idris, Irman

    2011-12-01

    The synthesis of colloidal gold or Au-nanoparticles (Au-NPs) by reduction of chloroauric acid (HAuCl4) with sodium citrate was done using Turkevich method. We prepare HAuCl4 solution by dissolving gold wires (99.99%) into aqua regia solution. To initiate the Au-NPs synthesis 0.17 ml of 1 % chloroauric acid solution was heated to the boiling point and then 10 ml of 1 % sodium citrate was added to the boiling solution with a constant stirring in order to maintain a homogenous solution. A color of faint gray was observed in the solution approximately one minute and in a period of 2-3 minutes later, it further darkened to deep wine and red color. It showed that the gold solution has reduced to Au-NPs. The effect of process temperature on the size of Au-NPs prepared by sodium citrate reduction has also been investigated. With increasing temperature of Au-NPs synthesis, smaller-size Au-NPs were obtained. The higher temperatures shorten the time needed to achieve activation energy for reduction process. The resulting Au-NPs has been characterized by scanning Electron Microscope (SEM), showing the size of Au-NPs average diameter is ˜20-27 nm. The resulting colloidal gold will be used as catalyst for Si nanowires growth using VLS method.

  16. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    NASA Astrophysics Data System (ADS)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  17. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.

  18. Electrical and Optical Properties of Green Polymer Light Emitting Diodes with Various Structures of Au Nanoparticles.

    PubMed

    Park, Byung Min; Kim, Gi Ppeum; Mun, Sae Chan; Chang, Ho Jung

    2015-10-01

    The green polymer light emitting diodes (PLEDs) were fabricated using the solution precursor synthesis method. To improve the device's electrical. and optical properties, gold (Au) nanoparticles (NPs) were added to the hole injection layer (HIL) with poly(3,4-ethylene- dioxythiophene):poly(styrenesulfolnate) ( PSS) organic material. The green PLED devices with a structure of glass/ITO/PEDOT:PSS+Au NPs/PVK:Ir(ppy)3/TPBi/LiF/Al were prepared by conventional spin-coating and thermal evaporation methods. Various concentrations of Au NPs were doped to the HILs to optimize the device's light emitting characteristic. The effects of Au NPs concentrations on the properties of PLEDs were investigated. The doping concentrations of Au NPs were changed ranging from 0.0 to 1.0 vol%. At the optimized Au NPs concentration of 0.5 vol%, we also studied the effects of various film layers with and without Au NPs on the properties of PLEDs. The maximum luminance and external quantum efficiency of the devices were found to be 20,430 cd/m2 and 7.49%, respectively.

  19. Gold decorated porous biosilica nanodevices for advanced medicine.

    PubMed

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; De Luca, Anna Chiara; Rea, Ilaria

    2018-06-08

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV-vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml -1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  20. Gold decorated porous biosilica nanodevices for advanced medicine

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; Chiara De Luca, Anna; Rea, Ilaria

    2018-06-01

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV–vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml‑1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  1. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)(3)2+-Au nanoparticles aggregates.

    PubMed

    Zhang, Lihua; Xu, Zhiai; Sun, Xuping; Dong, Shaojun

    2007-01-15

    Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+)-AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

  2. Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons.

    PubMed

    Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua

    2017-05-17

    Enzyme mimics have been widely used as alternatives to natural enzymes. However, the catalytic performances of enzyme mimics are often decreased due to different spatial structures or absence of functional groups compared to natural enzymes. Here, we report a highly efficient enzyme-like catalytic performance of gold nanoparticles (AuNPs) by visible-light stimulation. The enzyme-like reaction is evaluated by the catalytic reaction of AuNPs oxidizing a typical chromogenic substrate 3,3',5,5'-tetramethylbenzydine (TMB) with hydrogen peroxide as an oxidant. From investigations of the wavelength-dependent reaction rate, radical capture, hole-donor addition, and dark-field scattering spectroscopy experiments, it is revealed that the strong plasmonic absorption of AuNPs facilitates generation of hot electrons, which are transfered from AuNPs to the adsorbed reactant molecule, greatly promoting the catalytic performance of the enzyme-like catalytic reaction. The present work provides a simple method for improving the performance of enzyme mimics, which is expected to find further application in the field of plasmon-enhanced biocatalysis and biosensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes

    PubMed Central

    Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo

    2018-01-01

    Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539

  4. Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.

    PubMed

    López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A

    2005-05-12

    Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.

  5. Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Lam, Letisha McLaughlin

    Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for evidence of mechanical strengthening as well as possible failure modes. To establish a foundation for AuNP-DNA stability analysis, several different two-particle conformations were investigated, including systems with pentagonally twinned AuNPs, systems with circular AuNPs, systems with non-textured and textured cuboctahedron AuNPs with 6 nm DNA, 12 nm DNA, and 18 nm DNA. In general, the analyses indicated that the systems' stability are mainly affected by large stress gradients at AuNP-ligand interfaces, as well as large dislocation-density, normal stresses, and inelastic accumulations in the region adjacent to these interfaces between the AuNPs and the DNA. The predictions also indicate that highly faceted f.c.c. AuNPs with DNA lengths of approximately 6 nm in biaxial loading conditions were found to have the highest strength and overall stability. Furthermore, periodic AuNP-DNA superlattice composites, which mimic the crystallography of f.c.c. atomic lattices, were investigated for mechanical effectiveness as both a composite material and thin film. This investigation analyzed the stress behavior and inelastic evolution of f.c.c. AuNP-DNA superlattice systems with different Au volume fractions, matrix strengths, intrinsic nanoparticle crystallographic orientations and sizes. These analyses were also extended to superlattice f.c.c. composites on a silicon substrate. The results indicate that f.c.c. AuNP-DNA superlattices have a combination of high strength and toughness due to the ductile nature of the nanoparticles in conjunction with the physical properties of the DNA and matrix materials. The superlattice films also exhibited high strengths and toughness, with the limiting factor being the interrelated aspects of film thickness and delamination. These predictions can be used as guidelines for using these composites, superlattices, and thin films as candidates for innovative building blocks for new material systems.

  6. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Lei; Huang, Youju; Wang, Jingyun; Rong, Yun; Lai, Weihua; Zhang, Jiawei; Chen, Tao

    2015-05-19

    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.

  7. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition

    PubMed Central

    Singh, Priyanka; Pandit, Santosh; Garnæs, Jørgen; Tunjic, Sanja; Mokkapati, Venkata RSS; Sultan, Abida; Thygesen, Anders; Mackevica, Aiga; Mateiu, Ramona Valentina; Daugaard, Anders Egede; Baun, Anders; Mijakovic, Ivan

    2018-01-01

    Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.

  8. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  9. The effect of gold nanoparticles modified electrode on the glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zulfa Aiza; Ridhuan, Nur Syafinaz; Nor, Noorhashimah Mohamad; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-07-01

    In this work, 20 nm, 30 nm, 40 nm, 50 nm and 60 nm colloidal gold nanoparticles (AuNPs) were synthesized using the seeding growth method. AuNPs produced had spherical shape with uniform size. The AuNPs also are well dispersed in colloidal form that was proven by low polydispersity index. The produced AuNPs were used to modify electrode for glucose sensor. The produced AuNPs were deposited on indium tin oxide substrate (ITO), followed by immobilization of glucose oxidase (GOx) on it. After that, Nafion was deposited on the GOx/AuNPs/ITO. Electrooxidation of glucose with AuNPs-modified electrode was examined by cyclic voltammeter (CV) in 15 mM glucose mixed with 0.01 M PBS. The optimum size of AuNPs was 30 nm with optical density 3.0. AuNPs were successfully immobilized with glucose oxidase (GOx) and proved to work well as a glucose sensor. Based on the high electrocatalytic activity of Nafion/GOx/AuNPs/ITO, the sensitivity of the glucose sensors was further examined by varying the concentration of glucose solution from 2 mM to 20 mM in 0.01 M phosphate buffer solution (PBS) solution. Good linear relationship was observed between the catalytic current and glucose concentration in the range of 2 mM to 20 mM. The sensitivity of the Nafion/GOx/AuNPs/ITO electrode calculated from the slope of linear square calibration was 0.909 µA mM-1 cm-2 that is comparable with other published work. The linear fitting to the experimental data gives R-square of 0.991 at 0.9 V and a detection limit of 2.03 mM. This detection range is sufficient to be medically useful in monitoring human blood glucose level in which the normal blood glucose level is in the range of 4.4 to 6.6 mM and diabetic blood glucose level is above 7 mM.

  10. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis

    NASA Astrophysics Data System (ADS)

    Rabizah Makhsin, Siti; Razak, Khairunisak Abdul; Noordin, Rahmah; Dyana Zakaria, Nor; Chun, Tan Soo

    2012-12-01

    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG4 (MαHIgG4) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG4, which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml-1. When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG4 synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG4, with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.

  11. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis.

    PubMed

    Makhsin, Siti Rabizah; Razak, Khairunisak Abdul; Noordin, Rahmah; Zakaria, Nor Dyana; Chun, Tan Soo

    2012-12-14

    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.

  12. A novel antimicrobial therapy for the control of Aeromonas hydrophila infection in aquaculture using marine polysaccharide coated gold nanoparticle.

    PubMed

    Vijayakumar, Sekar; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Gobi, Narayanan; Ravichandran, Samuthirapandian; Karthi, Sellamuthu; Ashokkumar, Balasubramaniem; Sivakumar, Natesan

    2017-09-01

    In the present study, we prepared fucoidan coated Au-NPs (Fu-AuNPs), and examined its antimicrobial activity against Aeromonas hydrophila. The green synthesized Fu-AuNPs were bio-physically characterized by Ultraviolet-visible (UV-Vis) spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Higher Transmission Electron Microscopy (HR-TEM), Zeta potential analysis and Energy Dispersive X-ray spectroscopy (EDX). Fu-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 10-100 nm. The synthesized Fu-AuNPs at 100 μg mL -1 showed inhibition zone against A. hydrophila (23.2 mm) which is much higher than that of commercial antibiotic chloramphenicol (17.3 mm). The biofilm inhibitory activity of Fu-AuNPs against Gram negative (Aeromonas hydrophila) was higher. Light and confocal laser scanning microscopic observations showed that the Fu-AuNPs at 100 μg mL -1 inhibited the biofilm of A. hydrophila. The cytotoxicity study indicated that Fu-AuNPs were effective in inhibiting the viability of human cervical cancer cells (HeLa) at 100 μg mL -1 . In another experiment, the antibacterial effect of Fu-AuNPs on tilapia, Oreochromis mossambicus were evaluated in vivo. The mortality rate of O. mossambicus infected by A. hydrophila was much higher (90%), whereas, the mortality of O. mossambicus that received Fu-AuNPs followed by challenge with A. hydrophia was reduced to 30%. This study concludes that Fu-AUNPs are effective in the control of A. hydrophila infections in O. mossambicus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Online open-tubular fractionation scheme coupled with push-pull perfusion sampling for profiling extravasation of gold nanoparticles in a mouse tumor model.

    PubMed

    Su, Cheng-Kuan; Tseng, Po-Jen; Lin, Meng-Han; Chiu, Hsien-Ting; del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang

    2015-07-10

    The extravasation of administered nano-drug carriers is a critical process for determining their distributions in target and non-target organs, as well as their pharmaceutical efficacies and side effects. To evaluate the extravasation behavior of gold nanoparticles (AuNPs), currently the most popular drug delivery system, in a mouse tumor model, in this study we employed push-pull perfusion (PPP) as a means of continuously sampling tumor extracellular AuNPs. To facilitate quantification of the extravasated AuNPs through inductively coupled plasma mass spectrometry, we also developed a novel online open-tubular fractionation scheme to allow interference-free determination of the sampled extracellular AuNPs from the coexisting biological matrix. After optimizing the flow-through volume and flow rate of this proposed fractionation scheme, we found that (i) the system's temporal resolution was 7.5h(-1), (ii) the stability presented by the coefficient of variation was less than 10% (6-h continuous measurement), and (iii) the detection limits for the administered AuNPs were in the range 0.057-0.068μgL(-1). Following an intravenous dosage of AuNPs (0.3mgkg(-1) body weight), in vivo acquired profiles indicated that the pegylated AuNPs (PEG-AuNPs) had greater tendency toward extravasating into the tumor extracellular space. We also observed that the accumulation of nanoparticles in the whole tumor tissues was higher for PEG-AuNPs than for non-pegylated ones. Overall, pegylation appears to promote the extravasation and accumulation of AuNPs for nano-drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  16. A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2015-01-01

    Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5'-amine-3'-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K3Fe(CN)6) as redox probe and electrode surface was inhibited. A decreased current of (K3Fe(CN)6) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Biosynthesis of Gold and Silver Nanoparticles Using Extracts of Callus Cultures of Pumpkin (Cucurbita maxima).

    PubMed

    Iyer, R Indira; Panda, Tapobrata

    2018-08-01

    The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.

  18. Radiation-induced preparation of core/shell gold/albumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Flores, Constanza Y.; Achilli, Estefania; Grasselli, Mariano

    2018-01-01

    Nanoparticles (NPs) are one of the most promising nanomaterials to be used in the biomedical field. Gold NPs (Au-NPs) have been covered with monolayers of many different molecules and macromolecules to prepare different kinds of biosensors. However, these coatings based on physisorption methods are not stable enough to prepare functional nanomaterials to be used in complex mixtures or in vivo applications. The aim of this work was to prepare a protein coating of Au-NPs based on a protein multilayer covering, stabilized by a novel radiation-induced crosslinking process. Albumins from human and bovine source were added to Au-NPs suspension and followed by ethanol addition to induce protein aggregation. Samples were irradiated with a gamma source at 10 kGy to induce a protein crosslinking according to recent findings. Samples containing 30%v/v ethanol showed a plasmon peak at about 532 nm, demonstrating the presence of non-aggregated Au-NPs. Using higher ethanol concentrations, the absorbance of plasmon peak showed NP aggregation. By Dynamic Light Scattering measurements, a new particle population with an average diameter of about 60 nm was found. Moreover, TEM images showed that the NPs had spherical shape and the presence of a low-density halo around the metal core confirmed the presence of the protein shell. An irradiation dose of one kGy was enough to show changes in the plasmon peak characteristics. The increase in the chemical stability of protein shell was demonstrated by the reduction in the NP dissolution kinetics in presence of cyanate.

  19. Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan

    2017-08-01

    The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.

  20. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Chen, Wenwen; Jia, Yuexiao; Tian, Yue; Zhao, Yuyun; Long, Fei; Rui, Yukui; Jiang, Xingyu

    2016-07-01

    We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03317b

  1. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  2. New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-02-03

    Carbon nanomaterials were usually exploited as nanocarriers in an electrochemical immunosensor but rarely acted as redox nanoprobes. Herein, our motivation is to adequately utilize the inner redox activity of fullerene (C60) to obtain a new type of redox nanoprobe based on a hydrophilic C60 nanomaterial. First, C60 nanoparticles (C60NPs) were prepared by phase-transfer method and functionalized with amino-terminated polyamidoamine (PAMAM) to obtain the PAMAM decorated C60NPs (PAMAM-C60NPs) which have better hydrophilicity compared to that of unmodified C60NPs and possesses abundant amine groups for further modification. Following that, gold nanoparticles (nano-Au) were absorbed on the PAMAM-C60NPs surface, and the resultant Au-PAMAM-C60NPs were employed as a new type of redox nanoprobe and nanocarrier to label detection antibodies (Ab2). Doping control has become the biggest problem facing international sport. Erythropoietin (EPO) as a blood doping agent has been a hotspot in doping control. After sandwich-type immunoreaction between EPO (as a model) and Ab2-labeled Au-PAMAM-C60NPs, the resultant immunosensor was further incubated with a drop of tetraoctylammonium bromide (TOAB) which acts as booster to arouse the inner redox activity of Au-PAMAM-C60NPs, thus a pair of reversible redox peaks is observed. As a result, the proposed immunosensor shows a wide linear range and a relatively low detection limit for EPO. This strategy paves a new avenue for exploring the redox nanoprobe based on carbon nanomaterials in the electrochemical biosensor field.

  3. The effect of particle size on the genotoxicity of gold nanoparticles.

    PubMed

    Xia, Qiyue; Li, Hongxia; Liu, Ying; Zhang, Shuyang; Feng, Qiyi; Xiao, Kai

    2017-03-01

    Despite the increasing biomedical applications of gold nanoparticles (AuNPs), their toxicological effects need to be thoroughly understood. In the present study, the genotoxic potential of commercially available AuNPs with varying size (5, 20, and 50 nm) were assessed using a battery of in vitro and in vivo genotoxicity assays. In the comet assay, 20 and 50 nm AuNPs did not induce obvious DNA damage in HepG2 cells at the tested concentrations, whereas 5 nm NPs induced a dose-dependent increment in DNA damage after 24-h exposure. Furthermore, 5 nm AuNPs induced cell cycle arrest in G1 phase in response to DNA damage, and promoted the production of reactive oxygen species (ROS). In the chromosomal aberration test, AuNPs exposure did not increase in the frequency of chromosomal aberrations in Chinese hamster lung (CHL) cells. In the standard in vivo micronucleus test, no obvious increase in the frequency of micronucleus formation was found in mice after 4 day exposure of AuNPs. However, when the exposure period was extended to 14 days, 5 nm AuNPs presented significant clastogenic damage, with a dose-dependent increase of micronuclei frequencies. This finding suggests that particle size plays an important role in determining the genotoxicity of AuNPs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 710-719, 2017. © 2016 Wiley Periodicals, Inc.

  4. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-02-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.

  5. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops.

    PubMed

    Karthik, R; Govindasamy, Mani; Chen, Shen-Ming; Mani, Veerappan; Lou, Bih-Show; Devasenathipathy, Rajkumar; Hou, Yu-Shen; Elangovan, A

    2016-08-01

    A simple and rapid green synthesis using Bischofia javanica Blume leaves as reducing agent was developed for the preparation of gold nanoparticles (AuNPs). AuNPs decorated graphene oxide (AuNPs/GO) was prepared and employed for the sensitive amperometric determination of chloramphenicol. The green biosynthesis requires less than 40s to reduce gold salts to AuNPs. The formations of AuNPs and AuNPs/GO were evaluated by scanning electron and atomic force microscopies, UV-Visible and energy dispersive X-ray spectroscopies, X-ray diffraction studies, and electrochemical methods. AuNPs/GO composite film modified electrode was fabricated and shown excellent electrocatalytic ability towards chloramphenicol. Under optimal conditions, the amperometric sensing platform has delivered wide linear range of 1.5-2.95μM, low detection limit of 0.25μM and high sensitivity of 3.81μAμM(-1)cm(-2). The developed sensor exhibited good repeatability and reproducibility, anti-interference ability and long-term storage stability. Practical feasibility of the sensor has been demonstrated in food samples (milk, powdered milk and honey) and pharmaceutical sample (eye drops). The green synthesized AuNPs/GO composite has great potential for analysis of food samples in food safety measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid

    NASA Astrophysics Data System (ADS)

    Lanh Le, Thi; Khieu Dinh, Quang; Hoa Tran, Thai; Nguyen, Hai Phong; Le Hien Hoang, Thi; Hien Nguyen, Quoc

    2014-06-01

    Gold nanoparticles (Au-NPs) have been successfully synthesized by utilizing water soluble chitosan as reducing and stabilizing agent. The colloidal Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The results showed that the colloidal Au-NPs had a plasmon absorption band with maximum wavelength in the range of 520-526 nm and the diameters were about 8-15 nm. In addition, a new Au-NPs-modified electrode was fabricated by self-assembling Au-NPs to the surface of the L-cysteine-modified glassy carbon electrode (Au-NPs/L-Cys/GCE). The Au-NPs-modified electrode showed an excellent character for electro-catalytic oxidization of uric acid (UA) in 0.1 mol L-1 phosphate buffer solution (pH 3.2). Using differential pulse anodic stripping voltammetry (DP-ASV), a high selectivity for determination of UA has been explored for the Au-NPs-modified electrode. DP-ASV peak currents of UA increased linearly with their concentration at the range of 2.0 × 10-6 to 4.0 × 10-5 mol L-1 with the detection limit of 2.7 × 10-6 mol L-1 for UA. The proposed method was applied for the detection of UA in human urine and serum samples with satisfactory results.

  7. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.

    PubMed

    Zhang, Zhen; Sèbe, Gilles; Wang, Xiaosong; Tam, Kam C

    2018-02-15

    pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrogen bonding recognition and colorimetric detection of isoprenaline using 2-amino-5-mercapto-1,3,4-thiadiazol functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Khezri, Somayeh; Bahram, Morteza; Samadi, Naser

    2018-01-01

    In this paper, we describe a rapid, low-cost and highly sensitive colorimetric method for the detection of isoprenaline, based on 2-amino-5-mercapto-1,3,4-thiadiazol (AMTD) functionalized gold nanoparticles (AMTD-AuNPs) as a sensing element. Hydrogen bonding interaction between isoprenaline and AMTD resulted in the aggregation of AuNPs and a consequent color change of AuNPs from red to blue. The concentration of isoprenaline could be detected with the naked eye or a UV-visible spectrometer. Results showed that the absorbance ratio (A650/A524) was linear with isoprenaline concentrations in the range of 0.2 to 2.6 μM (R = 0.997). The detection limit of this method was 0.08 μM. The proposed method is simple, without using complicated instruments and adding salts for enhancing sensitivity. This probe could be successfully applied to the determination of isoprenaline in human serum samples and urine samples after deproteinization.

