Sample records for au working electrode

  1. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    PubMed Central

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2017-01-01

    The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode-respiring Geobacter sulfurreducens biofilms. We found that AuNPs are generated in the extracellular matrix of Geobacter biofilms and have an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode-respiring G. sulfurreducens biofilms reduce Au3+ to AuNPs. From FTIR spectra, it appears that reduced sugars were involved in the bioreduction and synthesis of AuNPs and that amine groups acted as the major biomolecules involved in binding. PMID:27866628

  2. Fabrication of Lab-on-Paper Using Porous Au-Paper Electrode: Application to Tumor Marker Electrochemical Immunoassays.

    PubMed

    Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua

    2017-01-01

    A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.

  3. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  4. Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides.

    PubMed

    Qu, Yunhe; Min, Hong; Wei, Yinyin; Xiao, Fei; Shi, Guoyue; Li, Xiaohua; Jin, Litong

    2008-08-15

    In this paper, Au-TiO2/Chit modified electrode was prepared with Au-TiO2 nanocomposite (Au-TiO2) and Chitosan (Chit) as a conjunct. The Au-TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au-TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au-TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 x 10(3)ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.

  5. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    PubMed

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  6. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  7. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticlesmore » (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.« less

  8. Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold.

    PubMed

    Li, Haixing; Su, Timothy A; Camarasa-Gómez, María; Hernangómez-Pérez, Daniel; Henn, Simon E; Pokorný, Vladislav; Caniglia, Caravaggio D; Inkpen, Michael S; Korytár, Richard; Steigerwald, Michael L; Nuckolls, Colin; Evers, Ferdinand; Venkataraman, Latha

    2017-11-06

    We report that the single-molecule junction conductance of thiol-terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Φ(Ag)<Φ(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal-S covalent and metal-NH 2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol-terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work-functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki

    2005-02-01

    As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.

  10. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode

    PubMed Central

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-01-01

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl4 solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5–50 mg·L−1 nitrite with a limit of detection (LOD) of 0.12 mg·L−1. Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO2− solution and in sausage sample solution, to which different concentrations of NO2− standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples. PMID:27490543

  11. The effect of gold nanoparticles modified electrode on the glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zulfa Aiza; Ridhuan, Nur Syafinaz; Nor, Noorhashimah Mohamad; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-07-01

    In this work, 20 nm, 30 nm, 40 nm, 50 nm and 60 nm colloidal gold nanoparticles (AuNPs) were synthesized using the seeding growth method. AuNPs produced had spherical shape with uniform size. The AuNPs also are well dispersed in colloidal form that was proven by low polydispersity index. The produced AuNPs were used to modify electrode for glucose sensor. The produced AuNPs were deposited on indium tin oxide substrate (ITO), followed by immobilization of glucose oxidase (GOx) on it. After that, Nafion was deposited on the GOx/AuNPs/ITO. Electrooxidation of glucose with AuNPs-modified electrode was examined by cyclic voltammeter (CV) in 15 mM glucose mixed with 0.01 M PBS. The optimum size of AuNPs was 30 nm with optical density 3.0. AuNPs were successfully immobilized with glucose oxidase (GOx) and proved to work well as a glucose sensor. Based on the high electrocatalytic activity of Nafion/GOx/AuNPs/ITO, the sensitivity of the glucose sensors was further examined by varying the concentration of glucose solution from 2 mM to 20 mM in 0.01 M phosphate buffer solution (PBS) solution. Good linear relationship was observed between the catalytic current and glucose concentration in the range of 2 mM to 20 mM. The sensitivity of the Nafion/GOx/AuNPs/ITO electrode calculated from the slope of linear square calibration was 0.909 µA mM-1 cm-2 that is comparable with other published work. The linear fitting to the experimental data gives R-square of 0.991 at 0.9 V and a detection limit of 2.03 mM. This detection range is sufficient to be medically useful in monitoring human blood glucose level in which the normal blood glucose level is in the range of 4.4 to 6.6 mM and diabetic blood glucose level is above 7 mM.

  12. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  13. A facile approach for reducing the working voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field

    NASA Astrophysics Data System (ADS)

    Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.

    2018-01-01

    Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.

  14. Au-modified three-dimensional In2O3 inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes

    NASA Astrophysics Data System (ADS)

    Xing, Ruiqing; Li, Qingling; Xia, Lei; Song, Jian; Xu, Lin; Zhang, Jiahuan; Xie, Yi; Song, Hongwei

    2015-07-01

    Analyzing the volatile organic compounds (VOCs) in exhaled breath effectively is crucial to medical treatment, which can provide a fast and noninvasive way to diagnose disease. Well-designed materials with controlled structures have great influence on the sensing performance. In this work, the ordered three dimensional inverse opal (3DIO) macroporous In2O3 films with additional via-hole architectures were fabricated and different amounts of gold nanoparticles (Au NPs) were loaded on the In2O3 films aiming at enhancing their electrical responses. The gas sensing to acetone toward diabetes diagnosis in exhaled breath was performed with different Au/In2O3 electrodes. Representatively, the best 3DIO Au/In2O3 sensor can detect acetone effectively at 340 °C with response of 42.4 to 5 ppm, the actual detection limit is as low as 20 ppb, and it holds a dynamic response of 11 s and a good selectivity. Moreover, clinical tests proved that the as-prepared 3DIO Au/In2O3 IO sensor could distinguish acetone biomarkers in human breath clearly. The excellent gas sensing properties of the Au/In2O3 electrodes were attributed to the ``spillover effects'' between Au and In2O3 and the special 3DIO structure. This work indicates that 3DIO Au/In2O3 composite is a promising electrode material for actual application in the monitoring and detection of diabetes through exhaled breath.Analyzing the volatile organic compounds (VOCs) in exhaled breath effectively is crucial to medical treatment, which can provide a fast and noninvasive way to diagnose disease. Well-designed materials with controlled structures have great influence on the sensing performance. In this work, the ordered three dimensional inverse opal (3DIO) macroporous In2O3 films with additional via-hole architectures were fabricated and different amounts of gold nanoparticles (Au NPs) were loaded on the In2O3 films aiming at enhancing their electrical responses. The gas sensing to acetone toward diabetes diagnosis in exhaled breath was performed with different Au/In2O3 electrodes. Representatively, the best 3DIO Au/In2O3 sensor can detect acetone effectively at 340 °C with response of 42.4 to 5 ppm, the actual detection limit is as low as 20 ppb, and it holds a dynamic response of 11 s and a good selectivity. Moreover, clinical tests proved that the as-prepared 3DIO Au/In2O3 IO sensor could distinguish acetone biomarkers in human breath clearly. The excellent gas sensing properties of the Au/In2O3 electrodes were attributed to the ``spillover effects'' between Au and In2O3 and the special 3DIO structure. This work indicates that 3DIO Au/In2O3 composite is a promising electrode material for actual application in the monitoring and detection of diabetes through exhaled breath. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02709h

  15. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    PubMed Central

    Ouyang, Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue, Zi-Ling

    2012-01-01

    We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNPs layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol-gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNPs layer is then self-assembled on the surface of the sol-gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1,200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy. PMID:22444528

  16. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  17. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    PubMed

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  18. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  19. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  20. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  1. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum.

    PubMed

    Wang, Dan; Dou, Wenchao; Zhao, Guangying; Chen, Yan

    2014-11-01

    In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.

    PubMed

    Xing, Ruiqing; Li, Qingling; Xia, Lei; Song, Jian; Xu, Lin; Zhang, Jiahuan; Xie, Yi; Song, Hongwei

    2015-08-14

    Analyzing the volatile organic compounds (VOCs) in exhaled breath effectively is crucial to medical treatment, which can provide a fast and noninvasive way to diagnose disease. Well-designed materials with controlled structures have great influence on the sensing performance. In this work, the ordered three dimensional inverse opal (3DIO) macroporous In2O3 films with additional via-hole architectures were fabricated and different amounts of gold nanoparticles (Au NPs) were loaded on the In2O3 films aiming at enhancing their electrical responses. The gas sensing to acetone toward diabetes diagnosis in exhaled breath was performed with different Au/In2O3 electrodes. Representatively, the best 3DIO Au/In2O3 sensor can detect acetone effectively at 340 °C with response of 42.4 to 5 ppm, the actual detection limit is as low as 20 ppb, and it holds a dynamic response of 11 s and a good selectivity. Moreover, clinical tests proved that the as-prepared 3DIO Au/In2O3 IO sensor could distinguish acetone biomarkers in human breath clearly. The excellent gas sensing properties of the Au/In2O3 electrodes were attributed to the "spillover effects" between Au and In2O3 and the special 3DIO structure. This work indicates that 3DIO Au/In2O3 composite is a promising electrode material for actual application in the monitoring and detection of diabetes through exhaled breath.

  3. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    NASA Astrophysics Data System (ADS)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  4. Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing.

    PubMed

    Kizling, Michal; Dzwonek, Maciej; Olszewski, Bartłomiej; Bącal, Paweł; Tymecki, Łukasz; Więckowska, Agnieszka; Stolarczyk, Krzysztof; Bilewicz, Renata

    2017-09-15

    Three - dimensional (3D) electrodes are successfully used to overcome the limitations of the low space - time yield and low normalized space velocity obtained in electrochemical processes with two - dimensional electrodes. In this study, we developed a three - dimensional reticulated vitreous carbon - gold (RVC-Au) sponge as a scaffold for enzymatic fuel cells (EFC). The structure of gold and the real electrode surface area can be controlled by the parameters of metal electrodeposition. In particular, a 3D RVC-Au sponge provides a large accessible surface area for immobilization of enzyme and electron mediators, moreover, effective mass diffusion can also take place through the uniform macro - porous scaffold. To efficiently bind the enzyme to the electrode and enhance electron transfer parameters the gold surface was modified with ultrasmall gold nanoparticles stabilized with glutathione. These quantum sized nanoparticles exhibit specific electronic properties and also expand the working surface of the electrode. Significantly, at the steady state of power generation, the EFC device with RVC-Au electrodes provided high volumetric power density of 1.18±0.14mWcm -3 (41.3±3.8µWcm -2 ) calculated based on the volume of electrode material with OCV 0.741±0.021V. These new 3D RVC-Au electrodes showed great promise for improving the power generation of EFC devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nanoscale Polysulfides Reactors Achieved by Chemical Au-S Interaction: Improving the Performance of Li-S Batteries on the Electrode Level.

    PubMed

    Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping

    2015-12-23

    In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.

  6. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Efficient electrocatalytic conversion of CO.sub.2 to CO using ligand-protected Au.sub.25 clusters

    DOEpatents

    Kauffman, Douglas; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao; Alfonso, Dominic R.

    2015-09-22

    An apparatus and method for CO.sub.2 reduction using an Au.sub.25 electrode. The Au.sub.25 electrode is comprised of ligand-protected Au.sub.25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically --SR--Au--SR--Au--SR or --SeR--Au--SeR--Au--SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au.sub.13 core, and organic ligand --SR or --SeR groups are bonded to the Au.sub.13 core with sulfur or selenium atoms. The Au.sub.25 electrode and a counter-electrode are in contact with an electrolyte comprising CO.sub.2 and H+, and a potential of at least -0.1 volts is applied from the Au.sub.25 electrode to the counter-electrode.

  8. Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires.

    PubMed

    Lee, Won Seok; Won, Sejeong; Park, Jeunghee; Lee, Jihye; Park, Inkyu

    2012-06-07

    Controlled alignment and mechanically robust bonding between nanowires (NWs) and electrodes are essential requirements for reliable operation of functional NW-based electronic devices. In this work, we developed a novel process for the alignment and bonding between NWs and metal electrodes by using thermo-compressive transfer printing. In this process, bottom-up synthesized NWs were aligned in parallel by shear loading onto the intermediate substrate and then finally transferred onto the target substrate with low melting temperature metal electrodes. In particular, multi-layer (e.g. Cr/Au/In/Au and Cr/Cu/In/Au) metal electrodes are softened at low temperatures (below 100 °C) and facilitate submergence of aligned NWs into the surface of electrodes at a moderate pressure (∼5 bar). By using this thermo-compressive transfer printing process, robust electrical and mechanical contact between NWs and metal electrodes can be realized. This method is believed to be very useful for the large-area fabrication of NW-based electrical devices with improved mechanical robustness, electrical contact resistance, and reliability.

  9. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis, characterization, and electrochemical behavior of Au@Pd core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wicaksono, W. P.; Ivandini, T. A.

    2017-04-01

    Au@Pd core shell nanoparticles (Au@Pd CSNPs) were successfully synthesized using a seed-mediated growth method. Firstly, a pale pink gold seed solution was used to produce a pale purple gold nanoparticles (AuNPs) core solution. Then, three series of Pd shell thickness using 20μ, 100 μL, and 500 μL of PdCl2 produced purple, brown, and deep brown of Au@Pd CSNPs respectively. A strong absorbance UV-Visible spectrum with peaks at 285 nm and 535 nm was identified for AuNPs formation. The disappearance of the peak at 535 nm was indicated the Au@Pd CSNPs formation. The electrochemical properties were examined in phosphate buffer pH 7 using cyclic voltammetry technique with boron-doped diamond (BDD) as working electrode showed a couple oxidation and reduction peak of gold at 0.67 V and at 0.33 V, respectively. The Au@Pd CNPs will be used for modification of BDD electrodes.

  11. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles.

    PubMed

    Lee, Yi-Jae; Park, Jae-Yeong

    2010-12-15

    A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes.

    PubMed

    Chauhan, Nidhi; Singh, Anamika; Narang, Jagriti; Dahiya, Swati; Pundir, C S

    2012-11-07

    The construction of two amperometric l-lysine biosensors is described in this study. The construction comprises the covalent immobilization of lysine oxidase (LOx) onto nanocomposite composed of gold nanoparticles (AuNPs) and carboxylated multiwalled carbon nanotubes (c-MWCNT), decorated on (i) polyaniline (PANI) and (ii) poly 1,2 diaminobenzene (DAB), electrodeposited on Au electrodes. The biosensors were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and electrochemical impedance spectroscopy (EIS) studies. The optimum response (current) was observed within 2 s at pH 7.0 and 25 °C for LOx/AuNPs/c-MWCNT/PANI/Au, and 4 s at pH 7.0 and 30 °C for LOx/AuNPs/c-MWCNT/DAB/Au electrodes. There was a linear relationship between current and lysine concentration ranging from 5.0 to 600 μM for LOx/AuNPs/c-MWCNT/PANI/Au with a detection limit of 5.0 μM, and 20 to 600 μM for the LOx/AuNPs/c-MWCNT/DAB/Au electrode with a detection limit of 20 μM. The PANI modified electrode was in good agreement with the standard HPLC method, with a better correlation (r = 0.992) compared to the DAB modified electrode (r = 0.986). These observations revealed that the PANI modified Au electrode was better than the DAB modified electrode, and hence it was employed for the determination of lysine in milk, pharmaceutical tablets and sera. The PANI modified electrode showed a half life of 120 days, compared to that of 90 days for the DAB modified electrode, after their 100 uses, when stored at 4 °C.

  13. Determination of work function of graphene under a metal electrode and its role in contact resistance.

    PubMed

    Song, Seung Min; Park, Jong Kyung; Sul, One Jae; Cho, Byung Jin

    2012-08-08

    Although the work function of graphene under a given metal electrode is critical information for the realization of high-performance graphene-based electronic devices, relatively little relevant research has been carried out to date. In this work, the work function values of graphene under various metals are accurately measured for the first time through a detailed analysis of the capacitance-voltage (C-V) characteristics of a metal-graphene-oxide-semiconductor (MGOS) capacitor structure. In contrast to the high work function of exposed graphene of 4.89-5.16 eV, the work function of graphene under a metal electrode varies depending on the metal species. With a Cr/Au or Ni contact, the work function of graphene is pinned to that of the contacted metal, whereas with a Pd or Au contact the work function assumes a value of ∼4.62 eV regardless of the work function of the contact metal. A study of the gate voltage dependence on the contact resistance shows that the latter case provides lower contact resistance.

  14. Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance.

    PubMed

    Nirala, Narsingh R; Abraham, Shiju; Kumar, Vinod; Pandey, Shobhit A; Yadav, Umakant; Srivastava, Monika; Srivastava, S K; Singh, Vidya Nand; Kayastha, Arvind M; Srivastava, Anchal; Saxena, Preeti S

    2015-11-01

    The present work proposes partially reduced graphene oxide-gold nanorods supported by chitosan (CH-prGO-AuNRs) as a potential bioelectrode material for enhanced glucose sensing. Developed on ITO substrate by immobilizing glucose oxidase on CH-prGO-AuNRs composite, these CH-prGO-AuNRs/ITO bioelectrodes demonstrate high sensitivity of 3.2 µA/(mg/dL)/cm(2) and linear range of 25-200 mg/dL with an ability to detect as low as 14.5 mg/dL. Further, these CH-prGO-AuNRs/ITO based electrodes attest synergistiacally enhanced sensing properties when compared to simple graphene oxide based CH-GO/ITO electrode. This is evident from one order higher electron transfer rate constant (Ks) value in case of CH-prGO-AuNRs modified electrode (12.4×10(-2) cm/s), in contrast to CH-GO/ITO electrode (6×10(-3) cm/s). Additionally, very low Km value [15.4 mg/dL(0.85 mM)] ensures better binding affinity of enzyme to substrate which is desirable for good biosensor stability and resistance to environmental interferences. Hence, with better loading capacity, kinetics and stability, the proposed CH-prGO-AuNRs composite shows tremendous potential to detect several bio-analytes in the coming future. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. On-Chip Supercapacitor Electrode Based On Polypyrrole Deposited Into Nanoporous Au Scaffold

    NASA Astrophysics Data System (ADS)

    Lu, P.; Ohlckers, P.; Chen, X. Y.

    2016-11-01

    On-chip supercapacitors hold the potential promise for serving as the energy storage units in integrated circuit system, due to their much higher energy density in comparison with conventional dielectric capacitors, high power density and long-term cycling stability. In this study, nanoporous Au (NP-Au) film on-chip was employed as the electrode scaffold to help increase the electrolyte-accessible area for active material. Pseudo-capacitive polypyrrole (PPY) with high theoretical capacitance was deposited into the NP-Au scaffold, to construct the tailored NP-Au/PPY hybrid on-chip electrode with improved areal capacitance. Half cell test in three- electrode system revealed the improved capacitor performance of nanoporous Au supported PPY electrode, compared to the densely packed PPY nanowire film electrode on planer Au substrate (Au/PPY). The areal capacitance of 37 mF/cm2∼10 mV/s, 32 mF/cm2∼50 mV/s, 28 mF/cm2∼100 mV/s, 16 mF/cm2∼500 mV/s, were offered by NP-Au/PPY. Also, the cycling performance was enhanced via using NP-Au scaffold. The developed NP-Au/PPY on-chip electrode demonstrated herein paves a feasible pathway to employ dealloying derived porous metal as the scaffold for improving both the energy density and cycling performance for supercapacitor electrodes.

  16. Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe₂O₄/Au Hybrid Nanospheres Modified Glass Carbon Electrode.

    PubMed

    Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing

    2016-06-22

    Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.

  17. Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide.

    PubMed

    Yan, Yuting; Liu, Qian; Wang, Kun; Jiang, Ling; Yang, Xingwang; Qian, Jing; Dong, Xiaoya; Qiu, Baijing

    2013-12-07

    This work reports a novel strategy to amplify the electrochemiluminescence (ECL) signal of peroxydisulfate solution based on the Au nanoparticle decorated reduced graphene oxide (Au NP-RGO), and further an ECL biosensor for sensitive and selective detection of dopamine (DA) was constructed. Due to the synergistic amplification of Au NPs and RGO, the ECL signal of peroxydisulfate solution on the Au NP-RGO modified electrode was about 5-fold enhanced compared to that of the bare electrode with the ECL onset potential positively shifted from -1.2 V to -0.9 V. More interestingly, the ECL intensity of peroxydisulfate solution increased with the increase of DA concentration, based on which an ECL biosensor for DA determination was fabricated. The as-prepared solid-state ECL DA sensor showed a wide linear response of 0.02-40 μM with a detection limit of 6.7 nM (S/N = 3). Moreover, we expect this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.

  18. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    PubMed

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Gui, Jinzheng; Zhu, Yezi; Zhang, Lingling; Shu, Xi; Liu, Wei; Guo, Shishang; Zhao, Xingzhong

    2018-02-01

    A piezoelectric nanogenerator based on poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] nanofibers with an Au interdigital electrode (IDT)/P(VDF-TrFE) nanofiber film/well-ordered cylindrical cavity structure was prepared by combining Au IDTs with a rotary collector to obtain highly aligned P(VDF-TrFE) nanofiber arrays. The Au IDTs work not only as parallel electrodes to collect P(VDF-TrFE) nanofibers during electrospinning but also as charge-collecting electrodes in the nanogenerator. The well-ordered cylindrical cavities improve output performance by enhancing the deformation of P(VDF-TrFE) nanofiber films when subjected to external force. The nanogenerator performs well; as an example of application, we demonstrate energy harvesting from human walking, with a peak output voltage of 5 V and a peak short-circuit current of 1.2 μA. Such a device could have practical applications in wearable, self-powered devices.

  20. Novel electrode systems for amperometric sensing: the case of titanium

    NASA Astrophysics Data System (ADS)

    Terzi, F.; Pigani, L.; Zanardi, C.; Zanfrognini, B.; Ruggeri, S.; Maccaferri, G.; Seeber, R.

    2014-10-01

    After working for years on organic materials, e.g., polythiophenes and relevant composites with metal nanoparticles, we shifted our attention to unusual metals, chosen as candidates to effective amperometric sensing on the basis of the atomic structure and crystalline properties. The present contribution aims at proposing an electrode material rarely employed in electroanalysis, namely Ti. We have experimented that the peculiar nature of Ti leads to electrochemical behavior quite different with respect to the conventional electrode materials, including those based on TiO2 (nano)particles. Our work focuses on the determination of strong oxidizing species, namely H2O2 and HClO, and noble metal ions, namely Au(III). Strong oxidizing species are commodity chemicals employed in a number of different industrial processes, in which usually high concentration levels should be monitored. The procedures proposed have been successfully applied also in complex matrices, such as detergent samples. As to Au(III) determination, it also constitutes a crucial tool in order to increase the efficiency of hydrometallurgic processes and of the recovery of precious materials from electronic waste. Ti electrodes allow the determination of dissolved Au species in the presence of other metal ions. In any cases the electrodes exhibit reproducible and repeatable electrochemical responses, even in the presence of high concentration of organic fouling species typical of bio-sorption processes.

  1. Hg(2+) detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles.

    PubMed

    Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana

    2016-05-01

    A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.

  2. 3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize.

    PubMed

    Fátima Barroso, M; Freitas, Maria; Oliveira, M Beatriz P P; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; Delerue-Matos, Cristina

    2015-03-01

    In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. In Situ Electrochemical Sensing and Real-Time Monitoring Live Cells Based on Freestanding Nanohybrid Paper Electrode Assembled from 3D Functionalized Graphene Framework.

    PubMed

    Zhang, Yan; Xiao, Jian; Lv, Qiying; Wang, Lu; Dong, Xulin; Asif, Muhammad; Ren, Jinghua; He, Wenshan; Sun, Yimin; Xiao, Fei; Wang, Shuai

    2017-11-08

    In this work, we develop a new type of freestanding nanohybrid paper electrode assembled from 3D ionic liquid (IL) functionalized graphene framework (GF) decorated by gold nanoflowers (AuNFs), and explore its practical application in in situ electrochemical sensing of live breast cell samples by real-time tracking biomarker H 2 O 2 released from cells. The AuNFs modified IL functionalized GF (AuNFs/IL-GF) was synthesized via a facile and efficient dopamine-assisted one-pot self-assembly strategy. The as-obtained nanohybrid assembly exhibits a typical 3D hierarchical porous structure, where the highly active electrocatalyst AuNFs are well dispersed on IL-GF scaffold. And the graft of hydrophilic IL molecules (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ) on graphene nanosheets not only avoids their agglomeration and disorder stacking during the self-assembly but also endows the integrated IL-GF monolithic material with unique hydrophilic properties, which enables it to be readily dispersed in aqueous solution and processed into freestanding paperlike material. Because of the unique structural properties and the combinational advantages of different components in the AuNFs/IL-GF composite, the resultant nanohybrid paper electrode exhibits good nonenzymatic electrochemical sensing performance toward H 2 O 2 . When used in real-time tracking H 2 O 2 secreted from different breast cells attached to the paper electrode without or with radiotherapy treatment, the proposed electrochemical sensor based on freestanding AuNFs/IL-GF paper electrode can distinguish the normal breast cell HBL-100 from the cancer breast cells MDA-MB-231 and MCF-7 cells, and assess the radiotherapy effects to different breast cancer cells, which opens a new horizon in real-time monitoring cancer cells by electrochemical sensing platform.

  4. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor

    PubMed Central

    Sun, Kai; Chang, Yong; Zhou, Binbin; Wang, Xiaojin; Liu, Lin

    2017-01-01

    This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. PMID:28331314

  5. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    PubMed Central

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples. PMID:23584124

  6. Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a Sonogel-Carbon material as supporting electrode: electroanalytical study in apple juice for babies.

    PubMed

    Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma

    2013-04-12

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples.

  7. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.

    PubMed

    Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo

    2014-02-15

    We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.

  8. Preparation of indium tin oxide contact to n-CdZnTe gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Li, Leqi; Xu, Yadong; Zhang, Binbin; Wang, Aoqiu; Dong, Jiangpeng; Yu, Hui; Jie, Wanqi

    2018-03-01

    The nonmetal electrode material Indium Tin Oxide (ITO) has advantages of excellent conductivity, higher adhesion, and interface stability, showing potential to replace the metallic contacts for fabrication of CdZnTe (CZT) X/γ-ray detectors. In this work, high quality ITO electrodes for n-type CZT crystals were prepared by magnetron sputtering under a sputtering power of 75 W and a sputtering pressure of 0.6 Pa. A low dark current of ˜1 nA is achieved for the 5 × 5 × 2 mm3 ITO/CZT/ITO planar device under 100 V bias. The characteristics of Schottky contact are presented in the room temperature I-V curves, which are similar to those of the Au contact detectors. Based on the thermoelectric emission theory, the contact barrier and resistance of ITO electrodes are evaluated to be 0.902-0.939 eV and 0.87-3.56 × 108 Ω, respectively, which are consistent with the values of the Au electrodes. The ITO/CZT/ITO structure detector exhibits a superior energy resolution of 6.5% illuminated by the uncollimated 241Am @59.5 keV γ-ray source, which is comparable to the CZT detector with Au electrodes.

  9. Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium

    PubMed Central

    Gougis, Maxime; Ma, Dongling; Mohamedi, Mohamed

    2015-01-01

    In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 μA cm−2 mM−1 up to 10 mM of glucose and a low detection limit of 10 μM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. PMID:25931820

  10. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    PubMed

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  11. Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode.

    PubMed

    Song, Yang; Swain, Greg M

    2007-03-15

    We demonstrate that a Au-coated, boron-doped, diamond thin-film electrode provides a sensitive, reproducible, and stable response for total inorganic arsenic (As(III) and As(V)) using differential pulse anodic stripping voltammetry (DPASV). As is preconcentrated with Au on the diamond surface during the deposition step and detected oxidatively during the stripping step. Au deposition was uniform over the electrode surface with a nominal particle size of 23 +/- 5 nm and a particle density of 109 cm-2. The electrode and method were used to measure the As(III) concentration in standard and river water samples. The detection figures of merit were compared with those obtained using conventional Au-coated glassy carbon and Au foil electrodes. The method was also used to determine the As(V) concentration in standard solutions after first being chemically reduced to As(III) with Na2SO3, followed by the normal DPASV determination of As(III). Sharp and symmetric stripping peaks were generally observed for the Au-coated diamond electrode. LODs were 0.005 ppb (S/N = 3) for As(III) and 0.08 ppb (S/N = 3) for As(V) in standard solutions. An As(III) concentration of 0.6 ppb was found in local river water. The relative standard deviation of the As stripping peak current for river water was 1.5% for 10 consecutive measurements and was less than 9.1% over a 10-h period. Excellent electrode response stability was observed even in the presence of up to 5 ppm of added humic acid. In summary, the Au-coated diamond electrode exhibited better performance for total inorganic As analysis than did Au-coated glassy carbon or Au foil electrodes. Clearly, the substrate on which the Au is supported influences the detection figures of merit.

  12. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    PubMed

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  13. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Graphene-gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor.

    PubMed

    Sabury, Sina; Kazemi, Sayed Habib; Sharif, Farhad

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene-gold nanocomposite (PRGO-AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO-AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV-Vis spectroscopy were used to confirm formation of graphene and graphene-gold composite. Then, the electrochemical behavior of PRGO-AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO-AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06μM and 15.04mAmM(-1), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spontaneous grafting: a novel approach to graft diazonium cations on gold nanoparticles in aqueous medium and their self-assembly on electrodes.

    PubMed

    Kesavan, Srinivasan; John, S Abraham

    2014-08-15

    The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU).

    PubMed

    Hasanzadeh, Mohammad; Zargami, Amir; Baghban, Hossein Navay; Mokhtarzadeh, Ahad; Shadjou, Nasrin; Mahboob, Soltanali

    2018-05-16

    The genetic disorder phenylketonuria (PKU) is the inability to metabolize phenylalanine because of a lack of the enzyme phenylalanine hydroxylase. Phenylalanine is used to biochemically form proteins, coded for by DNA. The development of an apta-assay for detection of l-Phenylalanine is presented in this work. A highly specific DNA-aptamer, selected to l-Phenylalanine was immobilized onto a gold nanostructure and electrochemical measurements were performed in a solution containing the phosphate buffer solution with physiological pH. We have constructed an aptamer immobilized gold nanostructure mediated, ultrasensitive electrochemical biosensor (Apt/AuNSs/Au electrode) for l-Phenylalanine detection without any additional signal amplification strategy. The aptamer assemble onto the AuNSs makes Apt/AuNSs/Au electrode an excellent platform for the l-Phenylalanine detection in physiological like condition. Differential pulse voltammetry were used for the quantitative l-Phenylalanine detection. The Apt/AuNSs/Au electrode offers an ultrasensitive and selective detection of l-Phenylalanine down to 0.23 μM level with a wide dynamic range from 0.72 μM-6 mM. The aptasensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the unprocessed human serum samples with various concentration of l-Phenylalanine and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this apta-assay provides an efficient and promising diagnosis of phenylketonuria. Copyright © 2018. Published by Elsevier B.V.

  17. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH 3NH 3PbI 3 : Implications on Solar Cell Degradation and Choice of Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu

    Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less

  18. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode.

    PubMed

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu; Zhang, Lijun; Du, Mao-Hua

    2018-02-01

    Solar cells based on methylammonium lead triiodide (MAPbI 3 ) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3 -based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3 . In addition to Au, many other metals have been used as electrodes in MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.

  19. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH 3NH 3PbI 3 : Implications on Solar Cell Degradation and Choice of Electrode

    DOE PAGES

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu; ...

    2017-12-27

    Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less

  20. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode

    PubMed Central

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu

    2017-01-01

    Abstract Solar cells based on methylammonium lead triiodide (MAPbI3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long‐term stability of MAPbI3‐based solar cells has yet to be achieved. Besides the well‐known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI3. In addition to Au, many other metals have been used as electrodes in MAPbI3 solar cells. However, how the external metal impurities introduced by electrodes affect the long‐term stability of MAPbI3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI3 based on first‐principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI3 while having low resistivities and suitable work functions for carrier extraction. PMID:29610728

  1. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions.