  9. Very Green Photosynthesis of Gold Nanoparticles by a Living Aquatic Plant: Photoreduction of AuIII by the Seaweed Ulva armoricana.

    PubMed

    Mukhoro, Ofhani C; Roos, Wiets D; Jaffer, Mohammed; Bolton, John J; Stillman, Martin J; Beukes, Denzil R; Antunes, Edith

    2018-02-01

    Light-assisted in vivo synthesis of gold nanoparticles (NPs) from aqueous solutions of dilute Au III salts by a living green marine seaweed (Ulva armoricana) is reported for the first time. NPs synthesised using typical procedures have many associated environmental hazards. The reported methods involve green, nontoxic, eco-friendly synthetic procedures. The formation of AuNPs was extremely rapid (≈15 min) following illumination of the living U. armoricana, while the rate of NP formation in the dark was very slow (over 2 weeks). The properties of the AuNPs formed were confirmed using a battery of spectroscopic techniques. U. armoricana were found to be very efficient in Au 0 uptake, and this, together with the rapid formation of AuNPs under illumination, indicated that the seaweed remained living during NP formation. The TEM images supported this, revealing that the thylakoid membranes and cell structure remained intact. The AuNPs formed on the surface of U. armoricana thallus, along the cell walls and in the chloroplasts. Without further workup, the dried, U. armoricana-supported AuNPs were efficient in the catalytic reduction of 4-nitrophenol, demonstrating the completely green cycle of AuNP formation and catalytic activity. The results mean that an aquatic plant growing in water rich in gold salts could bio-accumulate AuNPs from its aquatic environment, simply with the activation of sunlight. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development, Characterization and Validation of Trastuzumab-Modified Gold Nanoparticles for Molecularly Targeted Radiosensitization of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Niladri

    The overexpression of the human epidermal growth factor receptor-2 (HER-2) in 20--25% of human breast cancers was investigated as a target for development of a gold nanoparticle (AuNP) based radiosensitizer for improving the efficacy of neoadjuvant X-radiation therapy of the disease. HER-2 targeted AuNPs were developed by covalently conjugating trastuzumab, a Health Canada approved monoclonal antibody for the treatment of HER-2-overexpressing breast cancer, to 30 nm AuNPs. Trastuzumab conjugated AuNPs were efficiently internalized by HER-2-overexpressing breast cancer cells (as assessed by darkfield microscopy and transmission electron microscopy) and increased DNA damage from X-radiation in these cells by more than 5-fold. To optimize delivery of AuNPs to HER-2-overexpressing tumors, high resolution microSPECT/CT imaging was used to track the in vivo fate of 111In-labelled non-targeted and HER-2 targeted AuNPs following intravenous (i.v.) or intratumoral (i.t.) injection. For i.v. injection, the effects of GdCl3 (for deactivation of macrophages) and non-specific (anti-CD20) antibody rituximab (for blocking of Fc mediated liver and spleen uptake) were studied. It was found that HER-2 targeting via attachment of trastuzumab paradoxically decreased tumor uptake as a result of faster elimination of the targeted AuNPs from the blood while improving internalization in HER-2-positive tumor cells as compared to non-targeted AuNPs. This phenomenon could be attributed to Fc-mediated recognition and subsequent sequestration of trastuzumab conjugated AuNP by the reticuloendothelial system (RES). Blocking of the RES did not increase tumor uptake of either HER-2 targeted or non-targeted AuNPs. Following i.t. injection, our results suggest that Au-NTs redistribute over time and traffick to the liver via the ipsilateral axillary lymph node leading to comparable exposure as seen with i.v. administration. In contrast, targeted AuNPs are bound and internalized by HER-2-overexpressing tumor cells following i.t. injection, with a lower proportion of AuNPs redistributing to normal tissues. In vivo, the combination of HER-2 targeted AuNPs injected i.t. and X-radiation (11 Gy) yielded a 46% decrease in tumor size over a 4 month period in contrast to an 11.5% increase in tumor size for X-radiation treatment alone. Toxicology studies (evaluated through complete blood cell counts, by serum transaminase and creatinine measurements and by monitoring the body weight) demonstrated no apparent normal organ toxicity from the combination of HER-2 targeted AuNPs and X-radiation. These results are promising for the clinical translation of HER-2-targeted AuNPs for radiosensitization of tumors to X-radiation.

  11. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-27

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  12. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model.

    PubMed

    Selim, Manar E; Abd-Elhakim, Yasmina M; Al-Ayadhi, Laila Y

    2015-01-01

    Gold nanoparticles (AuNPs) have a wide range of applications in various fields. This study provides an understanding of the modulatory effects of AuNPs on an antioxidant system in male Wistar diabetic rats with autism spectrum disorder (ASD). Normal littermates fed by control mothers were injected with citrate buffer alone and served as normal, untreated controls controlin this study. Diabetes mellitus (DM) was induced by administering a single intraperitoneal injection of streptozotocin (STZ) (100 mg/kg) to the pups of (ND) diabetic group, which had been fasted overnight. Autistic pups from mothers that had received a single intraperitoneal injection of 600 mg/kg sodium valproate on day 12.5 after conception were randomly divided into 2 groups (n 2 7/group) as follow; administering single intraperitoneal injection of streptozotocin (STZ) ( (100 mg/kg) to the overnight fasted autistic pups of (AD) autistic diabetic group. The treatment was started on the 5th day after STZ injection with the same dose as in group II and it was considered as 1st day of treatment with gold nanoparticles for 7 days to each rat of (group IV) treated autistic diabetic group(TAD) at a dosage of 2.5 mg/kg. b. wt. At this dose of administration AuNPs, the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase were greater in group TAD compared with the control group (P < 0.05). Oxidised glutathione levels were lower (P > 0.05) in the liver of autistic diabetic AuNPs -supplemented rats, whereas reduced glutathione was markedly higher than in control rats, especially after administration of AuNPs. Moreover, the kidney functions in addition to the fat profile scoring supported the protective potential of that dose of AuNPs. The beta cells revealed euchromatic nuclei with no evidence of separation of nuclear membrane. Our results showed that AuNPs improved many of the oxidative stress parameters (SOD, GPx and, CAT), plasma antioxidant capacity (ORAC) and lipid profile relative to the other parameters. In addition to the apparent reversibility of the pancreatic B cell in group IV which may reflect the regenerative capacity of AuNPs. © 2015 S. Karger AG, Basel.

  13. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles.

    PubMed

    Saber, Mohaddeseh Mahmoudi; Bahrainian, Sara; Dinarvand, Rassoul; Atyabi, Fatemeh

    2017-01-30

    The unique characteristics of tumor vasculature represent an attractive strategy for targeted delivery of antitumor and antiangiogenic agents to the tumor. The purpose of this study was to prepare c(RGDfK) labeled chitosan capped gold nanoparticles [cRGD(CS-Au) NPs] as a carrier for selective intracellular delivery of Sunitinib Malate (STB) to the tumor vasculature. cRGD(CS-Au) NPs was formed by electrostatic interaction between cationic CS and anionic AuNPs. cRGD modified CS-Au NPs had a spherical shape with a narrow size distribution. The entrapment efficiency of sunitinib molecule was found to be 45.2%±2.05. Confocal microscopy showed enhanced and selective uptake of cRGD(CS-Au) NPs into MCF-7 and HUVEC cells compared with non-targeted CS-Au NPs. Our results suggest that it may be possible to use cRGD(CS-Au) NPs as a carrier for delivery of anticancer drugs, genes and biomolecules for inhibiting tumor vasculature. Copyright © 2016. Published by Elsevier B.V.

  14. Oligonucleoside assisted one pot synthesis and self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nimrodh Ananth, A.; Ghosh, Goutam; Umapathy, S.; Jothi Rajan, M. A.

    2013-12-01

    Gold nanoparticles (AuNPs) were synthesized using two different mono-deoxynucleosides, namely, deoxycytidine (dC) and deoxyadenosine (dA) and the size of the nanoparticles in aqueous dispersions was measured to be approximately 10 and 23 nm, respectively. It was also observed that the AuNPs, synthesized using deoxycytidine (dC), self-assembled to a stable cauliflower-type structure of size approximately 230 nm over a long period of ageing, during which the solution colour was seen continuously changing from pale yellow to deep green. The self-assembly of dC-Au nanoparticles (dC-AuNPs) with time was investigated using UV-visible spectroscopy and dynamic light scattering (DLS) techniques. We have also observed that the self-assembly of dC-AuNPs was dependent on the solution pH; i.e. the aggregates could be dissociated and re-associated upon varying the solution pH which we assumed to be due to breaking and forming of hydrogen bonds between --OH and ==O groups of dC among the neighbouring dC-AuNPs. In contrast, AuNPs synthesized using deoxyadenosine (dA-AuNPs) were quite stable in aqueous medium.

  15. Synthesis of gold and silver nanoparticles using purified URAK.

    PubMed

    Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi

    2011-09-01

    This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cellular Uptake and Tissue Biodistribution of Functionalized Gold Nanoparticles and Nanoclusters.

    PubMed

    Escudero-Francos, María A; Cepas, Vanesa; González-Menédez, Pedro; Badía-Laíño, Rosana; Díaz-García, Marta E; Sainz, Rosa M; Mayo, Juan C; Hevia, David

    2017-02-01

    In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 μg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.

  17. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  18. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  19. Influence of Polyoxometalate Protecting Ligands on Catalytic Aerobic Oxidation at the Surfaces of Gold Nanoparticles in Water.

    PubMed

    Zhang, Mingfu; Hao, Jingcheng; Neyman, Alevtina; Wang, Yifeng; Weinstock, Ira A

    2017-03-06

    Metal oxide cluster-anion (polyoxometalate, or POM) protecting ligands, [α-PW 11 O 39 ] 7- (1), modify the rates at which 14 nm gold nanoparticles (Au NPs) catalyze an important model reaction, the aerobic (O 2 ) oxidation of CO to CO 2 in water. At 20 °C and pH 6.2, the following stoichiometry was observed: CO + O 2 + H 2 O = CO 2 + H 2 O 2 . After control experiments verified that the H 2 O 2 product was sufficiently stable and did not react with 1 under turnover conditions, quantitative analysis of H 2 O 2 was used to monitor the rates of CO oxidation, which increased linearly with the percent coverage of the Au NPs by 1 (0-64% coverage, with the latter value corresponding to 211 ± 19 surface-bound molecules of 1). X-ray photoelectron spectroscopy of Au NPs protected by a series of POM ligands (K + salts): 1, the Wells-Dawson ion [α-P 2 W 18 O 62 ] 6- (2) and the monodefect Keggin anion [α-SiW 11 O 39 ] 8- (3) revealed that binding energies of electrons in the Au 4f 7/2 and 4f 5/2 atomic orbitals decreased as a linear function of the POM charge and percent coverage of Au NPs, providing a direct correlation between the electronic effects of the POMs bound to the surfaces of the Au NPs and the rates of CO oxidation by O 2 . Additional data show that this effect is not limited to POMs but occurs, albeit to a lesser extent, when common anions capable of binding to Au-NP surfaces, such as citrate or phosphate, are present.

  20. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    PubMed

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles.

    PubMed

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul

    2016-12-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect.

  2. Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations.

    PubMed

    Ganbold, Erdene-Ochir; Yoon, Jinha; Cho, Kwang-Hwi; Joo, Sang-Woo

    2015-01-01

    The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs. Copyright © 2015. Published by Elsevier B.V.

  3. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells.

    PubMed

    Dhas, T Stalin; Kumar, V Ganesh; Karthick, V; Govindaraju, K; Shankara Narayana, T

    2014-12-10

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5min at 60°C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35nm. A zeta potential value of -27.6mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4',6-Diamidino-2-phenylindole dihydrochloride) staining. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  5. Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions

    DOE PAGES

    Li, Hongfei; Pan, Cheng; Zhao, Sijia; ...

    2016-04-16

    We developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir–Blodgett (LB) trough lift off from the air water interface. By incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) we enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H 2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100%more » O 2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. Our results indicated that the Au NPs interacted synergistically with the SO 3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction to occur at T<300 K.« less

  6. Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions

    NASA Astrophysics Data System (ADS)

    Connolly, Mona; Pérez, Yolanda; Mann, Enrique; Herradón, Bernardo; Fernández-Cruz, María L.; Navas, José M.

    2013-07-01

    In this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied. Transmission electron micrographs showed isolated near-spherical nanoparticles with diameters of 1.5, 1.6, 2.3, 1.8 and 2.3 nm, respectively. Dynamic light scattering evidenced the high stability of suspensions in Milli-Q water and culture medium, particularly when supplemented with serum, showing in all cases a tendency to form agglomerates with diameters approximately 200 nm. In the cytotoxicity studies, interference caused by AuNPs with some typical cytotoxicity assays was demonstrated; thus, only data obtained from the resazurin based assay were used. After 48-h incubation, only concentrations ≥50 μg/ml exhibited cytotoxicity. Such doses were also responsible for an increase in reactive oxygen species (ROS). Some differences were observed among the studied NPs. Of particular importance is the AuNPs capped with the PBH ligand (Gly-Tyr-TrCys)2B showing remarkable stability in culture medium, even in the absence of serum. Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity. The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs. Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

  7. Altered protein expression profile associated with phenotypic changes in lung fibroblasts co-cultured with gold nanoparticle-treated small airway epithelial cells.

    PubMed

    Ng, Cheng-Teng; Yung, Lin-Yue Lanry; Swa, Hannah Lee-Foon; Poh, Rebecca Wan-Yan; Gunaratne, Jayantha; Bay, Boon-Huat

    2015-01-01

    Despite the availability of toxicity studies on cellular exposure to gold nanoparticles (AuNPs), there is scarcity of information with regard to the bystander effects induced by AuNPs on neighboring cells not exposed to the NPs. In this study, we showed that exposure of small airway epithelial cells (SAECs) to AuNPs induced changes in protein expression associated with functional effects in neighboring MRC5 lung fibroblasts in a co-culture system. Uptake of 20 nm size AuNPs by SAECs was first verified by focused ion beam scanning electron microscopy. Subsequently, pretreated SAECs were co-cultured with unexposed MRC5 lung fibroblasts, which then underwent proteome profiling using a quantitative proteomic approach. Stable-isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry identified 109 proteins (which included 47 up-regulated and 62 down-regulated proteins) that were differentially expressed in the lung fibroblasts co-cultured with AuNP pretreated SAECs. There was altered expression of proteins such as Paxillin, breast cancer anti-estrogen resistance 1 and Caveolin-1, which are known to be involved in the cell adhesion process. Morphological studies revealed that there was a concomitant increase in cell adhesion and altered F-actin stress fiber arrangement involving vinculin in the lung fibroblasts. It is likely that phenotypic changes observed in the underlying lung fibroblasts were mediated by AuNP-induced downstream signals in the pretreated SAECs and cell-cell cross talk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing.

    PubMed

    Di Carlo, Gabriella; Curulli, Antonella; Toro, Roberta G; Bianchini, Chiara; De Caro, Tilde; Padeletti, Giuseppina; Zane, Daniela; Ingo, Gabriel M

    2012-03-27

    In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages. © 2012 American Chemical Society

  9. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    NASA Astrophysics Data System (ADS)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  10. Interactions between the antifungal drug myclobutanil and gold and silver nanoparticles in Penicillium digitatum investigated by surface-enhanced Raman scattering.

    PubMed

    Cho, Eun-Min; Singh, Dheeraj K; Ganbold, Erdene-Ochir; Dembereldorj, Uuriintuya; Jang, Seok-Won; Kim, Doseok; Choo, Jaebum; Kim, Sehun; Lee, Cheol Min; Yang, Sung Ik; Joo, Sang-Woo

    2014-01-01

    Surface-enhanced Raman scattering (SERS) of an antifungal reagent, myclobutanil (MCB), was performed on Au and Ag nanoparticles (NPs) to estimate the drug-release behaviors in fungal cells. A density functional theory (DFT) calculation was introduced to predict a favorable binding site of MCB to either the Ag or Au atom. Myclobutanil was presumed to bind more strongly to Au than to Ag in their most stable, optimized geometries of the N4 atom in its 1,2,4-triazole unit binding to the metal atom. Strong intensities were observed in the Ag SERS spectra only at acidic pH values, whereas the most prominent peaks in the Au SERS spectra of MCB matched quite well with those of 1,2,4-triazole regardless of pH conditions. The Raman spectral intensities of the MCB-assembled Ag and Au NPs decreased after treatment with either potato dextrose agar (PDA) or glutathione (GSH). Darkfield microscopy and confocal SERS were performed to analyze the MCB-assembled metal NPs inside Penicillium digitatum fungal cells. The results suggested that MCB was released from the metal NPs in the intracellular GSH in the fungi because we observed only fungal cell peaks.

  11. Self-catalytic growth of unmodified gold nanoparticles as conductive bridges mediated gap-electrical signal transduction for DNA hybridization detection.

    PubMed

    Zhang, Jing; Nie, Huagui; Wu, Zhan; Yang, Zhi; Zhang, Lijie; Xu, Xiangju; Huang, Shaoming

    2014-01-21

    A simple and sensitive gap-electrical biosensor based on self-catalytic growth of unmodified gold nanoparticles (AuNPs) as conductive bridges has been developed for amplifying DNA hybridization events. In this strategy, the signal amplification degree of such conductive bridges is closely related to the variation of the glucose oxidase (GOx)-like catalytic activity of AuNPs upon interaction with single- and double-stranded DNA (ssDNA and dsDNA), respectively. In the presence of target DNA, the obtained dsDNA product cannot adsorb onto the surface of AuNPs due to electrostatic interaction, which makes the unmodified AuNPs exhibit excellent GOx-like catalytic activity. Such catalytic activity can enlarge the diameters of AuNPs in the glucose and HAuCl4 solution and result in a connection between most of the AuNPs and a conductive gold film formation with a dramatically increased conductance. For the control sample, the catalytic activity sites of AuNPs are fully blocked by ssDNA due to the noncovalent interaction between nucleotide bases and AuNPs. Thus, the growth of the assembled AuNPs will not happen and the conductance between microelectrodes will be not changed. Under the optimal experimental conditions, the developed strategy exhibited a sensitive response to target DNA with a high signal-to-noise ratio. Moreover, this strategy was also demonstrated to provide excellent differentiation ability for single-nucleotide polymorphism. Such performances indicated the great potential of this label-free electrical strategy for clinical diagnostics and genetic analysis under real biological sample separation.

  12. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  13. Light-induced switching of 1,3-diazabicyclo-[3.1.0]hex-3-enes on gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Nosrat O.; Ahmadi, Narges Khatoon; Ghavidast, Atefeh

    2018-05-01

    The fabrication of hybrid nanoassemblies involving sulfure-modified photochromic derivatives (SMPDs) on the gold nanoparticles (AuNPs) was carried out to investigate the influence of AuNPs surface plasmons on the SMPDs photoisomerization. The size of the AuNPs obtained was <30 nm in average diameter. Upon irradiation by alternating UV and Vis light, a reversible photochemical isomerization along with bathochromic shift in the absorption band takes place on the surface of the AuNPs in analogy with free SMPDs in solutions. Furthermore, in some cases a significant quenching of photochromic reactivity was observed due to the excited energy transfer from the photochromic molecules to the AuNPs core.

  14. The effect of Au nanoparticles on the strain-dependent electrical properties of CVD graphene

    NASA Astrophysics Data System (ADS)

    Bai, Jing; Nan, Haiyan; Qi, Han; Bing, Dan; Du, Ruxia

    2018-03-01

    We conducted an experimental study of the effect of Au nanoparticles (NPs) on the strain-dependent electrical properties in chemical vapor deposition grown graphene. We used 5-nm thick Au NPs as an effective cover (and doping) layer for graphene, and found that Au NPs decrease electrical resistance by two orders of magnitude. In addition, the Au NPs suppress the effect of strain on resistance because the intrinsic topological cracks and grain boundaries in graphene are filled with Au nanoparticles. This method has a big potential to advance industrial production of large-area, high-quality electronic devices and graphene-based transparent electrodes.

  15. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    PubMed

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  16. Chemiluminescence of off-line and on-line gold nanoparticle-catalyzed luminol system in the presence of flavonoid.

    PubMed

    Wu, Dong; Zhang, Xiaoyue; Liu, Yong; Ma, Yan; Wang, Xiaowu; Wang, Xiaojuan; Xu, Liuxin

    2017-06-01

    It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off-line gold nanoparticle (AuNP)-catalyzed luminol-H 2 O 2 CL system. By contrast, flavonoids enhanced the CL intensity of an on-line AuNP-catalyzed luminol-H 2 O 2 CL system. In the off-line system, the AuNPs were prepared beforehand, whereas in the on-line system, AuNPs were produced by on-line mixing of luminol prepared in a buffer solution of NaHCO 3  - Na 2 CO 3 and HAuCl 4 with no need for the preliminary preparation of AuNPs. The on-line system had prominent advantages over the off-line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off-line AuNP-catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy-sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on-line system was ascribed to the presence of flavonoids promoting the on-line formation of AuNPs, which better catalyzed the luminol-H 2 O 2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP-catalyzed CL system. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Rhizome of Anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines.