    PubMed

    Seo, Yeji; Manivannan, Shanmugam; Kang, Inhak; Lee, Seung-Wuk; Kim, Kyuwon

    2017-08-15

    We developed a biosensor for nitrite ion on an electrode surface modified with M13 viruses and gold nanostructures. Gold dendritic nanostructures (Au-DNs) are electrochemically co-deposited from 4E peptides engineered M13 virus (M13 4E ) mixed electrolyte on to the ITO electrode. The M13 4E could specifically nucleate Au precursor (Gold (III) chloride), which enable the efficient growth of dendritic nanostructures, whereas such dendritic structures were not obtained in the presence of wild-type and Y3E peptides engineered M13 viruses. The structural features of the Au-DNs and their interfacing mechanism with ITO electrode are characterized by SEM, EDX and XRD analyses. The growth of Au-DNs at ITO electrode has been monitored by time dependent SEM study. The M13 4E induces the formation and plays a crucial role in shaping the dendritic morphology for Au. Biosensor electrode was constructed using Au-DNs modified electrode for nitrite ions and found improved sensitivity relative to the sensor electrode prepared from wild-type M13, Y3E peptides engineered M13 and without M13. Sensor electrode exhibited good selectivity toward target analyte from the possible interferences. Furthermore, 4E native peptides were used as additive to deposit Au nanostructures and it is compared with the structure and reactivity of the Au nanostructures prepared in the presence of M13 4E . Our novel biosensor fabrication can be extended to other metal and metal oxide nanostructures and its application might be useful to develop novel biosensor electrode for variety of biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance.

    PubMed

    Engelkes, Vincent B; Beebe, Jeremy M; Frisbie, C Daniel

    2004-11-03

    Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).

  3. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  4. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes.

    PubMed

    Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G

    2004-09-20

    The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.

  5. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

    PubMed Central

    Lee, Chang-Seuk; Yu, Su Hwan; Kim, Tae Hyun

    2017-01-01

    Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from −1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality. PMID:29301209

  6. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    PubMed

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Oxidized Ni/Au Transparent Electrode in Efficient CH3 NH3 PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells.

    PubMed

    Lai, Wei-Chih; Lin, Kun-Wei; Wang, Yuan-Ting; Chiang, Tsung-Yu; Chen, Peter; Guo, Tzung-Fang

    2016-05-01

    The successful application of a Ni/Au transparent electrode for fabricating efficient perovskite-based solar cells is demonstrated. Through interdiffusion of the Ni/Au bilayer, Au forms an interconnected metallic network structure as the transparent electrode. Ni diffuses to the bilayer surface and oxidizes into NiOx becoming an appropriate electrode interlayer. These ITO- and PSS-free devices have potential applications in the design of future cost-effective, low-weight, and stable solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes.

    PubMed

    Gomes, Rui S; Moreira, Felismina T C; Fernandes, Ruben; Sales, M Goreti F

    2018-01-01

    This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15-3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15-3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes.

  9. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes

    PubMed Central

    Gomes, Rui S.; Moreira, Felismina T. C.; Fernandes, Ruben

    2018-01-01

    This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15–3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15–3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes. PMID:29715330

  10. Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes.

    PubMed

    Bao, Chunxiong; Zhu, Weidong; Yang, Jie; Li, Faming; Gu, Shuai; Wang, Yangrunqian; Yu, Tao; Zhu, Jia; Zhou, Yong; Zou, Zhigang

    2016-09-14

    Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 μs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.

  11. The Au Cathode in the System Li2CO3-CO2-CO at 800 to 900 C

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H.

    1991-01-01

    Gold is one of several metals being evaluated at NASA Lewis Research Center as positive electrode catalysts for an alkali metal/molten alkali metal carbonate/carbon dioxide electrochemical cell. Such a cell is proposed for CO2-rich planetary atmospheres such as those of Mars and Venus. Its application could be as a primary power supply, as a secondary power supply recharged either 'chemically' by replenishment of the alkali metal or electrochemically from a central station power source, or as a converter of carbon dioxide to oxygen via a complete electrochemical cycle. For the work being reported, lithium was assumed to be the alkali metal of choice for the negative electrode of the cell, and therefore molten lithium carbonate was the electrolyte used in the Au electrode experiments. Cathodic linear sweep voltammetry (LSV) was the primary analytical technique for evaluating the performance of the Au cathode. interest comprised the cell temperature and the total pressure and composition of the reactant gas. In the absence of operational difficulties, the effect of bubbling the reactant gas through the melt was also determined. On the basis of the variation of electrode performance with changes in these parameters, inferences have been made concerning the electrochemical and chemical processes at and near the electrode. The results of post-test micrographic analyses of the Au cathode are also presented. An attempt is then made to project from the experimental results to some relevant conclusions pertaining to a gold cathode in a practical alkali metal - carbon dioxide cell.

  12. Top-Contact Pentacene-Based Organic Thin Film Transistor (OTFT) with N, N'-Bis(3-Methyl Phenyl)- N, N'-Diphenyl Benzidine (TPD)/Au Bilayer Source-Drain Electrode

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2018-01-01

    A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.

  13. Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection.

    PubMed

    Nantaphol, Siriwan; Watanabe, Takeshi; Nomura, Naohiro; Siangproh, Weena; Chailapakul, Orawon; Einaga, Yasuaki

    2017-12-15

    The enormous demand for medical diagnostics has encouraged the fabrication of high- performance sensing platforms for the detection of glucose. Nonenzymatic glucose sensors are coming ever closer to being used in practical applications. Bimetallic catalysts have been shown to be superior to single metal catalysts in that they have greater activity and selectivity. Here, we demonstrate the preparation, characterization, and electrocatalytic characteristics of a new bimetallic Pt/Au nanocatalyst. This nanocatalyst can easily be synthesized by electrodeposition by sequentially depositing Au and Pt on the surface of a boron-doped diamond (BDD) electrode. We characterized the nanocatalyst by scanning electron microscopy (SEM), X-ray diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the electrodeposition process and the molar ratio between the Pt and Au precursors. The electrocatalytic characteristics of a Pt/Au/BDD electrode for the nonenzymatic oxidation of glucose were systematically investigated by cyclic voltammetry. The electrode exhibits higher catalytic activity for glucose oxidation than Pt/BDD and Au/BDD electrodes. The best catalytic activity and stability was obtained with a Pt:Au molar ratio of 50:50. Moreover, the presence of Au can significantly enhance the long-term stability and poisoning tolerance during the electro-oxidation of glucose. Measurements of glucose using the Pt/Au/BDD electrode were linear in the range from 0.01 to 7.5mM, with a detection limit of 0.0077mM glucose. The proposed electrode performs selective electrochemical analysis of glucose in the presence of common interfering species (e.g., acetaminophen, uric and ascorbic acids), avoiding the generation of overlapping signals from such species. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  15. An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles-polyaniline hybrid composites.

    PubMed

    Nascimento, Helena P O; Oliveira, Maria D L; de Melo, Celso P; Silva, Gilcelia J L; Cordeiro, Marli T; Andrade, Cesar A S

    2011-09-01

    In this work, we describe the preparation and characterization of a novel gold nanoparticles-polyaniline hybrid composite (AuNpPANI) with SH-terminal groups that, due to its ability of immobilizing dengue serotype-specific primers 1, 2 and 3 (ST1, ST2 and ST3), can be used for the development of biosensors. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were performed. CV and EIS results demonstrated that the AuNpPANI can immobilize ST1, ST2 and ST3, forming AuNpPANI-ST complexes. Well-defined cyclic voltammograms characteristic of a diffusion-limited redox process were observed both for the bare gold electrode and after these electrodes have been modified by the adsorption of AuNpPANI or AuNpPANI-ST. The AuNpPANI-ST(1-3) systems were able to recognize the dengue serotype of different patients at picomolar concentrations. Even when small volumes and low concentrations of the analyte were used, the CV and EIS results showed unequivocal evidence of an existing interaction between dengue serotype-specific primers and their complementary genomic DNA targets. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  17. Simultaneous electrochemical detection of dopamine and uric acid over ceria supported three dimensional gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Palanisamy, Sivakumar

    2014-12-01

    CeO2 is well known for being an active material to support the growth of Au nanoclusters (Au NCs). In this work, three dimensional (3D) Au NCs were deposited on three different shaped CeO2 nanostructures such as nanoparticles (NPs), nanorod arrays (NRAs) and nanoflowers (NFs) modified Ti substrate for electrochemical simultaneous detection of dopamine (DA) and uric acid (UA). The electrodeposition of 3D Au NCs were carried out via cyclic voltammetric (CV) method at over-potential, while CeO2 nanostructures were deposited by galvanostatic constant current method under the optimized conditions. The morphology and elemental composition analysis of 3D Au NCs with CeO2 nanostructures were characterized by SEM, XRD, XPS and EDAX measurements. The electrocatalytic activity of 3D Au NCs on different CeO2 supports were thoroughly investigated by using voltammetric and amperometric techniques. According to the obtained results, CeO2 NPs supported 3D Au NCs (3D Au NCs@CeO2 NPs) displayed strong signal for DA as compared to that of CeO2 NRAs (3D Au NCs@CeO2 NRAs) and CeO2 NFs supported 3D Au NCs (3D Au NCs@CeO2 NFs). In addition, the 3D Au NCs@CeO2 NPs electrode resulted in more sensitive and simultaneous detection of DA in the presence of excess UA. Thus, the 3D Au NCs@CeO2 NPs electrode can practically be applied for the detection of DA using biological samples.

  18. High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes.

    PubMed

    Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong

    2018-05-09

    Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

  19. In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko

    2014-09-29

    We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticlesmore » in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.« less

  20. Ethanol electrooxidation in alkaline medium on electrochemically synthesized Co(OH)2/Au composite

    NASA Astrophysics Data System (ADS)

    Babu, Sreejith P.; Elumalai, Perumal

    2017-01-01

    Gold (Au), cobalt hydroxide (Co(OH)2) and different Co(OH)2/Au compositions were electro-deposited onto stainless steel by a potentiodynamic method from the respective metal-ion solutions. The deposits were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transformed infra-red spectroscopy (FT-IR). The XRD and IR data confirmed that the deposits were Au, α-Co(OH)2 or Co(OH)2/Au composites. The SEM observations confirmed that the morphology of the Au was spherical, while the α-Co(OH)2 was flakey with pores. The morphology of the Co(OH)2/Au composites consisted of highly agglomerated Au grains distributed on the Co(OH)2 matrix. The electrocatalytic activity of each of the Au, Co(OH)2 and Co(OH)2/Au-composite electrodes towards ethanol electrooxidation in an alkaline medium was investigated by cyclic voltammetry and chronoamperometry. It turned out that the Co(OH)2/Au-composite electrodes exhibited superior catalytic activity for ethanol electrooxidation compared with the pristine Au or Co(OH)2 electrodes. A peak current density as high as 25 mA cm-2 was exhibited by the Co(OH)2/ Au composite while the Au and Co(OH)2 showed only 0.9 and 13 mA cm-2, respectively. The enhanced conductivity of the Co(OH)2/Au matrix due to the presence of Au, as well as the combined catalytic activity, seemed to be responsible for the superior performance of the Co(OH)2/Au-composite electrodes.

  1. Electrochemical DNA sensor for Neisseria meningitidis detection.

    PubMed

    Patel, Manoj K; Solanki, Pratima R; Kumar, Ashok; Khare, Shashi; Gupta, Sunil; Malhotra, Bansi D

    2010-08-15

    Meningitis sensor based on nucleic acid probe of Neisseria meningitidis has been fabricated by immobilization of 5'-thiol end labeled single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode. This ssDNA-SH/Au electrode hybridized with the genomic DNA (G-dsDNA/Au) and amplified DNA (PCR-dsDNA/Au) has been characterized using atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FT-IR) and electrochemical techniques. The ssDNA-SH/Au electrode can specifically detect upto 10-60 ng/microl of G-dsDNA-SH/Au and PCR-dsDNA-SH/Au of meningitis within 60s of hybridization time at 25 degrees C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The values of sensitivities of the G-dsDNA-SH/Au and PCR-dsDNA-SH/Au electrodes have been determined as 0.0115 microA/ng cm(-2) and 0.0056 microA/ng cm(-2), respectively with regression coefficient (R) as 0.999. This DNA bioelectrode is stable for about 4 months when stored at 4 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia.

    PubMed

    Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P

    2014-08-30

    The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  4. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    PubMed

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.

  5. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    PubMed

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode.

    PubMed

    Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng

    2012-04-21

    With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.

  7. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode.

    PubMed

    Narang, Jagriti; Chauhan, Nidhi; Pundir, C S

    2011-11-07

    We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.

  8. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

    NASA Astrophysics Data System (ADS)

    Shen, Xuan; Xia, Xiaohong; Du, Yongling; Wang, Chunming

    2017-09-01

    An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

  9. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles.

    PubMed

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-27

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr 3 ) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr 3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr 3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m -2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A -1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr 3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  10. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  11. A simple process based on NH2- and CH3-terminated monolayers for low contact resistance and adherent Au electrode in bottom-contact OTFTs

    NASA Astrophysics Data System (ADS)

    Abdur, Rahim; Lim, Jeongeun; Jeong, Kyunghoon; Rahman, Mohammad Arifur; Kim, Jiyoung; Lee, Jaegab

    2016-03-01

    An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of -1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs. [Figure not available: see fulltext.

  12. Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens.

    PubMed

    Maestro, Beatriz; Ortiz, Juan M; Schrott, Germán; Busalmen, Juan P; Climent, Víctor; Feliu, Juan M

    2014-08-01

    We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold-Au(110), Au(111), Au(210)-and platinum-Pt(100), Pt(110), Pt(111), Pt(210)-electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry was shown to have an important influence, with Au(210) sustaining a current density of up to 1442±101μAcm(-2) at the steady state, over Au(111) with 961±94μAcm(-2) and Au(110) with 944±89μAcm(-2). On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Structure and local charging of electromigrated Au nanocontacts

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Marz, M.; Schneider, S.; Hoffmann-Vogel, R.

    2017-02-01

    We study the structure and the electronic properties of Au nanocontacts created by controlled electromigration of thin film devices, a method frequently used to contact molecules. In contrast to electromigration testing, a current is applied in a cyclic fashion and during each cycle the resistance increase of the metal upon heating is used to avoid thermal runaway. In this way, nanometer sized-gaps are obtained. The thin film devices with an optimized structure at the origin of the electromigration process are made by shadow evaporation without contamination by organic materials. Defining rounded edges and a thinner area in the center of the device allow to pre-determine the location where the electromigration takes place. Scanning force microscopy images of the pristine Au film and electromigrated contact show its grainy structure. Through electromigration, a 1.5 μm-wide slit is formed, with extensions only on the anode side that had previously not been observed in narrower structures. It is discussed whether this could be explained by asymmetric heating of both electrodes. New grains are formed in the slit and on the extensions on both, the anode and the cathode side. The smaller structures inside the slit lead to an electrode distance below 150 nm. Kelvin probe force microscopy images show a local work function difference with fluctuations of 70 mV on the metal before electromigration. Between the electrodes, disconnected through electromigration, a work function difference of 3.2 V is observed due to charging. Some of the grains newly formed by electromigration are electrically disconnected from the electrodes.

  14. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing.

    PubMed

    Liu, Aiping; Wu, Huaping; Qiu, Xu; Tang, Weihua

    2011-12-01

    Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor.

  15. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work functionmore » shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.« less

  16. Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V2O5 interlayer.

    PubMed

    Baeg, Kang-Jun; Bae, Gwang-Tae; Noh, Yong-Young

    2013-06-26

    Here we report high-performance polymer OFETs with a low-cost Mo source/drain electrode by efficient charge injection through the formation of a thermally deposited V2O5 thin film interlayer. A thermally deposited V2O5 interlayer is formed between a regioregular poly(3-hexylthiophene) (rr-P3HT) or a p-type polymer semiconductor containing dodecyl-substituted thienylenevinylene (TV) and dodecylthiophene (PC12TV12T) and the Mo source/drain electrode. The P3HT or PC12TV12T OFETs with the bare Mo electrode exhibited lower charge carrier mobility than those with Au owing to a large barrier height for hole injection (0.5-1.0 eV). By forming the V2O5 layer, the P3HT or PC12TV12T OFETs with V2O5 on the Mo electrode exhibited charge carrier mobility comparable to that of a pristine Au electrode. Best P3HT or PC12TV12T OFETs with 5 nm thick V2O5 on Mo electrode show the charge carrier mobility of 0.12 and 0.38 cm(2)/(V s), respectively. Ultraviolet photoelectron spectroscopy results exhibited the work-function of the Mo electrode progressively changed from 4.3 to 4.9 eV with an increase in V2O5 thickness from 0 to 5 nm, respectively. Interestingly, the V2O5-deposited Mo exhibits comparable Rc to Au, which mainly results from the decreased barrier height for hole carrier injection from the low-cost metal electrode to the frontier molecular orbital of the p-type polymer semiconductor after the incorporation of the transition metal oxide hole injection layer, such as V2O5. This enables the development of large-area, low-cost electronics with the Mo electrodes and V2O5 interlayer.

  17. Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz

    2017-01-01

    The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.

  18. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction.

    PubMed

    Liu, Yu-Lun; Yu, Chen-Chieh; Lin, Keng-Te; Yang, Tai-Chi; Wang, En-Yun; Chen, Hsuen-Li; Chen, Li-Chyong; Chen, Kuei-Hsien

    2015-05-26

    In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection. Our graphene/AuOx photodetector displays high responsivity under low-intensity light illumination, demonstrating picowatt sensitivity in the ultraviolet regime and nanowatt sensitivity in the infrared regime for optical telecommunication. In addition, this photodetector not only exhibited broadband (from UV to IR) high responsivity-3300 A W(-1) at 310 nm (UV), 58 A W(-1) at 500 nm (visible), and 9 A W(-1) at 1550 nm (IR)-but also required only a low applied bias (0.1 V). The hot-carrier-assisted photoresponse was excellent, especially in the short-wavelength regime. In addition, the graphene/AuOx photodetector exhibited great flexibility and stability. Moreover, such vertical heterojunction-based graphene/AuOx photodetectors should be compatible with other transparent optoelectronic devices, suggesting applications in flexible and wearable optoelectronic technologies.

  19. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  20. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface

    PubMed Central

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-01-01

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153

  1. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  3. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  4. Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen.

    PubMed

    Li, Jianbo; Sun, Weiyan; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Luo, Chuannan

    2016-08-01

    An electrochemical sensor of acetaminophen based on poly(diallyldimethylammonium chloride) (PDDA)-functionalized reduced graphene-loaded Al2O3-Au nanoparticles coated onto glassy carbon electrode (Al2O3-Au/PDDA/reduced graphene oxide (rGO)/glass carbon electrode (GCE)) were prepared by layer self-assembly technique. The as-prepared electrode-modified materials were characterized by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The electrocatalytic performances of Al2O3-Au/PDDA/rGO-modified glassy carbon electrode toward the acetaminophen were investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrodes of graphene oxide (GO)/GCE, PDDA/rGO/GCE, and Al2O3-Au/PDDA/rGO/GCE were constructed for comparison and learning the catalytic mechanism. The research showed Al2O3-Au/PDDA/rGO/GCE having good electrochemical performance, attributing to the synergetic effect that comes from the special nanocomposite structure and physicochemical properties of Al2O3-Au nanoparticles and graphene. A low detection limit of 6 nM (S/N = 3) and a wide linear detection range from 0.02 to 200 μM (R (2) = 0.9970) was obtained. The preparation of sensor was successfully applied for the detection of acetaminophen in commercial pharmaceutical pills. Graphical abstract Schematic diagram of synthesis of Al2O3-Au/PDDA/rGO/GCE.

  5. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    PubMed

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    PubMed Central

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  7. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid.

    PubMed

    Rezaei, Behzad; Shams-Ghahfarokhi, Leila; Havakeshian, Elaheh; Ensafi, Ali A

    2016-09-01

    In this paper, an electrochemical biosensor based on gold and palladium nano particles-modified nanoporous stainless steel (Au-Pd/NPSS) electrode has been introduced for the simultaneous determination of levodopa (LD) and uric acid (UA). To prepare the electrode, the stainless steel was anodized to fabricate NPSS and then Cu was electrodeposited onto the nanoporous steel by applying the multiple step potential. Finally, the electrode was immersed into a gold and palladium precursor's solution by the atomic ratio of 9:1 to form Au-Pd/NPSS through the galvanic replacement reaction. Morphological aspects, structural properties and the electroanalytical behavior of the Au-Pd/NPSS electrode were studied using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and voltammetric techniques. Also, differential pulse voltammetry (DPV) was used for the simultaneous determination of LD and UA. According to results, the surface of Au-Pd/NPSS electrode contained Au and Pd nanoparticles with an average diameter of 75nm. The electrode acted better than Au/NPSS and Pd/NPSS electrodes for the simultaneous determination of LD and UA, with the peak separation potential of about 220mV. Also, the calibration plot for LD was in two linear concentration ranges of 5.0-10.0 and 10.0-55.0μmolL(-1) and for UA, it was in the range of 100-1200μmolL(-1). The detection limit for LD and UA was 0.2 and 15μmolL(-1), respectively. The modified electrode had a good performance for LD and UA detection in urine, blood serum and levodopa C-Forte tablet. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  9. An ultrasensitive luminol cathodic electrochemiluminescence immunosensor based on glucose oxidase and nanocomposites: graphene-carbon nanotubes and gold-platinum alloy.

    PubMed

    Jiang, Xinya; Chai, Yaqin; Yuan, Ruo; Cao, Yaling; Chen, Yingfeng; Wang, Haijun; Gan, Xianxue

    2013-06-14

    In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene-carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (-0.1 to 0.4V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL(-1) to 40 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (SN(-1)=3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells.

    PubMed

    Su, Min; Ge, Lei; Kong, Qingkun; Zheng, Xiaoxiao; Ge, Shenguang; Li, Nianqiang; Yu, Jinghua; Yan, Mei

    2015-01-15

    A novel electrochemical lab-on-paper cyto-device (ELPCD) was fabricated to demonstrate sensitive and specific cancer cell detection as well as in-situ monitoring of multi-glycans on living cancer cells. In this ELPCD, aptamers modified three-dimensional macroporous Au-paper electrode (Au-PE) was employed as the working electrode for specific and efficient cancer cell capture. Using a sandwich format, sensitive and reproducible cell detection was achieved in this ELPCD on the basis of the electrochemical signal amplification of the Au-PE and the horseradish peroxidase-lectin electrochemical probe. The ELPCD displayed excellent analytical performance for the detection of four K562 cells with a wide linear calibration range from 550 to 2.0×10(7) cells mL(-1). Then, this ELPCD was successfully applied to determine cell-surface multi-glycans in parallel and in-situ monitor multi-glycans expression on living cells in response to drug treatment through in-electrode 3D cell culture. The proposed method provides promising application in decipherment of the glycomic codes as well as clinical diagnosis and treatment in early process of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Patterned Electrode-Based Amperometric Gas Sensor for Direct Nitric Oxide Detection within Microfluidic Devices

    PubMed Central

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E.; Takayama, Shuichi

    2010-01-01

    This manuscript describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin (~ 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. Electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65 ~ 0.75 V vs. Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interferents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to ~1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas permeable microchannels, as they are stimulated with endotoxin. PMID:20329749

  12. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen

    DOE PAGES

    Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; ...

    2015-08-19

    We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonicmore » gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O 2 to H 2O with minimal production of H 2O 2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.« less

  13. Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid

    NASA Astrophysics Data System (ADS)

    Lanh Le, Thi; Khieu Dinh, Quang; Hoa Tran, Thai; Nguyen, Hai Phong; Le Hien Hoang, Thi; Hien Nguyen, Quoc

    2014-06-01

    Gold nanoparticles (Au-NPs) have been successfully synthesized by utilizing water soluble chitosan as reducing and stabilizing agent. The colloidal Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The results showed that the colloidal Au-NPs had a plasmon absorption band with maximum wavelength in the range of 520-526 nm and the diameters were about 8-15 nm. In addition, a new Au-NPs-modified electrode was fabricated by self-assembling Au-NPs to the surface of the L-cysteine-modified glassy carbon electrode (Au-NPs/L-Cys/GCE). The Au-NPs-modified electrode showed an excellent character for electro-catalytic oxidization of uric acid (UA) in 0.1 mol L-1 phosphate buffer solution (pH 3.2). Using differential pulse anodic stripping voltammetry (DP-ASV), a high selectivity for determination of UA has been explored for the Au-NPs-modified electrode. DP-ASV peak currents of UA increased linearly with their concentration at the range of 2.0 × 10-6 to 4.0 × 10-5 mol L-1 with the detection limit of 2.7 × 10-6 mol L-1 for UA. The proposed method was applied for the detection of UA in human urine and serum samples with satisfactory results.

  14. Fully Printable Organic and Perovskite Solar Cells with Transfer-Printed Flexible Electrodes.

    PubMed

    Li, Xianqiang; Tang, Xiaohong; Ye, Tao; Wu, Dan; Wang, Hong; Wang, Xizu

    2017-06-07

    The perovskite solar cells (PSCs) and organic solar cells (OSCs) with high performance were fabricated with transfer-printed top metal electrodes. We have demonstrated that PSCs and OSCs with the top Au electrodes fabricated by using the transfer printing method have comparable or better performance than the devices with the top Au electrodes fabricated by using the conventional thermal evaporation method. The highest PCE of the PSCs and OSCs with the top electrodes fabricated using the transfer printing method achieved 13.72% and 2.35%, respectively. It has been investigated that fewer defects between the organic thin films and Au electrodes exist by using the transfer printing method which improved the device stability. After storing the PSCs and OSCs with the transfer-printed electrodes in a nitrogen environment for 97 and 103 days without encapsulation, the PSCs and OSCs still retained 71% and 91% of their original PCEs, respectively.

  15. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  16. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical current to np-Au electrodes, which leads coarsening due to a combination of Joule heating and other mechanisms. This method offers the capability to anneal different electrodes to varying degrees of coarsening in one step, by employing electrodes patterns with different cross-sectional areas - easily attained since np-Au can be patterned into arbitrary shapes via photolithography - to control electrode resistivity, thus current density and the amount of electro-annealing of an electrode. A surprising finding was that electro-annealing lead to electrode coarsening at much lower temperatures than conventional thermal treatment, which was attributed to augmented electron-surface atom interactions at high current densities that may in turn enhance surface atom diffusivity. A major advantage of electro-annealing is the ability to monitor the resistance change of the electrode (surrogate for electrode morphology) in real-time and vary the electro-annealing current accordingly to establish a closed-loop electro-annealing configuration. In nanostructured materials, the electrical resistance is often a function of nanostructure, thus changes in resistance can be directly linked to morphological changes of the electrode. Examination of the underlying mechanisms of nanostructure-dependent resistance change revealed that both ligament diameter and grain size play a role in dictating the observed electrode resistance change. The second method relies on electrochemical etching of ligaments to modify electrode morphology in order to maintain both a high effective surface area and large pores for unhindered transport of molecules to/from the ligament surfaces - an important consideration for many physico-chemical processes, such fuel cells, electrochemical sensors, and drug delivery platforms. The advantage of this method over purely chemical approach is that while an entire sample in exposed to the chemical reagent, the etching process does not occur until the necessary electrochemical potential is applied. Similar to the electro-annealing methods, electrical addressability allows for differentially modifying the morphology individual electrodes on a single substrate. The results of this study also revealed that electrochemical etching is a combination of coarsening and etching processes, where the optimization of etching parameters makes it possible precisely control the etching by favoring one process over the other. In summary, the two techniques, taken together in combination with np-Au's compatibility with microfabrication processes, can be extended to create multiple electrode arrays that display different morphologies for studying structure?property relationships and tuning catalysts/sensors for optimal performance.

  17. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

    PubMed Central

    Hossain, Md Faruk; Park, Jae Y.

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943

  18. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  19. Electrical and optical properties of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) and AuCl3-doped reduced graphene oxide/single-walled carbon nanotube films for ultraviolet light-emitting diodes.

    PubMed

    Lee, Byeong Ryong; Lee, Jae Hoon; Kim, Kyeong Heon; Kim, Hee-Dong; Kim, Tae Geun

    2014-12-01

    We report the effects of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and gold chloride (AuCl) co-doping on the electrical and optical properties of reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films fabricated by dipcoating methods. The RGO/SWNT films were doped with both AuCl3 dissolved in nitromethane and PSS hole injection layers by spin coating to improve their electrical properties by increasing the work function of the RGO/SWNT films, thereby reducing the Schottky barrier height between the RGO/SWNT and p-GaN films. As a result, we obtained a reduced sheet resistance of 851.9 Ω/Ω and a contact resistance of 1.97 x 10(-1) Ω x cm2, together with a high transmittance of 84.1% at 380 nm. The contact resistance of these films should be further reduced to fully utilize the feature of the electrode scheme proposed in this work, but the current result suggests its potential use as a transparent conductive electrode for ultraviolet light-emitting diodes.

  20. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose.

    PubMed

    Sanzó, Gabriella; Taurino, Irene; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; De Micheli, Giovanni; Carrara, Sandro

    2016-12-01

    Au nanocorals are grown on gold screen-printed electrodes (SPEs) by using a novel and simple one-step electrodeposition process. Scanning electron microscopy was used for the morphological characterization. The devices were assembled on a three-electrode SPE system, which is flexible and mass producible. The electroactive surface area, determined by cyclic voltammetry in sulphuric acid, was found to be 0.07±0.01cm(2) and 35.3±2.7cm(2) for bare Au and nanocoral Au, respectively. The nanocoral modified SPEs were used to develop an enzymatic glucose biosensor based on H2O2 detection. Au nanocoral electrodes showed a higher sensitivity of 48.3±0.9μA/(mMcm(2)) at +0.45V vs Ag|AgCl compared to a value of 24.6±1.3μA/(mMcm(2)) at +0.70V vs Ag|AgCl obtained with bare Au electrodes. However, the modified electrodes have indeed proven to be extremely powerful for the direct detection of glucose with a non-enzymatic approach. The results confirmed a clear peak observed by using nanocoral Au electrode even in the presence of chloride ions at physiological concentration. Amperometric study carried out at +0.15V vs Ag|AgCl in the presence of 0.12M NaCl showed a linear range for glucose between 0.1 and 13mM. Copyright © 2016. Published by Elsevier B.V.

  1. Fast Response Polypyrrole Actuators with Auxiliary Electrodes

    NASA Astrophysics Data System (ADS)

    Zama, Tetsuji; Hara, Susumu; Takashima, Wataru; Kaneto, Keiichi

    2005-11-01

    Electrochemical polypyrrole (PPy) actuators, prepared electrochemically from a methyl benzoate solution of tetra-n-butylammonium trifluoromethanesulfonate (TBACF3SO3), have been studied to improve the response rate by two methods; 1) a PPy film attached with plural auxiliary electrodes of thin Au coils, 2) a PPy film equipped with a compliant Au electrode on one side of the film. With increasing the number of auxiliary electrodes for the first method, the film responded faster as if it were a shorter film. These results are due to the decrease in the IR voltage drop along the film from the electrodes and also due to the increased current to the whole film via plural electrodes. The PPy film with the Au thin layer (the second method) exhibited up to 8.8%/s strain rate, which was much faster than that (0.5%/s) without the auxiliary electrodes, keeping the maximum strain of 12--13%. The auxiliary electrodes improved not only the response speed of the PPy actuators but also the durability upon cycling electrochemically.

  2. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    NASA Astrophysics Data System (ADS)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  3. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide.

    PubMed

    Rajaram, Rajendran; Mathiyarasu, Jayaraman

    2018-05-30

    In this work, we report a methodology for the quantification of Homocysteine (HcySH) at neutral pH (pH-7.0) using Au nanoparticles incorporated reduced graphene oxide (AuNP/rGO/GCE) modified glassy carbon electrode. The modified electrode was characterized using SEM and XRD techniques. The electrode exhibited a typical behavior against the standard redox probe [Fe(CN) 6 ] 3-/4- and resulted in 0.06 V peak to peak potential value. The modified electrode exhibited electrocatalytic activity towards electrochemical biosensing of HcySH, which is established using voltammetric studies. HcySH oxidation peak potential is observed at 0.12 V on AuNP/rGO/GCE which is 0.7 V cathodic than bare glassy carbon electrode (0.82 V). The large peak potential shift observed is reasoned as the interaction of SH group of HcySH with the gold nanoparticles and the electrocatalytic property of reduced graphene oxide that enhances the electrochemical detection at reduced overpotential. Further, successive addition of HcySH showed a linear increment in the sensitivity within the concentration range of 2-14 mM. From an amperometric protocol, the limit of detection is found as 6.9 μM with a sensitivity of 14.8 nA/μM. From a set of cyclic voltammetric measurements, it is observed that the electrode produces a linear signal on the concentration of HcySH in the presence of hydrogen peroxide. Thus it can be concluded that the matrix can detect HcySH even in the presence of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode.

    PubMed

    Rawal, Rachna; Chawla, Sheetal; Pundir, Chandra Shekhar

    2012-01-15

    A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    NASA Astrophysics Data System (ADS)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  6. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein.

    PubMed

    Kaushik, Ajeet; Yndart, Adriana; Kumar, Sanjeev; Jayant, Rahul Dev; Vashist, Arti; Brown, Ashley N; Li, Chen-Zhong; Nair, Madhavan

    2018-06-26

    This work, as a proof of principle, presents a sensitive and selective electrochemical immunosensor for Zika-virus (ZIKV)-protein detection using a functionalized interdigitated micro-electrode of gold (IDE-Au) array. A miniaturized IDE-Au immunosensing chip was prepared via immobilization of ZIKV specific envelop protein antibody (Zev-Abs) onto dithiobis(succinimidyl propionate) i.e., (DTSP) functionalized IDE-Au (electrode gap/width of 10 µm). Electrochemical impedance spectroscopy (EIS) was performed to measure the electrical response of developed sensing chip as a function of ZIKV-protein concentrations. The results of EIS studies confirmed that sensing chip detected ZIKV-protein selectively and exhibited a detection range from 10 pM to 1 nM and a detection limit of 10 pM along with a high sensitivity of 12 kΩM -1 . Such developed ZIKV immune-sensing chip can be integrated with a miniaturized potentiostat (MP)-interfaced with a smartphone for rapid ZIKV-infection detection required for early stage diagnostics at point-of-care application.

  7. Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms.

    PubMed

    Briones, M; Casero, E; Vázquez, L; Pariente, F; Lorenzo, E; Petit-Domínguez, M D

    2016-02-18

    In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol-gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol-gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM(-1) and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Novel nanostructured oxygen sensor

    NASA Astrophysics Data System (ADS)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate temperature exhibited a strong correlation to adhesion of the Au thin film to the FEP. Adhesion of the Au thin film with a FEP temperature of 50°C was rated a 3B per the ASTM D3359-02 peel test standard. At FEP substrate temperature of -77°C it was rated at 1B. The morphology of the deposited Au thin films was observed using optical microscopy and Scanning Electron Microscopy (SEM).

  9. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    NASA Astrophysics Data System (ADS)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  10. Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S-Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode.

    PubMed

    Chai, Shouning; Wang, Yujing; Zhang, Ya-Nan; Liu, Meichuan; Wang, Yanbin; Zhao, Guohua

    2017-07-18

    To improve selectivity of electrocatalytic degradation of toxic, odorous mercaptans, the fractal-structured dendritic Au/BDD (boron-doped diamond) anode with molecular recognition is fabricated through a facile replacement method. SEM and TEM characterizations show that the gold dendrites are single crystals and have high population of the Au (111) facet. The distinctive structure endows the electrode with advantages of low resistivity, high active surface area, and prominent electrocatalytic activity. To evaluate selectivity, the dendritic Au/BDD is applied in degrading two groups of synthetic wastewater containing thiophenol/2-mercaptobenzimidazole (targets) and phenol/2-hydroxybenzimidazole (interferences), respectively. Results show that targets removals reach 91%/94%, while interferences removals are only 58%/48% in a short time. The corresponding degradation kinetic constants of targets are 3.25 times and 4.1 times that of interferences in the same group, demonstrating modification of dendritic gold on BDD could effectively enhance electrocatalytic target-selectivity. XPS and EXAFS further reveal that the selective electrocatalytic degradation derives from preferential recognition and fast adsorption to thiophenol depending on strong Au-S bond. The efficient, selective degradation is attributed to the synergetic effects between accumulative behavior and outstanding electrochemical performances. This work provides a new strategy for selective electrochemical degradation of contaminants for actual wastewater treatment.

  11. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang

    2017-06-01

    The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione

    PubMed Central

    Mers, SV Sheen; Kumar, Elumalai Thambuswamy Deva; Ganesh, V

    2015-01-01

    Glutathione (GSH) is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs)-immobilized, hierarchically ordered titanium dioxide (TiO2) porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV) and chronoamperometry (CA). Several parameters such as sensitivity, selectivity, stability, limit of detection, etc are investigated. In addition, Au NPs dispersed in aqueous medium are also explored for naked-eye detection of GSH using UV-visible spectroscopy in order to compare the performance of the proposed sensor. Our studies clearly indicate that these materials could potentially be used for GSH sensing applications. PMID:26491318

  13. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.

    PubMed

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela

    2016-12-01

    This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jue-Fei; School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou 215104; Zhou, Liping, E-mail: zhoulp@suda.edu.cn, E-mail: leigao@suda.edu.cn

    The electronic transport properties of benzene–porphyrin–benzene (BPB) molecules coupled to gold (Au) electrodes were investigated. By successively removing the front-end Au atoms, several BPB junctions with different molecule-electrode contact symmetries were constructed. The calculated current–voltage (I–V) curves depended strongly on the contact configurations between the BPB molecules and the Au electrodes. In particular, a significant low-voltage negative differential resistance effect appeared at −0.3 V in the junctions with pyramidal electrodes on both sides. Along with the breaking of this tip-contact symmetry, the low-bias negative differential resistance effect gradually disappeared. This tip-contact may be ideal for use in the design ofmore » future molecular devices because of its similarity with experimental processes.« less

  16. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-09-23

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.

  17. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  18. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    PubMed

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg 2+ in aqueous solution, which had a working concentration range of 1.0×10 -8 -1.0×10 -4 molL -1 , with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10 -9 molL -1 , and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg 2+ has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication

    NASA Astrophysics Data System (ADS)

    Zhuang, Zechao; Wang, Feifeng; Naidu, Ravendra; Chen, Zuliang

    2015-09-01

    Bimetallic nanomaterials with enhanced activity and stability have been extensively studied as emerging catalysts for hydrogen evolution reaction (HER). Expensive and environmentally unfriendly chemical synthesis routes inhibit their large-scale applications. In this work, we developed a facile and green synthesis of Pd-Au alloy nanoparticles (NPs) dispersed on carbon fiber paper (CFP) by plant-mediated bioreduction coupled with self-assembly. Engineering the morphology and composition of bimetallic catalysts synthesized by plant extracts on complex substrate is achieved. The resulting NPs are uniform in shape and have a spherical morphology with an average diameter of ∼180 nm, in which the molar ratio of Au/Pd is near 75:25 and the catalysts loading is about 0.5 mg cm-2. The Pd-Au/CFP hybrid electrode exhibits an excellent HER performance with a Tafel slope of 47 mV dec-1 and an exchange current density of 0.256 mA cm-2. Electrochemical stability tests through long-term potential cycles and potentiostatic electrolysis further confirm the high durability of the electrode. This development offers an efficient and eco-friendly catalysts synthesis route for constructing water-splitting cells and other electrocatalytic devices.

  20. Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes

    NASA Astrophysics Data System (ADS)

    Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-11-01

    Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.

  1. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  2. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.

    PubMed

    Huang, Ting; Liu, Zaichun; Li, Yunlong; Li, Yanqiu; Chao, Long; Chen, Chao; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo; Wu, Yuping

    2018-07-12

    Poly(5-hydroxytryptamine) (poly(5-HT)) is exploited as a new and efficient enzyme-immobilization matrix for amperometric and biofuel cell (BFC)-based biosensing. A GOx-poly(5-HT)-Pd nanoparticles (PdNPs) bionanocomposite is prepared by Na 2 PdCl 4 -initiated oxidized polymerization of 5-hydroxytryptamine (5-HT) in a neutral aqueous solution containing glucose oxidase (GOx), and this bionanocomposite and then chitosan (CS) are cast-coated on a Pd-plated Au electrode to yield a CS/GOx-poly(5-HT)-PdNPs/Pd plate /Au enzyme electrode. Scanning/transmission electron microscopy, UV-vis spectrophotometry and electrochemical quartz crystal microbalance are employed for material characterization and/or process monitoring. Under optimized conditions, the amperometric response of the enzyme electrode is linear with glucose concentration from 2.0 μM to 6.66 mM with a sensitivity of 110 μA mM -1  cm -2 , a limit of detection of 0.2 μM, and excellent operation/storage stability in the first-generation biosensing mode. The sensitivity is larger than those of some conventional electrodes under identical conditions. The enzyme electrode also works well in the second-generation biosensing mode. By using the enzyme electrode as the anode for glucose oxidation and a Pd plate /Au electrode as the cathode for KMnO 4 reduction, a monopolar BFC is constructed as a self-powered biosensor, the current response of which is linear with glucose concentration from 50 μM to 34.5 mM. Experiments also show that poly(5-HT) is a physical and chemical dual-immobilization matrix of enzyme, since the abundant amino groups in poly(5-HT) can be used for chemical bonding of GOx. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-05-23

    A novel enhanced photoelectrochemical DNA sensor, based on a TiO 2 /Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO 2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO 2 /Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO 2 /Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 μM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    PubMed

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.

    PubMed

    Willner, Itamar; Baron, Ronan; Willner, Bilha

    2007-04-15

    The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue, was incorporated into a CdS-duplex DNA monolayer associated with a Au electrode, and this facilitated the electron transfer between the electrode and the CdS NPs. The direction of the photocurrent was controlled by the oxidation state of the intercalator. (iii) Biocatalysts grow metallic NPs, and the absorbance of the NPs provides a means to assay the biocatalytic transformations. This is exemplified with the glucose oxidase-induced growth of Au NPs and with the tyrosinase-stimulated growth of Au NPs, in the presence of glucose or tyrosine, respectively. The biocatalytic growth of the metallic NPs is used to grow nanowires on surfaces. Glucose oxidase or alkaline phosphatase functionalized with Au NPs (1.4 nm) acted as 'biocatalytic inks' for the synthesis of metallic nanowires. The deposition of the Au NP-modified glucose oxidase, or the Au NP-modified alkaline phosphatase on Si surfaces by dip-pen nanolithography led to biocatalytic templates, that after interaction with glucose/AuCl4- or p-aminophenolphosphate/Ag+, allowed the synthesis of Au nanowires or Ag nanowires, respectively.

  6. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    PubMed

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of Different Materials Used for Internal Floating Electrode on the Photovoltaic Properties of Tandem Type Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2004-04-01

    Three thin heterojunctions sandwiched between indium tin oxide (ITO) and the top electrode as triple-heterojunction organic solar cells have been fabricated. Each heterojunction cell consists of CuPc as a donor layer and perilene tetracrboxylic-bis-benzimidazole (PTCBI) as an acceptor layer. Ultra thin (1 nm average thickness) layers of Ag or Au have been inserted between two heterojunctions as an internal electrode. Ag and Au were chosen as materials both for internal floating and top electrodes. Influences of different deposition sequences of the organic layer in each heterojunction cell and different electrode materials were also investigated. The optimum devices were obtained when the same material was used both as an internal electrode and a top electrode. When the deposition sequence of the heterojunction is PTCBI/CuPc, the most suitable electrode is Au and the ITO is negative relative to the top electrode. Meanwhile, Ag is suitable for an electrode when the deposition sequence is CuPc/PTCBI. In this second deposition sequence, the ITO is positive relative to the top electrode. The open circuit voltage (Voc) of both optimum devices is on the order of 1.35-1.5 V. These values are approximately three times higher than that in single-heterojunction organic solar cells.

  8. Electrocatalytic Reduction of CO 2 at Au Nanoparticle Electrodes: Effects of Interfacial Chemistry on Reduction Behavior

    DOE PAGES

    Andrews, Evan; Katla, Sai; Kumar, Challa; ...

    2015-09-12

    Nanoscale Au electrocatalysts demonstrate the extraordinary ability to reduce CO 2 at low overpotentials with high selectivity to CO. Here, we investigate the role of surface chemistry on CO 2 reduction behavior using Au 25 and 5 nm Au nanoparticles. Onset potentials for CO 2 reduction at Au 25 nanoparticles in Nafion binders are shifted anodically by 190 mV while the hydrogen evolution reaction is shifted cathodically by 300 mV relative to Au foil. The net effect of this beneficial separation in onset potentials is relatively high Faradayic efficiencies for CO (90% at 0.8 V versus RHE) at high currentmore » densities. Experimental results show Faradayic efficiencies for CO are greatest using electrodes made with Nafion-immobilized Au 25 nanoparticles. Likewise, CO 2 reduction onset potential shifts are greater for smaller nanoparticles and when Nafion binders are used instead of (sulfonate-free) polyvinylidene fluoride. X-ray photoelectron spectroscopy analysis reveals Au nanoparticles may react with the sulfonates of Nafion binders. Here, the results suggest sulfonate interfaces may alter the binding energies of key species or lead to favorable reconstructions, either of which ultimately results in remarkable improvements in Faradayic efficiencies relative to Au foil electrodes.« less

  9. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    PubMed

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  10. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  11. Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry.

    PubMed

    Tian, Xianqing; Cheng, Changming; Yuan, Hongyan; Du, Juan; Xiao, Dan; Xie, Shunping; Choi, Martin M F

    2012-05-15

    Graphene decorated with gold nanoparticles (AuNPs-β-CD-Gra) has been synthesized by in situ thermal reduction of graphene oxide and HAuCl(4) with β-cyclodextrin (β-CD) under alkaline condition. The AuNPs-β-CD-Gra product was well characterized by infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction. This material was used to fabricate an AuNPs-β-CD-Gra-modified glassy carbon electrode (GCE) which showed excellent electro-oxidation of l-ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.10 M NaH(2)PO(4)-HCl buffer solution (pH 2.0) by square wave voltammetry (SWV). Three well-resolved oxidation peaks of AA and DA and UA were obtained. The AuNPs-β-CD-Gra/GCE exhibits linear responses to AA, DA and UA in the ranges 30-2000, 0.5-150 and 0.5-60 μM, respectively. The detection limits (based on S/N=3 and preconcentration time=3.0 min) for AA, DA and UA are 10, 0.15 and 0.21 μM, respectively. The AuNPs-β-CD-Gra/GCE has been successfully applied to determine UA in human urine with satisfactory results. Our work provides a simple, convenient and green route to synthesize AuNPs on Gra which is potentially useful in electroanalysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.

    PubMed

    Xie, Lingling; Xu, Yuandong; Cao, Xiaoyu

    2013-07-01

    In this work, a highly sensitive hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at Au nanoparticles (AuNPs)/flower-like zinc oxide/graphene (AuNPs/ZnO/Gr) composite modified glassy carbon electrode (GCE) was constructed, where ZnO and Au nanoparticles were modified through layer-by-layer onto Gr/GCE. Flower-like ZnO nanoparticles could be easily prepared by adding ethanol to the precursor solution having higher concentration of hydroxide ions. The Hb/AuNPs/ZnO/Gr composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E(0)) of -0.367 V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.3 s(-1). The developed biosensor showed a very fast response (<2 s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.8 μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of Gr, and good biocompatibility of ZnO and AuNPs. The fabrication method of this biosensor was simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.

    PubMed

    Sun, Duanping; Lu, Jing; Chen, Zuanguang; Yu, Yanyan; Mo, Manni

    2015-07-23

    In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  15. A new electrode design for ambipolar injection in organic semiconductors.

    PubMed

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  16. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    PubMed

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  18. Boronic Acid vs. Folic Acid: A Comparison of the bio-recognition performances by Impedimetric Cytosensors based on Ferrocene cored dendrimer.

    PubMed

    Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-05-15

    A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    DOE PAGES

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less

  20. Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages.

    PubMed

    Takeishi, Shunsaku; Rant, Ulrich; Fujiwara, Tsuyoshi; Buchholz, Karin; Usuki, Tatsuya; Arinaga, Kenji; Takemoto, Kazuya; Yamaguchi, Yoshitaka; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2004-03-22

    DNA oligo-nucleotides, localized at Au metal electrodes in aqueous solution, are found to be released when applying a negative bias voltage to the electrode. The release was confirmed by monitoring the intensity of the fluorescence of cyanine dyes (Cy3) linked to the 5' end of the DNA. The threshold voltage of the release changes depending on the kind of linker added to the DNA 3'-terminal. The amount of released DNA depends on the duration of the voltage pulse. Using this technique, we can retain DNA at Au electrodes or Au needles, and release the desired amount of DNA at a precise location in a target. The results suggest that DNA injection into living cells is possible with this method. (c) 2004 American Institute of Physics

  1. One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2

    NASA Astrophysics Data System (ADS)

    Mercante, Luiza A.; Facure, Murilo H. M.; Sanfelice, Rafaela C.; Migliorini, Fernanda L.; Mattoso, Luiz H. C.; Correa, Daniel S.

    2017-06-01

    The development of novel graphene-based nanocomposites is a hotspot in materials science due to their unique optical, electronic, thermal, mechanical and catalytic properties for varied applications. The present work reports on the development of a graphene-based ternary nanocomposite of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), reduced graphene oxide and gold nanoparticles (PEDOT:PSS-rGO-AuNPs) for the detection of hydrogen peroxide (H2O2). The hybrid nanocomposite showed superior electrochemical properties and higher stability compared to each individual component as electrode materials, showing a synergistic effect between PEDOT, rGO and AuNPs. The nanocomposite was obtained via a facile one-step approach and was assembly with horseradish peroxidase (HRP). The PEDOT:PSS-rGO-AuNPs-HRP modified electrode has been used for the amperometric detection of H2O2 and exhibited a high sensitivity of up to 677 μA mM-1 cm-2, with a wide linear range from 5 to 400 μM and a low detection limit of 0.08 μM (S/N = 3). This developed enzymatic biosensor showed to be highly stable and unresponsive to potentially interfering substances, and it could be used for sensing H2O2 in real samples, including tap water and bovine milk samples. These enhanced sensing performance could be ascribed to the intimate contact of AuNPs onto the rough surface of the PEDOT:PSS-rGO nanocomposite, which has a high electrical conductivity and large surface area, providing it as an excellent substrate for the growth and support of nanoparticles. The method developed in this work opens up a general route to prepare a wide range of graphene-based hybrid nanocomposite films with multiple functions including sensing and biosensing.

  2. Electrode influence on the number of oxygen vacancies at the gate/high-κ dielectric interface in nanoscale MIM capacitors

    NASA Astrophysics Data System (ADS)

    Stojanovska-Georgievska, Lihnida

    2015-02-01

    In this paper, a particular attention has been paid in determining the impact of the type of top electrode (the gate), on the overall characteristics of the examined metal-insulator-metal structures, that contain doped Ta2O5:Hf high-κ dielectric as an insulator. For that purpose MIM capacitors with different metal gates (conventional Al and also W, Au, Pt, Mo, TiN, Ta) were formed. The results obtained, consider both the influence of metal work function and oxygen affinity, as possible reasons for increasing of number of oxygen vacancies at the gate/dielectric interface. Here we use capacitance-voltage alteration (C-V measurements) under constant current stress (CCS) conditions as characterization technique. The measurements show grater creation of positive oxygen vacancies in the case of metal electrodes with high work function, like Au and Pt, for almost one order of magnitude. It is also indicative that these metals have also the lowest values of heat of oxygen formation, which also favors the creation of oxygen vacancies. All results are discussed taking into consideration the nanoscale thickness of the dielectric layer (of the order of 8 nm), implicating the stronger effect of interface properties on the overall behavior rather than the one originating from the bulk of material.

  3. Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

    PubMed

    Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie

    2014-10-29

    A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Three-Dimensional Conductive Nanocomposites Based on Multiwalled Carbon Nanotube Networks and PEDOT:PSS as a Flexible Transparent Electrode for Optoelectronics.

    PubMed

    Cho, Er-Chieh; Li, Chiu-Ping; Huang, Jui-Hsiung; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-06-03

    We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate ( PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 Ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.

  5. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms.

    PubMed

    Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe

    2017-08-15

    Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode.

    PubMed

    Gopalan, Anantha Iyengar; Lee, Kwang-Pill; Manesh, Kalayil Manian; Santhosh, Padmanabhan; Kim, Jun Heon; Kang, Jae Soo

    2007-03-15

    A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Au(nano)-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10nm. Electrochemical behavior of the PAT-Au(nano)-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Au(nano)-ME exhibits two well defined anodic peaks at the potential of 75 and 400mV for the oxidation of AA and DA, respectively with a potential difference of 325mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Au(nano)-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Au(nano)-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.

  7. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    PubMed

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  8. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  9. Correction: Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g.

  10. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection.

    PubMed

    Baş, Salih Zeki; Gülce, Handan; Yıldız, Salih; Gülce, Ahmet

    2011-12-15

    In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H(2)O(2). Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl(4) and PtBr(2). Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10(-3) to 0.56 mM and 2.0 × 10(-3) to 0.66 mM, respectively. The detection limits were 7.5 × 10(-4)mM for XO/Au/PVF/Pt and 6.0 × 10(-4)mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.

    2017-05-01

    The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.

  12. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    PubMed

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  13. A comparative Study of Aptasensor Vs Immunosensor for Label-Free PSA Cancer Detection on GQDs-AuNRs Modified Screen-Printed Electrodes.

    PubMed

    Srivastava, Monika; Nirala, Narsingh R; Srivastava, S K; Prakash, Rajiv

    2018-01-31

    Label-free and sensitive detection of PSA (Prostate Specific Antigen) is still a big challenge in the arena of prostate cancer diagnosis in males. We present a comparative study for label-free PSA aptasensor and PSA immunosensor for the PSA-specific monoclonal antibody, based on graphene quantum dots-gold nanorods (GQDs-AuNRs) modified screen-printed electrodes. GQDs-AuNRs composite has been synthesized and used as an electro-active material, which shows fast electron transfer and catalytic property. Aptamer or anti-PSA has immobilized onto the surface of modified screen printed electrodes. Three techniques are used simultaneously, viz. cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedence spectroscopy (EIS) to investigate the analytical performance of both PSA aptasensor and PSA immunosensor with its corresponding PSA antigen. Under optimum conditions, both sensors show comparable results with an almost same limit of detection (LOD) of 0.14 ng mL -1 . The results developed with aptasensor and anti-PSA is also checked through the detection of PSA in real samples with acceptable results. Our study suggests some advantages of aptasensor in terms of better stability, simplicity and cost effectiveness. Further our present work shows enormous potential of our developed sensors for real application using voltammetric and EIS techniques simultaneous to get reliable detection of the disease.

  14. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin.

    PubMed

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh

    2017-05-15

    The present work describes a label free electrochemical aptasensor for selective detection of epirubicin. In this project, 5'-thiole terminated aptamer was self-assembled on carbon screen printed electrode, which modified with electrodeposited gold nanoparticles on magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid (Fe 3 O 4 @SiO 2 /DABCO) by Au-S bond. The interactions of epirubicin with aptamer on the AuNPs/Fe 3 O 4 @SiO 2 /DABCO/SPE have been studied by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. Under optimized conditions, the peak current of epirubicin increased linearly with increasing epirubicin concentration, due to the switching in the aptamer conformation and formation of aptamer- epirubicin complex instead of aptamer on the modified electrode surface. The Apt/AuNPs/Fe 3 O 4 @SiO 2 /DABCO/SPE is sensitive, selective and has two linear range from 0.07µM to 1.0µM and 1.0µM to 21.0µM with a detection limit of 0.04µM. The applicability of the aptasensor was successfully assessed by determination of epirubicin in a human blood serum sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2018-02-01

    Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

  16. Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands

    NASA Astrophysics Data System (ADS)

    Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil

    2012-06-01

    We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid. Electronic supplementary information (ESI) available: TEM image of GS-Au25, SWV of GS-Au25 in solution, effect of scan rate on the CV of GS-Au25ME, CVs of DA and AA at the bare GCE and CVs of GS-Au25ME at different pHs. See DOI: 10.1039/c2nr30481c

  17. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

  18. Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Moriya, Masataka; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao

    2017-08-01

    We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current-voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.

  19. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    PubMed

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  20. Polyelectrolyte Multilayer-Treated Electrodes for Real-Time Electronic Sensing of Cell Proliferation

    PubMed Central

    Mijares, Geraldine I.; Reyes, Darwin R.; Geist, Jon; Gaitan, Michael; Polk, Brian J.; DeVoe, Don L.

    2010-01-01

    We report on the use of polyelectrolyte multilayer (PEM) coatings as a non-biological surface preparation to facilitate uniform cell attachment and growth on patterned thin-film gold (Au) electrodes on glass for impedance-based measurements. Extracellular matrix (ECM) proteins are commonly utilized as cell adhesion promoters for electrodes; however, they exhibit degradation over time, thereby imposing limitations on the duration of conductance-based biosensor experiments. The motivation for the use of PEM coatings arises from their long-term surface stability as promoters for cell attachment, patterning, and culture. In this work, a cell proliferation monitoring device was fabricated. It consisted of thin-film Au electrodes deposited with a titanium-tungsten (TiW) adhesion layer that were patterned on a glass substrate and passivated to create active electrode areas. The electrode surfaces were then treated with a poly(ethyleneimine) (PEI) anchoring layer and subsequent bilayers of sodium poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). NIH-3T3 mouse embryonic fibroblast cells were cultured on the device, observed by optical microscopy, and showed uniform growth characteristics similar to those observed on a traditional polystyrene cell culture dish. The optical observations were correlated to electrical measurements on the PEM-treated electrodes, which exhibited a rise in impedance with cell proliferation and stabilized to an approximate 15 % increase as the culture approached confluency. In conclusion, cells proliferate uniformly over gold and glass PEM-treated surfaces, making them useful for continuous impedance-based, real-time monitoring of cell proliferation and for the determination of cell growth rate in cellular assays. PMID:27134780

  1. A novel "dual-potential" electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol.

    PubMed

    Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Yan, Qing; Li, Tianhua; Cao, Yuting; Hu, Futao; Yu, Hongwei; Jiang, Qianli

    2015-12-15

    A novel type of "dual-potential" electrochemiluminescence (ECL) aptasensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for simultaneous detection of malachite green (MG) and chloramphenicol (CAP) in one single assay. The SPCE substrate consisted of a common Ag/AgCl reference electrode, carbon counter electrode and two carbon working electrodes (WE1 and WE2). In the system, CdS quantum dots (QDs) were modified on WE1 as cathode ECL emitters and luminol-gold nanoparticles (L-Au NPs) were modified on WE2 as anode ECL emitters. Then the MG aptamer complementary strand (MG cDNA) and CAP aptamer complementary strand (CAP cDNA) were attached on CdS QDs and L-Au NPs, respectively. The cDNA would hybridize with corresponding aptamer that was respectively tagged with cyanine dye (Cy5) (as quenchers of CdS QDs) and chlorogenic acid (CA) (as quenchers of l-Au NPs) using poly(ethylenimine) (PEI) as a bridging agent. PEI could lead to a large number of quenchers on the aptamer, which increased the quenching efficiency. Upon MG and CAP adding, the targets could induce strand release due to the highly affinity of analytes toward aptamers. Meanwhile, it could release the Cy5 and CA, which recovered cathode ECL of CdS QDs and anode ECL of L-Au NPs simultaneously. This "dual-potential" ECL strategy could be used to detect MG and CAP with the linear ranges of 0.1-100 nM and 0.2-150 nM, with detection limits of 0.03 nM and 0.07 nM (at 3sB), respectively. More importantly, this designed method was successfully applied to determine MG and CAP in real fish samples and held great potential in the food analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Performance Enhancement of 3-Mercaptopropionic Acid-Capped CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.

    PubMed

    Yang, Jonghee; Park, Taehee; Lee, Jongtaek; Lee, Junyoung; Shin, Hokyeong; Yi, Whikun

    2016-03-01

    We fabricated a series of linker-assisted quantum-dot-sensitized solar cells based on the ex situ self-assembly of CdSe quantum dots (QDs) onto TiO2 electrode using sulfide/polysulfide (S(2-)/Sn(2-)) as an electrolyte and Au cathode. Our cell were combined with single-walled carbon nanotubes (SWNTs) by two techniques; One was mixing SWNTs with TiO2 electrode and the other was spraying SWNTs onto Au electrode. Absorption spectra were used to confirm the adsorption of QDs onto TiO2 electrode. Cell performance was measured on samples containing and not-containing SWNTs. Samples mixing SWNTs with TiO2 showed higher cell efficiency, on the while sample spraying SWNTs onto Au electrode showed lower efficiency compared with pristine sample (not-containing SWNTs). Electrochemical impedance spectroscopy analysis suggested that SWNTs can act as either barriers or excellent carrier transfers according their position and mixing method.

  3. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    NASA Astrophysics Data System (ADS)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  4. Visualization of nanoconstructions with DNA-Aptamers for targeted molecules binding on the surface of screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Shabalina, Anastasiia V.; Svetlichyi, Valery A.; Kolovskaya, Olga S.

    2018-04-01

    Nanoconstructions of gold nanoparticles (NPs) obtained via pulsed laser ablation in liquid with DNA-aptamer specific to protein tumor marker were visualized on the surface of screen-printed electrode using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). AuNPs/aptamer nanoconstuctions distribution on the solid surface was studied. More uniform coverage of the carbon electrode surface with the nanoconstuctions was showed in comparison with DNA-aptamer alone on the golden electrode surface. Targeted binding of the tumor marker molecules with the AuNPs/DNA-aptamer nanoconstuctions was approved.

  5. Development of paper-gate transistor toward direct detection from microbiological fluids

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, a paper-gate transistor was developed to detect glucose using an extended-gate field-effect transistor (FET). A filter paper was used as an extended gate electrode, in which Au nanoparticles (AuNPs) modified with phenylboronic acids (PBAs) were included. PBA-AuNPs play an important role as a support to not only be entrapped in cellulose fibrils but also bind to the targeted glucose in a paper. The surface properties of PBA-AuNPs were investigated to elucidate the electrical properties of the paper-gate electrode using an absorption spectrum and a zeta potential analysis. Moreover, the paper-gate electrode enabled us to detect glucose at the micromolar level on the basis of the principle of FET devices. A platform based on the paper-gate transistor is suitable for a highly sensitive system to detect glucose in trace samples such as tears, sweat, and saliva in the future.

  6. Mechanical and thermal behavior of ionic polymer metal composites: effects of electroded metals

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Kwang J.

    2007-08-01

    In this study, we investigated the mechanical properties of various types of ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5-7 µm-doped layer and nanosized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in dried conditions. With regards to thermal behavior, Au IPMC had the highest Tg (153 °C) and Tm (263 °C) in both the DMA and DSC results. The fracture behavior of various types of IPMCs followed the behavior of the base material, Nafion™, which is represented as the semicrystalline polymer characteristic.

  7. Controlled Vectorial Electron Transfer and Photoelectrochemical Applications of Layered Relay/Photosensitizer-Imprinted Au Nanoparticle Architectures on Electrodes.

    PubMed

    Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar

    2016-03-23

    Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)(3)2+-Au nanoparticles aggregates.

    PubMed

    Zhang, Lihua; Xu, Zhiai; Sun, Xuping; Dong, Shaojun

    2007-01-15

    Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+)-AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

  9. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    PubMed

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  10. Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers.