    PubMed

    Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun

    2018-03-29

    The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.

  18. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications.

    PubMed

    Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V

    2018-05-24

    Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.

  19. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231).

    PubMed

    Balakrishnan, Solaimuthu; Mukherjee, Sudip; Das, Sourav; Bhat, Firdous Ahmad; Raja Singh, Paulraj; Patra, Chitta Ranjan; Arunakaran, Jagadeesan

    2017-06-01

    Epidermal growth factor plays a major role in breast cancer cell proliferation, survival, and metastasis. Quercetin, a bioactive flavonoid, is shown to exhibit anticarcinogenic effects against various cancers including breast cancer. Hence, the present study was designed to evaluate the effects of gold nanoparticles-conjugated quercetin (AuNPs-Qu-5) in MCF-7 and MDA-MB-231 breast cancer cell lines. Borohydride reduced AuNPs were synthesized and conjugated with quercetin to yield AuNPs-Qu-5. Both were thoroughly characterized by several physicochemical techniques, and their cytotoxic effects were assessed by MTT assay. Apoptotic studies such as DAPI, AO/EtBr dual staining, and annexin V-FITC staining were performed. AuNPs and AuNPs-Qu-5 were spherical with crystalline nature, and the size of particles range from 3.0 to 4.5 nm. AuNPs-Qu-5 exhibited lower IC 50 value compared to free Qu. There was a considerable increase in apoptotic population with increased nuclear condensation seen upon treatment with AuNPs-Qu-5. To delineate the molecular mechanism behind its apoptotic role, we analysed the proteins involved in apoptosis and epidermal growth factor receptor (EGFR)-mediated PI3K/Akt/GSK-3β signalling by immunoblotting and immunocytochemistry. The pro-apoptotic proteins (Bax, Caspase-3) were found to be up regulated and anti-apoptotic protein (Bcl-2) was down regulated on treatment with AuNPs-Qu-5. Additionally, AuNPs-Qu-5 treatment inhibited the EGFR and its downstream signalling molecules PI3K/Akt/mTOR/GSK-3β. In conclusion, administration of AuNPs-Qu-5 in breast cancer cell lines curtails cell proliferation through induction of apoptosis and also suppresses EGFR signalling. AuNPs-Qu-5 is more potent than free quercetin in causing cancer cell death, and hence, this could be a potential drug delivery system in breast cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    PubMed

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Construction of DNA sandwich electrochemical biosensor with nanoPbS and nanoAu tags on magnetic microbeads.

    PubMed

    Du, Ping; Li, Hongxia; Cao, Wei

    2009-07-15

    A novel and sensitive sandwich electrochemical biosensor based on the amplification of magnetic microbeads and Au nanoparticles (NPs) modified with bio bar code and PbS nanoparticles was constructed in the present work. In this method, the magnetic microspheres were coated with 4 layers polyelectrolytes in order to increase carboxyl groups on the surface of the magnetic microbeads, which enhanced the amount of the capture DNA. The amino-functionalized capture DNA on the surface of magnetic microbeads hybridized with one end of target DNA, the other end of which was hybridized with signal DNA probe labelled with Au NPs on the terminus. The Au NPs were modified with bio bar code and the PbS NPs were used as a marker for identifying the target oligoncleotide. The modification of magnetic microbeads could immobilize more amino-group terminal capture DNA, and the bio bar code could increase the amount of Au NPs that combined with the target DNA. The detection of lead ions performed by anodic stripping voltammetry (ASV) technology further improved the sensitivity of the biosensor. As a result, the present DNA biosensor showed good selectivity and sensitivity by the combined amplification. Under the optimum conditions, the linear relationship with the concentration of the target DNA was ranging from 2.0 x 10(-14) M to 1.0 x 10(-12)M and a detection limit as low as 5.0 x 10(-15)M was obtained.

  2. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    PubMed

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  3. Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Sivadasan, A. K.; Parida, Santanu; Ghosh, Subrata; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light-matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.

  4. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-06-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP-CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  5. ZnS-Au planet-like structure: a facile fabrication and improved optical performance induced by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Yang, Chaoshun; An, Guofei; Zhou, Yawei; Zhao, Xiaopeng

    2013-05-01

    Semiconductor-metal planet-like structure composed of ZnS crystals and Au nanoparticles (NPs) were successfully synthesized using a simple method. The external surface of ZnS was pre-modified with sodium dodecyl sulfate (SDS). With the assistance of this anionic surfactant, Au NPs could be deposited onto the surface of ZnS crystals via electrostatic adsorption. The samples were structurally characterized by X-ray diffraction, Fourier transform infrared, and transmission electron microscope. It was shown that all samples were made up of face-centered cubic Au and wurtzite ZnS. In this structure, the surface coverage of Au NPs could be readily adjusted by varying the Au/ZnS ratio during the synthesis. Photoluminescence results showed that the defect emission intensity of the ZnS-Au planet-like structure improved by 20 % at the Au/ZnS molar ratio of 1:588, with the Au NPs measuring 12 nm in diameter. This enhancement can be primarily ascribed to localized surface plasmon resonance on the surface of the Au NPs.

  6. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study.

    PubMed

    Javed, Ibrahim; Hussain, Syed Zajif; Shahzad, Atif; Khan, Jahanzeb Muhammad; Ur-Rehman, Habib; Rehman, Mubashar; Usman, Faisal; Razi, Muhammad Tahir; Shah, Muhammad Raza; Hussain, Irshad

    2016-05-01

    We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy.

    PubMed

    Pluchery, Olivier; Humbert, Christophe; Valamanesh, Mehrnoush; Lacaze, Emmanuelle; Busson, Bertrand

    2009-09-21

    Sum frequency generation (SFG) and difference frequency generation (DFG) are applied to study vibrational resonance of the thiophenol molecule adsorbed on two different gold samples. One sample is made of 17 nm gold nanoparticles (AuNPs) fixed on a silicon substrate that has been previously functionalized with a silane monolayer (aminopropyltriethoxysilane, APTES). This sample is fully characterized through visible reflection spectroscopy and AFM. The second sample is a gold monocrystal also covered with thiophenol molecules. From their comparison, an enhancement factor of 21 is deduced for the SFG signal on AuNPs with respect to the Au(111), related to the surface plasmon resonance (SPR). From a combined analysis of the SFG and DFG spectra, we demonstrate that SFG/DFG spectroscopy is able to identify the nature of the substrate where the molecules are adsorbed. This opens new perspectives for this nonlinear spectroscopy by adding to its well-known intrinsic surface specificity, the ability to selectively probe the chemical layer capping the AuNPs.

  8. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract

    NASA Astrophysics Data System (ADS)

    Izadiyan, Zahra; Shameli, Kamyar; Hara, Hirofumi; Mohd Taib, Siti Husnaa

    2018-01-01

    The unique properties of gold nanoparticles (Au-NPs) produce in plant extract make them attractive for use in medical and industrial applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the gold ions to Au-NPs during synthesis with natural plant extracts or with plasmas atmospheric pressure. Here, the biosynthesis of Au-NPs using the Juglans regia (J. regia) green husk extract was investigated as the reducing and stabilizing agent. The formation of Au-NPs was initially monitored by visual observation and then characterized with the help of various characterization techniques. UV-vis spectroscopy results showed that Au-NPs synthesized using moderate temperature have a blue shifting, good distribution and smaller size compare with Au-NPs fabricated in room temperature. X-ray diffraction (XRD) results revealed the distinctive formation of the crystalline structure of Au-NPs with a spherical shape. According to transmission electron microscopy (TEM), the mean diameter and standard deviation of Au-NPs at room and moderate temperatures were 19.19 ± 4.7 and 14.32 ± 3.24 nm, respectively. The result of Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) are in good agreement with each other and confirm that by using the moderate temperature compare to the room temperature the yield of reaction increased. Based on the zeta potential result, Au-NPs has sufficient value for the stability of the solution. According to FTIR spectrum, the J. regia would be coated on the gold ions surface in a successful manner. The non-toxic effect of Au-NPs concentration below 250 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose-dependent toxicity made it a suitable candidate for various medical applications.

  9. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-02

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.

  10. Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold nanoparticles.

    PubMed

    Kim, Dong-Kwan; Hwang, Yoon Jo; Yoon, Cheolho; Yoon, Hye-On; Chang, Ki Soo; Lee, Gaehang; Lee, Seungwoo; Yi, Gi-Ra

    2015-08-28

    The theoretical extinction coefficients of gold nanoparticles (AuNPs) have been mainly verified by the analytical solving of the Maxwell equation for an ideal sphere, which was firstly founded by Mie (generally referred to as Mie theory). However, in principle, it has not been directly feasible with experimental verification especially for relatively large AuNPs (i.e., >40 nm), as conventionally proposed synthetic methods have inevitably resulted in a polygonal shaped, non-ideal Au nanosphere. Here, mono-crystalline, ultra-smooth, and highly spherical AuNPs of 40-100 nm were prepared by the procedure reported in our recent work (ACS Nano, 2013, 7, 11064). The extinction coefficients of the ideally spherical AuNPs of 40-100 nm were empirically extracted using the Beer-Lambert law, and were then compared with the theoretical limits obtained by the analytical and numerical methods. The obtained extinction coefficients of the ideally spherical AuNPs herein agree much more closely with the theoretical limits, compared with those of the faceted or polygonal shaped AuNPs. In addition, in order to further elucidate the importance of being spherical, we systematically compared our ideally spherical AuNPs with the polygonal counterparts; effectively addressing the role of the surface morphology on the spectral responses in both theoretical and experimental manners.

  11. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  12. A wireless and sensitive detection of octachlorostyrene using modified AuNPs as signal-amplifying tags.

    PubMed

    Chen, Lan; Li, Jiezhen; ThanhThuy, T Tran; Zhou, Liping; Huang, Chen'an; Yuan, Lijuan; Cai, Qingyun

    2014-02-15

    A wireless, remote query octachlorostyrene (OCS) biosensor was fabricated by coating a mass-sensitive magnetoelastic ribbon with anti-OCS antibody. In response to a time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic resonance frequency which inversely depends on the sensor mass loading. As the magnetoelastic film is magnetostrictive itself, the vibrations launch magnetic flux that can be remotely detected using a pickup coil. Au nanoparticles (NPs) were used to amplify the mass loading. In a sample solution containing OCS target and OCS-modified AuNPs (OCS-AuNPs), both OCS and OCS-AuNPs react with the anti-OCS antibody immobilized on the sensor surface in a competition mode. The bound OCS-AuNPs amount is inversely proportional to the OCS target concentration. The reduction of bound OCS-AuNPs induced by free OCS results in significant change in mass loading, which amplifies the responses. The biosensor demonstrates a linear shift in resonance frequency with OCS concentration between 7.4 μM and 9 nM, with a detection limit of 2.8 nM. © 2013 Published by Elsevier B.V.

  13. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide

    NASA Astrophysics Data System (ADS)

    Xiao, Yaruo; Zhang, Enqi; Fu, Ailing

    2017-12-01

    Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.

  14. Different behaviors in the transformation of PATP adsorbed on Ag or Au nanoparticles investigated by surface-enhanced Raman spectroscopy - A study of the effects from laser energy and annealing

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Fang; Luo, Shi-Yi; Liu, Guo-Kun

    2015-05-01

    In order to explore the key role of surface plasmon resonance (SPR) and active 3O2 for the chemical transformation to 4,4-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) adsorbed on Ag or Au NPs, we systematically investigated the laser wavelength and temperature dependent surface-enhanced Raman spectra of PATP capped Ag and Au NPs. DMAB can be easily observed at the 514.5 nm laser for Ag NPs but at the 632.8 nm laser for Au NPs, indicating that a suitable energy level is necessary for the formation of DMAB. The tendency is consistent with the wavelength dependent SPR properties of Ag or Au NPs accordingly. With the energy provided by annealing, the transformation of PATP to DMAB is much easier on Ag NPs at a lower temperature, and more DMAB can be observed at the same temperature, compared to the case of Au NPs under the same condition. It is mainly due to the active 3O2 on Ag surfaces could be more easily formed than that on Au surfaces.

  15. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules.

    PubMed

    Qin, Guoxing; Zhao, Shulin; Huang, Yong; Jiang, Jing; Liu, Yi-Ming

    2013-08-15

    In this article, we report a gold nanoparticles (AuNPs) sensing platform based on chemiluminescence resonance energy transfer (CRET) for light on detection of biomolecules. In designing such a CRET-based biosensing platform, the aptamer was first covalently labeled with a chemiluminescent reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The ABEI labeled aptamer was then hybridized with AuNPs functionalized ssDNA which was complementary to the aptamer, obtaining the aptasensor. The CRET between ABEI and AuNPs in the aptasensor led to the CL quenching of ABEI. In the presence of a target analyte, it formed a complex with aptamer, and released ABEI-aptamer from AuNPs surface that resulted in CL recovery of ABEI. To test this design, a thrombin (used as a model analyte) aptasensor was prepared and evaluated. The results indicate that the proposed approach is simple and provided a linear range of 50-550 pM for thrombin detection with a detection limit of 15 pM. This new methodology can be easily extended to assay other biomolecules by simply changing the recognition sequence with the substrate aptamer. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Paper-based immunosensor with signal amplification by enzyme-labeled anti-p16INK4a multifunctionalized gold nanoparticles for cervical cancer screening.

    PubMed

    Yokchom, Ruchuon; Laiwejpithaya, Somsak; Maneeprakorn, Weerakanya; Tapaneeyakorn, Satita; Rabablert, Jundee; Dharakul, Tararaj

    2018-04-01

    The aim of this study was to develop a paper-based immunosensor for cervical cancer screening, with signal amplification by multifunctionalized gold nanoparticles (AuNPs). The AuNPs were functionalized with a highly specific antibody to the p16 INK4a cancer biomarker. The signal was amplified using a combination of the peroxidase activity of horseradish peroxidase (HRP) enzyme-antibody conjugate and the peroxidase-like activity of the AuNPs. The immune complex of p16 INK4a protein and multifunctionalized AuNPs was deposited on the nitrocellulose membrane, and a positive result was generated by catalytic oxidation of peroxidase enzyme substrate 3,3',5,5'-Tetramethylbenzidine (TMB). The entire reaction occurred on the membrane within 30 min. Evaluation in clinical samples revealed 85.2% accuracy with a kappa coefficient of 0.69. This proof of concept study demonstrates the successful development of a highly accurate, paper-based immunosensor that is easy to interpret using the naked eye and that is suitable for cervical cancer screening in low-resource settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Confocal Raman microspectroscopic study of folate receptor-targeted delivery of 6-mercaptopurine-embedded gold nanoparticles in a single cell.

    PubMed

    Park, Jin; Jeon, Won Il; Lee, So Yeong; Ock, Kwang-Su; Seo, Ji Hye; Park, Jinho; Ganbold, Erdene-Ochir; Cho, Keunchang; Song, Nam Woong; Joo, Sang-Woo

    2012-05-01

    We investigate the cellular uptake behaviors and efficacy of folate-coated gold nanoparticles (AuNPs) for the targeted drug delivery system in human cancer cells. Folate-conjugated AuNPs embedded with a purine analogue cancer drug of 6-mercaptopurine (6MP) were assembled via a 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) coupling reaction between the amino group of 4-aminobenzenethiol (ABT) and the carboxyl group of folic acid. The assembly of folate and 6MP on AuNPs has been examined by absorption spectroscopy, transmission electron microscopy (TEM), and confocal Raman spectroscopy. The internalization of the conjugated AuNPs inside the folate receptor-positive HeLa and KB cells was checked by TEM and dark-field microscopy (DFM) combined with label-free confocal spectroscopy over the depth variable z at a micrometer resolution. DFM live cell imaging of folate-conjugated AuNPs in HeLa cells indicated that the targeted AuNPs appeared to attach on the cell surfaces and enter into the cell with an hour. The cell viability was also compared to estimate the efficacy of folate-conjugated AuNP delivery systems. Folate receptor-targeted AuNP systems appeared to decrease cancer cell viability both in vitro and in vivo more than did the use of the 6MP-coated AuNPs drug without any targeting systems. Copyright © 2012 Wiley Periodicals, Inc.

  18. A comparative study of the adhesion of biosynthesized gold and conjugated gold/prodigiosin nanoparticles to triple negative breast cancer cells.

    PubMed

    Dozie-Nwachukwu, S O; Obayemi, J D; Danyuo, Y; Anuku, N; Odusanya, O S; Malatesta, K; Soboyejo, W O

    2017-08-17

    This paper explores the adhesion of biosynthesized gold nanoparticles (AuNPs) and gold (Au) nanoparticle/prodigiosin (PG) drug nanoparticles to breast cancer cells (MDA-MB-231 cells). The AuNPs were synthesized in a record time (less than 30 s) from Nauclea latifolia leaf extracts, while the PG was produced via bacterial synthesis with Serratia marcescens sp. The size distributions and shapes of the resulting AuNPs were characterized using transmission electron microscopy (TEM), while the resulting hydrodynamic diameters and polydispersity indices were studied using dynamic light scattering (DLS). Atomic Force Microscopy (AFM) was used to study the adhesion between the synthesized gold nanoparticles (AuNPs)/LHRH-conjugated AuNPs and triple negative breast cancer cells (MDA-MB-231 cells), as well as the adhesion between LHRH-conjugated AuNP/PG drug and MDA-MB-231 breast cancer cells. The adhesion forces between LHRH-conjugated AuNPs and breast cancer cells are shown to be five times greater than those between AuNPs and normal breast cells. The increase in adhesion is shown to be due to the over-expression of LHRH receptors on the surfaces of MDA-MB-231 breast cancer cells, which was revealed by confocal immuno-fluorescence microscopy. The implications of the results are then discussed for the selective and specific targeting and treatment of triple negative breast cancer.

  19. Gold nanoparticle plasmonics enhanced ultrafast laser-induced optoporation and stimulation of targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Bergeron, Éric; Lavoie-Cardinal, Flavie; Boutopoulos, Christos; Salesse, Charleen; Winnik, Françoise M.; De Koninck, Paul

    2016-03-01

    Gold nanoparticles (AuNPs) have found numerous applications in nanomedicine in view of their robustness, ease of functionalization and low toxicity. Upon irradiation of AuNPs by a pulsed ultrafast laser, various highly localized phenomena can be obtained including a temperature rise, pressure wave, charge injection and production of nanobubbles close to the cellular membrane [1]. These phenomena can be used to manipulate, optoperforate, transfect and stimulate targeted cells [2-5]. Irradiating at 800 nm in the optically biological transparent window, we demonstrated local optoporation and transfection of cells as well as local stimulation of neurons. Two recent examples will be given: (i) Laser-induced selective optoporation of cells: The technique can be used on various types of cells and a proof of principle will be given on human cancer cells in a co-culture using functionalized AuNPs [6]. (ii) Laser-induced stimulation of neurons and monitoring of the localized Ca2+ signaling: This all optical method uses a standard confocal microscope to trigger a transient increase in free Ca2+ in neurons covered by functionalized AuNPs as well as to measure these local variations optically with the Ca2+ sensor GCaMP6s [7]. The proposed techniques provide a new complement to light-dependent methods in neuroscience. REFERENCES (by our group): (1) Boulais, J. Photochem. Photobiol. C Photochem. Rev. 17, 26 (2013); (2) Baumgart, Biomaterials 33, 2345 (2012); (3) Boulais, NanoLett. 12, 4763 (2012); (4) Boutopoulos, J. Biophotonics (2015); (5) Boutopoulos, Nanoscale 7, 11758 (2015); (6) Bergeron, Biomaterials, submitted (2015); (7) Lavoie-Cardinal, Nature Commun. submitted (2015).

  20. Nonlinear absorption enhancement of AuNPs based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.

    2018-07-01

    Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.

  1. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin.

    PubMed

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Xing, Xianrong; Li, Jie; Cui, Min; Huang, Jiadong

    2012-01-01

    A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0 × 10(-8)mol/L-9.0 × 10(-5)mol/L, with the limit of detection (LOD) of 2.3 × 10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions.

    PubMed

    Bedford, Nicholas M; Hughes, Zak E; Tang, Zhenghua; Li, Yue; Briggs, Beverly D; Ren, Yang; Swihart, Mark T; Petkov, Valeri G; Naik, Rajesh R; Knecht, Marc R; Walsh, Tiffany R

    2016-01-20

    Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.