    PubMed

    Çevik, Emre; Bahar, Özlem; Şenel, Mehmet; Abasıyanık, M Fatih

    2016-12-15

    In this study, an immunosensor was designed to utilize for the detection of prostate specific antigen (PSA) based on three different generations (G1, G2 and G3) of ferrocene (Fc) cored polyamidiamine dendrimers (Fc-PAMAM) gold (Au) electrode. The self-assembled monolayer principle (SAM) was used to fabricate the sensitive, selective and disposable immunosensor electrodes. In electrode fabrication cysteamine (Cys) was the first agent covalently linked on the Au electrode surface. Immobilized redox center (ferrocene) cored PAMAM dendrimers served as a layer for the further binding of biological components. The monoclonal antibody of PSA (anti-PSA) was covalently immobilized on dendrimers which were attached onto the modified Au surface (Au/Cys/Fc-PAMAMs/anti-PSA). PSA levels were quantitatively analyzed by using electrochemical differential pulse voltammetry (DPV) whose lowest detection limit was calculated as 0.001ngmL(-1). The Au/Cys/FcPAMAM/anti-PSA immunosensor showed excellent performance for PSA at the pulse amplitude; 50mV and the scan rate; 10mV/s in a wide linear concentration range of 0.01ng-100ngmL(-1). Analytical performance and specificity assays were carried out using human serum and different proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications.

    PubMed

    Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab

    2016-10-01

    Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Liu, Guo; Wang, Jizheng

    2013-05-01

    Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.

  13. Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications.

    PubMed

    Avramov, Ivan D; Länge, Kerstin; Rupp, Swen; Rapp, Bastian; Rapp, Michael

    2007-01-01

    Results from systematic polymer coating experiments on surface acoustic wave (SAW) resonators and coupled resonator filters (CRF) on ST-cut quartz with a corrosion-proof electrode structure entirely made of gold (Au) are presented and compared with data from similar SAW devices using aluminium (Al) electrodes. The recently developed Au devices are intended to replace their earlier Al counterparts in sensor systems operating in highly reactive chemical gas environments. Solid parylene C and soft poly[chlorotrifluoroethylene-co-vinylidene fluoride] (PCFV) polymer films are deposited under identical conditions onto the surface of Al and Au devices. The electrical performance of the Parylene C coated devices is monitored online during film deposition. The PCVF coated devices are evaluated after film deposition. The experimental data show that the Au devices can stand up to 40% thicker solid films for the same amount of loss increase than the Al devices and retain better resonance and phase characteristics. The frequency sensitivities of Au and Al devices to parylene C deposition are nearly identical. After coating with soft PCFV sensing film, the Au devices provide up to two times higher gas sensitivity when probed with cooling agent, octane, or tetrachloroethylene.

  14. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  15. Performance assessment of polymer based electrodes for in vitro electrophysiological sensing: the role of the electrode impedance

    NASA Astrophysics Data System (ADS)

    Medeiros, Maria C. R.; Mestre, Ana L. G.; Inácio, Pedro M. C.; Santos, José M. L.; Araujo, Inês M.; Bragança, José; Biscarini, Fabio; Gomes, Henrique L.

    2016-09-01

    Conducting polymer electrodes based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) are used to record extracellular signals from autonomous cardiac contractile cells and glioma cell cultures. The performance of these conducting polymer electrodes is compared with Au electrodes. A small-signal impedance analysis shows that in the presence of an electrolyte, both Au and polymer electrodes establish high capacitive double-layers. However, the polymer/electrolyte interfacial resistance is 3 orders of magnitude lower than the resistance of the metal/electrolyte interface. The polymer low interfacial resistance minimizes the intrinsic thermal noise and increases the system sensitivity. However, when measurements are carried out in current mode a low interfacial resistance partially acts as a short circuit of the interfacial capacitance, this affects the signal shape.

  16. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.

    PubMed

    Pu, Ying-Chih; Wang, Gongming; Chang, Kao-Der; Ling, Yichuan; Lin, Yin-Kai; Fitzmorris, Bob C; Liu, Chia-Ming; Lu, Xihong; Tong, Yexiang; Zhang, Jin Z; Hsu, Yung-Jung; Li, Yat

    2013-08-14

    Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

  17. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    PubMed

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-04-19

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  18. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  19. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positivemore » magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.« less

  20. Active counter electrode in a-SiC electrochemical metallization memory

    NASA Astrophysics Data System (ADS)

    Morgan, K. A.; Fan, J.; Huang, R.; Zhong, L.; Gowers, R.; Ou, J. Y.; Jiang, L.; De Groot, C. H.

    2017-08-01

    Cu/amorphous-SiC (a-SiC) electrochemical metallization memory cells have been fabricated with two different counter electrode (CE) materials, W and Au, in order to investigate the role of CEs in a non-oxide semiconductor switching matrix. In a positive bipolar regime with Cu filaments forming and rupturing, the CE influences the OFF state resistance and minimum current compliance. Nevertheless, a similarity in SET kinetics is seen for both CEs, which differs from previously published SiO2 memories, confirming that CE effects are dependent on the switching layer material or type. Both a-SiC memories are able to switch in the negative bipolar regime, indicating Au and W filaments. This confirms that CEs can play an active role in a non-oxide semiconducting switching matrix, such as a-SiC. By comparing both Au and W CEs, this work shows that W is superior in terms of a higher R OFF/R ON ratio, along with the ability to switch at lower current compliances making it a favourable material for future low energy applications. With its CMOS compatibility, a-SiC/W is an excellent choice for future resistive memory applications.

  1. Effects of V2O5/Au bi-layer electrodes on the top contact Pentacene-based organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2017-05-01

    Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.

  2. Friction force microscopy at a regularly stepped Au(665) electrode: Anisotropy effects

    NASA Astrophysics Data System (ADS)

    Podgaynyy, Nikolay; Iqbal, Shahid; Baltruschat, Helmut

    2015-01-01

    Using friction force microscopy, friction was determined for the AFM-tip scanning parallel and vertically to the monoatomic steps of Au(665) electrode for different coverages of Cu in sulfuric acid. When the tip was scanning parallel to the steps, the results were similar to those obtained before for a Au(111) surface: a higher coverage of Cu leads to an increased friction. However, differently from Au(111), no transitions in the friction coefficient were observed with increasing load. Atomic stick slip was observed both for the Au surface and the √{ 3} × √{ 3} honeycomb Cu adlayer with a Cu coverage of 2/3. When the tip was scanning perpendicular to the steps, friction did not depend much on coverage; astonishingly, atomic stick slip was also observed.

  3. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    PubMed

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  4. A novel signal-off electrochemiluminescence biosensor for the determination of glucose based on double nanoparticles.

    PubMed

    Liu, Linlin; Ma, Qiang; Li, Yang; Liu, ZiPing; Su, Xingguang

    2015-01-15

    In this work, a novel facile signal-off electrochemiluminescence (ECL) biosensor has been developed for the determination of glucose based on the integration of chitosan (CHIT), CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs) on the glassy carbon electrode (GCE). Chitosan displays high water permeability, hydrophilic property, strong hydrogel ability and good adhesion to load the double nanoparticles to the glassy carbon electrode surfaces. Au NPs are efficient glucose oxidase (GOx)-mimickess to catalytically oxidize glucose, similar to the natural process. Upon the addition of glucose, the Au NPs catalyzed glucose to produce gluconic acid and hydrogen peroxide (H2O2) based on the consumption of dissolved oxygen (O2), which resulted in a quenching effect on the ECL emission. Therefore, the determination of glucose could be achieved by monitoring the signal-off ECL biosensor. Under the optimum conditions, the ECL intensity of CdTe QDs and the concentration of glucose have a good linear relationship in the range of 0.01-10 mmol L(-1). The limit of detection for glucose was 5.28 μmol L(-1) (S/N=3). The biosensor showed good sensitivity, selectivity, reproducibility and stability. The proposed biosensor has been employed for the detection of glucose in human serum samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Charge-Carrier-Scattering Spectroscopy With BEEM

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.

    1992-01-01

    Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.

  6. Enhancing the light-extraction efficiency of AlGaN deep-ultraviolet light-emitting diodes using highly reflective Ni/Mg and Rh as p-type electrodes

    NASA Astrophysics Data System (ADS)

    Maeda, Noritoshi; Yun, Joosun; Jo, Masafumi; Hirayama, Hideki

    2018-04-01

    Improving the light-extraction efficiency (LEE) is a major issue for the development of deep-ultraviolet (DUV) light-emitting diodes (LEDs). For this improvement, we introduced a transparent p-AlGaN contact layer and a reflective p-type electrode. In this work, we investigated the improvements obtained by replacing conventional Ni/Au p-type electrodes with highly reflective Ni/Mg and Rh electrodes. The external quantum efficiencies (EQEs) of 279 nm DUV LEDs were increased from 4.2 to 6.6% and from 3.4 to 4.5% by introducing Ni/Mg and Rh p-type electrodes, respectively. The LEE enhancement factors for the Ni/Mg and Rh electrodes were 1.6 and 1.4, respectively. These results are explained by the fact that the measured reflectances of the Ni/Mg and Rh electrodes were approximately 80 and 55%, respectively. Moreover, it was concluded that a passivation layer is required for Ni/Mg electrodes to prevent the degradation of the LED properties by the oxidation of Mg.

  7. Evaluation parameters for the alkaline fuel cell oxygen electrode

    NASA Technical Reports Server (NTRS)

    Singer, J.; Srinivasan, V.

    1985-01-01

    Studies were made of Pt- and Au-catalyzed porous electrodes, designed for the cathode of the alkaline H2/O2 fuel cell, employing cyclic voltammetry and the floating half-cell method. The purpose was to obtain parameters from the cyclic voltammograms which could predict performance in the fuel cell. It was found that a satisfactory relationship between these two types of measurement could not be established; however, useful observations were made of relative performance of several types of carbon used as supports for noble metal catalysts and of some Au catalysts. The best half-cell performance with H2/O2 in a 35 percent KOH electrolyte at 80 C was given by unsupported fine particle Au on Teflon; this electrode is used in the Orbiter fuel cell.

  8. Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications

    NASA Astrophysics Data System (ADS)

    Khan, Ajahar; Kant Jain, Ravi; Banerjee, Priyabrata; Inamuddin; Asiri, Abdullah M.

    2017-11-01

    In this work, electrochemically-driven Kraton/graphene oxide/Ag/polyaniline (Kraton/GO/Ag/Pani) polymer composite based ionic polymer metal composite (IPMC) was fabricated as a soft actuator. Silver nanopowder with polyaniline coating used as an electrode material is a novel approach in the fabrication of IPMC, which gives new opportunities for development of the electrode on ionic polymer actuator surfaces directly without electroless plating of Pt or Au metal. The Kraton/GO/Ag/Pani membrane showed much higher water-uptake (WU), ion exchange capacity (IEC), proton conductivity than those of several reported IPMC membranes. The enhanced actuation performance indicates that the Kraton/GO/Ag/Pani is a better alternative to the highly expensive commercialized IPMC actuator.

  9. Porphyran-capped gold nanoparticles modified carbon paste electrode: a simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lima, Dhésmon; Calaça, Giselle Nathaly; Viana, Adriano Gonçalves; Pessôa, Christiana Andrade

    2018-01-01

    The application of carbon paste electrodes modified with porphyran-capped gold nanoparticles (CPE/AuNps-PFR) to detect an important anticancer drug, 5-fluorouracil (5-FU), is described. Gold nanoparticles (AuNps) were synthesized through a green one-pot route, by using porphyran (PFR) (a sulfated polysaccharide extracted from red seaweed) as reducing and stabilizing agent. The reaction temperature and the concentrations of AuCl4- and PFR for AuNps-PFR synthesis were optimized by using a 23 full factorial design with central point assayed in triplicate. The smallest particle size (128.7 nm, obtained by DLS) was achieved by employing a temperature of 70 °C and AuCl4- and PFR concentrations equal to 2.5 mmol L-1 and 0.25 mg mL-1, respectively. The AuNps-PFR nanocomposite was characterized by UV-vis spectroscopy, FTIR, DLS, TEM, XRD and zeta potential, which proved that PFR was effective at reducing and capping the AuNps. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments showed that the nanocomposite could enhance the electrochemical performance of the electrodes, as a consequence of the high conductivity and large surface area presented by the AuNps. The CPE/AuNps-PFR was able to electrocatalyze the oxidation of 5-FU by CV and differential pulse voltammetry (DPV). A linear relationship between the DPV peak currents and 5-FU concentration was verified in the range from 29.9 to 234 μmol L-1 in 0.04 mol L-1 BR buffer solution pH 8.0. Detection and quantification limits were found to be 0.66 and 2.22 μmol L-1, respectively. Besides the good sensitivity, CPE/AuNps-PFR showed reproducibility and did not suffer significant interference from potentially electroative biological compounds. The good analytical performance of the modified electrode was confirmed for determining 5-FU in pharmaceutical formulations, with good percent recoveries (ranging from 96.6 to 101.4%) and an acceptable relative standard deviation (RSD = 2.80%).

  10. Type-inversion as a working mechanism of high voltage MAPbBr3(Cl)-based halide perovskite solar cells.

    PubMed

    Kedem, Nir; Kulbak, Michael; Brenner, Thomas M; Hodes, Gary; Cahen, David

    2017-02-22

    Using several metals with different work functions as solar cell back contact we identify majority carrier type inversion in methylammonium lead bromide (MAPbBr3, without intentional doping) as the basis for the formation of a p-n junction. MAPbBr 3 films deposited on TiO 2 are slightly n-type, whereas in a full device they are strongly p-type. The charge transfer between the metal electrode and the halide perovskite (HaP) film is shown to determine the dominant charge carrier type of the HaP and, thus, also of the final cells. Usage of Pt, Au and Pb as metal electrodes shows the effects of metal work function on minority carrier diffusion length and majority carrier concentration in the HaP, as well as on built-in voltage, band bending, and open circuit voltage (V OC ) within a solar cell. V OC > 1.5 V is demonstrated. The higher the metal WF, the higher the carrier concentration induced in the HaP, as indicated by a narrower space charge region and a smaller minority carrier diffusion length. From the analysis of bias-dependent electron beam-induced currents, the HaP carrier concentrations are estimated to be ∼ 1 × 10 17 cm -3 with Au and 2-3 × 10 18 cm -3 with Pt. A model in which type-inversion stretches across the entire film width implies formation of the p-n junction away from the interface, near the back-contact metal electrode. This work highlights the importance of the contact metal on device performance in that contact engineering can also serve to control the carrier concentration in HaP.

  11. Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection.

    PubMed

    Zhang, Yi; Zeng, Guang Ming; Tang, Lin; Chen, Jun; Zhu, Yuan; He, Xiao Xiao; He, Yan

    2015-01-20

    An electrochemical sensor was developed for attomolar Hg(2+) detection. Three single-stranded DNA probes were rationally designed for selective and sensitive detection of the target, which combined T-Hg(2+)-T coordination chemistry and the characteristic of convenient modification of electrochemical signal indicator. Graphene and nanoAu were successively electrodeposited on a glass carbon electrode surface to improve the electrode conductivity and functionalize with the 10-mer thymine-rich DNA probe (P1). NanoAu carriers functionalized with 29-mer guanine-rich DNA probe (P3) labeled methyl blue (MB-nanoAu-P 3s) were used to further strengthen signal response. In the presence of Hg(2+), a T-T mismatched dsDNA would occur between P1 and a 22-mer thymine-rich DNA probe (P2) on the electrode surface due to T-Hg(2+)-T coordination chemistry. Followed by adding the MB-nanoAu-P 3s for hybridization with P2, square wave voltammetry was executed. Under optimal conditions, Hg(2+) could be detected in the range from 1.0 aM to 100 nM with a detection limit of 0.001 aM. Selectivity measurements reveal that the sensor is specific for Hg(2+) even with interference by high concentrations of other metal ions. Three different environmental samples were analyzed by the sensor and the results were compared with that from an atomic fluorescence spectrometry. The developed sensor was demonstrated to achieve excellent detectability. It may be applied to development of ultrasensitive detection strategies.

  12. Sensitivity enhancement of capacitive tumor necrosis factor-α detection by deposition of nanoparticles on interdigitated electrode

    NASA Astrophysics Data System (ADS)

    Yagati, Ajay Kumar; Park, Jinsoo; Kim, Jungsuk; Ju, Heongkyu; Chang, Keun-A.; Cho, Sungbo

    2016-06-01

    An interdigitated electrodes (IDE) modified with gold nanoparticles (AuNPs) was fabricated to enhance the capacitive detection of tumor necrosis factor-α (TNF-α) and compared with a bare IDE. A TNF-α immunosensor was developed by covalently conjugating TNF-α antibodies with 3-mercaptopropionic acid by a carbodiimide/N-hydroxysuccinimide reaction on the AuNP/IDE. After the application of human serum samples containing various concentrations of TNF-α to the sensing electrode, changes in both the impedance spectrum and the electrode interfacial capacitance were measured. The capacitance changes were dependent on the TNF-α concentration in the range of 1 pg ml-1 to 10 ng ml-1, and the device had the calculated detection limit of 0.83 pg ml-1. The developed AuNP/IDE-based immunosensor was successfully used for the capacitive detection of the binding of TNF-α to its antibody, and was found to be feasible for the analysis of TNF-α in human blood serum.

  13. Electrocatalytic oxidation of cellulose at a gold electrode.

    PubMed

    Sugano, Yasuhito; Latonen, Rose-Marie; Akieh-Pirkanniemi, Marceline; Bobacka, Johan; Ivaska, Ari

    2014-08-01

    The electrochemical properties of cellulose dissolved in NaOH solution at a Au surface were investigated by cyclic voltammetry, FTIR spectroscopy, the electrochemical quartz crystal microbalance technique, and electrochemical impedance spectroscopy. The reaction products were characterized by SEM, TEM, and FTIR and NMR spectroscopy. The results imply that cellulose is irreversibly oxidized. Adsorption and desorption of hydroxide ions at the Au surface during potential cycling have an important catalytic role in the reaction (e.g., approach of cellulose to the electrode surface, electron transfer, adsorption/desorption of the reaction species at the electrode surface). Moreover, two types of cellulose derivatives were obtained as products. One is a water-soluble cellulose derivative in which some hydroxyl groups are oxidized to carboxylic groups. The other derivative is a water-insoluble hybrid material composed of cellulose and Au nanoparticles (≈4 nm). Furthermore, a reaction scheme of the electrocatalytic oxidation of cellulose at a gold electrode in a basic medium is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electron transport in doped fullerene molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  15. Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Young; Lee, Myung Woo; Song, Da Hyun; Yoon, Hyeok Jin; Suh, Jung Sang

    2017-06-01

    A plasmonic-enhanced graphene flake counter electrode for dye-sensitized solar cells (DSSCs) was fabricated by immobilization of gold nanoparticles (NPs) on fluorine-doped tin oxide (FTO) glass and the deposition of a thin layer of graphene flakes. The graphene flakes, fabricated using a thermal plasma jet system, were very thin and pure and had good crystallinity. Even though their average size is larger than 100 nm, they had great dispersibility in common solvents. Their relatively large size and good crystallinity resulted in good conductivity, and their good dispersibility allowed us to fabricate relatively uniform films. The efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode was as much as 9.78%, which is higher than that with a conventional Pt/FTO (9.08%) or graphene flake/FTO (8.98%) counter electrode. Using cyclic voltammograms and electrochemical impedance spectroscopy and by measuring the incident photo-conversion efficiency, we proved that by the localized surface plasmon resonance effect of the Au NPs included between the graphene flakes and FTO, the charge-transfer resistance at the electrode/electrolyte interface was decreased. Consequently, the catalytic rate for I- regeneration improved, and the energy conversion efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode improved.

  16. I Situ Structural Study of Underpotential Deposition and Electrocatalysis on GOLD(111) Electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien

    This thesis work has studied systems of Bi, Pb, Ag, and Hg underpotential deposition (UPD) on Au(111) electrodes. The application of the atomic force microscope (AFM), the scanning tunneling microscope (STM), and the surface x-ray scattering (SXS) to these UPD studies has provided in situ measurements from which we investigate factors that determine UPD surface structures and correlate these structures with surface reactivity. For all the UPD systems in this thesis work, atomic level features of the electrode surface have been revealed. In the case of Pb UPD, Pb starts to deposit by forming islands which exhibit a hexagonal close packed structure of Pb adatoms, while, in the other systems, the UPD adatoms form open lattices. In the Bi and Pb studies, we correlate the activities of the modified surface toward electroreduction of H_2O_2 with the adlattice structures. A heterobimetallic bridge model for H_2O_2 on the surface could explain the enhanced reactivity. The full monolayers of Bi and Hg, rhombohedral metals, form rectangular lattice structures on the hexagonal Au(111) surfaces. The partial charge retention on the Bi and Hg adatom opens the adlayer structure when the coverage is less than a full monolayer. The structure of the first submonolayers of Ag UPD is electrolyte-dependent. The electrode surface exhibits 3 x 3 and 4 x 4 overlayer structures in solutions containing sulfate and nitrate, respectively. In perchloric acid another open structure is observed and a close-packed monolayer is formed in acetic acid. The different monolayer structures give rise to packing densities which correlate with electrolyte size. This implies that the anions participate in reducing metal ions.

  17. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    PubMed

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111).

    PubMed

    Pong, Ifan; Yau, Shuehlin; Huang, Peng-Yi; Chen, Ming-Chou; Hu, Tarng-Shiang; Yang, Yawchia; Lee, Yuh-Lang

    2009-09-01

    In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

  19. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine.

    PubMed

    Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram

    2018-06-01

    In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells.

    PubMed

    Wang, Xin; Ye, Ke; Sun, Ce; Zhang, Hongyu; Zhu, Kai; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-07-15

    Pd-Au/TiC electrodes with various three-dimensional structures are obtained by the pulsed potential electro-deposition in PdCl 2 /HAuCl 4 electrolytes. The morphologies of Pd-Au/TiC composite catalysts are significantly dependent on the component of deposited solutions. The surface appearance of Pd-Au catalysts changes from rime-shaped structure, to feather-like construction, then to pineapple root-like structure and finally to flower-like configuration with the increase of PdCl 2 content in electrolytes. These particular three-dimensional structures may be very suitable for H 2 O 2 electro-reduction, which assures a high utilization of Pd-Au catalysts and provides a large specific surface area. The electro-catalytic activities of H 2 O 2 reduction on the Pd-Au/TiC electrodes improve as increasing the Pd content in Pd-Au alloy catalysts. The pineapple root-like Pd 5 Au 1 /TiC electrode reveals remarkably excellent electrochemical property and desirable stability for catalyzing H 2 O 2 reduction in acid media. The direct peroxide-peroxide fuel cells with a 10 cm 3 min -1 flow rate display the open circuit voltage (OCV) of 0.85V and the peak power density of 56.5mWcm -2 at 155mAcm -2 with desirable cell stability, which is much higher than those previously reported. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications.

    PubMed

    Tanwar, Shivani; Ho, Ja-an Annie; Magi, Emanuele

    2013-12-15

    Synthesis, characterization and application of Au-PANI-Calix and Au-PANI-Nap nanocomposites, is reported herein. An easy template free green synthesis is proposed and discussed for easy expediency. A variety of analytical techniques were used to characterize the nanocomposites: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanocomposites. Surface morphology was studied by transmission electron microscopy (TEM). The nanocomposites were immobilized on screen-printed electrode and showed electroactivity in neutral pH, making them promising candidates for various analytical applications. A sensitive and selective detection of Cu(2+) was perceived on the Au-PANI-Calix modified electrode with no interference from ions K(+), Ni(2+), Co(2+), Pb(2+), Cr(3+) with a detection limit of 10nM. The copper detection is facilitated for accessible ligation with 4-sulfocalix[4]arene, so as the Cu(II)-Calix complex formed. The electrode modified with Au-PANI-Nap showed sensing application towards H2O2 with a detection limit of 1 μM. The modified electrodes were reproducible and stable for 2 months. © 2013 Elsevier B.V. All rights reserved.

  2. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  3. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation.

    PubMed

    Xie, Yi-Bing; Li, Xiang-Zhong

    2006-12-01

    A series of titanium dioxide (TiO(2)/Ti) film electrodes were prepared from titanium (Ti) metal mesh by an improved anodic oxidation process and were further modified by photochemically depositing gold (Au) on the TiO(2) film surface as Au-TiO(2)/Ti film electrodes. The morphological characteristics, crystal structure and photoelectroreactivity of both the TiO(2)/Ti and Au-TiO(2)/Ti electrodes were studied. The experiments confirmed that the gold modification of TiO(2) film could enhance the efficiency of e(-)/h(+) separation on the TiO(2) conduction band and resulted in the higher photocatalytic (PC) and photoelectrocatalytic (PEC) activity under UV or visible illumination. To further enhance the TiO(2) PEC reaction, a reticulated vitreous carbon (RVC) electrode was applied in the same reaction system as the cathode to electrically generate H(2)O(2) in the aqueous solution. The experiments demonstrated that such a H(2)O(2)-assisted TiO(2) PEC reaction system could achieve a much better performance of BPA degradation in aqueous solution due to an interactive effect among TiO(2), Au, and H(2)O(2). It may have good potential for application in water and wastewater treatment in the future.

  4. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10 –5 – 10 –6 M and were lower than those obtained using bulk Au.« less

  5. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  6. Tremella-like graphene-Au composites used for amperometric determination of dopamine.

    PubMed

    Li, Cong; Zhao, Jingyu; Yan, Xiaoyi; Gu, Yue; Liu, Weilu; Tang, Liu; Zheng, Bo; Li, Yaru; Chen, Ruixue; Zhang, Zhiquan

    2015-03-21

    Electrochemical detection of dopamine (DA) plays an important role in medical diagnosis. In this paper, tremella-like graphene-Au (t-GN-Au) composites were synthesized by a one-step hydrothermal method for selective detection of DA. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterize as-prepared t-GN-Au composites. The t-GN-Au composites were directly used for the determination of DA via cyclic voltammetry (CV) and the chronoamperometry (CA) technique. CA measurement gave a wide linear range from 0.8 to 2000 μM, and the detection limit of 57 nM (S/N = 3) for DA. The mechanism and the heterogeneous electron transfer kinetics of the DA oxidation were discussed in the light of rotating disk electrode (RDE) experiments. Moreover, the modified electrode was applied to the determination of DA in human urine and serum samples.

  7. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential.

    PubMed

    Sanzò, Gabriella; Taurino, Irene; Puppo, Francesca; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; Carrara, Sandro; De Micheli, Giovanni

    2017-10-01

    In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm 2 . The good value of K m app (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis. Copyright © 2017. Published by Elsevier Inc.

  8. Electronically Transparent Au-N Bonds for Molecular Junctions.

    PubMed

    Zang, Yaping; Pinkard, Andrew; Liu, Zhen-Fei; Neaton, Jeffrey B; Steigerwald, Michael L; Roy, Xavier; Venkataraman, Latha

    2017-10-25

    We report a series of single-molecule transport measurements carried out in an ionic environment with oligophenylenediamine wires. These molecules exhibit three discrete conducting states accessed by electrochemically modifying the contacts. Transport in these junctions is defined by the oligophenylene backbone, but the conductance is increased by factors of ∼20 and ∼400 when compared to traditional dative junctions. We propose that the higher-conducting states arise from in situ electrochemical conversion of the dative Au←N bond into a new type of Au-N contact. Density functional theory-based transport calculations establish that the new contacts dramatically increase the electronic coupling of the oligophenylene backbone to the Au electrodes, consistent with experimental transport data. The resulting contact resistance is the lowest reported to date; more generally, our work demonstrates a facile method for creating electronically transparent metal-organic interfaces.

  9. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  10. Trap-induced charge transfer/transport at energy harvesting assembly

    NASA Astrophysics Data System (ADS)

    Cho, Seongeun; Paik, Hanjong; Kim, Tae Wan; Park, Byoungnam

    2017-02-01

    Understanding interfacial electronic properties between electron donors and acceptors in hybrid optoelectronic solar cells is crucial in governing the device parameters associated with energy harvesting. To probe the electronic localized states at an electron donor/acceptor interface comprising a representative hybrid solar cell, we investigated the electrical contact properties between Al-doped zinc oxide (AZO) and poly (3-hexylthiophene) (P3HT) using AZO as the source and drain electrodes, pumping carriers from AZO into P3HT. The injection efficiency was evaluated using the transmission line method (TLM) in combination with field effect transistor characterizations. Highly conductive AZO films worked as the source and drain electrodes in the devices for TLM and field effect measurements. A comparable contact resistance difference between AZO/P3HT/AZO and Au/P3HT/Au structures contradicts the fact that a far larger energy barrier exists for electrons and holes between AZO and P3HT compared with between P3HT and Au based on the Schottky-Mott model. It is suggested that band to band tunneling accounts for the contradiction through the initial hop from AZO to P3HT for hole injection. The involvement of the tunneling mechanism in determining the contact resistance implies that there is a high density of electronic traps in the organic side.

  11. Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Houman

    Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic bacteria harvest light, through special proteins called reaction centers (RCs), with high efficiency and convert it into electrochemical energy. In theory, photosynthetic RCs can be used in a device to harvest solar energy and generate 1.1 V open circuit voltage and ~1 mA cm-2 short circuit photocurrent. Considering the nearly perfect quantum yield of photo-induced charge separation, efficiency of a protein-based solar cell might exceed 20%. In practice, the efficiency of fabricated devices has been limited mainly due to the challenges in the electron transfer between the protein complex and the device electrodes as well as limited light absorption. The overarching goal of this work is to increase the power conversion efficiency in protein-based solar cells by addressing those issues (i.e. electron transfer and light absorption). This work presents several approaches to increase the charge transfer rate between the photosynthetic RC and underlying electrode as well as increasing the light absorption to eventually enhance the external quantum efficiency (EQE) of bio-hybrid solar cells. The first approach is to decrease the electron transfer distance between one of the redox active sites in the RC and the underlying electrode by direct attachment of the of protein complex onto Au electrodes via surface exposed cysteine residues. This resulted in photocurrent densities as large as ~600 nA cm-2 while still the incident photon to generated electron quantum efficiency was as low as %3 x 10-4. 2- The second approach is to immobilize wild type RCs of Rhodobacter sphaeroides on the surface of a Au underlying electrode using self-assembled monolayers of carboxylic acid terminated oligomers and cytochrome c charge mediating layers, with a preferential orientation from the primary electron donor site. This approach resulted in EQE of up to 0.06%, which showed 200 times efficiency improvement comparing to the first approach. In the third approach, instead of isolated protein complexes, RCs plus light harvesting (LH) complexes were employed for a better photon absorption. Direct attachment of RC-LH1 complexes on Au working electrodes, resulted in 0.21% EQE which showed 3.5 times efficiency improvement over the second approach (700 times higher than the first approach). The main impact of this work is the harnessing of biological RCs for efficient energy harvesting in man-made structures. Specifically, the results in this work will advance the application of RCs in devices for energy harvesting and will enable a better understanding of bio and nanomaterial interfaces, thereby advancing the application of biological materials in electronic devices. At the end, this work offers general guidelines that can serve to improve the performance of bio-hybrid solar cells.

  12. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode.

    PubMed

    Chawla, Sheetal; Rawal, Rachna; Kumar, Dheeraj; Pundir, Chandra Shekhar

    2012-11-01

    A method is described for construction of a highly sensitive amperometric biosensor for measurement of total phenolic compounds in wine by immobilizing laccase covalently onto nanocomposite of silver nanoparticles (AgNPs)/zinc oxide nanoparticles (ZnONPs) electrochemically deposited onto gold (Au) electrode. Scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy were applied for characterization of the surface morphology of the modified electrode, and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode toward the oxidation of guaiacol. The linearity between the oxidation current and the guaiacol concentration was obtained in a range of 0.1 to 500μM with a detection limit of 0.05μM (signal-to-noise ratio (S/N)=3) and sensitivity of 0.71μAμM(-1)cm(-2). The electrode showed increased oxidation and reduced reduction current with the deposition of AgNPs/ZnONPs on it. R(CT) values of ZnONPs/Au, AgNPs/ZnONPs/Au, and laccase/AgNPs/ZnONPs/Au electrode were 220, 175, and 380Ω, respectively. The biosensor showed an optimal response within 8s at pH 6.0 (0.1M acetate buffer) and 35°C when operated at 0.22V against Ag/AgCl. Analytical recovery of added guaiacol was 98%. The method showed a good correlation (r=0.99) with the standard spectrophotometric method, with the regression equation being y=1.0053x-3.5541. The biosensor lost 25% of its initial activity after 200 uses over 5months. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    PubMed

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  14. The investigation of Ga-doped ZnO as an interlayer for ohmic contact to Cd1-xZnxTe films

    NASA Astrophysics Data System (ADS)

    Shen, Yibin; Huang, Jian; Gu, Qingmiao; Meng, Hua; Tang, Ke; Shen, Yue; Zhang, Jijun; Wang, Linjun; Lu, Yicheng

    2017-12-01

    In this work, high quality Cd1-xZnxTe films were prepared on fluorine doped tin oxide (FTO) glass substrates by close-spaced sublimation (CSS) method. A low resistivity sputtered Ga-doped ZnO (GZO) film was used as an interlayer between Au electrodes and Cd1-xZnxTe films try to reduce the contact resistance and contribute to bring about a better Ohmic contact. Circular transmission line model (CTLM) was adopted to investigate the effects of GZO intermediate layer on the contact properties of Au/GZO/Cd1-xZnxTe structure. The results show a low contact resistivity of 0.37 Ω cm2 for Au/GZO contacts on Cd1-xZnxTe films. Cd1-xZnxTe film radiation detectors were also fabricated using Au/GZO contacts and an energy resolution of about 28% was obtained from a 60 KeV 241Am γ-ray source for the first time.

  15. Low contact resistance of the MWCNTs ohmic contact to p-GaN and its application for high power LED

    NASA Astrophysics Data System (ADS)

    Yokogawa, Toshiya; Miyake, Syota

    2017-08-01

    A low contact resistance electrode for p-GaN was obtained using the metallic multi-wall carbon nanotubes (MWCNTs) as the electrode material. The work function of the metallic MWCNTs was confirmed to be 4.84 eV as large as that of Au, Pd and Ni which are generally used for the p-GaN electrode material. Consequently the specific contact resistance was obtained to be as low as 2×10-3 Ωcm2 by optimizing the GaN surface treatment using hydrochloric acid because of the large work function of the MWCNTs. We also characterized the properties of LEDs using the MWCNTs ohmic contact for p-GaN. Low operation voltage and high optical output power was successfully obtained. Threshold voltage was about 2.7 V, and optical output power was about 0.8 W for the 1×1 mm2 size LED chip.

  16. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    PubMed

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  17. Spectro-Electrochemical Examination of the Formation of Dimethyl Carbonate from CO and Methanol at Different Electrode Materials

    PubMed Central

    2017-01-01

    In this work, we report a fundamental mechanistic study of the electrochemical oxidative carbonylation of methanol with CO for the synthesis of dimethyl carbonate on metallic electrodes at low overpotentials. For the first time, the reaction was shown to take place on the metallic catalysts without need of oxidized metals or additives. Moreover, in-situ spectroelectrochemical techniques were applied to this electrosynthesis reaction in order to reveal the reaction intermediates and to shed light into the reaction mechanism. Fourier transformed infrared spectroscopy was used with different electrode materials (Au, Pd, Pt, and Ag) to assess the effect of the electrode material on the reaction and the dependence of products and intermediates on the applied potentials. It was observed that the dimethyl carbonate is only formed when the electrode is able to decompose/oxidize MeOH to form (adsorbed) methoxy groups that can further react with CO to dimethyl carbonate. Furthermore, the electrode needs to adsorb CO not too strongly; otherwise, further reaction will be inhibited because of surface poisoning by CO. PMID:28929754

  18. Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry.

    PubMed

    Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Li, Tianhua; Cao, Yuting; Hu, Futao; Jiang, Qianli

    2016-01-15

    A novel multiplexed ratiometric biosensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for near-simultaneous detection of microRNA (miRNA)-21 and miRNA-141 based on electrochemiluminescence (ECL) coupled with cyclic voltammetry (CV) method. In the detection system, the ECL signal tags (Ru-SiO2@PLL-Au) were fabricated using poly-l-lysine (PLL) as bridging agent and co-reactant to connect Ru-SiO2 (Ru(bpy)3(2+)-doped silica) and gold nanoparticles (Au NPs), which were respectively modified on two spatial resolved working electrodes (WE1 and WE2) of SPCE. Then the ferrocene (Fc)-labeled hairpin DNA (Fc-HDNA1 and Fc-HDNA2) as CV signal tags and ECL quenching material were immobilized on Ru-SiO2@PLL-Au. Upon miRNA-21 and miRNA-141 adding, the target miRNAs could hybridize with corresponding Fc-HDNA, which could lead to Fc away from Ru-SiO2@PLL-Au. Such conformational changes could recover the ECL of Ru-SiO2@PLL-Au and decreased the CV current of Fc, respectively. This "signal-on" of ECL and "signal-off" of CV were employed for dual-signal ratiometric readout. With the help of a multiplexed switch, two dual-signals from WE1 and WE2 were used for multiplexed detection of miRNA-21 and miRNA-141 down to 6.3 and 8.6fM, respectively. This approach was used in real sample analysis and has significant potential for miRNA biomarkers detection in a clinical laboratory setting. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Morphology and conductivity of Au films on polydimethylsiloxane using (3-mercaptopropyl)trimethoxysilane (MPTMS) as an adhesion promoter

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Deyhle, Hans; Weiss, Florian M.; Töpper, Tino; Karapetkova, Maria; Leung, Vanessa; Müller, Bert

    2016-04-01

    Dielectric elastomer actuators (DEA) are often referred to as artificial muscles due to their high specific continuous power, which is comparable to that of human skeletal muscles, and because of their millisecond response time. We intend to use nanometer-thin DEA as medical implant actuators and sensors to be operated at voltages as low as a few tens of volts. The conductivity of the electrode and the impact of its stiffness on the stacked structure are key to the design and operation of future devices. The stiffness of sputtered Au electrodes on polydimethylsiloxane (PDMS) was characterized using AFM nanoindentation techniques. 2500 nanoindentations were performed on 10 x 10 μm2 regions at loads of 100 to 400 nN using a spherical tip with a radius of (522 +/- 2) nm. Stiffness maps based on the Hertz model were calculated using the Nanosurf Flex-ANA system. The low adhesion of Au to PDMS has been reported in the literature and leads to the formation of Au-nanoclusters. The size of the nanoclusters was (25 +/- 10) nm and can be explained by the low surface energy of PDMS leading to a Volmer-Weber growth mode. Therefore, we propose (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive to promote the adhesion between the PDMS and Au electrode. A beneficial side effect of these self-assembling monolayers is the significant improvement of the electrode's conductivity as determined by four-point probe measurements. Therefore, the application of a soft adhesive layer for building a dielectric elastomer actuator appears promising.

  20. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  1. Chemically reduced graphene oxide-P25-Au nanocomposite materials and their photoelectrocatalytic and photocatalytic applications.

    PubMed

    Praveen, Raju; Ramaraj, Ramasamy

    2016-10-05

    Visible light active photocatalysts consisting of gold nanoparticle (Au NP) decorated chemically reduced graphene oxide-P25 nanocomposite materials (CRGO-P25-Au NCMs) were prepared through a one-pot chemical reduction method. The nanocomposite materials were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) analyses. The performances of CRGO-P25-Au NCM modified ITO electrodes were evaluated towards the photoelectrochemical oxidation of methanol. The photoelectrode fabricated using CRGO-P25-Au NCM exhibited a higher photocurrent of 293 μA cm -2 compared to other control electrodes. The CRGO-P25-Au NCMs were also used for the photocatalytic reduction of highly toxic chromium(vi) ions to chromium(iii) ions in the presence of oxalic acid as a sacrificial electron donor. The results showed that around 75% of the Cr(vi) ions were photocatalytically reduced to Cr(iii) ions by the CRGO-P25-Au NCM within the light irradiation time of 1 h. In both applications, the enhanced catalytic activity of the CRGO-P25-Au NCM was attributed to the improved visible light absorption and the reduced charge recombination exerted by the interaction of CRGO and Au NPs with P25 and their synergistic effects.

  2. Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei

    2018-06-01

    This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.

  3. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  4. 13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode

    PubMed Central

    Park, Kwang-Tae; Kim, Han-Jung; Park, Min-Joon; Jeong, Jun-Ho; Lee, Jihye; Choi, Dae-Geun; Lee, Jung-Ho; Choi, Jun-Hyuk

    2015-01-01

    In recent years, inorganic/organic hybrid solar cell concept has received growing attention for alternative energy solution because of the potential for facile and low-cost fabrication and high efficiency. Here, we report highly efficient hybrid solar cells based on silicon nanowires (SiNWs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using transfer-imprinted metal mesh front electrodes. Such a structure increases the optical absorption and shortens the carrier transport distance, thus, it greatly increases the charge carrier collection efficiency. Compared with hybrid cells formed using indium tin oxide (ITO) electrodes, we find an increase in power conversion efficiency from 5.95% to 13.2%, which is attributed to improvements in both the electrical and optical properties of the Au mesh electrode. Our fabrication strategy for metal mesh electrode is suitable for the large-scale fabrication of flexible transparent electrodes, paving the way towards low-cost, high-efficiency, flexible solar cells. PMID:26174964

  5. Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture.

    PubMed

    Zhang, Guangye; Hawks, Steven A; Ngo, Chilan; Schelhas, Laura T; Scholes, D Tyler; Kang, Hyeyeon; Aguirre, Jordan C; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-11-18

    Although it is known that evaporated metals can penetrate into films of various organic molecules that are a few nanometers thick, there has been little work aimed at exploring the interaction of the common electrode metals used in devices with fullerene derivatives, such as organic photovoltaics (OPVs) or perovskite solar cells that use fullerenes as electron transport layers. In this paper, we show that when commonly used electrode metals (e.g., Au, Ag, Al, Ca, etc.) are evaporated onto films of fullerene derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), the metal penetrates many tens of nanometers into the fullerene layer. This penetration decreases the effective electrical thickness of fullerene-based sandwich structure devices, as measured by the device's geometric capacitance, and thus significantly alters the device physics. For the case of Au/PCBM, the metal penetrates a remarkable 70 nm into the fullerene, and we see penetration of similar magnitude in a wide variety of fullerene derivative/evaporated metal combinations. Moreover, using transmission electron microscopy to observed cross-sections of the films, we show that when gold is evaporated onto poly(3-hexylthiophene) (P3HT)/PCBM sequentially processed OPV quasi-bilayers, Au nanoparticles with diameters of ∼3-20 nm are formed and are dispersed entirely throughout the fullerene-rich overlayer. The plasmonic absorption and scattering from these nanoparticles are readily evident in the optical transmission spectrum, demonstrating that the interpenetrated metal significantly alters the optical properties of fullerene-rich active layers. This opens a number of possibilities in terms of contact engineering and light management so that metal penetration in devices that use fullerene derivatives could be used to advantage, making it critical that researchers are aware of the electronic and optical consequences of exposing fullerene-derivative films to evaporated electrode metals.

  6. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    PubMed

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  7. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    NASA Astrophysics Data System (ADS)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  8. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE PAGES

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...

    2017-05-07

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  9. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  10. Characterization of opto-electrical enhancement of tandem photoelectrochemical cells by using photoconductive-AFM

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Elbersen, Rick; Huskens, Jurriaan; Gardeniers, Han; Lee, Joo-Yul; Mul, Guido; Heo, Jinhee

    2017-07-01

    Solar-to-hydrogen conversion by water splitting in photoelectrochemical cells (PECs) is a promising approach to alleviate problems associated with intermittency in solar energy supply and demand. Several interfacial resistances in photoelectrodes limit the performance of such cells, while the properties of interfaces are not easy to analyze in situ. We applied photoconductive-AFM to analyze the performance of WO3/p+n Si photoanodes, containing an ultra-thin metal interface of either Au or Pt. The Au interface consisted of Au nanoparticles with well-ordered interspacing, while Pt was present in the form of a continuous film. Photoconductive-AFM data show that upon illumination significantly larger currents are measured for the WO3/p+n Si anode equipped with the Au interface, as compared to the WO3/p+n Si anode with the Pt interface, in agreement with the better performance of the former electrode in a photoelectrochemical cell. The remarkable performance of the Au-containing electrode is proposed to be the result of favorable electron-hole recombination rates induced by the Au nanoparticles in a plasmon resonance excited state.

  11. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.

  12. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    NASA Astrophysics Data System (ADS)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  13. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer onto Au. Advantages of degenerate Si include a simpler equivalent circuit, simple and reproducible surface preparation, easy incorporation into ULSI devices, and the greater strength of Si-C bonds (~520 kJ/mole) relative to Au-S bonds (125-150 kJ/mole). New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a thirty-day trial. An impedance biosensor is reported that employs the bidentate thiol 16-[3,5-bis(mercaptomethyl)phenoxy]-hexadecanoic acid (BMPHA) to immobilize the mouse monoclonal antibody to peanut protein Ara h 1. The detection limit for Ara h 1 is approximately 0.71 ng/mL (0.01 nM), which is about one order of magnitude lower than that obtained for antibody immobilization atop the monodendate thiol, 16-mercaptohexadecanoic acid (16 MHA). Antibody regeneration was studied daily using a gentle denaturing agent, 0.2 M KSCN at pH 7.3. The antibody-coated on Au electrodes retained activity towards Ara h1 for 10 and 20 days of regeneration of the monodendate- and BMPHA-coated Au electrodes, respectively. This prolonged activity illustrates the superior stability of protein films atop the BMPHA bidentate thiol- coated Au electrode relative to the 16-MHA monodendate thiol-coated Au electrode.

  14. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    NASA Astrophysics Data System (ADS)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  15. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  16. Current voltage perspective of an organic electronic device

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ayash K.; Kumari, Nikita

    2018-05-01

    Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.

  17. Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film.

    PubMed

    Batra, Bhawna; Lata, Suman; Pundir, C S

    2013-11-01

    A method is described for construction of an improved amperometric acrylamide biosensor based on covalent immobilization of hemoglobin (Hb) onto nanocomposite of carboxylated multi-walled carbon nanotubes (cMWCNT) and iron oxide nanoparticles (Fe3O4NPs) electrodeposited onto Au electrode through chitosan (CHIT) film. The Hb/cMWCNT-Fe3O4NP/CHIT/Au electrode was characterized by scanning electron microscopy, Fourier transform infra-red spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry at different stages of its construction. The biosensor was based on interaction between acrylamide and Hb, which led to decrease in the electroactivity of Hb, i.e., current generated during its reversible conversion [Fe(II)/Fe(III)]. The biosensor showed optimum response within 8 s at pH 5.0 and 30 °C. The linear working range for acrylamide was 3-90 nM, with a detection limit of 0.02 nM and sensitivity of 36.9 μA/nM/cm(2). The biosensor was evaluated and employed for determination of acrylamide in potato crisps.

  18. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    PubMed Central

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-01-01

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080

  19. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    PubMed

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  20. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker.

    PubMed

    Azzouzi, Sawsen; Rotariu, Lucian; Benito, Ana M; Maser, Wolfgang K; Ben Ali, Mounir; Bala, Camelia

    2015-07-15

    In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating both enzyme and RGO-AuNPs in a sol gel matrix derived from tetrametoxysilane and methyltrimetoxysilane. The enzyme loading, working pH, and coenzyme concentration were optimized. The biosensor linearly responded to l-lactate in the range of 10µM-5mM and showed a good specific sensitivity of 154µA/mMcm(2) with a detection limit of 0.13µM. This was accompanied by good reproducibility and operational stability. Tests on artificial serum proved that l-lactate can be determined practically without interferences from commonly interfering compounds such as urate, paracetamol and l-ascorbate. Our LDH/RGO-AuNPs/SPCE based biosensor thus performs as electrochemical device for the detection of l-lactate as a viable early cancer bio-marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    PubMed

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-25

    We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.

  2. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode.

    PubMed

    Batra, Bhawna; Pundir, C S

    2013-09-15

    A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DNAzyme-functionalized gold-palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor.

    PubMed

    Hou, Li; Gao, Zhuangqiang; Xu, Mingdi; Cao, Xia; Wu, Xiaoping; Chen, Guonan; Tang, Dianping

    2014-04-15

    A highly sensitive and selective impedimetric immunosensor with triple signal amplification was designed for ultrasensitive detection of prostate-specific antigen (PSA) by using anti-PSA antibody and DNAzyme-functionalized gold-palladium hybrid nanotags (Ab2-AuPd-DNA). The signal was amplified based on the Ab2-AuPd-DNA toward the catalytic precipitation of 4-choloro-1-naphthol (4-CN). DNAzyme (as a kind of peroxidase mimic) could catalyze the oxidation of 4-CN, whilst AuPd hybrid nanostructures could not only provide a large surface coverage for immobilization of biomolecules but also promote 4-CN oxidation to some extent. The produced insoluble benzo-4-chlorohexadienone via 4-CN was coated on the electrode surface, and hindered the electron transfer between the solution and the electrode, thereby increasing the Faradaic impedance of the base electrode. Three labeling strategies including Ab2-AuNP, Ab2-AuPd and Ab2-AuPd-DNA were investigated for determination of PSA, and improved analytical features were obtained with the Ab2-AuPd-DNA strategy. Under optimal conditions, the dynamic concentration range of the impedimetric immunosensor spanned from 1.0 pg mL(-1) to 50 ng mL(-1) PSA with a detection limit of 0.73 pg mL(-1). Intra- and inter-assay coefficients of variation were below 8.5% and 9.5%, respectively. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 6 clinical serum specimens and 6 diluted standards between the impedimetric immunosensor and the commercialized electrochemiluminescent method for PSA detection. © 2013 Published by Elsevier B.V.

  4. Thermoelectricity in fullerene-metal heterojunctions.

    PubMed

    Yee, Shannon K; Malen, Jonathan A; Majumdar, Arun; Segalman, Rachel A

    2011-10-12

    Thermoelectricty in heterojunctions, where a single-molecule is trapped between metal electrodes, has been used to understand transport properties at organic-inorganic interfaces. (1) The transport in these systems is highly dependent on the energy level alignment between the molecular orbitals and the Fermi level (or work function) of the metal contacts. To date, the majority of single-molecule measurements have focused on simple small molecules where transport is dominated through the highest occupied molecular orbital. (2, 3) In these systems, energy level alignment is limited by the absence of electrode materials with low Fermi levels (i.e., large work functions). Alternatively, more controllable alignment between molecular orbitals and the Fermi level can be achieved with molecules whose transport is dominated by the lowest unoccupied molecular orbital (LUMO) because of readily available metals with lower work functions. Herein, we report molecular junction thermoelectric measurements of fullerene molecules (i.e., C(60), PCBM, and C(70)) trapped between metallic electrodes (i.e., Pt, Au, Ag). Fullerene junctions demonstrate the first strongly n-type molecular thermopower corresponding to transport through the LUMO, and the highest measured magnitude of molecular thermopower to date. While the electronic conductance of fullerenes is highly variable, due to fullerene's variable bonding geometries with the electrodes, the thermopower shows predictable trends based on the alignment of the LUMO with the work function of the electrodes. Both the magnitude and trend of the thermopower suggest that heterostructuring organic and inorganic materials at the nanoscale can further enhance thermoelectric performance, therein providing a new pathway for designing thermoelectric materials.

  5. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification.

    PubMed

    Jiang, Bingying; Wang, Min; Chen, Ying; Xie, Jiaqing; Xiang, Yun

    2012-02-15

    We demonstrated a new strategy for highly sensitive electrochemical detection of cocaine by using two engineered aptamers in connection to redox-recycling signal amplification. The graphene/AuNP nanocomposites were electrochemically deposited on a screen printed carbon electrode to enhance the electron transfers. The cocaine primary binding aptamers were self-assembled on the electrode surface through sulfur-Au interactions. The presence of the target cocaine and the biotin-modified secondary binding aptamers leads to the formation of sandwich complexes on the electrode surface. The streptavidin-conjugated alkaline phosphatases (ALPs) were used as labels to generate quantitative signals. The addition of the ALP substrate and the co-reactant NADH results in the formation of a redox cycle between the enzymatic product and the electrochemically oxidized species and the signal is thus significantly amplified. Because of the effective modification of the sensing surface and signal amplification, low nanomolar (1 nM) detection limit for cocaine is achieved. The proposed aptamer-based sandwich sensing approach for amplified detection of cocaine thus opens new opportunities for highly sensitive determination of other small molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    PubMed Central

    Economou, Anastasios

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391

  7. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  8. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire.

    PubMed

    Fei, Peng; Yeh, Ping-Hung; Zhou, Jun; Xu, Sheng; Gao, Yifan; Song, Jinhui; Gu, Yudong; Huang, Yanyi; Wang, Zhong Lin

    2009-10-01

    We report an external force triggered field-effect transistor based on a free-standing piezoelectric fine wire (PFW). The device consists of an Ag source electrode and an Au drain electrode at two ends of a ZnO PFW, which were separated by an insulating polydimethylsiloxane (PDMS) thin layer. The working principle of the sensor is proposed based on the piezoelectric potential gating effect. Once subjected to a mechanical impact, the bent ZnO PFW cantilever creates a piezoelectric potential distribution across it width at its root and simultaneously produces a local reverse depletion layer with much higher donor concentration than normal, which can dramatically change the current flowing from the source electrode to drain electrode when the device is under a fixed voltage bias. Due to the free-standing structure of the sensor device, it has a prompt response time less than 20 ms and quite high and stable sensitivity of 2%/microN. The effect from contact resistance has been ruled out.

  9. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity.

    PubMed

    Li, Yang; Kim, Jeonghun; Wang, Jie; Liu, Nei-Ling; Bando, Yoshio; Alshehri, Abdulmohsen Ali; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W

    2018-06-05

    Zeolitic imidazolate framework (ZIF) composite-derived carbon exhibiting large surface area and high micropore volume is demonstrated to be a promising electrode material for the capacitive deionization (CDI) application. However, some inherent serious issues (e.g., low electrical conductivity, narrow pore size, relatively low pore volume, etc.) are still observed for nitrogen-doped porous carbon particles, which restrict their CDI performance. To solve the above-mentioned problems, herein, we prepared gold-nanoparticle-embedded ZIF-8-derived nitrogen-doped carbon calcined at 800 °C (Au@NC800) and PEDOT doped-NC-800 (NC800-PEDOT). The newly generated NC800-PEDOT and Au@NC800 electrodes exhibited notably increased conductivity, and they also achieved high electrosorption capacities of 16.18 mg g-1 and 14.31 mg g-1, respectively, which were much higher than that of NC800 (8.36 mg g-1). Au@NC800 and NC800-PEDOT can be promisingly applicable as highly efficient CDI electrode materials.

  10. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    NASA Astrophysics Data System (ADS)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  11. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    PubMed

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  12. The mechanical properties of ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Doyeon; Kim, Kwang J.

    2007-04-01

    In this study, we investigated the mechanical properties of various type ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5~7 μm doped layer and nano-sized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in a dried condition. In a thermal behavior, Au IPMC has the highest T g (153°C) and T m (263°C) in both the DMA and DSC results. The fracture behavior of various types IPMCs followed base material's behavior, Nafion TM, which is represented as the semicrystalline polymer characteristic.

  13. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    PubMed

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    PubMed

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of aluminum oxide film on thermocompression bonding of gold wire to evaporated aluminum film

    NASA Technical Reports Server (NTRS)

    Iwata, S.; Ishizaka, A.; Yamamoto, H.

    1984-01-01

    The influence of Al surface condition on the thermocompression bonding of Au wires to Al electrodes for integrated electric circuits was studied. Au wires were connected to Al electrodes by nail-head bonding after various Al surface treatments. Bonding was evaluated by measuring the wire pull strength and fraction of the number of failures at Au-Al bonds to the total number of failures. Dependence of the fraction on applied load was derived theoretically with a parameter named critical load to take into consideration the differences in Al surface condition. The relation also held explicately for various surface treatments. Characterization of the Al surface was carried out by electron microscopy for chemical analysis.

  16. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    PubMed

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  18. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu, E-mail: tatsuma@iis.u-tokyo.ac.jp

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  19. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    PubMed

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  20. In vivo CH3(CH2)11SAu SAM electrodes in the beating heart: in situ analytical studies relevant to pacemakers and interstitial biosensors.

    PubMed

    Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc

    2003-01-01

    To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.

  1. Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode.

    PubMed

    Wan, Dong; Yuan, Shaojun; Li, G L; Neoh, K G; Kang, E T

    2010-11-01

    An amperometric glucose biosensor was prepared using polyaniline (PANI) and chitosan-coupled carbon nanotubes (CS-CNTs) as the signal amplifiers and glucose oxidase (GOD) as the glucose detector on a gold electrode (the Au-g-PANI-c-(CS-CNTs)-GOD biosensor). The PANI layer was prepared via oxidative graft polymerization of aniline from the gold electrode surface premodified by self-assembled monolayer of 4-aminothiophenol. CS-CNTs were covalently coupled to the PANI-modified gold substrate using glutaradehyde as a bifunctional linker. GOD was then covalently bonded to the pendant hydroxyl groups of chitosan using 1,4-carbonyldiimidazole as the bifunctional linker. The surface functionalization processes were ascertained by X-ray photoelectron spectroscopy (XPS) analyses. The field emission scanning electron microscopy (FESEM) images of the Au-g-PANI-c-(CS-CNTs) electrode revealed the formation of a three-dimensional surface network structure. The electrode could thus provide a more spatially biocompatible microenvironment to enhance the amount and biocatalytic activity of the immobilized enzyme and to better mediate the electron transfer. The resulting Au-g-PANI-c-(CS-CNTs)-GOD biosensor exhibited a linear response to glucose in the concentration range of 1-20 mM, good sensitivity (21 μA/(mM·cm(2))), good reproducibility, and retention of >80% of the initial response current after 2 months of storage.

  2. Construction and direct electrochemistry of orientation controlled laccase electrode.

    PubMed

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.

    PubMed

    Morag, Ahiud; Becker, James Y; Jelinek, Raz

    2017-07-10

    Microsupercapacitors are touted as one of the promising "next frontiers" in energy-storage research and applications. Despite their potential, significant challenges still exist in terms of physical properties and electrochemical performance, particularly attaining high energy density, stability, ease of synthesis, and feasibility of large-scale production. We present new freestanding microporous electrodes comprising self-assembled scaffold of gold and reduced graphene oxide (rGO) nanowires coated with MnO 2 . The electrodes exhibited excellent electrochemical characteristics, particularly superior high areal capacitance. Moreover, the freestanding Au/rGO scaffold also served as the current collector, obviating the need for an additional electrode support required in most reported supercapacitors, thus enabling low volume and weight devices with a high overall device specific energy. Stacked symmetrical solid-state supercapacitors were fabricated using the Au/rGO/MnO 2 electrodes in parallel configurations showing the advantage of using freestanding electrodes in the fabrication of low-volume devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor.

    PubMed

    Huang, Liaojing; Zhang, Li; Yang, Liu; Yuan, Ruo; Yuan, Yali

    2018-05-01

    In this work, the manganese porphyrin (MnPP) decorated on DNA networks could serve as quencher and mimicking enzyme to efficiently reduce the photocurrent of photoactive material 3,4,9,10-perylene tetracarboxylic acid (PTCA), which was elaborately used to construct a novel label-free aptasensor for ultrasensitive detection of thrombin (TB) in a signal-off manner. The Au-doped PTCA (PTCA-PEI-Au) with outstanding membrane-forming and photoelectric property was modified on electrode to acquire a strong initial photoelectrochemistry (PEC) signal. Afterward, target binding aptamer Ι (TBAΙ) was modified on electrode to specially recognize target TB, which could further combine with TBAII and single-stranded DNA P1-modified platinum nanoparticles (TBAII-PtNPs-P1) for immobilizing DNA networks with abundant MnPP. Ingeniously, the MnPP could not only directly quench the photocurrent of PTCA, but also acted as hydrogen peroxide (HRP) mimicking enzyme to remarkably stimulate the deposition of benzo-4-chlorhexidine (4-CD) on electrode for further decreasing the photocurrent of PTCA, thereby obtaining a definitely low photocurrent for detection of TB. As a result, the proposed PEC aptasensor illustrated excellent sensitivity with a low detection limit down to 3 fM, exploiting a new avenue about intergrating two functions in one substance for ultrasensitive biological monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines.

    PubMed

    Campuzano, S; Gamella, M; Serra, B; Reviejo, A J; Pingarrón, J M

    2007-03-21

    An integrated amperometric gluconic acid biosensor constructed using a gold electrode (AuE) modified with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) on which gluconate dehydrogenase (GADH, 0.84 U) and the mediator tetrathiafulvalene (TTF, 1.5 micromol) were coimmobilized by covering the electrode surface with a dialysis membrane is reported. The working conditions selected were Eapp=+0.15 V and 25+/-1 degrees C. The useful lifetime of one single TTF-GADH-MPA-AuE was surprisingly long. After 53 days of continuous use, the biosensor exhibited 86% of the original sensitivity. A linear calibration plot was obtained for gluconic acid over the 6.0x10(-7) to 2.0x10(-5) M concentration range, with a limit of detection of 1.9x10(-7) M. The effect of potential interferents (glucose, fructose, galactose, arabinose, and tartaric, citric, malic, ascorbic, gallic, and caffeic acids) on the biosensor response was evaluated. The behavior of the biosensor in a flow-injection system in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining gluconic acid in wine and must samples, and the results obtained were validated by comparison with those provided by using a commercial enzyme test kit.

  6. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Strickler, J. Rudi; Gunasekaran, Sundaram

    2012-07-01

    Sensitive, rapid, and accurate detection of dopamine (DA) at low cost is needed for clinical diagnostic and therapeutic purposes as well as to prevent illegal use of DA in animal feed. We employed a simple approach to synthesize reduced graphene oxide sheets (rGOS) and gold nanoparticles (AuNPs) at room temperature on indium tin oxide-coated glass (ITO) slides as disposable working electrodes for sensing DA. Graphene oxide (GO) was directly reduced on ITO to remove oxygenated species via a rapid and green process without using chemical reducing reagents. AuNPs were electrochemically deposited in situ on rGOS-ITO with fairly uniform density and size. The sensitivity of the AuNPs-rGOS-ITO sensor for DA detection is 62.7 μA mM-1 cm-2 with good selectivity against common electrochemically interfering species such as ascorbic acid (AA) and uric acid (UA), and the detection limit measured by differential pulse voltammetry (DPV), at a signal-noise ratio of 3, was 6.0 × 10-8 M. The electrochemical catalysis of DA was proven to be a surface process with an electron transfer coefficient (α) of 0.478 and a rate constant (ks) of 1.456 s-1. It correlates well with the conventional UV-vis spectrophotometric approach (R = 0.9973) but with more than thrice the dynamic range (up to 4.5 mM). The sensor also exhibited good stability and capability to detect DA in beef samples, and thus is a promising candidate for simple and inexpensive sub-nanomolar detection of DA, especially in the presence of UV-absorbing compounds.

  7. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1.