  3. THE FATE AND TOXICITY OF RAMAN ACTIVE SILICA-GOLD NANOPARTICLES IN MICE

    PubMed Central

    THAKOR, AVNESH S; LUONG, RICHARD; PAULMURUGAN, RAMASAMY; LIN, FRANK I; KEMPEN, PAUL; ZAVALETA, CRISTINA; CHU, PAULINE; MASSOUD, TARIK F; SINCLAIR, ROBERT; GAMBHIR, SANJIV S

    2013-01-01

    Raman spectroscopy is an optical imaging modality which analyses the Raman effect in which energy is exchanged between light and matter. Although Raman spectroscopy has been widely used for chemical and molecular analysis, its use in clinical applications has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing high Raman signals via Surface Enhanced Raman Scattering. Targeted polyethylene glycol (PEG)-ylated R-Si-Au-NPs (e.g. PEG-R-Si-Au-NPs labeled with an affibody which binds specifically to the epidermal growth factor receptor) are currently being designed to detect colorectal cancer after administration into the bowel lumen. With this approach, PEG-R-Si-Au-NPs are not expected to enter the systemic circulation and would be removed from the body via defecation. We examined the acute toxicity and biodistribution of core PEG-R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by marcophages in the liver and spleen (i.e. the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical or cardiovascular parameters for 2 weeks. Notably, after administration per rectum, we observed no significant bowel or systemic toxicity and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs, these initial results support the idea that they can be safely used in living subjects, especially when administered rectally. PMID:21508310

  4. Gold nanoparticles-decorated electrospun poly(N-vinyl-2-pyrrolidone) nanofibers with tunable size and coverage density for nanomolar detection of single and binary component dyes by surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurniawan, Alfin; Wang, Meng-Jiy

    2017-09-01

    The application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this study, a simple approach to fabricate electrospun poly(N-vinylpyrrolidone) (PVP) mats decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination was presented. AuNPs were decorated on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the fiber mats could be tuned by varying the calcination temperature. Calcination of AuNPs-decorated PVP fibers at 500 °C-700 °C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fiber, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated mat which calcined at 500 °C (500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred μM. The fabricated SERS substrate demonstrated high reproducibility with the spot-to-spot variation in SERS signal intensities was ±10% and ±12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6%-96.6%) and reproducibility (%RSD values less than 15 for all samples).

  5. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma

    NASA Astrophysics Data System (ADS)

    Ruan, Shaobo; He, Qin; Gao, Huile

    2015-05-01

    To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01408e

  6. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  7. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish ( Danio rerio)

    NASA Astrophysics Data System (ADS)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-10-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10-50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F1 generation descending from the exposed fishes.

  8. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology.

    PubMed

    Spivak, Mykola Ya; Bubnov, Rostyslav V; Yemets, Ilya M; Lazarenko, Liudmyla M; Tymoshok, Natalia O; Ulberg, Zoia R

    2013-07-29

    Nanoscale gold particles (AuNPs) have wide perspectives for biomedical applications because of their unique biological properties, as antioxidative activity and potentials for drug delivery. The aim was to test effects of AuNPs using suggested heart failure rat model to compare with proved medication Simdax, to test gold nanoparticle for drug delivery, and to test sonoporation effect to increase nanoparticles delivery into myocardial cells. We performed biosafety and biocompatibility tests for AuNPs and conjugate with Simdax. For in vivo tests, we included Wistar rats weighing 180-200 g (n = 54), received doxorubicin in cumulative dose of 12.0 mg/kg to model advance heart failure, registered by ultrasonography. We formed six groups: the first three groups of animals received, respectively, 0.06 ml Simdax, AuNPs, and conjugate (AuNPs-Simdax), intrapleurally, and the second three received them intravenously. The seventh group was control (saline). We performed dynamic assessment of heart failure regression in vivo measuring hydrothorax. Sonoporation of gold nanoparticles to cardiomyocytes was tested. We designed and constructed colloidal, spherical gold nanoparticles, AuNPs-Simdax conjugate, both founded biosafety (in cytotoxicity, genotoxicity, and immunoreactivity). In all animals of the six groups after the third day post-medication injection, no ascites and liver enlargement were registered (P < 0.001 vs controls). Conjugate injection showed significantly higher hydrothorax reduction than Simdax injection only (P < 0.01); gold nanoparticle injection showed significantly higher results than Simdax injection (P < 0.05). AuNPs and conjugate showed no significant difference for rat recovery. Difference in rat life continuity was significant between Simdax vs AuNPs (P < 0.05) and Simdax vs conjugate (P < 0.05). Sonoporation enhances AuNP transfer into the cell and mitochondria that were highly localized, superior to controls (P < 0.01 for both). Gold nanoparticles of 30 nm and its AuNPs-Simdax conjugate gave positive results in biosafety and biocompatibility in vitro and in vivo. AuNPs-Simdax and AuNPs have similar significant cardioprotective effects in rats with doxorubicin-induced heart failure, higher than that of Simdax. Intrapleural (local) delivery is preferred over intravenous (systemic) delivery according to all tested parameters. Sonoporation is able to enhance gold nanoparticle delivery to myocardial cells in vivo.

  9. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications.

    PubMed

    Gubitosa, Jennifer; Rizzi, Vito; Lopedota, Angela; Fini, Paola; Laurenzana, Anna; Fibbi, Gabriella; Fanelli, Fiorenza; Petrella, Andrea; Laquintana, Valentino; Denora, Nunzio; Comparelli, Roberto; Cosma, Pinalysa

    2018-07-01

    The interesting properties of Gold Nanoparticles (AuNPs) make them attractive for different application fields such as cosmetology, medicine and clinical nanotechnologies. In this work a fast, easy and eco-friendly method for the AuNPs synthesis is proposed by using the Punica Granatum Juice (PGJ) with potential dermatological and cosmetic applications. The AuNPs antioxidant activity, due to the presence of phenols from the juice, and their use as booster for improving the Sun Protection Factor (SPF) in commercial sunscreen formulations, are thus expounded. By using appropriate amounts of PGJ and HAuCl 4 , under mild work conditions, AuNPs with a mean size of 100 ± 40 nm are observed and carefully characterized. Solution pH, temperature, and volume were also changed for optimizing the AuNPs formation and features. The antioxidant activity was studied, by evaluating the AuNP ability of scavenging the radical 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH). This finding was confirmed performing special experiments focused on the reaction between AuNPs and H 2 O 2 , by using suitable probes, such as 4-thiothymidine (S 4 TdR) and Cytochrome-c (Cyt-c). The SPF value was also calculated. The synthetized AuNPs showed a surface plasmon in visible range at 577 nm and resulted stable for long time in aqueous medium, also changing the pH values in the range 2-12. The studied antioxidant activity, confirmed also by performing special experiments with suitable probes, demonstrated the high performance of AuNPs. The AuNP photostability under sun irradiation is also shown. The calculated SPF values were in the range 3-18, related to AuNPs concentration in the range 1.80 × 10 -12 -1.00 × 10 -11  M. The same AuNPs concentrations were used for cellular experiments. Indeed, since the AuNPs-PGJ mediated will be potentially introduced by dermal contact, dermal fibroblasts (Human Dermal Fibroblasts, HDF) and Human Microvascular Endothelial Cells (HMVEC) were used to evaluate the possible effects of these nanoparticles as a preliminary step. The results indicated that an AuNP concentrations in the range 1.80 × 10 -12 -3.60 × 10 -12  M could be adopted since they do not appeared cyctotoxic. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Green synthesis of gold nanoparticles reduced and stabilized by sodium glutamate and sodium dodecyl sulfate.

    PubMed

    Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2017-03-18

    The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential into the Brain using MRI-Guided Focused Ultrasound

    PubMed Central

    Etame, Arnold B.; Diaz, Roberto J.; O’Reilly, Meaghan A.; Smith, Christian A.; Mainprize, Todd G.; Hynynen, Kullervo; Rutka, James T.

    2014-01-01

    The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration. Magnetic resonance imaging guided focused ultrasound (MRgFUS) is a novel technique that can transiently increase BBB permeability allowing delivery of therapeutics into the CNS. MRgFUS has not been previously employed for delivery of AuNPs into the CNS. This work represents the first demonstration of focal enhanced delivery of AuNPs into the CNS using MRgFUS in a rat model both safely and effectively. Histologic visualization and analytical quantification of AuNPs within the brain parenchyma suggest BBB transgression. These results suggest a role for MRgFUS in the delivery of AuNPs with therapeutic potential into the CNS for targeting neurological diseases. PMID:22349099

  12. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    PubMed

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Erdene, Norov; Lee, Seung-Ki; Jeong, Dae-Hong; Park, Jae-Hyoung

    2011-12-01

    A fiber-optic localized surface plasmon (FO LSPR) sensor was fabricated by gold nanoparticles (Au NPs) immobilized on the end-face of an optical fiber. When Au NPs were formed on the end-face of an optical fiber by chemical reaction, Au NPs aggregation occurred and the Au NPs were immobilized in various forms such as monomers, dimers, trimers, etc. The component ratio of the Au NPs on the end-face of the fabricated FO LSPR sensor was slightly changed whenever the sensors were fabricated in the same condition. Including this phenomenon, the FO LSPR sensor was fabricated with high sensitivity by controlling the density of Au NPs. Also, the fabricated sensors were measured for the resonance intensity for the different optical systems and analyzed for the effect on sensitivity. Finally, for application as a biosensor, the sensor was used for detecting the antibody-antigen reaction of interferon-gamma.

  14. Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis

    PubMed Central

    Khoobchandani, Menka; Katti, Kavita; Maxwell, Adam; Fay, William P.; Katti, Kattesh V.

    2016-01-01

    In our efforts to develop new approaches to treat and prevent human vascular diseases, we report herein our results on the proliferation and migration of human smooth muscles cells (SMCs) and endothelial cells (ECs) using epigallocatechin-3-gallate conjugated gold nanoparticles (EGCg-AuNPs) as possible alternatives to drug coated stents. Detailed in vitro stability studies of EGCg-AuNPs in various biological fluids, affinity and selectivity towards SMCs and ECs have been investigated. The EGCg-AuNPs showed selective inhibitory efficacy toward the migration of SMCs. However, the endothelial cells remained unaffected under similar experimental conditions. The cellular internalization studies have indicated that EGCg-AuNPs internalize into the SMCs and ECs within short periods of time through laminin receptor mediated endocytosis mode. Favorable toxicity profiles and selective affinity toward SMCs and ECs suggest that EGCg-AuNPs may provide attractive alternatives to drug coated stents and therefore offer new therapeutic approaches in treating cardiovascular diseases. PMID:26938531

  15. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    PubMed

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  16. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.

    PubMed

    Chen, Yi-Ming; Cheng, Tian-Lu; Tseng, Wei-Lung

    2009-10-01

    Selective turn-on fluorescence detection of I(-) was accomplished using fluorescein isothiocyanate-decorated gold nanoparticles (FITC-AuNPs). FITC molecules, which fluoresce strongly in an alkaline solution, were severely quenched when they were attached to the surface of AuNPs through their isothiocyanate group. Upon the addition of I(-), FITC molecules were detached because of I(-) adsorption on the surface of AuNPs. As a result, released FITC molecules were restored to their original fluorescence intensity. Because I(-) has a higher binding affinity to the surface of Au than do Br(-), Cl(-), or F(-), the FITC-AuNPs obviously have a higher selectivity toward I(-) than toward these other anions. Meanwhile, after IO(3)(-) was reduced to I(-) with ascorbic acid, the detection of IO(3)(-) was successfully achieved using the FITC-AuNPs. Under an optimum pH and AuNP concentration, the lowest detectable concentrations of I(-) and IO(3)(-) using this probe were 10.0 and 50.0 nM, respectively. The FITC-AuNPs provide a number of advantages, including easy preparation, selectivity, sensitivity, and low cost. This unique probe was applied to an analysis of the total iodine in edible salt and seawater.

  17. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles.

    PubMed

    Manju, Sivalingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Shanthi, Sathappan; Jaishabanu, Ameeramja; Ekambaram, Perumal; Vaseeharan, Baskaralingam

    2016-02-01

    This study reports the biological synthesis of gold nanoparticles using essential oil of Nigella sativa (NsEO-AuNPs). The synthesized NsEO-AuNPs were characterized by UV-visible spectra, X-ray diffraction (XRD), FTIR and Transmission electron microscopy (TEM). UV-vis spectra of NsEO-AuNPs showed strong absorption peak at 540 nm. The X-ray diffraction analysis revealed crystalline nature of nanoparticle with distinctive facets (111, 200, 220 and 311 planes) of NsEO-AuNPs. The FTIR spectra recorded peaks at 3388, 2842, 1685, 1607, 1391 and 1018 cm(-1). TEM studies showed the spherical shape of nanoparticles and the particle size ranges between 15.6 and 28.4 nm. The antibacterial activity of NsEO-AuNPs was greater against Gram positive Staphylococcus aureus MTCC 9542 (16 mm) than Gram negative Vibrio harveyi MTCC 7771 (5 mm) at the concentration of 10 μg ml(-1). NsEO-AuNPs effectively inhibited the biofilm formation of S. aureus and V. harveyi by decreasing the hydrophobicity index (78% and 46% respectively). The in-vitro anti-lung cancer activity confirmed by MTT assay on the cell line of A549 carcinoma cells showed IC50 values of bulk Au at 87.2 μg ml(-1), N. sativa essential oil at 64.15 μg ml(-1) and NsEO-AuNPs at 28.37 μg ml(-1). The IC50 value showed that NsEO-AuNPs was highly effective in inhibiting the A549 lung cancer cells compared to bulk Au and N. sativa essential oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight.

    PubMed

    Sun, Lijun; Li, Jin; Cai, Jun; Zhong, Lian; Ren, Guohui; Ma, Qimin

    2017-12-15

    Gold nanoparticles (AuNPs) were synthesized in one-step by reducing gold salt using nontoxic and biodegradable chitosan as dual roles of reducing agent and stabilizer. The obtained AuNPs were characterized with UV-vis spectroscopy and transmission electron microscopy. The results indicated that control over the size and shape of AuNPs is achieved through the careful selection of experimental conditions, such as reaction temperature, reaction time, concentration of gold salt and chitosan, and chitosan molecular parameters, i.e., degree of deacetylation (DD) and molecular weight (MW). At low chitosan concentration (0.005% and 0.01% (w/v)), individual spherical AuNPs with average particle size around 10nm were obtained regardless of chitosan DD and MW, while anisotropic AuNPs were obtained at concentration above 0.05% (w/v) for all investigated chitosan at the optimum condition (1mL of 1mmol/L HAuCl 4 added to 3mL of chitosan solution reacted for 120min at 70°C). The growth of larger polygonal AuNPs was promoted as the higher concentration and lower DD chitosan was used as reducing agent and stabilizer. Au nanoplate was synthesized by water-soluble chitosan (M v 566kDa, DD 53%) at concentration above 0.15% (w/v). Chitooligomers (M v 2.4kDa, DD 94%) showed the highest reduction ability for Au 3+ and the synthesized AuNPs exhibited aggregation on morphology. It was considered that chitosan DD and concentration played a more important role than MW in the size and shape of AuNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    PubMed

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less

  1. Interaction of Silica Nanoparticles with Human Cells and Their Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin

    With recent development of nanotechnology, various nanoparticulate systems have been proposed to serve as functional units for biomedical applications in many innovative ways. Among various possible choices, silica nanoparticles (NPs) enjoys easily modifiable surface chemical characteristics and excellent stability in physiological environment. Therefore, it is considered as one of the most promising carrier candidate for therapeutic and diagnostic applications. A systematic study on the interaction between silica nanoparticles and human cells is first carried out in the present thesis work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as very few NPs are released into the cytoplasma. The nanoparticle-cell interaction is a dynamic process, and the amount of NPs inside the cells is affected by both the amount and morphology (degree of aggregation) of NPs in the medium. These interaction characteristics determine the low cytotoxicity of SiO2 NPs at low feeding concentration. Experiments were then designed to compare the biological consequence of two most common form of SiO2 nanoparticles, i.e., crystalline and amorphous NPs, when they were introduced to human cells. Although the apparent cytotoxicity of both types of NPs seems to be low, more detailed characterizations disclose the profound difference induced by the crystalline and amorphous ones, resulting in significantly different cell evolution pathways. Crystalline NPs but not amorphous ones are found to drastically increase the recative oxygen species (ROS) level in the cells, which can cause mitochondria dysfunction (being expressed as mitochondria proliferation), and eventually direct the cell into apoptosis. Nonetheless, only p53 deficient cells are subjective to such ROS induced cell damage, while p53 proficient cells can accommodate the stimulation from crystalline SiO2 NPs. The amorphous SiO2 NPs are found to be benign in the biological systems, and have great potential to be developed as nanomedicine. Base on the understanding obtained from the toxicology study of the SiO 2 NPs, we have designed a special nanocarrier system for drug delivery. We have combined advantages of both SiO2 and Au NPs by constructing Au-core/SiO2-shell (Au SiO2) nanocarriers with the photosensitizer (PS) drug embedded in the SiO2 shell layer. Compared with free PS, PS loading in the Au SiO2 NPs shows an enhanced drug efficacy. In particular, the cells treated with the NP drug take necrosis as a major death path instead of apoptosis, which is a much less effective route. The Au plasmonic effect is found to promote the photo-response of the PS drug under light irradiation, contributing to the largely decreased cell viability. Nevertheless, one shall note that spatial confinement of the drug moledules to the close proximity of the Au core and an energy match between the drug absorption and the Au surface plasmon resonance are critical in manifesting the plasmonic effect. At the same time, embedding the drug in the SiO 2 matrix leads to favorable change in the photochemical process. The combined effects brought by the Au SiO2 NP carrier is responsible for the high drug efficacy. These mechanisms can be generally valid in engineering drug molecule incorporation into NP carriers and also give guidance for the optimum design of the NP drug carrier.

  2. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation

    PubMed Central

    Żuk, Maciej; Tupikowska, Martyna

    2018-01-01

    By coating plasmonic nanoparticles (NPs) with thermally responsive liquid crystals (LCs) it is possible to prepare reversibly reconfigurable plasmonic nanomaterials with prospective applications in optoelectronic devices. However, simple and versatile methods to precisely tailor properties of liquid-crystalline nanoparticles (LC NPs) are still required. Here, we report a new method for tuning structural properties of assemblies of nanoparticles grafted with a mixture of promesogenic and alkyl thiols, by varying design of the latter. As a model system, we used Ag and Au nanoparticles that were coated with three-ring promesogenic molecules and dodecanethiol ligand. These LC NPs self-assemble into switchable lamellar (Ag NPs) or tetragonal (Au NPs) aggregates, as determined with small angle X-ray diffraction and transmission electron microscopy. Reconfigurable assemblies of Au NPs with different unit cell symmetry (orthorombic) are formed if hexadecanethiol and 1H,1H,2H,2H-perfluorodecanethiol were used in the place of dodecanethiol; in the case of Ag NPs the use of 11-hydroxyundecanethiol promotes formation of a lamellar structure as in the reference system, although with substantially broader range of thermal stability (140 vs. 90 °C). Our results underline the importance of alkyl ligand functionalities in determining structural properties of liquid-crystalline nanoparticles, and, more generally, broaden the scope of synthetic tools available for tailoring properties of reversibly reconfigurable plasmonic nanomaterials. PMID:29518916

  3. Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue.

    PubMed

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy

    2012-02-15

    Aminosilicate sol-gel supported titanium dioxide-gold (EDAS/(TiO(2)-Au)(nps)) nanocomposite materials were synthesized by simple deposition-precipitation method and characterized. The photocatalytic oxidation and reduction activity of the EDAS/(TiO(2)-Au)(nps) film was evaluated using hexavalent chromium (Cr(VI)) and methylene blue (MB) dye under irradiation. The photocatalytic reduction of Cr(VI) to Cr(III) was studied in the presence of hole scavengers such as oxalic acid (OA) and methylene blue (MB). The photocatalytic degradation of MB was investigated in the presence and absence of Cr(VI). Presence of Au(nps) on the (TiO(2))(nps) surface and its dispersion in the silicate sol-gel film (EDAS/(TiO(2)-Au)(nps)) improved the photocatalytic reduction of Cr(VI) and oxidation of MB due to the effective interfacial electron transfer from the conduction band of the TiO(2) to Au(nps) by minimizing the charge recombination process when compared to the TiO(2) and (TiO(2)-Au)(nps) in the absence of EDAS. The EDAS/(TiO(2)-Au)(nps) nanocomposite materials provided beneficial role in the environmental remediation and purification process through synergistic photocatalytic activity by an advanced oxidation-reduction processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Self-healing gold mirrors and filters at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.

    2016-03-01

    The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k

  5. Safety Assessment of Commonly Used Nanoparticles in Biomedical Applications: Impact on Inflammatory Processes

    NASA Astrophysics Data System (ADS)

    Alnasser, Yossef

    Nanotechnology offers great promise in the biomedical field. Current knowledge of nanoparticles' (NPs) safety and possible mechanisms of various particle types' toxicity is insufficient. The role of particle properties and the route of particles administration in toxic reactions remain unexplored. In this thesis, we aimed to inspect the interrelationship between particle size, chemical composition and toxicological effects of four candidate NPs for drug delivery systems: gold (Au), chitosan, silica, and poly (lactide-co-glycolide) (PLGA). Mice model was combined with in vitro study to explore NPs' safety. We investigated mice survival, weight, behavior, and pro-inflammatory changes. NF-kappaB induction was assessed in vitro using the Luciferase Assay System. As observed in mice, Au NPs had a higher toxicity profile at a shorter duration than the other NPs. This was significantly in concordance with pro-inflammatory changes which may be the key routes of Au NPs toxicity. Although silica NPs induced NF-kappaB, they were less toxic to the mice than Au NPs and did not lead to the pro-inflammatory changes. Chitosan NPs were toxic to the mice but failed to cause significant NF-kappaB induction and pro-inflammatory changes. These findings indicate that chitosan NPs might not have the same pathophysiologic mechanism as the Au NPs. Comparative analysis in this model demonstrated that PLGA NPs is the safest drug delivery candidate to be administered subcutaneously.