    PubMed

    Zhang, Wei; Xiong, Huiwen; Chen, Miaomiao; Zhang, Xiuhua; Wang, Shengfu

    2017-10-15

    A novel molecularly imprinted electrochemiluminescence (MIP-ECL) sensor based on Ru(bpy) 3 2+ -doped silica nanoparticles (Ru@SiO 2 NPs) is developed for highly sensitive detection of fumonisin B 1 (FB 1 ). Gold-nanoparticles (AuNPs), Ru@SiO 2 NPs with chitosan (CS) composites and a molecularly imprinted polymer (MIP) are assembled on a glassy carbon electrode (GCE) to fabricate an ECL platform step by step. AuNPs could greatly promote the ECL intensity and improve the analytical sensitivity according to the localized surface plasmon resonance (LSPR) and the electrochemical effect. In this surface-enhanced electrochemiluminescence (SEECL) system, AuNPs work as the LSPR source to improve the ECL intensity and Ru@SiO 2 NPs are used as ECL luminophores. In the phosphate buffer solution (PBS), the evident anodic ECL of Ru@SiO 2 on the above working electrode is observed in the presence of the template molecule fumonisin B 1 (FB 1 ), which could act as the coreactant of Ru@SiO 2 NPs due to the amino group of FB 1 . When the template molecules were eluted from the MIP, little coreactant was left, resulting in an apparent decrease of ECL signal. After the MIP-ECL sensor was incubated in FB 1 solution, the template molecules rebound to the MIP surface, leading to the enhancement of ECL signal again. On the basis of these results, a facile MIP-ECL sensor has been successfully fabricated, which exhibited a linear range from 0.001 to 100ngmL -1 with a detection limit of 0.35pgmL -1 for FB 1 . Moreover, the proposed MIP-ECL sensor displayed an excellent application in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    PubMed

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  9. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces

    NASA Astrophysics Data System (ADS)

    Vargas-Barbosa, Nella M.; Roling, Bernhard

    2018-05-01

    The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.

  10. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.

    PubMed

    Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang

    2016-06-28

    Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass.

  11. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  12. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    PubMed

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  13. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  14. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2015-01-15

    Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)

  15. Molecular dynamics simulations of the formation of 1D spin-valves from stretched Au-Co and Pt-Co nanowires

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Sondon, T.; Saúl, A.

    2014-11-01

    We have performed molecular dynamics (MD) simulations of stretched Aux-Co1 - x and Ptx-Co1 - x nanowires to investigate the formation of bimetallic monoatomic wires between two electrodes. We have considered nanowires with two concentrations x = 0.2 and 0.8, aspect ratio of 13, a cross section of 1 nm2 and a wide range of temperatures (from 10 to 400 K). For the MD simulations we have used a semi-empirical interatomic potential based on the second moment approximation (SMA) of the density of states to the tight-binding Hamiltonian. For Au-Co alloys, Au atoms tends to migrate towards the narrowed region to form almost pure Au wires. In the PtCo case the formed chains usually consist of Pt enriched alternating structures. The most striking result is probably the Au0.2-Co0.8 alloy where pure monoatomic Au chains form between two Co electrodes constituting a potential 1D spin valve. Despite the known ease with which the 5d metals (Pt, Ir, and Au) form monoatomic chains (MACS), our results show that in the presence of Co (x = 0.2), the percentage of chain formation is higher than in the Pt and Au rich cases (x = 0.8).

  16. A Low-Power Bio-Potential Acquisition System with Flexible PDMS Dry Electrodes for Portable Ubiquitous Healthcare Applications

    PubMed Central

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-01-01

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system. PMID:23459390

  17. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor.

    PubMed

    Li, Feng; Feng, Yan; Dong, Pingjun; Yang, Limin; Tang, Bo

    2011-01-15

    A novel protocol for development of DNA electrochemical biosensor based on gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE) was proposed, which was carried out by the self-assembly of AuNPs on the mercaptophenyl film (MPF) via simple electrografting of in situ generated mercaptophenyl diazonium cations. The resulting MPF was covalently immobilized on GCE surface via C-C bond with high stability, which was desirable in fabrication of excellent performance biosensors. Probe DNA was self-assembled on AuNPs through the well-known Au-thiol binding. The recognition of fabricated DNA electrochemical biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)(3+) as the electrochemical indicator. Taking advantage of amplification effects of AuNPs and stability of MPF, the developed biosensor could detect target DNA with the detection limit of 7.2×10(-11) M, which also exhibits good selectivity, stability and regeneration ability for DNA detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  19. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    PubMed Central

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-01-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913

  20. The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Minglang; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin

    2017-08-01

    The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.

  1. InGaN light-emitting diodes with highly transparent ZnO:Ga electrodes

    NASA Astrophysics Data System (ADS)

    Liu, H. Y.; Li, X.; Ni, X.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.

    2010-03-01

    InGaN light-emitting diodes (LEDs) utilizing ZnO layers heavily doped with Ga (GZO) as transparent p-electrodes were fabricated and their characteristics were demonstrated to be superior to those of LEDs with metal Ni/Au electrodes. Highly conductive and highly transparent GZO films were grown on p-GaN contact layers of the LED structures by plasma-assisted molecular beam epitaxy under metal-rich conditions. The c and a lattice constants of GZO were found to be close to the bulk values, indicating small lattice distortion of GZO. The as-grown GZO films showed resistivities as low as 2.2-2.9×10-4 Ω cm. Upon rapid thermal annealing at the optimum temperature of 675 °C, the resistivity decreased reaching a value of ~1.9×10-4 Ω cm. Unlike the LEDs with Ni/Au contacts, the LEDs with GZO electrodes showed no filamentation and very uniform light emission at high current densities. The peak value of the relative external quantum efficiency for the LEDs with GZO contacts has substantial improvement compared with that for the LEDs with Ni/Au contacts. Under pulsed excitation mode, GZO-LEDs withstood current densities up to 5000 A/cm2.

  2. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry.

    PubMed

    Serafín, V; Torrente-Rodríguez, R M; González-Cortés, A; García de Frutos, P; Sabaté, M; Campuzano, S; Yáñez-Sedeño, P; Pingarrón, J M

    2018-03-01

    A sensitive amperometric immunosensor has been prepared by immobilization of capture antibodies onto gold nanoparticles (AuNPs) grafted on a screen-printed carbon electrode (SPCE) through aryl diazonium salt chemistry using 4-aminothiophenol (AuNPs-S-Phe-SPCE). The immunosensor was designed for the accurate determination of clinically relevant levels of B-type natriuretic peptide (BNP) in human serum samples. The nanostructured electrochemical platform resulted in an ordered layer of AuNPs onto SPCEs which combined the advantages of high conductivity and improved stability of immobilized biomolecules. The resulting disposable immunosensor used a sandwich type immunoassay involving a peroxidase-labeled detector antibody. The amperometric transduction was carried out at -0.20V (vs the Ag pseudo-reference electrode) upon the addition of hydroquinone (HQ) as electron transfer mediator and H 2 O 2 as the enzyme substrate. The nanostructured immunosensors show a storage stability of at least 25 days, a linear range between 0.014 and 15ngmL -1 , and a LOD of 4pgmL -1 , which is 100 times lower than the established cut-off value for heart failure (HF) diagnosis. The performance of the immunosensor is advantageously compared with that provided with immunosensors prepared by grafting SPCE with p-phenylendiamine (H 2 N-Phe-SPCE) and attaching AuNPs by immersion into an AuNPs suspension or by electrochemical deposition, as well as with immunosensors constructed using commercial AuNPs-modified SPCEs. The developed immunosensor was applied to the successful analysis of human serum from heart failure (HF) patients upon just a 10-times dilution as sample treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    PubMed

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    NASA Astrophysics Data System (ADS)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  6. The effect of Au nanoparticles on the strain-dependent electrical properties of CVD graphene

    NASA Astrophysics Data System (ADS)

    Bai, Jing; Nan, Haiyan; Qi, Han; Bing, Dan; Du, Ruxia

    2018-03-01

    We conducted an experimental study of the effect of Au nanoparticles (NPs) on the strain-dependent electrical properties in chemical vapor deposition grown graphene. We used 5-nm thick Au NPs as an effective cover (and doping) layer for graphene, and found that Au NPs decrease electrical resistance by two orders of magnitude. In addition, the Au NPs suppress the effect of strain on resistance because the intrinsic topological cracks and grain boundaries in graphene are filled with Au nanoparticles. This method has a big potential to advance industrial production of large-area, high-quality electronic devices and graphene-based transparent electrodes.

  7. A MoS₂-based system for efficient immobilization of hemoglobin and biosensing applications.

    PubMed

    Chao, Jie; Zou, Min; Zhang, Chi; Sun, Haofan; Pan, Dun; Pei, Hao; Su, Shao; Yuwen, Lihui; Fan, Chunhai; Wang, Lianhui

    2015-07-10

    A novel hydrogen peroxide (H2O2) and nitric oxide (NO) biosensor was fabricated by immobilizing hemoglobin (Hb) on a gold nanoparticle-decorated MoS2 nanosheet (AuNPs@MoS2) nanocomposite film modified glass carbon electrode. The AuNPs@MoS2 nanocomposite not only made the immobilized Hb keep its native biological activity but also facilitated the electron transfer between electrode and the electroactive center of Hb due to its excellent conductivity and biocompatibility. The direct electrochemistry and bioelectrocatalytic activity of Hb were investigated by cyclic voltammetry (CV). The modified electrode showed good electrocatalytic ability toward the reduction of H2O2 and NO. Under optimal conditions, the current response was linear with the concentration of H2O2 and NO in the range from 10 to 300 μM and 10 to 1100 μM with a detection limit of 4 and 5 μM, respectively. This MoS2-based biosensor was sensitive, reproducible and stable, indicating that AuNPs@MoS2 nanocomposite maybe a promising platform to construct electrochemical sensors for chemical and biological molecules detection.

  8. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    PubMed Central

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225

  9. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    NASA Astrophysics Data System (ADS)

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.

  10. Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frei M.; Hybertsen M.; Aradhya S.V.

    We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less

  11. Glassy carbon electrodes sequentially modified by cysteamine-capped gold nanoparticles and poly(amidoamine) dendrimers generation 4.5 for detecting uric acid in human serum without ascorbic acid interference.

    PubMed

    Ramírez-Segovia, A S; Banda-Alemán, J A; Gutiérrez-Granados, S; Rodríguez, A; Rodríguez, F J; Godínez, Luis A; Bustos, E; Manríquez, J

    2014-02-17

    Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu

    2018-05-01

    The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.

  13. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    NASA Astrophysics Data System (ADS)

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.

    2017-03-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.

  14. Reducing the Schottky barrier between few-layer MoTe2 and gold

    NASA Astrophysics Data System (ADS)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  15. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    PubMed

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen.

    PubMed

    Rizwan, Mohammad; Elma, Syazwani; Lim, Syazana Abdullah; Ahmed, Minhaz Uddin

    2018-06-01

    In this work, a nanocomposite of gold nanoparticles (AuNPs), carbon nano-onions (CNOs), single-walled carbon nanotubes (SWCNTs) and chitosan (CS) (AuNPs/CNOs/SWCNTs/CS) was prepared for the development of highly sensitive electrochemical immunosensor for the detection of carcinoembryonic antigen (CEA), clinical tumor marker. Firstly, layer-by-layer fabrication of the CEA-immunosensors was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV). By combining the advantages of large surface area and electronic properties of AuNPs, CNOs, SWCNTs, and film forming properties of CS, AuNPs/CNOs/SWCNTs/CS-nanocomposite-modified glassy carbon electrode showed a 200% increase in effective surface area and electronic conductivity. The calibration plot gave a negative linear relationship between log[concentration] of CEA and electrical current with a correlation coefficient of 0.9875. The CEA-immunosensor demonstrated a wide linear detection range of 100 fg mL -1 to 400 ng mL -1 with a low detection limit of 100 fg mL -1 . In addition to high sensitivity, reproducibility and large stability, CEA-immunosensor provided an excellent selectivity and resistant-to-interference in the presence of other antigens in serum and hence a potential to be used with real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    PubMed

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  19. Ultrasensitive Determination of Piroxicam at Diflunisal-Derived Gold Nanoparticle-Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shaikh, Tayyaba; uddin, SiraJ; Talpur, Farah N.; Khaskeli, Abdul R.; Agheem, Muhammad H.; Shah, Muhammad R.; Sherazi, Tufail H.; Siddiqui, Samia

    2017-10-01

    We present a simple and green approach for synthesis of gold nanoparticles (AuNps) using analgesic drug diflunisal (DF) as capping and stabilizing agent in aqueous solution. Characterization of the synthesized diflunisal-derived gold nanoparticles (DF-AuNps) was performed by ultraviolet-visible (UV-Vis) spectroscopy, revealing the surface plasmon absorption band at 520 nm under optimized experimental conditions. Fourier-transform infrared (FTIR) spectroscopy established the effective interaction of the capping agent with the AuNps. Topographical features of the synthesized DF-AuNps were assessed by atomic force microscopy (AFM), revealing average particle height of 29 nm to 32 nm. X-ray diffractometry was used to study the crystalline nature, revealing that the synthesized DF-AuNps possessed excellent crystalline properties. The synthesized DF-AuNps were employed to modify the surface of glassy carbon electrode (GCE) for selective determination of piroxicam (PX) using differential pulse voltammetry technique. The fabricated Nafion/DF-AuNps/GCE sensor exhibited high sensitivity compared with bare GCE. The current response of the fabricated sensor was found to be linear in the PX concentration range of 0.5 μM to 50 μM, with limit of detection (LOD) and limit of quantification (LOQ) of 50 nM and 150 nM, respectively. The proposed sensor was successfully utilized for sensitive and rapid determination of PX in human serum, urine, and pharmaceutical samples.

  20. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    PubMed

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.

    PubMed

    Zeng, Zhiyuan; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei

    2014-01-01

    We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl carbonate (DEC)) was used. Three distinct types of morphology change during the reaction, including gradual dissolution, explosive reaction and local expansion/shrinkage, are observed. It is expected that significant stress is generated from lattice expansion during lithium-gold alloy formation. There is vigorous bubble formation from electrolyte decomposition, likely due to the catalytic effect of Au, while the bubble generation is less severe with titanium electrodes. There is an increase of current in response to electron beam irradiation, and electron beam effects on the observed electrochemical reaction are discussed.

  2. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

    PubMed

    Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young

    2011-08-01

    Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) < 70 nA when I(on) > 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.

  3. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.

    PubMed

    Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin

    2014-11-15

    A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. DNA bases assembled on the Au(110)/electrolyte interface: a combined experimental and theoretical study.

    PubMed

    Salvatore, Princia; Nazmutdinov, Renat R; Ulstrup, Jens; Zhang, Jingdong

    2015-02-19

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional theory (DFT) calculations have been employed in the present study to address the adsorption of the four nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T), on the Au(110)-electrode surface. Au(110) undergoes reconstruction to the (1 × 3) surface in electrochemical environment, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy and geometry of the DNA bases in different adsorbate orientations. The optimized geometry is further used to compute models for STM images which are compared with the recorded STM images. This has provided insight into the physical nature of the adsorption. The specific orientations of A, C, G, and T on Au(110) and the nature of the physical adsorbate/surface interaction based on the combination of the experimental and theoretical studies are proposed, and differences from nucleobase adsorption on Au(111)- and Au(100)-electrode surfaces are discussed.

  5. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  6. A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode

    NASA Astrophysics Data System (ADS)

    De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François

    2017-03-01

    A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet-visible (UV-vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV-vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.

  7. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    PubMed

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode.

    PubMed

    Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Razmi, Zahra; Hajati, Shaaker

    2018-08-30

    The determination of gallic acid (GA) and uric acid (UA) is essential due to their biological properties. Numerous methods have been reported for the analysis of GA and UA in various real samples. However, the development of a simple, rapid and practical sensor still remains a great challenge. Here, a carbon paste electrode (CPE) was modified by nanocomposite containing zirconia nanoparticles (ZrO 2 NPs), Choline chloride (ChCl) and gold nanoparticles (AuNPs) to construct ZrO 2 -ChCl-AuNPs/CPE as electrochemical sensor for the simultaneous electro-oxidation of GA and UA. Characterization was performed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The modified electrode was investigated by different methods including electrochemical impedance spectroscopy and cyclic voltammetry. Kinetic parameters such as charge transfer coefficient, standard heterogeneous electron transfer rate constant and other parameters were calculated via voltammetry techniques. Differential pulse voltammetry was used for simultaneous determination of GA and UA applying the ZrO 2 -ChCl-AuNPs/CPE electrode. At the optimum conditions, this sensor showed a linear response in the ranges 0.22- 55 and 0.12-55 µM for GA and UA, respectively. In addition, low detection limits of 25 and 15 nM were obtained for GA and UA, respectively. Furthermore, ZrO 2 -ChCl-AuNPs/CPE was successfully applied for the independent determination of GA in green tea and fruit juice as well as the simultaneous determination of GA and UA in human urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink.

    PubMed

    Sun, Guoqiang; Zhang, Yan; Kong, Qingkun; Zheng, Xiaoxiao; Yu, Jinghua; Song, Xianrang

    2015-04-15

    In this work, multiplexed photoelectrochemical (PEC) immunoassays are introduced into an indium tin oxide (ITO) device. Firstly, the ITO device is fabricated using a simple acid etch treatment method. Secondly, AuPd alloy nanoparticles are electro-deposited on ITO working electrodes as electron sink to construct the immunosensor platform. After that, ZnO nanotubes (ZNTs) arrays are synthesized via chemical etching of ZnO nanorods that are grown on AuPd surface by electrochemical deposition method. Subsequently, CdS is electro-deposited on ZNTs arrays and used as photoactive material. Then, CuO nanoseeds are labeled with signal antibodies and firstly used as PEC signal amplification label. The introduction of CuO brings signal amplification because of the conduction band (CB) of both CuO and ZnO are lower than that of CdS, CuO will compete the photo-induced electrons in CB of CdS with ZnO, leading to the decrease of the photocurrent intensity. Using cancer antigen 125, prostate specific antigen and α-fetoprotein as model analytes, the proposed immunoassay exhibits excellent precision and sensitivity. Meanwhile, this work provides a promising, addressable and simple strategy for the multi-detection of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  11. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites.

    PubMed

    He, Baoshan; Du, Gengan

    2018-05-01

    In the current study, a sensitive electrochemical sensing strategy based on aptamer (APT) for detection of sulfadimidine (SM 2 ) was developed. A bare gold electrode (AuE) was first modified with 2-aminoethanethiol (2-AET) through self-assembly, used as linker for the subsequent immobilization of multi-walled carbon nanotubes and gold nanoparticle composites (MWCNTs/AuNPs). Then, the thiolated APT was assembled onto the electrode via sulfur-gold affinity. When SM 2 existed, the APT combined with SM 2 and formed a complex structure. The specific binding of SM 2 and APT increased the impedance, leading to hard electron transfer between the electrode surface and the redox probe [Fe(CN) 6 ] 3-/4- and producing a significant reduction of the signal. The SM 2 concentration could be reflected by the current difference of the peak currents before and after target binding. Under optimized conditions, the linear dynamic range is from 0.1 to 50 ng mL -1 , with a detection limit of 0.055 ng mL -1 . The sensor exhibited desirable selectivity against other sulfonamides and performs successfully when analyzing SM 2 in pork samples. Graphical abstract A new electrochemical biosensor for ultrasensitive detection of sulfadimidine (SM 2 ) by using a gold electrode modified with MWCNTs/AuNPs for signal amplification and aptamer (APT) for selectivity improvement.

  12. Amperometric immunosensor for α-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film

    NASA Astrophysics Data System (ADS)

    Gan, Ning; Meng, Ling Hua; Wang, Feng

    2009-09-01

    A sensitive amperometric immunosensor for α-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma (HCC), was constructed, The immunosensor is prepared by co-immobilizing [Cu2(phen)2Cl2] (μ-Cl)2 (CuL), nano-Au/Chitosan(Chit) composite, horseradish peroxidase (HRP) and AFP antibody(anti-AFP) on a glassy carbon electrode (GCE). Firstly, CuL was irreversibly absorb on GCE electrode through π-π stacking interaction; then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, finally HRP and anti-AFP was adsorbed onto the surface of the gold nanoparticles to construct GCE | CuL/nanoAu-chit/HRP/anti-AFP immunosensor. The preparation procedure of the electrode was characterized by electrochemical and spectroscopy method. The results showed that this immunosensor exhibited an excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator, offers a high-sensitivity (1710 nA · ng-1 · ml-1) for the detection of AFP and has good correlation for detection of AFP in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.05 ng/ml. The biosensor showed high selectivity as well as good stability and reproductivity.

  13. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2017-05-01

    Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection

    PubMed Central

    Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2008-01-01

    Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a low-cost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts. PMID:27873966

  15. STM investigations of Au(1 1 1) electrodes coated with vitamin B 12 derivatives

    NASA Astrophysics Data System (ADS)

    Szőcs, E.; Durrer, L.; Luginbühl, R.; Simic, N.; Viana, A. S.; Abrantes, L. M.; Keese, R.; Siegenthaler, H.

    2006-01-01

    Vitamin B 12 derivatives immobilized at flame-annealed Au(1 1 1) electrode surfaces have been investigated in close correlation with their structural properties and spatial arrangement at the electrode substrate by scanning tunneling microscopy (STM) in air and in aqueous 0.1 M NaClO 4 solution. The investigated compounds were symmetrical (B 12C 10S-SC 10B 12) and nonsymmetrical (B 12C 10S-SC 10) dialkyl disulfide derivatives of vitamin B 12, attached to the electrode surfaces by the S-Au bond. The ex situ and in situ STM experiments show the formation of a surface layer, whose packing density and structure is presumably controlled by the spatial arrangement of the large cobyrinate head groups. In presence of the symmetrical B 12 compound, a disordered surface layer is observed. Voltammetric investigations show that, in 0.1 M NaClO 4, this layer becomes unstable at potentials approximately ⩽ -1000 mV vs. MSE and is almost completely removed at more negative potentials. The STM imaging properties of the nonsymmetrical B 12 surface layer show a significant dependence on the tunneling distance. In particular, at small tunneling distances, a highly regular hexagonal surface pattern is observed that suggests strongly the presence of an ordered surface assembly. Modeling of the B 12 head group has been performed to provide information for a structure-related interpretation of the high-resolution STM images. The investigations are first STM results obtained at such B 12 modified electrodes.

  16. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less

  17. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less

  18. Spectroscopic and electrochemical characterization of some Schiff base metal complexes containing benzoin moiety

    NASA Astrophysics Data System (ADS)

    El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.

    2013-09-01

    The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.

  19. Comparative study of label-free electrochemical immunoassay on various gold nanostructures

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Gao, C.; Li, C. M.; Bhatti, A. S.

    2013-10-01

    Electrochemical methods such as amperometry and impedance spectroscopy provide the feasibility of label-free immunoassay. However, the performance of electrochemical interfaces varies with the shape of gold nanostructures. In the present work three types of gold nanostructures including pyramid, spherical, and rod-like nanostructures were electrochemically synthesized on the gold electrode and were further transformed into immunosensor by covalent binding of antibodies. As a model protein, a cancer biomarker, Carcinoembryonic Antigen (CEA) was detected using amperometric and impedimetric techniques on three nanostructured electrodes, which enabled to evaluate and compare the immunoassay's performance. It was found that all three immunosensors showed improved linear electrochemical response to the concentration of CEA compared to bare Au electrode. Among all the spherical gold nanostructure based immunosensors displayed superior performance. Under optimal condition, the immunosensors exhibited a limit of detection of 4.1 pg ml-1 over a concentration range of five orders of magnitude. This paper emphasizes that fine control over the geometry of nanostructures is essentially important for high-performance electrochemical immunoassay.

  20. Electrochemical detection of the MT-ND6 gene and its enzymatic digestion: application in human genomic sample.

    PubMed

    Mazloum-Ardakani, Mohammad; Ahmadi, Roya; Heidari, Mohammad Mehdi; Sheikh-Mohseni, Mohammad Ali

    2014-06-15

    A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Measurements of stretch lengths of gold mono-atomic wires covered with 1,6-hexanedithiol in 0.1 M NaClO4 with an electrochemical scanning tunneling microscope.

    PubMed

    Sun, Jian; Akiba, Uichi; Fujihira, Masamichi

    2008-09-01

    Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.

  2. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk.

    PubMed

    Dong, Jing; Zhao, Han; Xu, Minrong; Ma, Qiang; Ai, Shiyun

    2013-12-01

    A sensitive and stable label-free electrochemical impedance immunosensor for the detection of Salmonella typhimurium was developed by immobilising anti-Salmonella antibodies onto the gold nanoparticles and poly(amidoamine)-multiwalled carbon nanotubes-chitosan nanocomposite film modified glassy carbon electrode (AuNPs/PAMAM-MWCNT-Chi/GCE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to verify the stepwise assembly of the immunosensor. Co-addition of MWCNT, PAMAM and AuNPs greatly enhanced the sensitivity of the immunosensor. The immobilisation of antibodies and the binding of Salmonella cells to the modified electrode increased the electron-transfer resistance (Ret), which was directly measured with EIS using [Fe(CN)6](3-/4-) as a redox probe. A linear relationship of Ret and Salmonella concentration was obtained in the Salmonella concentration range of 1.0×10(3) to 1.0×10(7) CFU mL(-1) with a detection limit of 5.0×10(2) CFU mL(-1). Additionally, the proposed method was successfully applied to determine S. typhimurium content in milk samples with satisfactory results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  4. Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure

    NASA Astrophysics Data System (ADS)

    Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi

    2018-02-01

    A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.

  5. A Highly Sensitive Oligonucleotide Hybridization Assay for Klebsiella pneumoniae Carbapenemase with the Probes on a Gold Nanoparticles Modified Glassy Carbon Electrode.

    PubMed

    Pan, Hong-zhi; Yu, Hong- Wei; Wang, Na; Zhang, Ze; Wan, Guang-Cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-01-01

    To develop a new electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase, a highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-nano). The Au-nano/GCE was characterized by scanning electromicroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The hybridization detection was measured by differential pulse voltammetry using methylene blue as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-11) to 1 × 10(-8) M, with an LOD of 1 × 10(-12) M. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The Au-nano/GCE showed significant improvement in electrochemical characteristics, and this biosensor was successfully applied for determination of K. pneumoniae.

  6. Formation mechanism of thermally optimized Ga-doped MgZnO transparent conducting electrodes for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jang, Seon-Ho; Jo, Yong-Ryun; Lee, Young-Woong; Kim, Sei-Min; Kim, Bong-Joong; Bae, Jae-Hyun; An, Huei-Chun; Jang, Ja-Soon

    2015-05-01

    We report a highly transparent conducting electrode (TCE) scheme of MgxZn1-xO:Ga/Au/NiOx which was deposited on p-GaN by e-beam for GaN-based light emitting diodes (LEDs). The optical and electrical properties of the electrode were optimized by thermal annealing at 500°C for 1 minute in N2 + O2 (5:3) ambient. The light transmittance at the optimal condition increased up to 84-97% from the UV-A to yellow region. The specific contact resistance decreased to 4.3(±0.3) × 10-5 Ωcm2. The improved properties of the electrode were attributed to the directionally elongated crystalline nanostructures formed in the MgxZn1-xO:Ga layer which is compositionally uniform. Interestingly, the Au alloy nano-clusters created in the MgxZn1-xO:Ga layer during annealing at 500°C may also enhance the properties of the electrode by acting as a conducting bridge and a nano-sized mirror. Based on studies of the external quantum efficiency of blue LED devices, the proposed electrode scheme combined with an optimized annealing treatment suggests a potential alternative to ITO. [Figure not available: see fulltext.

  7. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    NASA Astrophysics Data System (ADS)

    Rocha, Paulo R. F.; Schlett, Paul; Kintzel, Ulrike; Mailänder, Volker; Vandamme, Lode K. J.; Zeck, Gunther; Gomes, Henrique L.; Biscarini, Fabio; de Leeuw, Dago M.

    2016-10-01

    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.

  8. Thin-film ultraviolet detector and spectrometer

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Typical metal-insulator-metal detector device is formed on quartz substrate. Base electrode is 3 to 6 nm aluminum layer, overcoated with 3 to 6 nm aluminum oxide or aluminum nitride, and capped with counter electrode of gold, lead, magnesium, or aluminum. Photoelectric yield data are given for Al-AlN-Au structure.

  9. Versatile plasmonic-effects at the interface of inverted perovskite solar cells.

    PubMed

    Shalan, Ahmed Esmail; Oshikiri, Tomoya; Sawayanagi, Hiroki; Nakamura, Keisuke; Ueno, Kosei; Sun, Quan; Wu, Hui-Ping; Diau, Eric Wei-Guang; Misawa, Hiroaki

    2017-01-19

    Plasmonics is a highly promising approach to enhancing the light-harvesting properties of hybrid organic/inorganic perovskite solar cells. In the present work, our cells have a p-i-n inverted planar structure. An ultrathin NiO film with two different thicknesses of 5 and 10 nm prepared by a pulsed laser deposition process on an ITO substrate with a faceted and furrowed surface enabled the formation of a continuous and compact layer of well-crystallized CH 3 NH 3 PbI 3 via an anti-solvent chlorobenzene process. The coverage mechanism of the NiO film on the ITO was clearly demonstrated through the J-V and external quantum efficiency (EQE) curves. Moreover, the results demonstrated that the gold nanoislands (Au NIs) increased the power conversion efficiency to 5.1%, almost double that of the samples without Au NIs. This result is due to the excitation of surface plasmons, which is characterized by strong scattering and enhancement of the electric field in the vicinity of the Au NIs loaded at the interface between the NiO and perovskite films. Additionally, we observed an enhancement of the EQE at wavelengths shorter than the plasmon resonance peak. In the current state, we speculate that the plasmoelectric potential effect is considered to be a good explanation of the photocurrent enhancement at the off-resonance region. Our work provides good guidance for the design and fabrication of solar-energy-related devices employing NiO electrodes and plasmonic Au NIs.

  10. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  11. Construction and direct electrochemistry of orientation controlled laccase electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhang, Jiwei; Huang, Xirong, E-mail: xrhuang@sdu.edu.cn

    2014-03-28

    Highlights: • A recombinant laccase with Cys-6×His tag at the N or C terminus was generated. • Orientation controlled laccase electrodes were constructed via self assembly. • The electrochemical behavior of laccase electrodes was orientation dependent. • The C terminus tagged laccase was better for bioelectrocatalytic reduction of O{sub 2}. - Abstract: A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, usingmore » genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O{sub 2} reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells.« less

  12. Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell

    PubMed Central

    2010-01-01

    Cu2S nanocrystal particles were in situ deposited on graphite paper to prepare nano-sulfide/carbon composite counter electrode for CdS/CdSe quantum-dot-sensitized solar cell (QDSC). By optimization of deposition time, photovoltaic conversion efficiency up to 3.08% was obtained. In the meantime, this composite counter electrode was superior to the commonly used Pt, Au and carbon counter electrodes. Electrochemical impedance spectra further confirmed that low charge transfer resistance at counter electrode/electrolyte interface was responsible for this, implied the potential application of this composite counter electrode in high-efficiency QDSC. PMID:20672135

  13. Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions

    DOE PAGES

    Li, Hongfei; Pan, Cheng; Zhao, Sijia; ...

    2016-04-16

    We developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir–Blodgett (LB) trough lift off from the air water interface. By incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) we enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H 2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100%more » O 2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. Our results indicated that the Au NPs interacted synergistically with the SO 3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction to occur at T<300 K.« less

  14. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.

    PubMed

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min

    2016-07-15

    The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.

    PubMed

    Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen

    2014-01-01

    SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody.

    PubMed

    Liu, Guozhen; Liu, Jingquan; Davis, Thomas P; Gooding, J Justin

    2011-04-15

    Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation.

    PubMed

    Shaban, Mohamed; Rabia, Mohamed; El-Sayed, Asmaa M Abd; Ahmed, Aya; Sayed, Somaya

    2017-10-26

    In this work, roll-graphene oxide (Ro-GO), polyaniline (PANI) nano/microparticles, and PbS nanoparticles were prepared by modified Hammer, oxidative polymerization, and chemical bath deposition methods, respectively. These nano/microstructures were characterized, optimized, and designed to form PbS/Ro-GO/PANI nano/microcomposite. Also, the ratios of PbS and Ro-GO were optimized, and the optimized composition of the used composite was 0.4 g PANI, 0.125 g Ro-GO, and 0.075 g PbS. The band gap values for PANI, PbS, Ro-GO, and PbS/Ro-GO/PANI rocomposite were 3, 1.13, 2.86, (1.16, 2) eV, respectively. Two photoelectrode assemblies, Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass were used for the photoelectrochemical (PEC) hydrogen generation. In the first assembly 45 nm- Au layer was sputtered on the surface of a disk of PbS/Ro-GO/PANI composite. For the second assembly, a disk of PbS/Ro-GO/PANI composite was glued on ITO glass using Ag-THF paste. The lifetime efficiency values were 64.2 and 43.4% for the first and second electrode for 2 h, respectively. Finally, the incident photon-to-current conversion efficiency (IPCE) and photon-to-current efficiency (ABPE) were calculated under monochromatic illumination conditions. The optimum IPCE efficiency at 390 nm was 9.4% and 16.17%, whereas ABPE % efficiency was 1.01% and 1.75% for Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass, respectively.