  6. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+.

    PubMed

    Zhou, Na; Li, Jinhua; Chen, Hao; Liao, Chunyang; Chen, Lingxin

    2013-02-21

    A simple and sensitive electrochemical assay strategy of stripping voltammetry for mercury ions (Hg(2+)) detection is described based on the synergistic effect between ionic liquid functionalized graphene oxide (GO-IL) and gold nanoparticles (AuNPs). The AuNPs-GO-IL modified onto glassy carbon electrode (GCE) resulted in highly enhanced electron conductive nanostructured membrane and large electroactive surface area, which was excellently examined by scanning electron microscopy and cyclic voltammetry. After accumulating Hg(2+), anodic stripping voltammetry (ASV) was performed, and differential pulse voltammetry (DPV) was employed for signal recording of Hg(2+). Several main experimental parameters were optimized, i.e., deposition potential and time of AuNPs were -0.2 V and 180 s, respectively, and accumulation potential and time of Hg(2+) were -0.3 V and 660 s, respectively. Under the optimal conditions, this AuNPs-GO-IL-GCE sensor attained a good linearity in a wide range of 0.1-100 nM (R = 0.9808) between the concentration of the Hg(2+) standard and peak current. The limit of detection was estimated to be 0.03 nM at a signal-to-noise ratio of 3σ. A variety of common coexistent ions in water samples were investigated, showing no obvious interferences on the Hg(2+) detection. The practical application of the proposed sensor has been carried out and demonstrated as feasible for determination of trace levels of Hg(2+) in drinking and environmental water samples.

  7. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions.

  8. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    NASA Astrophysics Data System (ADS)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  10. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  11. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  12. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE PAGES

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...

    2018-03-15

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  13. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhang, Sheng; Du, Dan

    A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The resultsmore » demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.« less

  14. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    PubMed

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  15. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles.

    PubMed

    Baetsen-Young, Amy M; Vasher, Matthew; Matta, Leann L; Colgan, Phil; Alocilja, Evangelyn C; Day, Brad

    2018-03-15

    The interaction between gold nanoparticles (AuNPs) and nucleic acids has facilitated a variety of diagnostic applications, with further diversification of synthesis match bio-applications while reducing biotoxicity. However, DNA interactions with unique surface capping agents have not been fully defined. Using dextrin-capped AuNPs (d-AuNPs), we have developed a novel unamplified genomic DNA (gDNA) nanosensor, exploiting dispersion and aggregation characteristics of d-AuNPs, in the presence of gDNA, for sequence-specific detection. We demonstrate that d-AuNPs are stable in a five-fold greater salt concentration than citrate-capped AuNPs and the d-AuNPs were stabilized by single stranded DNA probe (ssDNAp). However, in the elevated salt concentrations of the DNA detection assay, the target reactions were surprisingly further stabilized by the formation of a ssDNAp-target gDNA complex. The results presented herein lead us to propose a mechanism whereby genomic ssDNA secondary structure formation during ssDNAp-to-target gDNA binding enables d-AuNP stabilization in elevated ionic environments. Using the assay described herein, we were successful in detecting as little as 2.94 fM of pathogen DNA, and using crude extractions of a pathogen matrix, as few as 18 spores/µL. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Pei, Xiaofang; Shen, Wenli; Zhang, Xuwang; Wang, Jingwei; Zhang, Zhaojing; Li, Shuzhen; You, Shengnan; Ma, Fang; Zhou, Jiti

    2017-04-01

    A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV-vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10-3 s-1, 5.5×10-3 s-1, 10.6×10-3 s-1, 8.4×10-3 s-1 and 13.8×10-3 s-1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0-96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.

  17. Gold Nanoparticles-based Extraction-Free Colorimetric Assay in Organic Media: An Optical Index for Determination of Total Polyphenols in Fat-Rich Samples.

    PubMed

    Della Pelle, Flavio; González, María Cristina; Sergi, Manuel; Del Carlo, Michele; Compagnone, Dario; Escarpa, Alberto

    2015-07-07

    In this work, a rapid and simple gold nanoparticle (AuNPs)-based colorimetric assay meets a new type of synthesis of AuNPs in organic medium requiring no sample extraction. The AuNPs synthesis extraction-free approach strategically involves the use of dimethyl sulfoxide (DMSO) acting as an organic solvent for simultaneous sample analyte solubilization and AuNPs stabilization. Moreover, DMSO works as a cryogenic protector avoiding solidification at the temperatures used to block the synthesis. In addition, the chemical function as AuNPs stabilizers of the sample endogenous fatty acids is also exploited, avoiding the use of common surfactant AuNPs stabilizers, which, in an organic/aqueous medium, rise to the formation of undesirable emulsions. This is controlled by adding a fat analyte free sample (sample blank). The method was exhaustively applied for the determination of total polyphenols in two selected kinds of fat-rich liquid and solid samples with high antioxidant activity and economic impact: olive oil (n = 28) and chocolate (n = 16) samples. Fatty sample absorbance is easily followed by the absorption band of localized surface plasmon resonance (LSPR) at 540 nm and quantitation is refereed to gallic acid equivalents. A rigorous evaluation of the method was performed by comparison with the well and traditionally established Folin-Ciocalteu (FC) method, obtaining an excellent correlation for olive oil samples (R = 0.990, n = 28) and for chocolate samples (R = 0.905, n = 16). Additionally, it was also found that the proposed approach was selective (vs other endogenous sample tocopherols and pigments), fast (15-20 min), cheap and simple (does not require expensive/complex equipment), with a very limited amount of sample (30 μL) needed and a significant lower solvent consumption (250 μL in 500 μL total reaction volume) compared to classical methods.

  18. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    PubMed

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Peptide functionalized gold nanoparticles: the influence of pH on binding efficiency

    NASA Astrophysics Data System (ADS)

    Harrison, Emma; Hamilton, Jeremy W. J.; Macias-Montero, Manuel; Dixon, Dorian

    2017-07-01

    We report herein on the synthesis of mixed monolayer gold nanoparticles (AuNPs) capped with both polyethylene glycol (PEG) and one of three peptides. Either a receptor-mediated endocytosis peptide, an endosomal escape pathway (H5WYG) peptide or the Nrp-1 targeting RGD peptide (CRGDK) labeled with FITC. All three peptides have a thiol containing cysteine residue which can be used to bind the peptides to the AuNPs. In order to investigate the influence of pH on peptide attachment, PEGylated AuNPs were centrifuged, the supernatant removed, and the nanoparticles were then re-suspended in a range of pH buffer solutions above, below and at the respective isoelectric points of the peptides before co-functionalization. Peptide attachment was investigated using dynamic light scattering, Ultra-violet visible spectroscopy (UV/Vis), FTIR and photo luminescence spectroscopy. UV/Vis analysis coupled with protein assay results and photoluminescence of the FITC tagged RGD peptide concluded that a pH of ∼8 optimized the cysteine binding and stability, irrespective of the peptide used.

  20. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less

  1. Sensitive arginine sensing based on inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Haijian; Li, Ming; Jiang, Linye; Shen, Feng; Hu, Yufeng; Ren, Xueqin

    2017-02-01

    Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence ;turn on; sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121 μg L- 1 and the limit of detection was 5.6 μg L- 1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.

  2. Using the M13 Phage as a Biotemplate to Create Mesoporous Structures Decorated with Gold and Platinum Nanoparticles.

    PubMed

    Vera-Robles, L Irais; González-Gracida, Jaqueline; Hernández-Gordillo, Armin; Campero, Antonio

    2015-08-25

    By taking advantage of the physical and chemical properties of the M13 bacteriophage, we have used this virus to synthesize mesoporous silica structures. Major coat protein p8 was chemically modified by attaching thiol groups. As we show, the resulting thiolated phage can be used as a biotemplate able to direct the formation of mesoporous silica materials. Simultaneously, this thiol functionality acts as an anchor for binding metal ions, such as Au(3+) and Pt(4+), forming reactive M13-metal ionic complexes which evolve into metal nanoparticles (NPs) trapped in the mesoporous network. Interestingly, Au(3+) ions are reduced to Au(0) NPs by the protein residues without requiring an external reducing agent. Likewise, silica mesostructures decorated with Au and Pt NPs are prepared in a one-pot synthesis and characterized using different techniques. The obtained results allow us to propose a mechanism of formation. In addition, gold-containing mesoporous structures are tested for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB) in the presence of NaBH4. Although all of the gold-containing catalysts exhibit catalytic activity, those obtained with thiolated phages present a better performance than that obtained with M13 alone. This behavior is ascribed to the position of the Au NPs, which are partially embedded in the wall of the final mesostructures.

  3. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  4. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    PubMed Central

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  5. Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces

    PubMed Central

    Chen, Hongwei; Zou, Hao; Paholak, Hayley J.; Ito, Masayuki; Qian, Wei; Che, Yong; Sun, Duxin

    2014-01-01

    Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups, such as –COOH and –NH2, to conjugate targeting ligands or drugs. However, introducing highly charged surfaces promotes binding of the nanoparticles to biomolecules in biological systems through ionic interactions, causing the nanoparticles to aggregate in biological environments and consequently undergo strong non-specific binding to off-target cells and tissues. Developing a unique polymer with neutral surfaces that can be further functionalized directly would be critical to develop suitable nanomaterials for nanomedicine. Here, we report a thiol-reactive amphiphilic block copolymer poly(ethylene oxide)-block-poly(pyridyldisulfide ethylmeth acrylate) (PEO-b-PPDSM) for coating gold nanoparticles (AuNPs). The resultant polymer-coated AuNPs have almost neutral surfaces with slightly negative zeta potentials from -10 to 0 mV over a wide pH range from 2 to 12. Although the zeta potential is close to zero we show that the PEO-b-PPDSM copolymer-coated AuNPs have both good stability in various physiological conditions and reduced non-specific adsorption of proteins/biomolecules. Because of the multiple pyridyldisulfide groups on the PPDSM block, these individually dispersed nanocomplexes with an overall hydrodynamic size around 43.8 nm can be directly functionalized via disulfide-thiol exchange chemistry. PMID:24729795

  6. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  7. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.

    PubMed

    Gao, Jinhong; Zhang, Ouyang; Ren, Jing; Wu, Chuanliu; Zhao, Yibing

    2016-02-16

    The presence of large hydrophobic aromatic residues in cell-penetrating peptides or proteins has been demonstrated to be advantageous for their cell penetration. This phenomenon has also been observed when AuNPs were modified with peptides containing aromatic amino acids. However, it is still not clear how the presence of hydrophobic and aromatic groups on the surface of anionic AuNPs affects their interaction with lipid bilayers. Here, we studied the interaction of a range of anionic amphiphilic AuNPs coated by different combinations of hydrophobic and anionic ligands with four different types of synthetic lipid vesicles. Our results demonstrated the important role of the surface aromatic or bulky groups, relative to the hydrocarbon chains, in the interaction of anionic AuNPs with lipid bilayers. Hydrophobic interaction itself arising from the insertion of aromatic/bulky ligands on the surface of AuNPs into lipid bilayers is sufficiently strong to cause overt disruption of lipid vesicles and cell membranes. Moreover, by comparing the results obtained from AuNPs coated with aromatic ligands and cyclohexyl ligands lacking aromaticity respectively, we demonstrated that the bulkiness of the terminal groups in hydrophobic ligands instead of the aromatic character might be more important to the interaction of AuNPs with lipid bilayers. Finally, we further correlated the observation on model liposomes with that on cell membranes, demonstrating that AuNPs that are more disruptive to the more negatively charged liposomes are also substantially more disruptive to cell membranes. In addition, our results revealed that certain cellular membrane domains that are more susceptible to disruption caused by hydrophobic interactions with nanoparticle surfaces might determine the threshold of AuNP-mediated cytotoxicity.

  8. Nevirapine Loaded Core Shell Gold Nanoparticles by Double Emulsion Solvent Evaporation: In vitro and In vivo Evaluation.

    PubMed

    Dalvi, Bhagyashree R; Siddiqui, Ejaz A; Syed, Asad S; Velhal, Shilpa M; Ahmad, Absar; Bandivdekar, Atmaram B; Devarajan, Padma V

    2016-01-01

    HIV/AIDS is a macrophage resident infection localized in the reticuloendothelial system and remote locations of brain and bone marrow. We present core shell nanoparticles of gold(AuNPs) and nevirapine(NVP) for targeted delivery to the multiple HIV reservoirs. The aim of the study was to design core shell NVP loaded AuNPs with high drug loading and to evaluate biodistribution of the nanoparticles in possible HIV reservoirs in vivo. A specific objective was to assess the possible synergy of AuNPs with NVP on anti-HIV activity in vitro. Core shell nanoparticles were prepared by double emulsion solvent evaporation method and characterized. Glyceryl monostearate-nevirapine-gold nanoparticles(GMS-NVP-AuNPs) revealed high entrapment efficiency (>70%), high loading (~40%), particle size <250 nm and zeta potential -35.9± 1.41mv and exhibited sustained release with good stability. Surface plasmon resonance indicated shell formation while SEM coupled EDAX confirmed the presence of Au. TEM confirmed formation of spherical core shell nanoparticles. GMS-NVP-AuNPs revealed low hemolysis (<10 %) and serum stability upto 6 h. GMS-NVP-AuNPs exhibited rapid, high and sustained accumulation in the possible HIV reservoir organs, including the major organs of liver, spleen, lymph nodes, thymus and also remote locations of brain, ovary and bone marrow. High cell viability and enhanced uptake in PBMC's and TZM-bl cells were observed. While uptake in PBMC's proposed monocytes/macrophages enabled brain delivery. GMS-NVP-AuNPs demonstrated synergistic anti-HIV activity. The superior anti-HIV activity in vitro coupled with extensive localization of the nanoparticles in multiple HIV reservoirs suggests great promise of the core shell GMS-NVP-AuNPs for improved therapy of HIV.

  9. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Mesbahi, Asghar; Famouri, Fatemeh; Ahar, Mohammad Johari; Ghaffari, Maryam Olade; Ghavami, Seyed Mostafa

    2017-03-01

    Aim: In the current study, some imaging characteristics of AuNPs were quantitatively analyzed and compared with two conventional contrast media (CM) including Iodine and Gadolinium by using of a cylindrical phantom. Methods: AuNPs were synthesized with the mean diameter of 16 nm and were equalized to the concentration of 0.5, 1, 2 and 4 mg/mL in the same volumes. A cylindrical phantom resembling the head and neck was fabricated and drilled to contain small tubes filled with Iodine, Gadolinium, and AuNPs as contrast media. The phantom was scanned in different exposure techniques and CT numbers of three studied contrast media inside test tubes were measured in terms of Hounsfield Unit (HU). The imaging parameters of the noise and contrast to noise ratios (CNR) were calculated for all studied CMs. Results: AuNPs showed 128% and 166% higher CT number in comparison with Iodine and Gadolinium respectively. Also, Iodine had a greater CT number than Gadolinium for the same exposure techniques and concentration. The maximum CT number for AuNPs and studied contrast materials was obtained at the highest mAs and the lowest tube potential. The maximum CT number were 1033±11 (HU) for AuNP, 565±10 (HU) for Iodine, 458±11 for Gadolinium. Moreover, the maximum CNRs of 433±117, 203±53, 145±37 were found for AuNPs, Iodine and Gadolinium respectively. Conclusion: The contrast agent based on AuNPs showed higher imaging quality in terms of contrast and noise relative to other iodine and gadolinium based contrast media in X-ray computed tomography. Application of the AuNPs as a contrast medium in x-ray CT is recommended.

  10. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  11. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower energy sources. Such ablative magnitude dose enhancement in a relatively small endothelial volume may rapidly disrupt or cause severe biological damage to tumor endothelial cells, without increased toxicity to healthy tissues not containing AuNPs. The findings provide significant impetus for considering the application of AuNPs as VDAs during brachytherapy.

  12. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  14. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  15. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometricmore » proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.« less

  16. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    PubMed

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  17. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  18. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate

    PubMed Central

    Suvarna, Saritha; Das, Ujjal; KC, Sunil; Mishra, Snehasis; Sudarshan, Mathummal; Saha, Krishna Das; Dey, Sanjit; Chakraborty, Anindita; Narayana, Y.

    2017-01-01

    Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application. PMID:28582426

  19. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers

    PubMed Central

    2016-01-01

    Conspectus The vast majority of the outstanding applications of metal nanoparticles (NPs) developed during the last two decades have arisen from their unique optical properties. Within this context, rational synthesis and assembly of gold NPs have been the main research focus, aiming at the design of nanoplasmonic devices with tailored optical functionalities. The progress made in this field is thus to be ascribed to the understanding of the origin of the interaction between light and such gold nanostructures, the dynamics of which have been thoroughly investigated with significant contributions from short and ultrashort pulse laser technologies. We focus this Account on the potential of pulse lasers to provide new fundamental insights into the electron dynamics involved in the interaction of light with the free conduction electrons of Au NPs, that is, localized surface plasmon resonances (LSPRs). The excitation of LSPRs with a femtosecond pulse laser is followed by thermalization of the Au NP electrons and the subsequent relaxation of the nanocrystal lattice and the surrounding environment, which generally results in surface melting. By contrast, nanosecond irradiation usually induces AuNP fragmentation and uncontrolled melting due to overlapping excitation and relaxation phenomena. These concepts have been exploited toward the preparation of highly monodisperse gold nanospheres via pulse laser irradiation of polyhedral nanocrystal colloids, or in the fabrication of nanostructures with “written-in” optical properties. The applicability of pulsed coherent light has been extended toward the direct synthesis and manipulation of Au NPs. Through ablation of a gold target in a liquid with pulse lasers, spherical Au NPs can be synthesized with no need of stabilizing ligands, which is a great advantage in terms of reducing toxicity, rendering these NPs particularly suitable for medical applications. In addition, femtosecond laser irradiation has been proven a unique tool for the controlled welding of plasmonic gold nanostructures by electromagnetic field enhancement at the hot spots of assembled Au NPs. The combination of such nanostructures with pulse lasers promises significant chemical and biochemical advances, including the structural determination of organic reaction intermediates, the investigation of phase transitions in inorganic nanomaterials at mild reaction conditions, or the efficient photothermal destruction of cancer cells avoiding damage of surrounding tissue. PMID:27035211

  20. Safer Nanomaterials and Nanomanufacturing

    DTIC Science & Technology

    2013-02-01

    groups focused on the tracking and effects of gold nanoparticles (AuNPs) within biological systems. Most of the research was conducted in Drosophila ...results, and we decided to shift our focus away from in vitro assays, towards studying the effect of AuNPs on adult Drosophila in vivo. In vivo...investigations of AuNP effects on adult Drosophila melanogaster In vivo effects of AuNPs on adult flies were tested for two routes of exposure

  1. Penetration of Gold Nanoparticles through Human Skin: Unraveling Its Mechanisms at the Molecular Scale.

    PubMed

    Gupta, Rakesh; Rai, Beena

    2016-07-28

    Recent experimental studies suggest that nanosized gold nanoparticles (AuNPs) are able to penetrate into the deeper layer (epidermis and dermis) of rat and human skin. However, the mechanisms by which these AuNPs penetrate and disrupt the skin's lipid matrix are not well understood. In this study, we have used computer simulations to explore the translocation and the permeation of AuNPs through the model skin lipid membrane using both unconstrained and constrained coarse-grained molecular dynamics simulations. Each AuNP (1-6 nm) disrupted the bilayer packing and entered the interior of the bilayer rapidly (within 100 ns). It created a hydrophobic vacancy in the bilayer, which was mostly filled by skin constituents. Bigger AuNPs induced changes in the bilayer structure, and undulations were observed in the bilayer. The bilayer exhibited self-healing properties; it retained its original form once the simulation was run further after the removal of the AuNPs. Constrained simulation results showed that there was a trade-off between the kinetics and thermodynamics of AuNP permeation at a molecular scale. The combined effect of both resulted in a high permeation of small-sized AuNPs. The molecular-level information obtained through our simulations offers a very convenient method to design novel drug delivery systems and effective cosmetics.

  2. Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Liu, Jun; Fan, Linpeng; Li, Daili; Chen, Xinzhu; Zhou, Ji; Li, Jingliang

    2018-01-01

    A simple in-situ synthesis method was developed to fabricate complex of Tremella fuciformis (TF) and gold nanoparticles (Au NPs). TF, one of the most popular fungi in the cuisine and medicine, acted as a biomass reducing agent and scaffold in the preparation of Au NPs. The intensities of the localized surface plasmon resonance (LSPR) of the complex of TF and Au NPs (Au@TFs) increased as the complex shrunk due to drying. The textures of TF prevent the aggregation of Au NPs during the drying process. The TFs show strong adsorption capacity for cationic dyes. It is suggested that the adsorption of the dyes onto TFs are achieved through electrostatic interactions between the TF and the dyes. Kinetics studies indicated that adsorption process could be well described by a pseudo-second-order model. Furthermore, the as-prepared Au@TFs were used as surface enhanced Raman scattering (SERS) substrates for analyzing trace dye molecules. The shrinkage of the TFs caused by drying concentrated dyes on their fruiting bodies, which led to the enhancement of Raman signals of dyes. The Au NPs on TF further enhanced the Raman signals. In-situ synthesis of Au NPs on TF may promote the applications of fungus materials in optical sensing of targets.

  3. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica pubescens Maxim

    NASA Astrophysics Data System (ADS)

    Markus, Josua; Wang, Dandan; Kim, Yeon-Ju; Ahn, Sungeun; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2017-01-01

    A facile synthesis and biological applications of silver (DH-AgNps) and gold nanoparticles (DH-AuNps) mediated by the aqueous extract of Angelicae Pubescentis Radix (Du Huo) are explored. Du Huo is a medicinal root belonging to Angelica pubescens Maxim which possesses anti-inflammatory, analgesic, and antioxidant properties. The absorption spectra of nanoparticles in varying root extract and metal ion concentration, pH, reaction temperatures, and time were recorded by ultraviolet-visible (UV-Vis) spectroscopy. The presence of DH-AgNps and DH-AuNps was confirmed from the surface plasmon resonance intensified at 414 and 540 nm, respectively. Field emission transmission electron micrograph (FE-TEM) analysis revealed the formation of quasi-spherical DH-AgNps and spherical icosahedral DH-AuNps. These novel DH-AgNps and DH-AuNps maintained an average crystallite size of 12.48 and 7.44 nm, respectively. The biosynthesized DH-AgNps and DH-AuNps exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH) radicals and the former exhibited antimicrobial activity against clinical pathogens including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica. The expected presence of flavonoids, sesquiterpenes, and phenols on the nanoparticle surface were conjectured to grant protection against aggregation and free radical scavenging activity. DH-AgNps and DH-AuNps were further investigated for their cytotoxic properties in RAW264.7 macrophages for their potential application as drug carriers to sites of inflammation. In conclusion, this green synthesis is favorable for the advancement of plant mediated nano-carriers in drug delivery systems, cancer diagnostic, and medical imaging.

  4. Surface plasmon resonance in electrodynamically coupled Au NPs monolayer/dielectric spacer/Al film nanostructure: tuning by variation of spacer thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.

    2017-10-01

    Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.

  5. Improving gold catalysis of nitroarene reduction with surface Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less

  6. Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity.

    PubMed

    El-Batal, Ahmed Ibrahim; Hashem, Abd-Algawad M; Abdelbaky, Noha M

    2013-12-01

    Aspergillus oryzae was used to enhance the mobilization of antioxidants of soybean matrix along with garlic as a co-substrate by modulating polyphenolic substances during solid-state fermentation. Mobilized polyphenols were used as a green tool for synthesis and stabilization of gold nanoparticles (AuNPs). The radiation-induced AuNPs synthesis is a simple, clean and inexpensive process which involves radiolysis of aqueous solution that provides an efficient method to reduce metal ions. Gamma irradiated aqueous extract of fermented soybean and garlic was used for rapid preparation of AuNPs combining both effects of radiolytic reactions by radiation and stabilization by bioactive components of fermented extract. The synthesized AuNPs were confirmed by UV-Visible spectrophotometry, dynamic light scattering (DLS), Fourier Transform infra red (FT-IR) spectrophotometry, and transmission electron microscope (TEM) analysis which revealed morphology of spherical AuNPs with size ranging from 7-12 nm. The synthesized AuNPs exhibited antimicrobial activity against both Gram positive and Gram negative bacteria, as measured by well diffusion assay.

  7. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study

    PubMed Central

    Gupta, Rakesh; Rai, Beena

    2017-01-01

    Molecular level understanding of permeation of nanoparticles through human skin establishes the basis for development of novel transdermal drug delivery systems and design and formulation of cosmetics. Recent experiments suggest that surface coated nano-sized gold nanoparticles (AuNPs) can penetrate the rat and human skin. However, the mechanisms by which these AuNPs penetrate are not well understood. In this study, we have carried out coarse grained molecular dynamics simulations to explore the permeation of dodecanethiol coated neutral hydrophobic AuNPs of different sizes (2–5 nm) and surface charges (cationic and anionic) through the model skin lipid membrane. The results indicate that the neutral hydrophobic AuNPs disrupted the bilayer and entered in it with in ~200 ns, while charged AuNPs were adsorbed on the bilayer headgroup. The permeation free energy calculation revealed that at the head group of the bilayer, a very small barrier existed for neutral hydrophobic AuNP while a free energy minimum was observed for charged AuNPs. The permeability was maximum for neutral 2 nm gold nanoparticle (AuNP) and minimum for 3 nm cationic AuNP. The obtained results are aligned with recent experimental findings. This study would be helpful in designing customized nanoparticles for cosmetic and transdermal drug delivery application. PMID:28349970

  8. Self-assembly of cinnamic acid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wei, Gang; Sun, Lanlan; Liu, Zhiguo; Song, Yonghai; Yang, Tao; Sun, Yujing; Guo, Cunlan; Li, Zhuang

    2006-06-01

    In this work, a new capping agent, cinnamic acid (CA) was used to synthesize Au nanoparticles (NPs) under ambient conditions. The size of the NPs can be controlled by adjusting the concentration of reductant (in our experiment sodium borohydride was used) or CA. The CA-stabilized Au NPs can self-assemble into 'nanowire-like' or 'pearl-necklace-like' nanostructures by adjusting the molar ratio of CA to HAuCl4 or by tuning the pH value of the Au colloidal solution. The process of Au NPs self-assembly was investigated by UV-vis spectroscopy and transmission electron microscopy. The results reveal that the induced dipole-dipole interaction is the driving force of Au NP linear assemblies.

  9. Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedford, Nicholas M.; Hughes, Zak E.; Tang, Zhenghua

    Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction datamore » and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.« less

  10. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.

    PubMed

    Bagci, Pelin Onsekizoglu; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-09-01

    Gold nanoparticles (AuNPs) were synthesized at room temperature following a simple, rapid, and green route using fresh-squeezed apple juice as a reducing reagent. The optimal AuNPs, based on the particle color, stability, and color change suitable for colorimetric detection of cysteine (Cys), are synthesized using 5 mL of 10% apple juice, 1 mL of 10 mM gold precursor solution, and 1 mL of 0.1 M NaOH. Under this set of parameters, the AuNPs are synthesized within 30 min at room temperature. The average size (11.1 ± 3.2 nm) and ζ potential (-36.5 mV) of the AuNPs synthesized were similar to those of AuNPs prepared via the conventional citrate-reduction method. In the presence of Cys, unlike with any other amino acid, the AuNPs aggregated, possibly due to the gold-sulfur covalent interaction, yielding red-to-purple color change of the sample solution. The red-shift of the localized surface plasmon resonance peak of the AuNPs responsible for the color change was recorded by UV-vis spectrometer. The effect of other potential interferents such as glucose, ascorbic acid, K(+) , Na(+) , Ca(2+) , Zn(2+) , Ag(+) , Ni(2+) , Cu(2+) , Co(2+) , and Hg(2+) were also examined. The results show that AuNPs can be used to selectively detect and measure Cys with a linear dependency in the range of 2 to 100 μM and a limit of detection (signal-to-noise ratio > 3) of 50 nM. The results suggest that the green-synthesized AuNPs are useful for simple, rapid, and sensitive colorimetric detection of Cys, which is an essential amino acid in food and biological systems. © 2015 Institute of Food Technologists®

  11. SU-F-T-664: The Efficacy of Gold Nanoparticles as Contrast Agents in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Y; Zhang, Y; Sajo, E

    Purpose: Micro-Computed Tomography (micro-CT) has been widely used as a non-invasive, high-resolution imaging modality in preclinical research. However, tumors cannot be well distinguished, since their density are similar to those of surrounding tissues, and the tumors’ natural contrast is very low. The benefits of using Gold Nanoparticles (AuNPs) as a promising high atomic weight contrast agent have been published in recent years. The aim of this study is to investigate the efficacy of AuNPs as contrast agents using different energy x-rays. Methods: The left flank of an immune-compromised athymic nude mouse was implanted with subcutaneous xenograft model of human lungmore » cancer line, A549 cells (from ATCC). After 14 days, this mouse was imaged with dual energy cone-beam micro-CT. The selected energies were 45 kVp and 65 kVp. 10µg AuNPs (200 µg/ml concentration) approximately 12 nm in size were injected subcutaneously into the tumor. The mouse was imaged 0, 3 and 24 hours post-injection. During scanning, this mouse was anesthetized. All projection raw data have been optimized and then images were reconstructed with the FDK Algorithm. Results: Based on images, at 0 hour, AuNPs provided obvious contrast no matter which energy selected, 45 kVp or 65 kVp; and using 45 kVp X-ray, AuNps showed greater contrast. After 3 hours or evenand longer, AuNPs distributed throughout the whole body of mouse, and they were not shown clearly shown in the images. Conclusion: In this study, we investigated the efficacy of AuNPs as image contrast agents at different energies with dual-energy micro-CT, using 200µg/mL of AuNPs. Sufficiently high concentrations of AuNPs are needed to be able to track intratumoral distribution. Images showed good contrast immediately following the administration of the agent but results were poor after 3 hours.« less

  12. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

    PubMed

    Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia

    2011-05-03

    Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.

  13. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    PubMed

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  14. Efficient reverse saturable absorption of sol-gel hybrid plasmonic glasses

    NASA Astrophysics Data System (ADS)

    Lundén, H.; Lopes, C.; Lindgren, M.; Liotta, A.; Chateau, D.; Lerouge, F.; Chaput, F.; Désert, A.; Parola, S.

    2017-07-01

    Monolithic silica sol-gel glasses doped with platinum(II) acetylide complexes possessing respectively four or six phenylacetylene units (PE2-CH2OH and PE3-CH2OH) in combination with various concentrations of spherical and bipyramidal gold nanoparticles (AuNPs) known to enhance non-linear optical absorption, were prepared and polished to high optical quality. The non-linear absorption of the glasses was measured and compared to glasses doped solely with AuNPs, a platinum(II) acetylide with shorter delocalized structure, or combinations of both. At 532 nm excitation wavelength the chromophore inhibited the non-linear scattering previously found for glasses only doped with AuNPs. The measured non-linear absorption was attributed to reverse saturable absorption from the chromophore, as previously reported for PE2-CH2OH/AuNP glasses. At 600 nm strong nonlinear absorption was observed for the PE3-CH2OH/AuNPs glasses, also attributed to reverse saturable absorption. But contrary to previous findings for PE2-CH2OH/AuNPs, no distinct enhancement of the non-linear absorption for PE3-CH2OH/AuNPs was observed. A numerical population model for PE3-CH2OH was used to give a qualitative explanation of this difference. A stronger linear absorption in PE3-CH2OH would cause the highly absorbing triplet state to populate quicker during the leading edge of the laser pulse and this would in turn reduce the influence from two-photon absorption enhancement from AuNPs.

  15. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.

    PubMed

    Yu, Cheng-Ju; Tseng, Wei-Lung

    2008-11-04

    A new colorimetric sensor for sensing Hg2+ in a high-salinity solution has been developed using gold nanoparticles (AuNPs) decorated with 3-mercaptopropionate acid (MPA) and adenosine monophosphate (AMP). Because of the high negative charge density of AMP on each AuNP surface, MPA/AMP-capped AuNPs are well dispersed in a high-salt solution. In contrast, the aggregation of MPA-capped AuNPs was induced by sodium ions, which shield the negative charges of the carboxylic groups of MPA. Through the coordination between the carboxylic group of MPA and Hg2+, the selectivity of MPA/AMP-capped AuNPs for Hg2+ in a high-salt solution is remarkably high over that of the other metals without the addition of a masking agent or a change in the temperature. We have carefully investigated the effect of the AMP concentration on the stability and sensitivity of MPA/AMP-capped AuNPs. Under optimum conditions, the lowest detectable concentration of Hg2+ using this probe was 500 nM on the basis of the measurement of the ratio of absorption at 620 nm to that at 520 nm. The sensitivity to Hg2+ can be further improved by modifying the MPA/AMP-capped AuNPs with highly fluorescent rhodamine 6G (R6G). By monitoring the fluorescence enhancement, the lowest detectable concentration of Hg2+ using R6G/MPA/AMP-capped AuNPs was 50 nM.

  16. Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions

    PubMed Central

    Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.

    2016-01-01

    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122

  17. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  18. Tailoring dispersion and aggregation of Au nanoparticles in the BHJ layer of polymer solar cells: plasmon effects versus electrical effects.

    PubMed

    Kim, Wanjung; Cha, Bong Geun; Kim, Jung Kyu; Kang, Woonggi; Kim, Eunchul; Ahn, Tae Kyu; Wang, Dong Hwan; Du, Qing Guo; Cho, Jeong Ho; Kim, Jaeyun; Park, Jong Hyeok

    2014-12-01

    Plasmonic effects that arise from embedding metallic nanoparticles (NPs) in polymer solar cells (PSCs) have been extensively studied. Many researchers have utilized metallic NPs in PSCs by either incorporating them into the PSC interlayers (e.g., the hole extraction and electron extraction layers) or blending them into the bulk heterojunction (BHJ) active layer. In such studies, the dispersity of the metallic NPs in each layer may vary due to both the different nature of the ligands and the amount of ligands on the metallic NPs. This in turn can produce different PSC performance parameters. Here, we systematically control the amount of attached organic ligands on Au NPs to control their dispersion behavior in the BHJ active layer of PSCs. By controlling the number of capping organic ligands on the Au NPs, the dispersity of the NPs in the BHJ layer is also controlled and the positive effects (particularly the plasmonic and electrical effects) of the Au NPs in the PSCs are investigated. From the obtained results, we find that the electrical contribution of the Au NPs is a more dominant factor for enhancing cell efficiency when compared to the plasmonic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experimental optimization during SERS application

    NASA Astrophysics Data System (ADS)

    Laha, Ranjit; Das, Gour Mohan; Ranjan, Pranay; Dantham, Venkata Ramanaiah

    2018-05-01

    The well known surface enhanced Raman scattering (SERS) needs a lot of experimental optimization for its proper implementation. In this report, we demonstrate the efficient SERS using gold nanoparticles (AuNPs) on quartz plate. The AuNPs were prepared by depositing direct current sputtered Au thin film followed by suitable annealing. The parameters varied for getting best SERS effect were 1) Numerical Aperture of Raman objective lens and 2) Sputtering duration of Au film. It was found that AuNPs formed from the Au layer deposited for 40s and Raman objective lens of magnification 50X are the best combination for obtaining efficient SERS effect.

  20. Gold nanoparticles as scaffolds for poor water soluble and difficult to vehiculate antiparkinson codrugs

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; Cacciatore, I.; Petrini, M.; D'Alessandro, M.; Petragnani, N.; Del Boccio, P.; Di Profio, P.; Boncompagni, S.; Spoto, G.; Turkez, H.; Ballerini, P.; Di Stefano, A.; Fontana, A.

    2017-01-01

    We report the facile and non-covalent preparation of gold nanoparticles (AuNPs) stabilized by an antiparkinson codrug based on lipoic acid (LA). The obtained AuNPs appear stable in both dimethyl sulfoxide and fetal bovine serum and able to load an amount of codrug double the weight of gold. These NPs were demonstrated to be safe and biocompatible towards primary human blood cells and human neuroblastoma cells, one of the most widely used cellular models to study dopaminergic neural cells, therefore are ideal drug carriers for difficult to solubilize molecules. Very interestingly, the codrug-stabilized AuNPs were shown to reduce the accumulation of reactive oxygen species in SH-SY5Y cells treated with LD and did not change total oxidant status levels in cultured human blood cells, thus confirming the antioxidant role of LA although bound to AuNPs. The characterization of AuNPs in terms of loading and stability paves the way for their use in biomedical and pharmacological applications.

  1. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia.

    PubMed

    Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P

    2014-08-30

    The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    PubMed

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Conducting a battery of bioassays for gold nanoparticles to derive guideline value for the protection of aquatic ecosystems.

    PubMed

    Nam, Sun-Hwa; Shin, Yu-Jin; Lee, Woo-Mi; Kim, Shin Woong; Kwak, Jin Il; Yoon, Sung-Ji; An, Youn-Joo

    2015-05-01

    Gold nanoparticles (Au-NPs) are used in many applications, including the manufacture of products like cosmetics, paints, and electrochemical immunosensors, and in the detection, diagnosis, and treatment of tumors. However, there are no legal or recommended guidelines for protecting aquatic ecosystems from Au-NPs. In this study, we conducted a battery of bioassays and present toxicity values for two bacteria, one alga, one euglena, three cladoceran, and two fish species that were exposed to Au-NPs. Guideline values for protecting aquatic ecosystems from Au-NPs were derived using methods that are generally used to derive water-quality guidelines and are used in Australia, New Zealand, Canada, the European Community (EC), and the USA. Au-NPs had adverse effects on all test species, including growth inhibition of both bacteria, the alga, and the euglena; mortality and immobilization in the three cladocerans; and developmental malformations in the embryos and larvae of the two fish. Guideline values of 0.15 and 0.04 × 10(10) particles/mL were derived for Au-NPs using a species sensitivity distribution (SSD) and assessment factor. The guideline value derived for Au-NPs using an assessment factor was more stringent than that derived using SSD. This is the first study to derive guideline values for nanoparticles in water environments.

  4. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A

    NASA Astrophysics Data System (ADS)

    Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing

    2016-05-01

    Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.

  5. Synthesis and study of catalytic application of l-methionine protected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Raza, Akif; Javed, Safdar; Qureshi, Muhammad Zahid; khan, Muhammad Usman; Khan, Muhammad Saleem

    2017-10-01

    Gold nanoparticle is growing class of nanotechnology due to large number of uses. We synthesized stable l-methionine protected gold nanoparticles (AuNps) by in situ reduction of HAuCl4 using sodium borohydrate as reducing and l-methionine as stabilizing agent in an aqueous medium. Different parameters (pH, capping agent, precursor salt, and heating time) were optimized to see the effect on the size of particles. Double beam spectrophotometer was used to carry out the spectroscopic studies. It was observed that pH and concentration of reducing salt are deciding factors in controlling the size and morphology of AuNps. Scanning electron microscopy (SEM) verified the formation of AuNPs as predicted by UV-Vis spectra. The interaction of AuNPs with l-methionine was confirmed by Fourier Transform Infrared (FTIR). The reduction of 4-nitrophenol acted as standard of reaction to check the response of AuNps catalyst. Complete reduction of 4-nitrophenol was accomplished by AuNps sol in just 60 s. Fastest reduction rate was observed with smaller spherical particles. This study concluded that size and shape of AuNps can be monitored by controlling the pH, concentration of capping and reducing agent. It also provides an economical solution to aquatic environment in terms of time saving and use of small volume of catalytic solution for reduction of several other toxic organic pollutants.

  6. Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis

    PubMed Central

    Dkhil, Mohamed A; Bauomy, Amira A; Diab, Marwa SM; Al-Quraishy, Saleh

    2015-01-01

    In recent years, gold nanoparticles (AuNPs) have become the focus of much attention in biomedical research, especially in the context of nanomedicine, due to their distinctive physicochemical properties. The current study was planned to assess the effect of three dose levels of AuNPs on the gene expression, histology, and oxidative stress status of Schistosoma mansoni-infected mice liver. Inoculation of mice with 100 μL AuNPs at different doses (0.25, 0.5, and 1 mg/kg mice body weight) twice on day 46 and day 49 postinfection reduced the total worm burden, the egg load in the liver, and the granuloma size. AuNPs also appeared to decrease the activities of malondialdehyde and nitric oxide significantly, and increase the level of glutathione compared to the infected untreated group. Concomitantly, AuNPs ameliorated the inflammatory response by decreasing the mRNA expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and inducible nitric oxide synthase. These consistent molecular, histopathological, and biochemical data suggest that AuNPs could ameliorate infection-induced damage in the livers of mice. Our results indicated that AuNPs are effective anti-schistosomal and antioxidant agents. Further confirmation of the role of nanogold as an anti-schistosomal agent, as well as its mechanism of action, requires further studies to be undertaken in the future. PMID:26719689

  7. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  8. Postprandial anti-hyperglycemic activity of marine Streptomyces coelicoflavus SRBVIT13 mediated gold nanoparticles in streptozotocin induced diabetic male albino Wister rats.

    PubMed

    Sathish Kumar, Sathyanarayanan Ravi; Bhaskara Rao, Kokati Venkata

    2016-10-01

    The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus ( S. coelicoflavus ) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12-20 nm (mean diameter as 14 nm). The anti-type II diabetes activity of AuNPs is carried out by testing it in vitro α -glucosidase and α -amylase enzyme inhibition activity and in vivo postprandial anti-hyperglycemic activity in sucrose and glucose-loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC 50 values of 67.65 and 65.59 μg/mL to α -glucosidase and α -amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.