  18. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Johari-Ahar, M.; Rashidi, M. R.; Barar, J.; Aghaie, M.; Mohammadnejad, D.; Ramazani, A.; Karami, P.; Coukos, G.; Omidi, Y.

    2015-02-01

    Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125. Electronic supplementary information (ESI) available: Additional materials including Figures and discussion as described in the text. See DOI: 10.1039/c4nr06687a

  20. Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein

    PubMed Central

    Wang, Yaoguang; Zhang, Yong; Wu, Dan; Ma, Hongmin; Pang, Xuehui; Fan, Dawei; Wei, Qin; Du, Bin

    2017-01-01

    In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nanoparticles (Au NPs) and toluidine blue (TB). As a kind of redox probe, TB can produce the electrochemical signal. Graphene owns large specific surface area, high electrical conductivity and good adsorption property to load a large number of TB. Fe3O4 NPs have good electrocatalytic performance towards the redox of TB. Au NPs have good biocompatibility to capture the antibodies. Due to the good electrochemical performance of TB-Au-Fe3O4-rGO, the effective and sensitive detection of AFP was achieved by the designed electrochemical immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide linear range from 1.0 × 10−5 ng/mL to 10.0 ng/mL with a low detection limit of 2.7 fg/mL for AFP. It also displayed good electrochemical performance including good reproducibility, selectivity and stability, which would provide potential applications in the clinical diagnosis of other tumor markers. PMID:28186128

  1. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin.

    PubMed

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Xing, Xianrong; Li, Jie; Cui, Min; Huang, Jiadong

    2012-01-01

    A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0 × 10(-8)mol/L-9.0 × 10(-5)mol/L, with the limit of detection (LOD) of 2.3 × 10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  3. Bi-enzyme synergetic catalysis to in situ generate coreactant of peroxydisulfate solution for ultrasensitive electrochemiluminescence immunoassay.

    PubMed

    Wang, Haijun; Yuan, Ruo; Chai, Yaqin; Niu, Huan; Cao, Yaling; Liu, Huijing

    2012-01-01

    A novel electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-1-fetoprotein (AFP) was designed based on the in situ bi-enzymatic reaction to generate coreactant of peroxydisulfate for signal amplification. In this work, AuNPs were electrodeposited on the glassy carbon electrode (GCE) surface, which promoted the electron transfer. Then, L-cysteine and another layer of AuNPs were, respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the ECL signal of peroxydisulfate and immobilizing antibody. At last, glucose oxidase (GOD) and horseradish peroxidase (HRP) were employed to block the nonspecific binding sites. When proper amounts of glucose were added in the detection solution, GOD catalyzed the oxidation of glucose to generate H(2)O(2), which could be further catalyzed by HRP to generate O(2) for the signal amplification. The linear range for AFP detection was 0.001-100 ng mL(-1), with a low detection limit of 3.3 × 10(-4) ng mL(-1). The novel strategy has the advantages of simplicity, sensitivity, good selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Dynamic Impact of Electrode Materials on Interface of Single-Crystalline Methylammonium Lead Bromide Perovskite

    DOE PAGES

    Tisdale, Jeremy T.; Muckley, Eric; Ahmadi, Mahshid; ...

    2018-06-19

    One of the current challenges in methylammonium lead halide (MAPbX 3) perovskite application research is understanding contact formation and interfacial phenomena for highly efficient and stable device performance. For semiconductors, development of contact formation is inseparable from device performance and stability. Single–crystalline MAPbX3 has become of great interest for perovskite devices in photodetectors, light–emitting diodes, and more recently in high–energy radiation detection. Deeper research is required to understand interfacial interactions in single–crystalline MAPbX 3. This article focuses on the dynamic impact of electrode metal (Au and Cr) on methylammonium lead bromide (MAPbBr 3) single crystals. It is studied how chargemore » transport properties of single crystal MAPbBr 3 can be tuned via electrode material selection at the metal/MAPbBr 3 interface to improve device performance with proper contact formation. The ability to create an ohmic–like or nonohmic contact by switching the electrode metal from Cr to Au, respectively, is demonstrated. It is observed that the interfacial charge transfer resistance (recombination resistance) of the Cr/MAPbBr 3 interface is 1.79 × 10 9 Ω, compared to 1.32 × 10 7 Ω for the Au/MAPbBr 3. Cr contacts can reduce hysteretic behavior by reducing interfacial recombination and interfacial polarization. Furthermore, these studies provide insight to metal/MAPbX 3 interfacial interactions toward device engineering for hole transport layer–free MAPbX 3 device structures.« less

  5. Dynamic Impact of Electrode Materials on Interface of Single-Crystalline Methylammonium Lead Bromide Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tisdale, Jeremy T.; Muckley, Eric; Ahmadi, Mahshid

    One of the current challenges in methylammonium lead halide (MAPbX 3) perovskite application research is understanding contact formation and interfacial phenomena for highly efficient and stable device performance. For semiconductors, development of contact formation is inseparable from device performance and stability. Single–crystalline MAPbX3 has become of great interest for perovskite devices in photodetectors, light–emitting diodes, and more recently in high–energy radiation detection. Deeper research is required to understand interfacial interactions in single–crystalline MAPbX 3. This article focuses on the dynamic impact of electrode metal (Au and Cr) on methylammonium lead bromide (MAPbBr 3) single crystals. It is studied how chargemore » transport properties of single crystal MAPbBr 3 can be tuned via electrode material selection at the metal/MAPbBr 3 interface to improve device performance with proper contact formation. The ability to create an ohmic–like or nonohmic contact by switching the electrode metal from Cr to Au, respectively, is demonstrated. It is observed that the interfacial charge transfer resistance (recombination resistance) of the Cr/MAPbBr 3 interface is 1.79 × 10 9 Ω, compared to 1.32 × 10 7 Ω for the Au/MAPbBr 3. Cr contacts can reduce hysteretic behavior by reducing interfacial recombination and interfacial polarization. Furthermore, these studies provide insight to metal/MAPbX 3 interfacial interactions toward device engineering for hole transport layer–free MAPbX 3 device structures.« less

  6. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode.

    PubMed

    Song, Yang; Swain, Greg M

    2007-06-12

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.

  7. Kinetics of Electrocatalysis of Dibromoalkyl Reductions Using Electrodes with Covalently Immobilized Metallotetraphenylporphyrins.

    DTIC Science & Technology

    1981-01-29

    Technical Report Using Electrodes with Covalently Immobilized Metal l otetraphenyl porphyri ns G. PERFORMING ORG. REPORT NUMBER 7. AU𔄁IOR(’.) 0...and CH2BrCHBrCH 3 at the surfaces of electrodes to which cobalt(II) or copper (II) tetra(p-aminophenyl)porphyrin has been covalently attached is strongly...27514 ABSTRACT The reduction of PhCHBrCH 2 Br, PhCHBrCHBrPh, and CH2BrCHBrCH3 at the surfaces of electrodes to which cobalt(lI) or copper (If) tetra(p

  8. Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches.

    PubMed

    Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery

    2017-04-15

    The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kg wet weight,ww ). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kg ww , with performance comparable to that of DMA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection.

    PubMed

    Hashemi, Pegah; Bagheri, Hasan; Afkhami, Abbas; Ardakani, Yalda Hosseinzadeh; Madrakian, Tayyebeh

    2017-12-15

    In the present research, we have developed a novel label free aptasensor based on screen printed carbon electrode (SPCE) modified with three-dimensional magnetic reduced graphene oxide(3D-MRGO)/polyaniline(PA)/gold nanoparticle(AuNP) nanocomposite for impedimetric determination of cocaine. To achieve this goal, a specific thiolated cocaine aptamer was immobilized onto the surface of synthesized nanocomposite. The signaling mechanism of the proposed aptasensor was based on increase in the [Fe(CN) 6 ] 3-/4- charge transfer resistance (R CT ) as an electrochemical probe in the presence of target analyte. In order to collect of 3D-MRGO/PA/AuNP/aptamer on the surface of working electrode easily, a new electrochemical cell was fabricated. The advantages of the new electrochemical cell configuration can be counted as reusing SPCE for several times, obtaining repeatable responses, reducing required volume of electrolyte and probe solution and making proposed method more user-friendly. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of synthesized nanocomposite and modified electrode surface. Under optimized condition, cocaine was determined in a linear concentration range from 0.09 to 85 nM with a detection limit of 0.029 nM by EIS. Also, in order to test applicability of the proposed aptasensor, it was applied to determine cocaine in urine and serum samples and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs.

    PubMed

    Du, Yan; Chen, Chaogui; Yin, Jianyuan; Li, Bingling; Zhou, Ming; Dong, Shaojun; Wang, Erkang

    2010-02-15

    Aptamers, which are artificial oligonucleotides selected in vitro, have been employed to design novel biosensors (i.e., aptasensors). In this work, we first constructed a label-free electrochemical aptasensor introducing a probe immobilization technique by the use of a layer-by-layer (LBL) self-assembled multilayer with ferrocene-appended poly(ethyleneimine) (Fc-PEI) on an indium tin oxide (ITO) array electrode for detection of cocaine. The Fc-PEI and gold nanoparticles (AuNPs) were LBL assembled on the electrode surface via electrostatic interaction. Then, cocaine aptamer fragments, SH-C2, were covalently labeled onto the outermost AuNP layer. When the target cocaine and cocaine aptamer C1 were present simultaneously, the SH-C2 layer hybridized partly with C1 to bind the cocaine, which led to a decreased differential pulse voltammetry (DPV) signal of Fc-PEI. This DPV signal change could be used to sensitively detect cocaine with the lowest detectable concentration down to 0.1 microM and the detection range up to 38.8 microM, which falls in the the expected range for medical use of detecting drug abuse involving cocaine. Meanwhile, the sensor was specific to cocaine in complex biologic fluids such as human plasma, human saliva, etc. The sensing strategy had general applicability, and the detection of thrombin could also be realized, displayed a low detection limit, and exhibited worthiness to other analytes. The aptasensor based on the array electrode held promising potential for integration of the sensing ability in multianalysis for simultaneous detection.

  11. A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode.

    PubMed

    Zeng, Yan; Bao, Jing; Zhao, Yanan; Huo, Danqun; Chen, Mei; Yang, Mei; Fa, Huanbao; Hou, Changjun

    2018-02-01

    Previous studies have confirmed that cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) serves as a powerful biomarker in non-small cell lung cancer (NSCLC). Herein, we report for the first time a label-free electrochemical immunosensor for sensitive and selective detection of tumor marker CYFRA21-1. In this work, three-dimensional graphene @ gold nanoparticles (3D-G@Au) nanocomposite was modified on the glassy carbon electrode (GCE) surface to enhance the conductivity of immunosensor. The anti-CYFRA21-1 captured and fixed on the modified GCE through the cross-linking of chitosan (CS), glutaraldehyde (GA) and anti-CYFRA21-1. The differential pulse voltammetry (DPV) peak current change due to the specific interaction between anti-CYFRA21-1 and CYFRA21-1 on the modified electrode surface was utilized to detect CYFRA21-1. Under optimized conditions, the proposed electrochemical immunosensor was employed to detect CYFRA21-1 and exhibited a wide linear range of 0.25-800ngmL -1 and low detection limit of 100pgmL -1 (S/N = 3). Moreover, the recovery rates of serum samples were in the range from 95.2% to 108.7% and the developed immunosensor also shows a good correlation (less than 6.6%) with enzyme-linked immunosorbent assay (ELISA) in the detection of clinical serum samples. Therefore, it is expected that the proposed immunosensor based on a 3D-G@Au has great potential in clinical medical diagnosis of CYFRA21-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  13. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A

    PubMed Central

    Malvano, Francesca; Albanese, Donatella; Crescitelli, Alessio; Pilloton, Roberto; Esposito, Emanuela

    2016-01-01

    An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE) for quantitative determination of Ochratoxin A (OTA) has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs), the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products. PMID:27376339

  14. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A.

    PubMed

    Malvano, Francesca; Albanese, Donatella; Crescitelli, Alessio; Pilloton, Roberto; Esposito, Emanuela

    2016-06-30

    An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE) for quantitative determination of Ochratoxin A (OTA) has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs), the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  15. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection

    NASA Astrophysics Data System (ADS)

    Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-10-01

    A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04532k

  16. Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode.

    PubMed

    Blizanac, Berislav B; Arenz, Matthias; Ross, Philip N; Marković, Nenad M

    2004-08-18

    The electrooxidation of CO has been studied on reconstructed gold single-crystal surfaces by a combination of electrochemical (EC) and infrared reflection absorption spectroscopy (IRAS) measurements. Emphasis is placed on relating the vibrational properties of the CO adlayer to the voltammetric and other macroscopic electrochemical responses, including rotating disk electrode measurements of the catalytic activity. The IRAS data show that the C-O stretching frequencies are strongly dependent on the surface orientation and can be observed in the range 1940-1990 cm(-1) for the 3-fold bridging, 2005-2070 cm(-1) for the 2-fold bridging, and 2115-2140 for the terminal position. The most complex CO spectra are found for the Au(110)-(1 x 2) surface, i.e., a band near 1965 cm(-1), with the second, weaker band shifted positively by about 45 cm(-1) and, finally, a weak band near 2115 cm(-1). While the C-O stretching frequencies for a CO adlayer adsorbed on Au(111)-(1 x 23) show nu(CO) bands at 2029-2069 cm(-1) and at 1944-1986 cm(-1), on the Au(100)-"hex" surface a single CO band is observed at 2004-2029 cm(-1). In the "argon-purged" solution, the terminal nu(CO) band on Au(110)-(1 x 2) and the 3-fold bridging band on the Au(111)-(1 x 23) disappear entirely. The IRAS/EC data show that the kinetics of CO oxidation are structure sensitive; i.e., the onset of CO oxidation increases in the order Au(110)-(1 x 2) > or = Au(100)-"hex" > Au(111)-(1 x 23). Possible explanations for the structure sensitivity are discussed.

  17. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  18. Electrochemical Biosensor Composed of Silver Ion-Mediated dsDNA on Au-Encapsulated Bi2 Se3 Nanoparticles for the Detection of H2 O2 Released from Breast Cancer Cells.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Bharate, Bapurao G; Jo, Jinhee; Lee, Donghyun; Choi, Jeong-Woo

    2018-04-01

    A newly developed electrochemical biosensor composed of a topological insulator (TI) and metallic DNA (mDNA) is fabricated. The bismuth selenide nanoparticle (Bi 2 Se 3 NP) is synthesized and sandwiched between the gold electrode and another Au-deposited thin layer (Bi 2 Se 3 @Au). Then, eight-silver-ion mediated double-stranded DNA (mDNA) is immobilized onto the substrate (Bi 2 Se 3 @Au-mDNA) for the further detection of hydrogen peroxide. The Bi 2 Se 3 NP acts as the electrochemical-signal booster, while unprecedentedly its encapsulation by the Au thin layer keeps the TI surface states protected, improves its electrochemical-signal stability and provides an excellent platform for the subsequent covalent immobilization of the mDNA through Au-thiol interaction. Electrochemical results show that the fabricated biosensor represents much higher Ag + redox current (≈10 times) than those electrodes prepared without Bi 2 Se 3 @Au. The characterization of the Bi 2 Se 3 @Au-mDNA film is confirmed by atomic force microscopy, scanning tunneling microscopy, and cyclic voltammetry. The proposed biosensor shows a dynamic range of 00.10 × 10 -6 m to 27.30 × 10 -6 m, very low detection limit (10 × 10 -9 m), unique current response (1.6 s), sound H 2 O 2 recovery in serum, and substantial capability to classify two breast cancer subtypes (MCF-7 and MDA-MB-231) based on their difference in the H 2 O 2 generation, offering potential applications in the biomedicine and pharmacology fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    NASA Astrophysics Data System (ADS)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  20. Transparent, conformable, active multielectrode array using organic electrochemical transistors.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G; Yokota, Tomoyuki; Someya, Takao

    2017-10-03

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

  1. High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.

    PubMed

    Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz

    2016-06-15

    The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.

    PubMed

    Sağlam, Şener; Üzer, Ayşem; Erçağ, Erol; Apak, Reşat

    2018-06-19

    Since nitroaromatic- and nitramine-type energetic materials, mostly arising from military activities, are persistent pollutants in soil and groundwater, on-site sensing of these hazardous chemicals has gained importance. A novel electrochemical sensor was designed for detecting nitroaromatic- and nitramine-type energetic materials, relying on gold nanoparticles (Au nano ), modified glassy carbon (GC) electrode coated with nitro-energetic memory-poly(carbazole-aniline) copolymer (Cz- co-ANI) film (e.g., TNT memory-GC/P(Cz- co-ANI)-Au nano modified electrode). Current was recorded against concentration to build the calibration curves that were found to be linear within the range of 100-1000 μg L -1 for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT): 50-1000 μg L -1 for 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The corresponding limits of detection were 25 μg L -1 for TNT, 30 μg L -1 for DNT, and 10 μg L -1 for both RDX and HMX, using nitro-energetic memory-GC/P(Cz- co-ANI)-Au nano electrodes. These electrodes were used separately, and specific determinations were made in various mixtures of nitro-energetic materials. The developed method could be efficiently used in electroanalyzing nitroaromatics and nitramines in military explosives (i.e., comp B, octol, and comp A5). The sensor electrodes were specific for the tested nitro-energetic compounds and did not respond to paracetamol-caffeine-based analgesic drug, acetylsalicylic acid (aspirin), sweetener, and sugar that can be used as camouflage materials in passenger belongings. The developed method was statistically validated against the standard LC-MS reference method in contaminated clay soil samples containing TNT and RDX explosives.

  3. Surface studies of Li-ion and Mg battery electrodes

    NASA Astrophysics Data System (ADS)

    Esbenshade, Jennifer

    This dissertation focuses on studies of the surfaces of both Li-ion and Mg-ion battery electrodes. A fundamental understanding of processes occurring at the electrode surface is vital to the development of advanced battery systems. Additionally, modifications to the electrode surfaces are made and further characterized for improved performance. LiMn2O4 Cathodes for Li-ion Batteries: Effect of Mn in electrolyte on anode and Au coating to minimize dissolution: LiMn2O4 (LMO) is known to dissolve Mn ions with cycling. This section focuses on both the effect of the dissolution of Mn2+ into the electrolyte as well as Au coating on the LMO to improve electrochemical performance. Electrochemical quartz crystal microbalance (EQCM) was used to monitor changes in mass on the anode, SEM and AES were used to observe changes in surface morphology and chemical composition, and potentiostatic voltammetry was used to monitor charge and discharge capacity. The effect of Cu2+ addition in place of Mn2+ was also studied, as Cu is known to form an underpotential deposition (UPD) monolayer on Au electrodes. Following this, LMO particles were coated with a Au shell by a simple and scalable electroless deposition for use as Li-ion battery cathodes. The Au shell was intended to limit the capacity fade commonly seen with LMO cathodes by reducing the dissolution of Mn. Characterization by SEM, TEM, EELS, and AFM showed that the Au shell was approximately 3 nm thick. The Au shell prevented much of the Mn from dissolving in the electrolyte with 82% and 88% less dissolved Mn in the electrolyte at room temperature and 65 ºC, respectively, as compared to the uncoated LMO. Electrochemical performance studies with half cells showed that the Au shell maintained a higher discharge capacity over 400 cycles by nearly 30% with 110 mA hr g-1 for the 400th cycle as compared to a commercial LMO at 85 mA hr g-1. Similarly, the capacity fade was reduced in full cells: the coated LMO had 47% greater capacity after 400 cycles over the control. Dimensionally Controlled Lithiation of Thin Film and Multilayer Conversion Li-ion Battery Anodes: Oxide conversion reactions are an alternative approach for high capacity Li-ion batteries, but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. The morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. In this section, a model electrode is used with alternating layers of Cr and CrOx to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials. Following the Cr/CrOx study, the next step was to study intermetallics which can electrochemically alloy to Li4.4M (M = Si, Ge, Sn, etc.), providing order-of-magnitude increases in energy density. The energy density of Si may be combined with the structural reversibility of an intercalation material using a Si/metal silicide multilayer (ML). In operando XR confirms the ML's structural reversibility during Li insertion and extraction, despite an overall 3.3-fold vertical expansion. The ML electrodes also show enhanced long-term cyclability and rate capabilities relative to a comparable Si thin film electrode. This intercalation behavior found by dimensionally constraining Si lithiation promises applicability to a range of conversion reactions. Improving Electrodeposition of Mg through an Open Circuit Potential Hold: In this section, in situ XRD, XPS, SEM and electrochemical methods were used to interrogate the mechanism of Mg electrodeposition from PhMgCl/AlCl3 (APC) and EtMgCl electrolytes. An open circuit potential (OCP) pause following Mg deposition led to retained enhancement of Mg deposition and stripping kinetics along with lowered overpotentials for both. In situ XRD demonstrated that the OCP pause led to a more polycrystalline deposits relative to that without the pause, while SEM presented micrographs that showed smaller deposits with an OCP hold. The improvement is attributed to an 'enhancement layer' that formed on the electrode during the OCP hold. Analysis of XPS data suggests that this 'enhancement layer' consists of Mg and Cl retained on the electrode surface, possibly following electrode depassivation.

  4. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.

  5. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    DOE PAGES

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; ...

    2017-03-01

    The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less

  6. Gold nanoparticles coated polystyrene/reduced graphite oxide microspheres with improved dispersibility and electrical conductivity for dopamine detection.

    PubMed

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-01

    Gold nanoparticles coated polystyrene/reduced graphite oxide (AuNPs@PS/RGO) microspheres have been successfully prepared via a facile process, and the decorative gold nanoparticles could prevent the aggregation of RGO by electrostatic repulsive interaction, and lead to high dispersibility of the composite. The prepared composite has a highly increased conductivity of 129Sm(-1) due to the unique electrical properties of citrate reduced gold nanoparticles. Being employed as an electrochemical sensor for detection of dopamine, the modified electrode exhibits remarkable sensitivity (3.44μA/μM) and lower detection limit (5nM), with linear response in a range of 0.05-20μM. Moreover, valid response to dopamine obtained in present work also indicates the prospective performances of AuNPs@PS/RGO microspheres to other biological molecules, such as nucleic acids, proteins and enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Safavi-Naini, A.; Hite, D. A.

    The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less

  8. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study.

    PubMed

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-07-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.

  9. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study

    PubMed Central

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-01-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. PMID:28671561

  10. Enhanced Metal Contacts to Carbon Nanotube Networks through Chemical and Physical Modification

    NASA Astrophysics Data System (ADS)

    Cox, Nathanael David

    Carbon nanotubes (CNTs) are an emerging class of nano-structured carbon materials which are currently being studied for applications which would benefit from their desirable electrical and mechanical properties. Potential benefits such as improved current density, flexure tolerance, weight savings, and even radiation tolerance have led to their implementation into numerous devices and structures, many of which are slated for use in space environments. The role of CNTs can be quite diverse, with varied CNT electronic-types and morphologies dictated by the specific application. Despite numerous CNT types and morphologies employed by these technologies, a common link between nearly all of these devices and structures is metal contact to CNTs, where the metal components often provide the link between the carbon nanotubes and the external system. In this work, a variety of CNT-metal systems were characterized in terms of metal morphology analysis and CNT-metal electrical and mechanical interactions, in response to chemical and structural modifications. A large portion of the work additionally focuses on ion irradiation environments. A diverse number of experiments related to CNT-metal interactions will be discussed. For instance, electrochemical interactions between ion-irradiated single-wall CNTs (SWCNTs) and metal salt solutions were utilized to selectively deposit Au nanoparticles (Au-NPs) onto the SWCNTs. A direct correlation was established between defect density and Au-NP areal density, resulting in a method for rapid spatial profiling of ion-irradiation induced defects in SWCNTs. The effect of ion irradiation on the CNT-metal interface was also investigated and it was found that the contact resistance of Ag-SWCNT structures increases, while the specific contact resistance decreases. The increase in overall contact resistance was attributed to increased series resistance in the system due to damage of the bulk SWCNT films, while the decrease in specific contact resistance was attributed to Ag atoms being forward-scattered into the top 5 nm of SWCNT film, as revealed by computational simulations. Additionally, development of Ag-CNT metal matrix composite (MMC) thin films for advanced space solar cell electrodes is discussed. SWCNTs and multi-walled CNTs (MWCNTs) were utilized as reinforcement material in Ag electrodes to address problems related to micro-cracks causing electrode fracture and loss of power in solar cells. A method for creating free standing films was developed to enable mechanical property characterization of the MMCs, and it was found that SWCNTs significantly increase the toughness of Ag thin films, due to the SWCNT tensile strength and strain capabilities. CNT-MMC grid-finger structures were also fabricated by solar cell process-compatible techniques and subjected to electrical testing under mechanical stress. The results showed that CNTs are capable of spanning gaps in Ag electrodes upon fracture, both electrically and mechanically.

  11. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate.

    PubMed

    Jamal, Mamun; Hasan, Maksudul; Mathewson, Alan; Razeeb, Kafil M

    2013-02-15

    Enzyme free electrochemical sensor platform based on a vertically aligned nickel nanowire array (NiNAE) and Pt coated nickel nanowire array (Pt/NiNAE) have been developed to detect glutamate. Morphological characterisation of Ni electrodes was carried out using scanning and transmission electron microscopy combined with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNAE and the Pt/NiNAE for glutamate. It has been found that both NiNAE and Pt/NiNAE electrodes showed remarkably enhanced electrocatalytic activity towards glutamate compared to planar Ni electrodes, and showed higher catalytic activity when compared to other metallic nanostructure electrodes such as gold nanowire array electrodes (AuNAE) and Pt coated gold nanowire array electrode (Pt/AuNAE). The sensitivity of NiNAE and Pt/NiNAE has been found to be 65 and 96 μA mM(-1) cm(-2), respectively, which is approximately 6 to 9 times higher than the state of the art glutamate sensor. Under optimal detection conditions, the as prepared sensors exhibited linear behaviour for glutamate detection in the concentration up to 8mM for both NiNAE and Pt/NiNAE with a limit of detection of 68 and 83 μM, respectively. Experimental results show that the vertically aligned ordered nickel nanowire array electrode (NiNAE) has significant promise for fabricating cost effective, enzyme-less, sensitive, stable and selective sensor platform. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor

    PubMed Central

    Vilian, A. T. Ezhil; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Kwak, Cheol Hwan; Huh, Yun Suk; Han, Young-Kyu

    2015-01-01

    A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe(II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10−9 mol cm−2 and 4.86 s−1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 μM and 1 to 8000 μM and lower detection limits of 0.01 μM and 0.002 μM, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples. PMID:26672985

  13. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors.

    PubMed

    Zhang, Minwei; Halder, Arnab; Hou, Chengyi; Ulstrup, Jens; Chi, Qijin

    2016-06-01

    We have explored AuNPs (13 nm) both as a catalyst and as a core for synthesizing water-dispersible and highly stable core-shell structural gold@Prussian blue (Au@PB) nanoparticles (NPs). Systematic characterization by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) disclosed AuNPs coated uniformly by a 5 nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and free-standing GO paper, which was further converted into conductive reduced GO (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical strength, which can be cut into free-standing electrodes. Such electrodes, used as non-enzymatic electrochemical sensors, were tested systematically for electrocatalytic sensing of hydrogen peroxide. The high performance was indicated by some of the key parameters, for example the linear H2O2 concentration response range (1-30 μM), the detection limit (100 nM), and the high amperometric sensitivity (5 A cm(-2) M(-1)). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrochemical magnetoimmunosensing approach for the sensitive detection of H9N2 avian influenza virus particles.

    PubMed

    Zhou, Chuan-Hua; Shu, Yun; Hong, Zheng-Yuan; Pang, Dai-Wen; Zhang, Zhi-Ling

    2013-09-01

    A novel electrochemical magnetoimmunosensor for fast and ultrasensitive detection of H9N2 avian influenza virus particles (H9N2 AIV) was designed based on the combination of high-efficiency immunomagnetic separation, enzyme catalytic amplification, and the biotin-streptavidin system. The reusable, homemade magneto Au electrode (M-AuE) was designed and used for the direct sensing. Immunocomplex-coated magnetic beads (IMBs) were easily accumulated on the surface of the M-AuE to obtain the catalytically reduced electrochemical signal of H2 O2 after the immunoreaction. The transducer was regenerated through a simple washing procedure, which made it possible to detect all the samples on a single electrode with higher reproducibility. The magnetic-bead-based electrochemical immunosensor showed better analytical performance than the planar-electrode-based immunosensor with the same sandwich construction. Amounts as low as 10 pg mL(-1) H9N2 AIV could be detected even in samples of chicken dung. This electrochemical magnetoimmunosensor not only provides a simple platform for the detection of the virus with high sensitivity, selectivity, and reproducibility but also shows great potential in the early diagnosis of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7.

    PubMed

    Li, Dujuan; Feng, Yangyang; Zhou, Ling; Ye, Zunzhong; Wang, Jianping; Ying, Yibin; Ruan, Chuanmin; Wang, Ronghui; Li, Yanbin

    2011-02-14

    A label-free capacitive immunosensor based on quartz crystal Au electrode was developed for rapid and sensitive detection of Escherichia coli O157:H7. The immunosensor was fabricated by immobilizing affinity-purified anti-E. coli O157:H7 antibodies onto self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) on the surface of a quartz crystal Au electrode. Bacteria suspended in solution became attached to the immobilized antibodies when the immunosensor was tested in liquid samples. The change in capacitance caused by the bacteria was directly measured by an electrochemical detector. An equivalent circuit was introduced to simulate the capacitive immunosensor. The immunosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The experimental results indicated that the capacitance change was linearly correlated with the cell concentration of E. coli O157:H7. The immunosensor was able to discriminate between cellular concentrations of 10(2)-10(5) cfu mL(-1) and has applications in detecting pathogens in food samples. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were also employed to characterize the stepwise assembly of the immunosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Electrochemical and PM-IRRAS Studies of the Effect of Cholesterol on the Structure of a DMPC Bilayer Supported at an Au (111) Electrode Surface, Part 1: Properties of the Acyl Chains

    PubMed Central

    Bin, Xiaomin; Horswell, Sarah L.; Lipkowski, Jacek

    2005-01-01

    Charge density measurements and polarization modulation infrared reflection absorption spectroscopy were employed to investigate the spreading of small unilamellar vesicles of a dimyristoylphosphatidylcholine (DMPC)/cholesterol (7:3 molar ratio) mixture onto an Au (111) electrode surface. The electrochemical experiments demonstrated that vesicles fuse and spread onto the Au (111) electrode surface, forming a bilayer, at rational potentials −0.4 V < (E − Epzc) < 0.4 V or field strength <6×107 V m−1. Polarization modulation infrared reflection absorption spectroscopy experiments provided information concerning the conformation and orientation of the acyl chains of DMPC molecules. Deuterated DMPC was used to subtract the contribution of C-H stretching bands of cholesterol and of the polar head region of DMPC from spectra in the C-H stretching region. The absorption spectra of the C-H stretch bands in the acyl chains were determined in this way. The properties of the DMPC/cholesterol bilayer have been compared with the properties of a pure DMPC bilayer. The presence of 30% cholesterol gives a thicker and more fluid bilayer characterized by a lower capacity and lower tilt angle of the acyl chains. PMID:15849259

  17. Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue

    2017-08-01

    In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.