  9. Ultrasensitive Determination of Piroxicam at Diflunisal-Derived Gold Nanoparticle-Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shaikh, Tayyaba; uddin, SiraJ; Talpur, Farah N.; Khaskeli, Abdul R.; Agheem, Muhammad H.; Shah, Muhammad R.; Sherazi, Tufail H.; Siddiqui, Samia

    2017-10-01

    We present a simple and green approach for synthesis of gold nanoparticles (AuNps) using analgesic drug diflunisal (DF) as capping and stabilizing agent in aqueous solution. Characterization of the synthesized diflunisal-derived gold nanoparticles (DF-AuNps) was performed by ultraviolet-visible (UV-Vis) spectroscopy, revealing the surface plasmon absorption band at 520 nm under optimized experimental conditions. Fourier-transform infrared (FTIR) spectroscopy established the effective interaction of the capping agent with the AuNps. Topographical features of the synthesized DF-AuNps were assessed by atomic force microscopy (AFM), revealing average particle height of 29 nm to 32 nm. X-ray diffractometry was used to study the crystalline nature, revealing that the synthesized DF-AuNps possessed excellent crystalline properties. The synthesized DF-AuNps were employed to modify the surface of glassy carbon electrode (GCE) for selective determination of piroxicam (PX) using differential pulse voltammetry technique. The fabricated Nafion/DF-AuNps/GCE sensor exhibited high sensitivity compared with bare GCE. The current response of the fabricated sensor was found to be linear in the PX concentration range of 0.5 μM to 50 μM, with limit of detection (LOD) and limit of quantification (LOQ) of 50 nM and 150 nM, respectively. The proposed sensor was successfully utilized for sensitive and rapid determination of PX in human serum, urine, and pharmaceutical samples.

  10. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  11. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities.

    PubMed

    Oh, Keun Hyun; Soshnikova, Veronika; Markus, Josua; Kim, Yeon Ju; Lee, Sang Chul; Singh, Priyanka; Castro-Aceituno, Verónica; Ahn, Sungeun; Kim, Dong Hyun; Shim, Yeon Jae; Kim, Yu Jin; Yang, Deok Chun

    2018-05-01

    The design of mild and non-toxic synthesis of metallic nanoparticles is a topical subject in the nanotechnology field. The objective of this present study is to screen the bioactivity of biosynthesized nanoparticles by aqueous fruit extract of Chaenomeles sinensis. The reducing and stabilizing ability of C. sinensis to fabricate gold (Cs-AuNps) and silver (Cs-AgNps) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 562 nm and 477 nm, respectively. The field-emission transmission electron microscopy (FE-TEM) and X-ray diffraction analysis (XRD) verify the nano-scale morphology and crystallinity of Cs-AuNps (20-40 nm) and Cs-AgNps (5-20 nm). Furthermore, we evaluated the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity, antimicrobial activity against Staphylococcus aureus and Escherichia coli and cytotoxicity against breast cancer cells. The results showed that Cs-AuNps (IC 50 : 725.93 μg/mL) displayed superior inhibitory activities on DPPH than Cs-AuNps. The biosynthesized Cs-AuNps successfully inhibited the growth of pathogenic bacteria S. aureus (ATCC 6538) and E. coli (BL21). The cytotoxic effect of Cs-AuNps and Cs-AgNps was evaluated in murine macrophage (RAW264.7) and human breast cancer cell lines (MCF7) by MTT assay. Thus, the present study explores the biomedical applications of gold and silver nanoparticles synthesized by C. sinensis.

  12. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non-transport permissive and intact BBB, we also assessed the role of magnetic resonance imaging (MRI) guided focused ultrasound (MRgFUS) disruption of the BBB in enhancing permeation of AuNPs across the intact BBB and tumor BBB in vivo. MRgFUS is a novel technique that can transiently increase BBB permeability thereby allowing delivery of therapeutics into the CNS. We demonstrated enhanced delivery of AuNPs with therapeutic potential into the CNS via MRgFUS. Our study was the first to establish a definitive role for MRgFUS in delivering AuNPs into the CNS. In summary, this thesis describes results from a series of research projects that have contributed to our understanding of the influence of design features on AuNP permeation through the BBB and also the potential role of MRgFUS in AuNP permeation across the BBB.

  13. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  14. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    NASA Astrophysics Data System (ADS)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  15. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.

    PubMed

    Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke

    2017-01-18

    Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.

  16. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae).

    PubMed

    Lallawmawma, H; Sathishkumar, Gnanasekar; Sarathbabu, Subburayan; Ghatak, Souvik; Sivaramakrishnan, Sivaperumal; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil

    2015-11-01

    Silver and gold nanoparticles of Jasminum nervosum L. had unique optical properties such as broad absorbance band in the visible region of the electromagnetic spectrum. Characterization of the nanoparticles using UV spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the particles were silver (AgNPs) and gold (AuNPs) ranging between 4-22 and 2-20 nm with an average particles size of 9.4 and 10 nm, respectively. AgNPs and AuNPs of J. nervosum had high larvicidal activity on the filarial and arboviral vector, Culex quinquefasciatus, than the leaf aqueous extract. Observed lethal concentrations (LC50 and LC95) against the third instar larvae were 57.40 and 144.36 μg/ml for AgNPs and 82.62 and 254.68 μg/ml for AuNPs after 24 h treatment, respectively. The lethal time to kill 50% of C. quinquefasciatus larvae were 2.24 and 4.51 h at 150 μg/ml of AgNPs and AuNPs, respectively, while in the case of aqueous leaf extract of J. nervosum it was 9.44 h at 500 μg/ml (F 2,14 = 397.51, P < 0.0001). The principal component analysis plot presented differential clustering of the aqueous leaf extract, AgNP and AuNPs in relation to lethal dose and lethal time. It is concluded from the present findings that the biosynthesised AgNPs and AuNPs using leaf aqueous extract of J. nervosum could be an environmentally safer nanobiopesticide, and provided potential larvicidal effect on C. quinquefasciatus larvae which could be used for prevention of several dreadful diseases.

  17. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.

    PubMed

    Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-06-01

    In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice

    PubMed Central

    Chen, Hui; Dorrigan, Alisha; Saad, Sonia; Hare, Dominic J.; Cortie, Michael B.; Valenzuela, Stella M.

    2013-01-01

    Objectives Gold nanoparticles (AuNPs) of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs. Methods Male C57BL/6 mice were injected intraperitoneally (IP) with a single dose of AuNPs (7.85 μg AuNPs/g). Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR. Results At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney). Conclusion Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders. PMID:23469154

  19. Internal-Modified Dithiol DNA-Directed Au Nanoassemblies: Geometrically Controlled Self-Assembly and Quantitative Surface-Enhanced Raman Scattering Properties

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang

    2015-11-01

    In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”-number-depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique.

  20. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  1. Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane.

    PubMed

    Li, Lingxiangyu; Leopold, Kerstin; Schuster, Michael

    2013-05-01

    An efficient ligand-assisted phase transfer method has been developed to transfer gold nanoparticles (Au-NPs, d: 5-25 nm) from an aqueous solution to n-hexane. Four different ligands, namely 1-dodecanethiol (DDT), 1-octadecanethiol (ODT), dodecylamine (DDA), and octadecylamine (ODA) were investigated, and DDT was found to be the most efficient ligand. It appears that the molar ratio of DDT to Au-NPs is a critical factor affecting the transfer efficiency, and 270-310 is found to be the optimum range, under which the transfer efficiency is >96%. Moreover, the DDT-assisted phase transfer can preserve the shape and size of the Au-NPs, which was confirmed by UV-vis spectra and transmission electron microscopy (TEM). Additionally, the transferred Au-NPs still can be well dispersed in the n-hexane phase and remain stable for at least 2 weeks. On the other hand, the ODT-, DDA-, and ODA-assisted phase transfer is fraught with problems either related to transfer efficiency or NPs aggregation. Overall, the DDT-assisted phase transfer of Au-NPs provides a rapid and efficient method to recover Au-NPs from an aqueous solution to n-hexane. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles.

    PubMed

    Hashimoto, Masanori; Kawai, Koji; Kawakami, Hayato; Imazato, Satoshi

    2016-01-01

    Matrix metalloprotease (MMP) inhibitors improve the longevity of dental adhesives/tooth bonds; however, biocompatibility is required for their clinical use. This study evaluated the inhibition of MMPs and toxicity of two gold (AuNPs) and platinum nanoparticles (PtNPs) as possible compounds for use in dental adhesives. The MMP assay for studying the interaction of MMPs and nanoparticles (NPs) was evaluated by an MMP assay kit and gelatin zymography. Cultured L929 fibroblast cells or RAW264 macrophages were exposed to NPs. The cellular responses to NPs were examined using cytotoxic (cell viability) and genotoxic assays (comet assay), and transmission electron microscopic (TEM) analysis. The mechanical properties (elastic modulus) of the experimental resin loaded with NPs were examined using thermomechanical analysis. All NPs inhibited MMP activity at relatively low concentrations. The NPs inhibit MMPs by chelating with the Zn(2+) bound in the active sites of MMPs. No cytotoxic and genotoxic effects were found in AuNPs, whereas the PtNPs possessed both adverse effects. In TEM analysis, the NPs were localized mainly in lysosomes without penetration into nuclei. The mechanical properties of the resins increased when AuNPs were added in resins, but not by PtNPs. AuNPs are attractive candidates to inhibit MMPs and improve the mechanical properties of resins without cytotoxic/genotoxic effects to cells, and therefore should be suitable for applications in adhesive resin systems. © 2015 Wiley Periodicals, Inc.

  3. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    PubMed

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  4. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    NASA Astrophysics Data System (ADS)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  5. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract

    NASA Astrophysics Data System (ADS)

    Guo, Mingxia; Li, Wei; Yang, Feng; Liu, Huihong

    2015-05-01

    The present work reports the green synthesis of gold nanoparticles (AuNPs) by water extract of Eucommia ulmoides (E. ulmoides) bark. The effects of various parameters such as the concentration of reactants, pH of the reaction mixture, temperature and the time of incubation were explored to the controlled formation of gold nanoparticles. The characterization through high resolution-transmission electron microscopic (HRTEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) infer that the as-synthesized AuNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from zeta potential and dynamic light scattering (DLS) suggest the good stability and narrow size distribution of the AuNPs. This method for synthesis of AuNPs is simple, economic, nontoxic and efficient. The as-synthesized AuNPs show excellent catalytic activity for the catalytic reducing decoloration of model compounds of azo-dye: reactive yellow 179 and Congo red.

  6. Localized Surface Plasmon Resonance in Au Nanoparticles Embedded dc Sputtered ZnO Thin Films.

    PubMed

    Patra, Anuradha; Balasubrahmaniyam, M; Lahal, Ranjit; Malar, P; Osipowicz, T; Manivannan, A; Kasiviswanathan, S

    2015-02-01

    The plasmonic behavior of metallic nanoparticles is explicitly dependent on their shape, size and the surrounding dielectric space. This study encompasses the influence of ZnO matrix, morphology of Au nanoparticles (AuNPs) and their organization on the optical behavior of ZnO/AuNPs-ZnO/ZnO/GP structures (GP: glass plate). These structures have been grown by a multiple-step physical process, which includes dc sputtering, thermal evaporation and thermal annealing. Different analytical techniques such as scanning electron microscopy, glancing angle X-ray diffraction, Rutherford backscattering spectrometry and optical absorption have been used to study the structures. In-situ rapid thermal treatment during dc sputtering of ZnO film has been found to induce subtle changes in the morphology of AuNPs, thereby altering the profile of the plasmon band in the absorption spectra. The results have been contrasted with a recent study on the spectral response of dc magnetron sputtered ZnO films embedded with AuNPs. Initial simulation results indicate that AuNPs-ZnO/Au/GP structure reflects/absorbs UV and infrared radiations, and therefore can serve as window coatings.

  7. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    DTIC Science & Technology

    2009-01-01

    carboxylate (reported in January 2009), phosphonate and bisphosphonate groups (Fig. 2). The presence of functional groups was verified by FT- IR (Fig. 3...carboxylic acid, (b) phosphonate or (c) bisphosphonate groups for calcium binding damaged tissue. (a) (b) (c) Fig. 3. FT- IR spectra for Au NPs...functional group. Quantitative measurements of the binding affinity were performed by adding hydroxyapatite (HA) crystals to functionalized Au NP solutions in

  8. Green technology for durable finishing of viscose fibers via self-formation of AuNPs.

    PubMed

    Emam, Hossam E; El-Hawary, Nancy S; Ahmed, Hanan B

    2017-03-01

    Sensitivity of dyes' colors to the surrounding environment causes lower durability and stability of color, which reflects the importance of durable finishing treatment. Current technique offered antimicrobial/durable finishing of viscose fibers through direct formation of AuNPs inside fibers macromolecules without using any external agents. By using the reducing properties of cellulose in viscose, Au +3 was reduced to AuNPs and CHO/OH of cellulose subsequently were oxidized to COOH. For comparison, two different media were used; aqueous and alkaline. Increasing the reactivity and accessibility of cellulose macromolecules in alkali leaded to enlargement of the reduction process and more incorporation of AuNPs. Size of AuNPs inside fiber was recorded to be in range of 22-112nm and 14-100nm, in case of using aqueous and alkaline medium, respectively. Structure and properties of fibers were not changed by treatment according to XRD and ATR-FTIR data. The treated fibers were acquired durable violet color by the action of LSPR for AuNPs and darker color obtained using higher Au +3 concentration. The treated fibers exhibited good inhibition against different pathogenic microbes including bacteria and fungi. One-pot, quite simple, inexpensive, green and industrial viable are the significant advantages of the current technique for viscose finishing (pigmentation and antimicrobial action). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stable ligand-free stellated polyhedral gold nanoparticles for sensitive plasmonic detection.

    PubMed

    Keunen, Rachel; Macoretta, Danielle; Cathcart, Nicole; Kitaev, Vladimir

    2016-02-07

    Ligand-free stellated gold nanoparticles (AuStNPs) with well-defined octahedral (O(h)) and icosahedral (I(h)) core symmetries were prepared using hydrogen peroxide as a reducing agent. Only three reagents: gold precursor (HAuCl4), H2O2 and NaOH were required to form colloidally and chemically stable AuStNPs with a zeta-potential between -55 and -40 mV indicative of excellent charge stabilization. The size and degree of stellation of AuStNPs can be controlled by several synthetic parameters so that the localized surface plasmon resonance (LSPR) can be varied from ca. 850 nm in near-infrared (NIR) to ca. 530 nm. In particular, AuStNP size and LSPR tuning can be conveniently accomplished by iodide variation. The size distribution of AuStNPs was improved by nucleation with ascorbic acid, and the AuStNP size and degree of branching could be readily modified using arginine. AuStNPs are advantageous for SPR sensing, as it was demonstrated in the sensitive detection of not only thiols, such as ampicillin, but also iodide with the detection limit of 3.2 pM (0.4 ng L(-1)). The reported ligand-free stable AuStNPs thus should be very useful for biodiagnostics based on SPR sensing and potentially for SERS and hyperthermia therapy.

  10. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  11. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles

    PubMed Central

    Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia

    2014-01-01

    Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models. PMID:24855356

  12. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles.

    PubMed

    Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia

    2014-01-01

    Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.

  13. Multifunctional Au NPs-polydopamine-polyvinylidene fluoride membrane chips as probe for enrichment and rapid detection of organic contaminants.

    PubMed

    Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong

    2018-05-01

    High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticlesmore » (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.« less

  15. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-05-25

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.

  16. Comparison of detection techniques for capillary electrophoresis analysis of gold nanoparticles.

    PubMed

    Matczuk, Magdalena; Aleksenko, Svetlana S; Matysik, Frank-Michael; Jarosz, Maciej; Timerbaev, Andrei R

    2015-05-01

    As metallic nanoparticles are growing in importance as analytes in CE, increases an interest in appropriate detection methods for their quantification in various samples. For gold nanoparticles (AuNPs), the most common UV detection poses intricacy of inadequate sensitivity that hinders the applicability of CE. With the objective of resolving this challenge, UV detection was compared with C(4) D and ICP-MS as alternative modes of detection for AuNPs. A C(4) D detector, applied under pressure-driven conditions, exhibited better sensitivity than a UV detector. However, C(4) D turned to be unsatisfactory to differentiate the signal of AuNPs at common CE conditions despite varying the nature of BGE and detection conditions. Due to intrinsic sensitivity and low background levels typical to Au, ICP-MS greatly surpasses UV detection. After optimization trials, CE-ICP-MS gained the LOD of AuNPs as low as 2 × 10(-15) M, as well as an excellent performance in terms of signal stability and linearity. Also importantly, the optimized BGE appears to be well matched to explore the behavior of AuNPs in biologically relevant systems. This was demonstrated by probing the interaction between AuNPs and the main blood-transporting protein, HSA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study.

    PubMed

    Silvestri, A; Di Silvio, D; Llarena, I; Murray, R A; Marelli, M; Lay, L; Polito, L; Moya, S E

    2017-10-05

    In the biomedical applications of nanoparticles (NPs), the proper choice of surface chemistry is a crucial aspect in their design. The nature of the coating can heavily impact the interaction of NPs with biomolecules, affect the state of aggregation, and ultimately determine their biological fate. As such, protein corona formation and the aggregation behaviour of gold NPs (Au NPs) are studied here. Au NPs are prepared with four distinct surface functionalisations, namely mercaptosuccinic acid (MSA), N-4-thiobutyroil glucosamine, HS-PEG 5000 and HS-alkyl-PEG 600 . Corona formation, aggregation, and the intracellular behaviour of the Au NPs are then investigated by means of Fluorescence Correlation Spectroscopy (FCS) in cell culture media and in live cells. To evaluate the state of aggregation and the formation of a protein corona, the Au NPs are incubated in cell media and the diffusion coefficient is determined via FCS. The in vitro behaviour is compared with the level of aggregation of the NPs in cells. Diffusion times of the NPs are estimated at different positions in the cell after a one hour incubation period. It is found that the majority of MSA and glucose-Au NPs are present inside the cell as slowly diffusing species with diffusion times (τ D ) greater than 6000 μs (hydrodynamic diameter >250 nm). PEGylated Au NPs adsorb a small amount of protein and manifest low agglomeration both in media and in living cells. In particular, the HS-alkyl-PEG 600 coating shows an excellent correlation between lower protein adsorption, 4-fold lower compared to the MSA coated NPs, and limited intracellular aggregation. In the case of single HS-alkyl-PEG 600 coated NPs, it is found that typical intracellular τ D values range from 500 to 1500 μs, indicating that these particles display reduced aggregation in the intracellular environment.

  18. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  19. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    NASA Astrophysics Data System (ADS)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  20. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles.

    PubMed

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-06

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10(8) particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  1. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  2. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  4. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme.

    PubMed

    Luo, Zewei; Wang, Yimin; Lu, Xiaoyong; Chen, Junman; Wei, Fujing; Huang, Zhijun; Zhou, Chen; Duan, Yixiang

    2017-09-01

    Antibiotic abuse has been bringing serious pollution in water, which is closely related to human health. It is desirable to develop a new strategy for antibiotic detection. To address this problem, a sensitive fluorescent aptasensor for antibiotic detection was developed by utilizing gold nanoparticles modified magnetic bead composites (AuNPs/MBs) and nicking enzyme. AuNPs/MBs were synthesized with the help of polyethylenimine (PEI). The prepared AuNPs/MBs acted as dual-functional scaffolds that owned excellent magnetic separation capacity and strong covalent bio-conjugation. The non-specifically absorbed aptamers in AuNPs/MBs were less than that in MBs. Hence, the fluorescent aptasensor based on AuNPs/MBs show a better signal to background ratio than that based on carboxyl modified magnetic beads (MBs). In this work, ampicillin was employed as a model analyte. In the presence of ampicillin, the specific binding between ampicillin and aptamer induced structure-switching that led to the release of partial complementary DNA (cDNA) of aptamer. Then, the released cDNA initiated the cycle of nicking enzyme assisted signal amplification (NEASA). Therefore, a large amount of taqman probes were cleaved and fluorescence signal was amplified. The prepared fluorescent aptasensor bring sensitive detection in range of 0.1-100 ng mL -1 with the limit of detection of 0.07 ng mL -1 . Furthermore, this aptasensor was also successfully applied in real sample detection with acceptable accuracy. The fluorescent aptasensor provides a promising method for efficient, rapid and sensitive antibiotic detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4:Tb nanorods.

    PubMed

    Xu, Ai-Zhen; Zhang, Li; Zeng, Hui-Hui; Liang, Ru-Ping; Qiu, Jian-Ding

    2018-05-09

    A fluorometric method is described for the determination of the activity of alkaline phosphatase (ALP). It relies on the competition between gold nanoparticles (AuNPs) and pyrophosphate (PPi) for the coordination sites on the surface of CePO 4 :Tb nanorods. The green fluorescence of the CePO 4 :Tb is reduced in the presence of AuNPs due to fluorescence resonance energy transfer (FRET), but can be restored on addition of PPi due to the stronger affinity of PPi to the CePO 4 :Tb. In the presence of ALP, PPi is hydrolyzed to form phosphate which has much weaker affinity for the CePO 4 :Tb. Hence, the AuNPs will reassemble on the CePO 4 :Tb, and fluorescence is reduced. Fluorescence drops linearly in the 0.2 to 100 U·L -1 activity range, and the detection limit is 60 mU·L -1 (at S/N = 3). The method does not require any modification of the surface of the CePO 4 :Tb and is highly sensitive and selective. The inhibition of ALP activity by Na 3 VO 4 was also studied. In our perception, the method may find application in the diagnosis of ALP-related diseases, in screening for inhibitors, and in studies on ALP-related functions in biological systems. Graphical abstract A assay for the detection of alkaline phosphatase is proposed based on the fluorescence resonance energy transfer between CePO 4 :Tb and AuNPs. It relies on the competitive binding of AuNPs and pyrophosphate (PPi) to CePO 4 :Tb and the hydrolysis of PPi by ALP.

  6. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  7. Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices

    NASA Astrophysics Data System (ADS)

    Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Monteiro, Nicolas-Crespo; Ersen, Ovidiu; Brinkmann, Martin; Koch, Norbert

    2014-04-01

    Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements.

  8. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  9. Synthesis and characterization of polyaniline coated gold nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emissionmore » scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.« less

  10. Ultrafast and Efficient Transport of Hot Plasmonic Electrons by Graphene for Pt Free, Highly Efficient Visible-Light Responsive Photocatalyst.

    PubMed

    Kumar, Dinesh; Lee, Ahreum; Lee, Taegon; Lim, Manho; Lim, Dong-Kwon

    2016-03-09

    We report that reduced graphene-coated gold nanoparticles (r-GO-AuNPs) are excellent visible-light-responsive photocatalysts for the photoconversion of CO2 into formic acid (HCOOH). The wavelength-dependent quantum and chemical yields of HCOOH shows a significant contribution of plasmon-induced hot electrons for CO2 photoconversion. Furthermore, the presence and reduced state of the graphene layers are critical parameters for the efficient CO2 photoconversion because of the electron mobility of graphene. With an excellent selectivity toward HCOOH (>90%), the quantum yield of HCOOH using r-GO-AuNPs is 1.52%, superior to that of Pt-coated AuNPs (quantum yield: 1.14%). This indicates that r-GO is a viable alternative to platinum metal. The excellent colloidal stability and photocatalytic stability of r-GO-AuNPs enables CO2 photoconversion under more desirable reaction conditions. These results highlight the role of reduced graphene layers as highly efficient electron acceptors and transporters to facilitate the use of hot electrons for plasmonic photocatalysts. The femtosecond transient spectroscopic analysis also shows 8.7 times higher transport efficiency of hot plasmonic electrons in r-GO-AuNPs compared with AuNPs.

  11. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer

    2013-09-15

    This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Quantifying the Impact of Nanoparticle Coatings and Non-uniformities on XPS Analysis: Gold/silver Core-shell Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.

    2016-03-07

    Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less

  13. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.

    PubMed

    Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce

    2015-06-17

    We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.

  14. Two-color two-laser fabrication of gold nanoparticles in a PVA film

    NASA Astrophysics Data System (ADS)

    Sakamoto, Masanori; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro

    2006-03-01

    We developed a new method for the fabrication of gold nanoparticles (AuNps) in a poly(vinyl alcohol) film using a two-color two-laser irradiation. The benzophenone ketyl radical (BPH rad ) in the excited state (BPH rad (D 1)) was used as a reducing agent. Although BPH rad in the ground state also reduced AuCl4- to produce AuNps, the formation of AuNp was significantly enhanced by the BPH rad (D 1) generated by the two-color two-laser irradiation. Because the electron transfer from the BPH rad (D 1) to AuCl4- enhanced the formation of AuNps.

  15. A general route towards well-defined magneto- or fluorescent-plasmonic nanohybrids

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Kloust, Hauke; Bastús, Neus G.; Merkl, Jan-Philip; Tran, Huong; Flessau, Sandra; Feld, Artur; Schotten, Theo; Weller, Horst

    2013-11-01

    Herein, we present a general route towards defined nanohybrids, comprised of a fluorescent quantum dot (QD) or superparamagnetic iron oxide (Fe2O3) nanocrystal core and a tuneable corona of plasmonic gold or silver nanoparticles (NPs), adhered by a cross-linked poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG) matrix. To this end, the PEG-terminus of the amphiphilic polymer was acylated with lipoic acid (LA), which, as is known, forms quasi-covalent Au-thiol- or Ag-thiol-bonds. Surprisingly, by variation of the ratio of the different NPs, inverse core/satellite structures bearing QDs or Fe2O3 around a metallic NP core were obtained. Furthermore, gold NPs or even closed gold shells were grown by in situ reductive deposition of Au3+ ions on Fe2O3 NP seeds. Finally, in order to demonstrate the scope of the method, ternary nanohybrids, composed of QDs, Fe2O3 and Au NPs, were accomplished. All magneto-plasmonic and fluorescent-plasmonic materials were thoroughly characterized by absorption and emission spectroscopy, TEM and TEM-EDX. Antibody conjugation to these novel nanohybrids proved their practical utility in a prototype immunoassay.Herein, we present a general route towards defined nanohybrids, comprised of a fluorescent quantum dot (QD) or superparamagnetic iron oxide (Fe2O3) nanocrystal core and a tuneable corona of plasmonic gold or silver nanoparticles (NPs), adhered by a cross-linked poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG) matrix. To this end, the PEG-terminus of the amphiphilic polymer was acylated with lipoic acid (LA), which, as is known, forms quasi-covalent Au-thiol- or Ag-thiol-bonds. Surprisingly, by variation of the ratio of the different NPs, inverse core/satellite structures bearing QDs or Fe2O3 around a metallic NP core were obtained. Furthermore, gold NPs or even closed gold shells were grown by in situ reductive deposition of Au3+ ions on Fe2O3 NP seeds. Finally, in order to demonstrate the scope of the method, ternary nanohybrids, composed of QDs, Fe2O3 and Au NPs, were accomplished. All magneto-plasmonic and fluorescent-plasmonic materials were thoroughly characterized by absorption and emission spectroscopy, TEM and TEM-EDX. Antibody conjugation to these novel nanohybrids proved their practical utility in a prototype immunoassay. Electronic supplementary information (ESI) available: NMR spectra, magnetic purification, BrCN coupling of 2,2'-dithiobis(ethylamine), Au domain growth on OH- and COOH-functionalized iron oxide NPs, Ag/QD core/satellite hybrids and dot-blot analysis of Ms mAb to ovalbumin conjugated hybrids. See DOI: 10.1039/c3nr04155g

  16. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    PubMed

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Self-decorated Au nanoparticles on antireflective Si pyramids with improved hydrophobicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, C. P.; Barman, A.; Kanjilal, A., E-mail: aloke.kanjilal@snu.edu.in

    2016-04-07

    Post-deposition annealing mediated evolution of self-decorated Au nanoparticles (NPs) on chemically etched Si pyramids is presented. A distinct transformation of Si surfaces from hydrophilic to hydrophobic is initially found after chemical texturing, showing an increase in contact angle (CA) from 58° to 98° (±1°). Further improvement of hydrophobicity with CA up to ∼118° has been established after annealing a 10 nm thick Au-coated Si pyramids at 400 °C that led to the formation of Au NPs on Si facets along with self-ordering at the pyramid edges. Detailed x-ray diffraction studies suggest the evolution of crystalline Au NPs on strained Si facets. Microstructuralmore » studies, however, indicate no mixing of Au and Si atoms at the Au/Si interfaces, instead of forming Au nanocrystals at 400 °C. The improved hydrophobicity of Si pyramids, even with Au NPs can be explained in the light of a decrease in solid fractional surface area according to Wenzel's model. Moreover, a sharp drop in specular reflectance from Si pyramids in the range of 300–800 nm, especially in the ultraviolet region up to ∼0.4% is recorded in the presence of Au NPs by ultraviolet-visible spectroscopy, reflecting the possible use in photovoltaic devices with improved antireflection property.« less

  18. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    PubMed Central

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  19. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential

    PubMed Central

    2012-01-01

    Background Novel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential. Results Synthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. Conclusion The elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential. PMID:22548753

  20. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  1. In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan

    2018-05-01

    The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.

  2. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    PubMed

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    NASA Astrophysics Data System (ADS)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  4. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract

    NASA Astrophysics Data System (ADS)

    Dauthal, Preeti; Mukhopadhyay, Mausumi

    2013-01-01

    In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1'-diphynyl-2-picrylhydrazyl, DPPH and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.

  5. Applications of vitamin B6 cofactor pyridoxal 5‧-phosphate and pyridoxal 5‧-phosphate crowned gold nanoparticles for optical sensing of metal ions

    NASA Astrophysics Data System (ADS)

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Sahoo, Suban K.

    2017-03-01

    Vitamin B6 cofactor pyridoxal 5‧-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe3 +. The fluorescence intensity of PLP at 433 nm was also blue-shifted and enhanced at 395 nm upon addition of Al3 +. When the PLP was functionalized over AuNPs surface, the wine red colour of PLP-AuNPs was turned to purplish-blue and the SPR band at 525 nm was red-shifted upon addition of Al3 +, Cd2 + and Pb2 + due to the complexation-induced aggregation of nanoparticles. The developed sensing systems exhibited good selectivity and specificity for the detected analytes (Fe3 +, Al3 +, Cd2 + and Pb2 +).

  6. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing

    NASA Astrophysics Data System (ADS)

    Conde, João; Tian, Furong; Hernandez, Yulan; Bao, Chenchen; Baptista, Pedro V.; Cui, Daxiang; Stoeger, Tobias; de La Fuente, Jesus M.

    2015-05-01

    Gold glyconanoparticles (GlycoNPs) are full of promise in areas like biomedicine, biotechnology and materials science due to their amazing physical, chemical and biological properties. Here, siRNA GlycoNPs (AuNP@PEG@Glucose@siRNA) in comparison with PEGylated GlycoNPs (AuNP@PEG@Glucose) were applied in vitro to a luciferase-CMT/167 adenocarcinoma cancer cell line and in vivo via intratracheal instillation directly into the lungs of B6 albino mice grafted with luciferase-CMT/167 adenocarcinoma cells. siRNA GlycoNPs but not PEGylated GlycoNPs induced the expression of pro-apoptotic proteins such as Fas/CD95 and caspases 3 and 9 in CMT/167 adenocarcinoma cells in a dose dependent manner, independent of the inflammatory response, evaluated by bronchoalveolar lavage cell counting. Moreover, in vivo pulmonary delivered siRNA GlycoNPs were capable of targeting c-Myc gene expression (a crucial regulator of cell proliferation and apoptosis) via in vivo RNAi in tumour tissue, leading to an ~80% reduction in tumour size without associated inflammation.Gold glyconanoparticles (GlycoNPs) are full of promise in areas like biomedicine, biotechnology and materials science due to their amazing physical, chemical and biological properties. Here, siRNA GlycoNPs (AuNP@PEG@Glucose@siRNA) in comparison with PEGylated GlycoNPs (AuNP@PEG@Glucose) were applied in vitro to a luciferase-CMT/167 adenocarcinoma cancer cell line and in vivo via intratracheal instillation directly into the lungs of B6 albino mice grafted with luciferase-CMT/167 adenocarcinoma cells. siRNA GlycoNPs but not PEGylated GlycoNPs induced the expression of pro-apoptotic proteins such as Fas/CD95 and caspases 3 and 9 in CMT/167 adenocarcinoma cells in a dose dependent manner, independent of the inflammatory response, evaluated by bronchoalveolar lavage cell counting. Moreover, in vivo pulmonary delivered siRNA GlycoNPs were capable of targeting c-Myc gene expression (a crucial regulator of cell proliferation and apoptosis) via in vivo RNAi in tumour tissue, leading to an ~80% reduction in tumour size without associated inflammation. Electronic supplementary information (ESI) available: Synthesis, functionalization and quantification methods for siRNA-gold glyconanoparticles. See DOI: 10.1039/c4nr05742b

  7. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    PubMed

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong potential of uPIC-AuNP nanoarchitectures for systemic siRNA delivery to solid tumors.

  8. Synthesis of Gold Nanoparticles Using Garcinia Indica Fruit Rind Extract

    NASA Astrophysics Data System (ADS)

    Krishnaprabha, M.; Pattabi, Manjunatha

    2016-10-01

    This report presents the easily reproducible biosynthesis of gold nanoparticles (AuNPs) at room temperature with extract prepared using three year old dried Garcinia Indica (GI) fruit rind. Due to the presence of two major bioactive compounds garcinol and hydroxy citric acid, rinds of GI fruit exhibit anti-cancer and anti-obesity properties. The quantity of fruit rind extract directed the morphology of the as synthesized particles. The nucleation and growth of AuNPs and catalytic activity are studied using UV-Vis spectroscopy. The crystalline nature of biosynthesized AuNPs is corroborated by X-ray Diffraction techniques. The morphology is studied using field emission scanning electron microscopy (FESEM). Fourier transform infra-red (FTIR) spectroscopy analysis revealed that biomolecules were involved in the synthesis and capping of AuNPs. As the Fermi potential of noble metal NPs becomes more negative, they are used in various electron transfer processes. The AuNPs produced using GI extract showed excellent catalytic activity when used as a catalyst in the reduction of well-known toxic pollutant 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) in the presence of excess sodium borohydride.

  9. Effects of coating molecules on the magnetic heating properties of Au-Fe3O4 heterodimer nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ogasawara, J.; Himukai, H.; Itoh, T.

    2016-10-01

    In this paper, we report the heating properties of gold-magnetite (Au-Fe3O4) heterodimer nanoparticles (NPs) subjected to an alternating magnetic field. The Au-Fe3O4 NPs coated with oleic acid and oleylamine (OA) were synthesized through a method that combines seed mediation and high-temperature decomposition. The coating was replaced with dimercaptosuccinic acid (DMSA) by the ligand-exchange method. The specific absorption rates (SARs) for the OA- and DMSA-coated Au-Fe3O4 NPs coated with OA and DMSA at room temperature were determined through the calorimetric and magnetometric methods. SAR depended on the square of the magnetic field H up to an H value of 4 kA/m. The absolute value of the SAR for DMSA-coated NPs is about fivefold higher than that of the OA-coated NPs. The AC magnetic hysteresis measurements showed the recovery of the magnetic volume and the decrease in the magnetic anisotropy of the DMSA-coated NPs relative to those of the OA-coated NPs. These results suggest that the protective agent influences the magnetic properties of magnetite NPs via gold NPs.

  10. Electron flow in large metallomacromolecules and electronic switch of nanoparticle stabilization: new click ferrocenyl dentromers that reduce Au(III) to Au nanoparticles.

    PubMed

    Astruc, Didier; Wang, Qi; Fu, Fangyu; Martinez-Villacorta, Angel M; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Hunel, Julien; Vax, Amélie

    2018-06-04

    Click ferrocenyl-terminal dentromers, a family of arene-cored dendrimers with triple branching (9-Fc, 27-Fc, 81-Fc and 243-Fc) reduce Au(III) to ferricinium dentromer-stabilized Au nanoparticles (AuNPs). Cyclic voltammetry studies in CH2Cl2 show reversible CV waves with some adsorption for the 243-Fc dentromer and a number of redox groups found, 255 ± 25, using the Bard-Anson method, close to the theoretical number of 243. The dentromers reduce aqueous HAuCl4 to water-soluble ferricinium chloride dentromer-stabilized gold nanoparticles (AuNPs) with core sizes between 30 and 47 nm. These triazolylferricinium dentromer-stabilized AuNPs are reduced by cobaltocene to cobalticinium chloride and ferrocene dentromer-weakly stabilized AuNPs together with red shift of the AuNP plasmon. The weakness of the AuNP stabilization is characterized by dentromer extraction with CH2Cl2 along with irreversible AuNP agglomeration for the 9, 27 and 81-ferrocenyl dentromer, only the 243-ferrocenyl dentromer-AuNP withstanding this process. Altogether this demonstrates the electronic switch of the dentromer-mediated AuNP stabilization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystal-face-selective adsorption of Au nanoparticles onto polycrystalline diamond surfaces.

    PubMed

    Kondo, Takeshi; Aoshima, Shinsuke; Hirata, Kousuke; Honda, Kensuke; Einaga, Yasuaki; Fujishima, Akira; Kawai, Takeshi

    2008-07-15

    Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures.

  12. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications. Electronic supplementary information (ESI) available: More experimental details for the synthesis of AuNPs and AuNRs. Fig. S1, 1H NMR spectrum of LA-CSO-PC and Fig. S2, FT-IR spectrum of AuNP-LA-CSO-PC. See DOI: 10.1039/c3nr00284e

  13. Simultaneous electrochemical detection of dopamine and uric acid over ceria supported three dimensional gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Palanisamy, Sivakumar

    2014-12-01

    CeO2 is well known for being an active material to support the growth of Au nanoclusters (Au NCs). In this work, three dimensional (3D) Au NCs were deposited on three different shaped CeO2 nanostructures such as nanoparticles (NPs), nanorod arrays (NRAs) and nanoflowers (NFs) modified Ti substrate for electrochemical simultaneous detection of dopamine (DA) and uric acid (UA). The electrodeposition of 3D Au NCs were carried out via cyclic voltammetric (CV) method at over-potential, while CeO2 nanostructures were deposited by galvanostatic constant current method under the optimized conditions. The morphology and elemental composition analysis of 3D Au NCs with CeO2 nanostructures were characterized by SEM, XRD, XPS and EDAX measurements. The electrocatalytic activity of 3D Au NCs on different CeO2 supports were thoroughly investigated by using voltammetric and amperometric techniques. According to the obtained results, CeO2 NPs supported 3D Au NCs (3D Au NCs@CeO2 NPs) displayed strong signal for DA as compared to that of CeO2 NRAs (3D Au NCs@CeO2 NRAs) and CeO2 NFs supported 3D Au NCs (3D Au NCs@CeO2 NFs). In addition, the 3D Au NCs@CeO2 NPs electrode resulted in more sensitive and simultaneous detection of DA in the presence of excess UA. Thus, the 3D Au NCs@CeO2 NPs electrode can practically be applied for the detection of DA using biological samples.

  14. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  15. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  16. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  17. Self-assembly of DNA functionalized gold nanoparticles at the liquid-vapor interface

    DOE PAGES

    Zhang, Honghu; Wang, Wenjie; Hagen, Noah; ...

    2016-05-30

    Here, surface sensitive synchrotron X-ray scattering and spectroscopy are used to monitor and characterize the spontaneous formation of 2D Gibbs monolayers of thiolated single-stranded DNA-functionalized gold nanoparticles (ssDNAAuNPs) at the vapor–solution interface by manipulating salt concentrations. Grazing incidence small-angle X-ray scattering and X-ray refl ectivity show that the noncomplementary ssDNA-AuNPs dispersed in aqueous solution spontaneously accumulate at the vapor–liquid interface in the form of a single layer by increasing MgCl 2 or CaCl 2 concentrations. Furthermore, the monoparticle layer undergoes a transformation from short- to long-range (hexagonal) order above a threshold salt-concentration. Using various salts at similar ionic strength tomore » those of MgCl 2 or CaCl 2 such as, NaCl or LaCl 3, it is found that surface adsorbed NPs lack any order. X-ray fluorescence near total reflection of the same samples provides direct evidence of interfacial gold and more importantly a significant surface enrichment of the cations. Quantitative analysis reveals that divalent cations screen the charge of ssDNA, and that the hydrophobic hexyl-thiol group, commonly used to functionalize the ssDNA (for capping the AuNPs), is likely the driving force for the accumulation of the NPs at the interface.« less

  18. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeshkumar, Moorthy; Sastry, Thotapalli Parvathaleswara; Sathish Kumar, Muniram

    2012-09-15

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containingmore » nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.« less

  19. Acid-enhanced conformation changes of yeast cytochrome c coated onto gold nanoparticles, a FT-IR spectroscopic analysis.

    PubMed

    Dong, Aichun; Brown, Corina; Bai, Shufeng; Dong, Jian

    2018-06-01

    Under conditions with or without linker molecules, the effects of acidic pH on the conformation of yeast iso-1-cytochrome c coated onto gold nanoparticles (AuNPs) in correlation with color changes of a Cyt c-coated AuNPs solution/suspension were examined by Fourier transform infrared (FT-IR) spectroscopy and correlated to color change. The results of detailed secondary structural analysis revealed that although the color changes coincide with acid-induced conformational changes in Cyt c coated onto AuNPs, the pH-related conformational unfolding of Cyt c coated onto AuNPs differed dramatically from that of its counterpart in solution. For Cyt c free in solution, the acid-induced unfolding did not occur until the pH was below 3.0, whereas for Cyt c coated onto AuNPs via C102 coordination near the C-terminal, a partial unfolding was observed even at near neutral pH which continuously intensified as pH decreased. Insertion of a short alkanethiol (3-mercaptoproprionic acid, 3-MPA) molecule between Cyt c and AuNP, which changes the interaction mode from a thiol coordination between Cyt c and AuNP to an electrostatic interaction between Cyt c and 3-MPA, which stabilized the conformation of Cyt c significantly, but did not prevent the acid-induced aggregation of Cyt c-3MPA-AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO2 support.

    PubMed

    Demiroglu, Ilker; Fan, Tian-E; Li, Z Y; Yuan, Jun; Liu, Tun-Dong; Piccolo, Laurent; Johnston, Roy L

    2018-05-24

    The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.

Top