  18. In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions.

    PubMed

    Xiong, Chengyi; Liang, Wenbin; Wang, Haijun; Zheng, Yingning; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-04-25

    Here, a novel sensitive electrochemiluminescence (ECL) biosensor using N doped carbon dots (N-CDs) in situ electro-polymerized onto a glassy carbon electrode (GCE) as luminophores, and Pd-Au hexoctahedrons (Pd@Au HOHs) as enhancers, was developed for the detection of intracellular lead ions (Pb(2+)).

  19. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods.

    PubMed

    Wang, Chengyan; Tan, Xingrong; Chen, Shihong; Yuan, Ruo; Hu, Fangxin; Yuan, Dehua; Xiang, Yun

    2012-05-30

    A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3 μM with a low detection limit of 0.03 μM and a high sensitivity of 26.8 μA mM(-1). The calculated apparent Michaelis constant K(M)(app) was 1.84 mM, indicating a high affinity between ChOx and cholesterol. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  1. Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol-gel network with gold nanoparticles.

    PubMed

    Deng, Liu; Zhang, Lihua; Shang, Li; Guo, Shaojun; Wen, Dan; Wang, Fuan; Dong, Shaojun

    2009-03-15

    We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 microM to 5.2 mM with a detection limit of 12nM.

  2. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Dowling, Karen M.; Wang, Yongqiang; Senesky, Debbie G.

    2017-12-01

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm/10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W, while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements performed during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 × 1013 cm-2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 1013 cm-2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.

  3. Effect of dissolved LiCl on the ionic liquid-Au(111) interface: an in situ STM study

    NASA Astrophysics Data System (ADS)

    Borisenko, Natalia; Atkin, Rob; Lahiri, Abhishek; Zein El Abedin, Sherif; Endres, Frank

    2014-07-01

    The structure of the electrolyte/electrode interface plays a significant role in electrochemical processes. To date, most studies are focusing on understanding the interfacial structure in pure ionic liquids. In this paper in situ scanning tunnelling microscopy (STM) has been employed to elucidate the structure of the charged Au(111)-ionic liquid (1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, [Py1,4]FAP) interface in the presence of 0.1 M LiCl. The addition of the Li salt to the ionic liquid has a strong influence on the interfacial structure. In the first STM scan in situ measurements reveal that Au(111) undergoes the (22 \\times \\surd 3) ‘herringbone’ reconstruction in a certain potential regime, and there is strong evidence that the gold surface dissolves at negative electrode potentials in [Py1,4]FAP containing LiCl. Bulk deposition of Li is obtained at -2.9 V in the second STM scan.

  4. All-fiber Devices Based on Photonic Crystal Fibers with Integrated Electrodes

    NASA Astrophysics Data System (ADS)

    Chesini, Giancarlo; Cordeiro, Cristiano M. B.; de Matos, Christiano J. S.; Fokine, Michael; Carvalho, Isabel C. S.; Knighf, Jonathan C.

    2008-10-01

    A special kind of microstructured optical fiber was proposed and manufactured where, as well as the holey region (solid core and silica-air cladding), the fiber has also two large holes for electrode insertion. Bi-Sn and Au-Sn alloys were selectively inserted in those holes forming two parallel, continuous and homogeneous internal electrodes. We demonstrated the production of a monolithic device and its use to externally control some of the guidance properties (e.g. polarization) of the fiber.

  5. Superconducting molybdenum-rhenium electrodes for single-molecule transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi, R.; Island, J. O.; Bruijckere, J. de

    2015-06-01

    We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 K and magnetic fields of 6 T, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe{sub 4} single-molecule magnet.

  6. A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2015-01-01

    Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5'-amine-3'-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K3Fe(CN)6) as redox probe and electrode surface was inhibited. A decreased current of (K3Fe(CN)6) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. M13 Virus-Incorporated Biotemplates on Electrode Surfaces To Nucleate Metal Nanostructures by Electrodeposition.

    PubMed

    Manivannan, Shanmugam; Kang, Inhak; Seo, Yeji; Jin, Hyo-Eon; Lee, Seung-Wuk; Kim, Kyuwon

    2017-09-27

    We report a virus-incorporated biological template (biotemplate) on electrode surfaces and its use in electrochemical nucleation of metal nanocomposites as an electrocatalytic material for energy applications. The biotemplate was developed with M13 virus (M13) incorporated in a silicate sol-gel matrix as a scaffold to nucleate Au-Pt alloy nanostructures by electrodeposition, together with reduced graphene oxide (rGO). The phage when engineered with Y3E peptides could nucleate Au-Pt alloy nanostructures, which ensured adequate packing density, simultaneous stabilization of rGO, and a significantly increased electrochemically active surface area. Investigation of the electrocatalytic activity of the resulting sol-gel composite catalyst toward methanol oxidation in an alkaline medium showed that this catalyst had mass activity greater than that of the biotemplate containing wild-type M13 and that of monometallic Pt and other Au-Pt nanostructures with different compositions and supports. M13 in the nanocomposite materials provided a close contact between the Au-Pt alloy nanostructures and rGO. In addition, it facilitated the availability of an OH - -rich environment to the catalyst. As a result, efficient electron transfer and a synergistic catalytic effect of the Au and Pt in the alloy nanostructures toward methanol oxidation were observed. Our nanocomposite synthesis on the novel biotemplate and its application might be useful for developing novel clean and green energy-generating and energy-storage materials.

  8. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Growth of copper phthalocyanine rods on Au plasmon electrodes through micelle disruption methods.

    PubMed

    Chen, Wei-Hung; Ko, Wen-Yin; Chen, Ying-Shiou; Cheng, Ching-Yuan; Chan, Chi-Ming; Lin, Kuan-Jiuh

    2010-02-16

    To improve the efficiency of the photocurrent conversion process, we have utilized copper phthalocyanine (CuPc) rods, which are capable of enhancing the interfacial area of electron transport and plasmonic gold nanoparticles (Au NPs), which can increase the separation and photogeneration of excitons, to produce a more effective system. In-plane horizontal CuPc rods, with diameters ranging from 0.2 to 1.5 microm, were electrodeposited onto the surface of plasmonic (Au NP) monolayers predeposited onto ITO substrates through electrolytic micelle disruption (EMD) methods.

  10. Spectroscopic and electrochemical characterization of some Schiff base metal complexes containing benzoin moiety.

    PubMed

    El-Shahawi, M S; Al-Jahdali, M S; Bashammakh, A S; Al-Sibaai, A A; Nassef, H M

    2013-09-01

    The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru(3+), Rh(3+), Pd(2+), Ni(2+) and Cu(2+) were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M(2+)/M(3+) and M(3+)/M(4+) (M=Ru(3+), Rh(3+)) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.

    PubMed

    Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M

    2004-06-01

    A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.

  12. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  13. Electrochemical Oxidation of Cysteine at a Film Gold Modified Carbon Fiber Microelectrode Its Application in a Flow—Through Voltammetric Sensor

    PubMed Central

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L−1 was found. The limit of quantification for cysteine was below 60 ng·mL−1. PMID:22737024

  14. Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor.

    PubMed

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found. The limit of quantification for cysteine was below 60 ng·mL(-1).

  15. Light engineering for bifacial transparent perovskite solar cells with high performance

    NASA Astrophysics Data System (ADS)

    Gao, Liguo; Zhao, Erling; Yang, Shuzhang; Wang, Likun; Li, Yanqiang; Zhao, Yingyuan; Ma, Tingli

    2017-11-01

    Bifacial transparent perovskite solar cells (BTPSCs) were designed to harvest more solar energy and ensure higher efficiency than conventional PSCs. A series of BTPSCs was successfully prepared using transparent ultrathin Au electrodes with different thicknesses. The transmittance and resistance of Au electrodes played a major role in achieving photo-to-electricity conversion efficiency (PCE). Engineering the light-harvesting ability of the fabricated BTPSCs led to the highest PCE of 14.74%. Reflecting-light intensity and illumination angle were further observed to be the key factors affecting PCE. These BTPSCs could be applied on building integration of photovoltaics (PVs), such as semitransparent PV windows or venetian blinds. Another alternative application is to use these BTPSCs as the wings of unmanned aerial vehicles.

  16. Transparent, conformable, active multielectrode array using organic electrochemical transistors

    PubMed Central

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G.; Yokota, Tomoyuki; Someya, Takao

    2017-01-01

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation. PMID:28923928

  17. The development of a multichannel electrode array for retinal prostheses.

    PubMed

    Terasawa, Yasuo; Tashiro, Hiroyuki; Uehara, Akihiro; Saitoh, Tohru; Ozawa, Motoki; Tokuda, Takashi; Ohta, Jun

    2006-01-01

    The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 x 10 platinum electrode array that consists of an 8-microm polyimide layer sandwiched between 5-microm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-microm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 x 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 microC/cm2, which corresponds to the charge density of pulses of 500 micros duration and 200 microA amplitude for a 200-microm-diameter planar electrode.

  18. Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells.

    PubMed

    Yue, Shizhong; Lu, Shudi; Ren, Kuankuan; Liu, Kong; Azam, Muhammad; Cao, Dawei; Wang, Zhijie; Lei, Yong; Qu, Shengchun; Wang, Zhanguo

    2017-05-01

    Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH 3 NH 3 PbI 3 /phenyl-C61-butyric acid methyl ester (PC 61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp

    2015-10-07

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less

  20. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    NASA Astrophysics Data System (ADS)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  1. Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors

    PubMed Central

    Izu, Noriya; Hagen, Gunter; Schönauer, Daniela; Röder-Roith, Ulla; Moos, Ralf

    2011-01-01

    A study on the application of V2O5/WO3/TiO2 (VWT) as the sensitive material for resistive-type SO2 sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO2 concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO2 occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed. PMID:22163780

  2. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  3. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    PubMed

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  4. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.

    PubMed

    Liu, Jiang; Zhang, Yu; Jiang, Min; Tian, Liping; Sun, Shiguo; Zhao, Na; Zhao, Feilang; Li, Yingchun

    2017-05-15

    In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10 -6 -4×10 -4 M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10 -11 -4×10 -9 M with remarkably low detection limit of 8×10 -12 M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component.

    PubMed

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi

    2018-01-22

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  6. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst.

    PubMed

    Pelossof, Gilad; Tel-Vered, Ran; Elbaz, Johann; Willner, Itamar

    2010-06-01

    The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme is assembled on Au electrodes. It reveals bioelectrocatalytic properties and electrocatalyzes the reduction of H(2)O(2). The bioelectrocatalytic functions of the hemin/G-quadruplex DNAzyme are used to develop electrochemical sensors that follow the activity of glucose oxidase and biosensors for the detection of DNA or low-molecular-weight substrates (adenosine monophosphate, AMP). Hairpin nucleic structures that include the G-quadruplex sequence in a caged configuration and the nucleic acid sequence complementary to the analyte DNA, or the aptamer sequence for AMP, are immobilized on Au-electrode surfaces. In the presence of the DNA analyte, or AMP, the hairpin structures are opened, and the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme structures are generated on the electrode surfaces. The bioelectrocatalytic cathodic currents generated by the functionalized electrodes, upon the electrochemical reduction of H(2)O(2), provide a quantitative measure for the detection of the target analytes. The DNA target was analyzed with a detection limit of 1 x 10(-12) M, while the detection limit for analyzing AMP was 1 x 10(-6) M. Methods to regenerate the sensing surfaces are presented.

  7. A novel approach to construct a horseradish peroxidase|hydrophilic ionic liquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide.

    PubMed

    Liu, Xiaoqiang; Feng, Heqing; Zhao, Ruoxia; Wang, Yanbing; Liu, Xiuhua

    2012-01-15

    The direct electrochemistry of horseradish peroxidase (HRP) on a novel sensing platform modified glassy carbon electrode (GCE) has been achieved. This sensing platform consists of Nafion, hydrophilic room-temperature ionic liquid (RTIL) and Au nanoparticles dotted titanate nanotubes (GNPs-TNTs). The composite of RTIL and GNPs-TNTs was immobilized on the electrode surface through the gelation of a small amount of HRP aqueous solution. The composite was characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and infrared spectroscopy (IR). UV-Vis and IR spectroscopy demonstrated that HRP in the composite could retain its native secondary structure and biochemical activity. The HRP-immobilized electrode was investigated by cyclic voltammetry and chronoamperometry. The results from both techniques showed that the direct electron transfer between the nanocomposite modified electrodes and heme in HRP could be realized. The biosensor responded to H(2)O(2) in the linear range from 5×10(-6) to 1×10(-3) mol L(-1) with a detection limit of 2.1×10(-6) mol L(-1) (based on the S/N=3). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Cr/ITO semi-transparent n-type electrode for high-efficiency AlGaN/InGaN-based near ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon

    2017-11-01

    We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.

  9. Chemical and Biological Sensors Based on Organic Electrochemical Transistors

    NASA Astrophysics Data System (ADS)

    Lin, Peng

    Organic thin film transistors (OTFTs) have been explored for sensing applications for several decades due to their many advantages like easy fabrication, low cost, flexibility, and biocompatibility. Among these OTFTs, organic electrochemical transistors (OECTs) have attracted a great deal of interest in recent years since the devices can operate stably in aqueous environment with relatively low working voltages and are suitable for applications in chemical and biological sensing. In this thesis, ion-sensitive properties of OECTs based on poly(3,4- ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) have been systematically studied. It was found that the gate electrode played an important role on the ion-sensitive properties of OECTs. For the devices with Ag/AgCl gate electrode, Nernstian relationships between the shift of gate voltage and the concentrations of cations were obtained. For the devices with Pt and Au gate electrodes, the ion sensitivities were higher than that given by Nernst equation, which could be attributed to the interface between the metal gate electrode and the electrolyte. Moreover, OECTs based on PEDOT:PSS were integrated into flexible microfluidic systems. Then a novel label-free DNA sensor was developed, in which single-stranded DNA probes were immobilized on the surface of Au gate electrode. These devices successfully detected complementary DNA targets at concentrations as low as 1 nM. The detection limit was also extended to 10 pM by pulse-enhanced hybridization process of DNA. OECTs based on PEDOT:PSS were also exploited as cell-based biosensors. Human esophageal squamous epithelial cancer cell lines (KYSE30) and fibroblast cell lines (HFFI) were successfully grown on the surface of PEDOT:PSS film. Then the devices were used for in-vitro monitoring cell activities when the living cells were treated by trypsin and an anti-cancer drug, retinoic acid. It was found that the devices were sensitive to the change of surface charge and morphology of adherent cells. Finally, micro-dimensional OECT arrays were fabricated by photolithography. The fabrication process was mainly divided into three steps, i.e. fabrication of gold electrodes, fabrication of PEDOT:PSS films, and fabrication of PEG mirowells. Compared with macro-dimensional OECTs, micro-dimensional OECTs showed better electrical performance, such as faster response time and better stability in aqueous solution.

  10. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    NASA Astrophysics Data System (ADS)

    Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin

    2016-10-01

    Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.

  11. Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor.

    PubMed

    Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo

    2018-03-20

    Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a  = 350 ± 100 M -1  s -1 ), dissociation (k d  = (5.0 ± 2.0) × 10 -4  s -1 ), and binding (K D  = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    NASA Astrophysics Data System (ADS)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  13. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media

    NASA Astrophysics Data System (ADS)

    Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke

    Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.

  14. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    PubMed

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.

  15. Development of neuraminidase detection using gold nanoparticles boron-doped diamond electrodes.

    PubMed

    Wahyuni, Wulan T; Ivandini, Tribidasari A; Saepudin, Endang; Einaga, Yasuaki

    2016-03-15

    Gold nanoparticles-modified boron-doped diamond (AuNPs-BDD) electrodes, which were prepared with a self-assembly deposition of AuNPs at amine-terminated boron-doped diamond, were examined for voltammetric detection of neuraminidase (NA). The detection method was performed based on the difference of electrochemical responses of zanamivir at gold surface before and after the reaction with NA in phosphate buffer solution (PBS, pH 5.5). A linear calibration curve for zanamivir in 0.1 M PBS in the absence of NA was achieved in the concentration range of 1 × 10(-6) to 1 × 10(-5) M (R(2) = 0.99) with an estimated limit of detection (LOD) of 2.29 × 10(-6) M. Furthermore, using its reaction with 1.00 × 10(-5) M zanamivir, a linear calibration curve of NA can be obtained in the concentration range of 0-12 mU (R(2) = 0.99) with an estimated LOD of 0.12 mU. High reproducibility was shown with a relative standard deviation (RSD) of 1.14% (n = 30). These performances could be maintained when the detection was performed in mucin matrix. Comparison performed using gold-modified BDD (Au-BDD) electrodes suggested that the good performance of the detection method is due to the stability of the gold particles position at the BDD surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS 2 ) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS 2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS 2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance.

    PubMed

    Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop

    2018-02-21

    Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

  18. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection.

    PubMed

    Santra, S; Sinha, A K; De Luca, A; Ali, S Z; Udrea, F; Guha, P K; Ray, S K; Gardner, J W

    2016-03-29

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then 'written' directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm(-1) for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.

  19. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection

    NASA Astrophysics Data System (ADS)

    Santra, S.; Sinha, A. K.; De Luca, A.; Ali, S. Z.; Udrea, F.; Guha, P. K.; Ray, S. K.; Gardner, J. W.

    2016-03-01

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then ‘written’ directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm-1 for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.

  20. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  1. A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide.

    PubMed

    Liu, Xiang; Fang, Chen; Yan, Jilin; Li, Huiling; Tu, Yifeng

    2018-05-23

    The C-peptide is a co-product of pancreatic β-cells during insulin secretion; its content in body fluid is closely related to diabetes. This paper reports an immune-sensing strategy for a simple and effective assay of C-peptide based on label-free electrochemiluminescent (ECL) signaling, with high sensitivity and specificity. The basal electrode was constructed of an indium tin oxide (ITO) glass as a conductive substrate, which was decorated by Au nanoparticles (AuNPs) with hydrolysed (3-aminopropyl)trimethoxysilane as the linker. The characteristics of the fabricated electrode were investigated by electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. After immobilizing the C-peptide antibody, which takes great advantage of AuNPs' binding capacity, this immunosensor can quantify C-peptide using luminol as the ECL probe. By measuring ECL inhibition, calibration can be established to report the C-peptide concentration between 0.05 ng mL -1 and 100 ng mL -1 with a detection limit of 0.0142 ng mL -1 . As a proof of concept, the proposed strategy is a promising and versatile platform for the clinical diagnosis, classification, and research of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng

    2012-02-15

    A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    ERIC Educational Resources Information Center

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  4. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection.

    PubMed

    Wang, Xueping; Xu, Rui; Sun, Xu; Wang, Yaoguang; Ren, Xiang; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An ultrasensitive sandwich-type photoelectrochemical (PEC) immunosensor was constructed for the detection of prostate specific antigen (PSA). In this work, Au-nanoparticle-loaded tungsten oxide (WO 3 -Au) hybrid composites was applied as PEC sensing platform, while Ca ions doped CdSe equipped on the conducting framework of reduced graphene oxide (rGO-Ca:CdSe) nanocomposites were employed as the signal amplification probe. As for WO 3 -Au, massive Au nanoparticles were formed on the surface of WO 3 without any additional reducing agent, providing a novel nanocarriers for anchoring plenty of the primary antibodies due to the large specific surface area and good biocompatibility by chemical bonding between Au nanoparticles and -NH 2 of antibodies. Besides, the incorporation of the rGO and the doping of Ca ions could improve the conductivity and hinder the recombination of electron-hole pairs of CdSe nanoparticles effectively, thereby enhancing the photocurrent conversion efficiency. Based on the sandwich immunoreaction, the primary antibody was immobilized onto WO 3 -Au substrate, after the formed rGO-Ca:CdSe labels were captured onto the electrode surface via the specific antibody-antigen interaction, the photocurrent intensity could be further enhanced due to the sensitization effect. Under the optimal conditions, the proposed PEC immunosensor shows a linear relationship between photocurrent variation and the logarithm of PSA concentration in the wide range of 5pgmL -1 to 50ngmL -1 with a low detection limit of 2.6pgmL -1 (S/N=3). Moreover, it also presented good stability and acceptable specificity, indicating the potential applications in clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification.

    PubMed

    Bai, Lijuan; Yan, Bin; Chai, Yaqin; Yuan, Ruo; Yuan, Yali; Xie, Shunbi; Jiang, Liping; He, Ying

    2013-11-07

    In this work, we reported a new label-free electrochemical aptasensor for highly sensitive detection of thrombin using direct electron transfer of glucose oxidase (GOD) as a redox probe and a gold nanoparticle-polyaniline-graphene (Au-PANI-Gra) hybrid for amplification. The Au-PANI-Gra hybrid with large surface area provided a biocompatible sensing platform for the immobilization of GOD. GOD was encapsulated into the three-dimensional netlike (3-mercaptopropyl)trimethoxysilane (MPTS) to form the MPTS-GOD biocomposite, which not only retained the native functions and properties, but also exhibited tunable porosity, high thermal stability, and chemical inertness. With abundant thiol tail groups on MPTS, MPTS-GOD was able to chemisorb onto the surface of the Au-PANI-Gra modified electrode through the strong affinity of the Au-S bond. The electrochemical signal originated from GOD, avoiding the addition or labeling of other redox mediators. After immobilizing the thiolated thrombin binding aptamer through gold nanoparticles (AuNPs), GOD as a blocking reagent was employed to block the remaining active sites of the AuNPs and avoid the nonspecific adsorption. The proposed method avoided the labeling process of redox probes and increased the amount of electroactive GOD. The concentration of thrombin was monitored based on the decrease of current response through cyclic voltammetry (CV) in 0.1 M PBS (pH 7.4). With the excellent direct electron transfer of double layer GOD membranes, the resulting aptasensor exhibited high sensitivity for detection of thrombin with a wide linear range from 1.0 × 10(-12) to 3.0 × 10(-8) M. The proposed aptasensor also showed good stability, satisfactory reproducibility and high specificity, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules.

  6. A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Tian, Liangliang; Chen, Yuan; Liu, Bitao; Zhang, Jin

    2015-06-01

    Au/Cu2O nanocomposites were successfully synthesized by a facile one-pot redox reaction without additional reducing agent under room temperature. The morphologies and structures of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic performance of Au/Cu2O nanocomposites towards hydrogen peroxide was evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). The prepared Au/Cu2O nanocomposite electrode showed a wide linear range from 25 to 11.2 mM ( R = 0.9989) with a low detection limit of 1.05 μM ( S/ N = 3) and high sensitivity of 292.89 mA mM-1 cm-2. The enhanced performance for H2O2 detection can be attributed to the introduction of Au and the synergistic effect between Au and Cu2O. It is demonstrated that the Au/Cu2O nanocomposites material could be a promising candidate for H2O2 detection.

  7. Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Chul; Kim, Minwoo; Song, Young Jae; Hussain, Sajjad; Song, Woo-Seok; An, Ki-Seok; Jung, Jongwan

    2018-01-01

    Low contact resistance between metal-graphene contacts remains a well-known challenge for building high-performance two dimensional materials devices. In this study, CVD-grown graphene film was doped via AuCl3 solution selectively only to metal (Ti/Au) contact area to reduce the contact resistances without compromising the channel properties of graphene. With 10 mM-AuCl3 doping, doped graphene exhibited low contact resistivity of ∼897 Ω μm, which is lower than that (∼1774 Ω μm) of the raw graphene devices. The stability of the contact resistivity in atmospheric environment was evaluated. The contact resistivity increased by 13% after 60 days in an air environment, while the sheet resistance of doped graphene increased by 50% after 30 days. The improved stability of the contact resistivity of AuCl3-doped graphene could be attributed to the fact that the surface of doped-graphene is covered by Ti/Au electrode and the metal prevents the diffusion of AuCl3.

  8. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  9. Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface.

    PubMed

    Guo, Yuna; Wang, Yu; Liu, Su; Yu, Jinghua; Wang, Hongzhi; Cui, Min; Huang, Jiadong

    2015-01-21

    A novel electrochemical immunosensor assay (EIA) for highly sensitive and specific detection of Escherichia coli O157:H7 has been developed. This immunosensor is constructed by the assembly of capture antibody on SG-PEDOT-AuNPs composites modified glass carbon electrode. In the presence of target E. coli O157:H7, horseradish peroxidase (HRP)-labeled antibody is captured on the electrode surface to form a sandwich-type system via the specific identification. As a result, E. coli O157:H7 detection is realized by outputting a redox current from electro-reduction of hydrogen peroxide reaction catalyzed by HRP. In our assay, the combination of the unique properties of sulfonated graphene (SG) and gold nanoparticles (AuNPs) can not only accelerate electron transfer on electrode interface, but also provide an excellent scaffold for the conjugation of capture antibody that significantly improves the target capture efficiency and enhances the sensitivity of the biosensor. The results reveal the calibration plot obtained for E. coli O157:H7 is approximately linear from 7.8 × 10-7.8 × 10(6) colony-forming unit (cfu) mL(-1) with the limit of detection of 3.4 × 10 cfu mL(-1). In addition, the biosensor has been successfully applied to the quantitative assay of E. coli O157:H7 in synthetic samples (spring water and milk). Hence, the developed electrochemical-based immunosensor might provide a useful and practical tool for E. coli O157:H7 determination and related food safety analysis and clinical diagnosis.

  10. A screen-printed carbon electrode modified with gold nanoparticles, poly(3,4-ethylenedioxythiophene), poly(styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin.

    PubMed

    Dechtrirat, Decha; Yingyuad, Peerada; Prajongtat, Pongthep; Chuenchom, Laemthong; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Tang, I-Ming

    2018-04-23

    A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N = 3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n = 6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries. Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.

  11. Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles.

    PubMed

    Shoaie, Nahid; Forouzandeh, Mehdi; Omidfar, Kobra

    2018-03-12

    The authors describe an electrochemical assay for fast detection of Escherichia coli (E. coli). It is based on a dual signal amplification strategy and the use of a screen-printed carbon electrode (SPCE) whose surface was modified with a polyaniline (PANI) film and gold nanoparticles (AuNPs) via cyclic voltammetry (CV). In the next step, avidin was covalently immobilized on the PANI/AuNP composite on the SPCE surface. Subsequently, the biotinylated DNA capture probe was immobilized onto the PANI/AuNP/avidin-modified SPCE by biotin-avidin interaction. Then, DNA of E.coli, digoxigenin-labeled DNA detector probe and anti-digoxigenin-labeled horseradish peroxidase (HRP) were placed on the electrode. 3,3',5,5'-Tetramethylbenzidine (TMB) and H 2 O 2 solution were added and the CV electrochemical signal was generated at a potential of -0.1 V (vs. Ag/AgCl) and a scan rate 50 mV.s -1 . The assay can detect 4 × 10 6 to 4 CFU of E. coli without DNA amplification. The biosensor is highly specific over other pathogens including Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, Staphylococcus haemolyticus and Pseudomonas aeruginosa. It can be concluded that this genosensor has an excellent potential for rapid and accurate diagnosis of E.coli inflicted infections. Graphical Abstract Schematic of an electrochemical E. coli genosensor based on sandwich assay on a polyaniline/gold nanoparticle-modified screen printed carbon electrode (SPCE). The biosensor can detect 4 × 10 6 to 4 CFU of E. coli without DNA amplification.

  12. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.

    PubMed

    Chen, Cong; Cheng, Yu; Jin, Junjie; Dai, Qilin; Song, Hongwei

    2016-10-15

    Co-sensitization by using two or more sensitizers with complementary absorption spectra to expand the spectral response range is an effective approach to enhance device performance of quantum dot sensitized solar cells (QDSSCs). To improve the light-harvesting in the visible/near-infrared (NIR) region, organic dye zinc phthalocyanine (ZnPc) was combined with CdS/CdSe quantum dots (QDs) for co-sensitized solar cells based on ZnO inverse opals (IOs) as photoanode. The resulting co-sensitized device shows an efficient panchromatic spectral response feature to ∼750nm and presents an overall conversion efficiency of 4.01%, which is superior to that of the individual ZnPc-sensitized solar cells and CdS/CdSe-sensitized solar cells. Meanwhile, an Au nanoparticles/graphene oxide (Au NPs/GO) composite layer was successfully prepared to modify Cu2S counter electrode for the co-sensitized solar cells. Reducing the carrier recombination process by GO and catalytic process of Au NPs leads to increased power conversion efficiency(PCE) from 4.01 to 4.60% and sustainable stability remains ∼85% of its original value after 60min light exposure. In this paper, introduction of the organic dyes as co-sensitizer and Au NPs/GO as counter electrode modified layer has been proved to be an effective route to improve the performance of QDSSCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2011-01-15

    An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  15. High‐Performance Li–O2 Batteries with Controlled Li2O2 Growth in Graphene/Au‐Nanoparticles/Au‐Nanosheets Sandwich

    PubMed Central

    Wang, Guoqing; Tu, Fangfang; Du, Gaohui; Zhang, Shichao; Cao, Gaoshao; Zhao, Xinbing

    2016-01-01

    The working of nonaqueous Li–O2 batteries relies on the reversible formation/decomposition of Li2O2 which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of Li2O2 is a prerequisite for high performance of Li–O2 batteries. In this work, a sandwich‐structured catalytic cathode is designed: graphene/Au‐nanoparticles/Au‐nanosheets (G/Au‐NP/Au‐NS) that enables controlled growth of Li2O2 spatially and structurally. It is found that thin‐layer Li2O2 (below 10 nm) can grow conformally on the surface of Au NPs confined in between graphene and Au NSs. This unique crystalline behavior of Li2O2 effectively relieves or defers the electrode deactivation with Li2O2 accumulation and largely reduces the contact of Li2O2 with graphene and electrolyte. As a result, Li–O2 batteries with the G/Au‐NP/Au‐NS cathode exhibit superior electrochemical performance. A stable cycling of battery can last 300 times at 400 mA g−1 when the capacity is limited at 500 mAh g−1. This work provides a practical design of catalytic cathodes capable of controlling Li2O2 growth. PMID:27840792

  16. Prospects of zero Schottky barrier height in a graphene-inserted MoS{sub 2}-metal interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-07

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS{sub 2}-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS{sub 2} and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS{sub 2}. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, densitymore » functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS{sub 2} through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS{sub 2}-metal interface, the projected dispersion of MoS{sub 2} remains preserved in any MoS{sub 2}-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS{sub 2}-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.« less

  17. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the mostmore » abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.« less

  18. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2/Au nanocomposite.

    PubMed

    Liu, Junfeng; Lin, Guanhua; Xiao, Can; Xue, Ying; Yang, Ankang; Ren, Hongxuan; Lu, Wensheng; Zhao, Hong; Li, Xiangjun; Yuan, Zhuobin

    2015-09-15

    A label-free electrochemical immunosensor for sensitive detection of α-fetoprotein (AFP) was developed based on graphene/SnO2/Au nanocomposite. The graphene/SnO2/Au nanocomposite modified glassy carbon electrode was used to immobilize α-fetoprotein antibody (anti-AFP) and to construct the immunosensor. Results demonstrated that the peak currents of [Ru(NH3)6](3+) decreased due to the interaction between antibody and antigen on the modified electrode. Thus, a label-free immunosensor for the detection of AFP was realized by monitoring the peak current change of [Ru(NH3)6](3+). The factors influencing the performance of the immunosensor were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing AFP concentrations in the range from 0.02 to 50 ng mL(-1) with a linear coefficient of 0.9959. This electrochemical immunoassay has a low detection limit of 0.01 ng mL(-1) (S/N=3) and was successfully applied to the determination of AFP in serum samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Functionalization of gold and graphene electrodes by p-maleimido-phenyl towards thiol-sensing systems investigated by EQCM and IR ellipsometric spectroscopy

    NASA Astrophysics Data System (ADS)

    Neubert, Tilmann J.; Rösicke, Felix; Sun, Guoguang; Janietz, Silvia; Gluba, Marc A.; Hinrichs, Karsten; Nickel, Norbert H.; Rappich, Jörg

    2017-11-01

    Electrografting of gold and graphene surfaces by functional p-(N-maleimido)phenyl groups was performed by reduction of p-(N-maleimido)phenyldiazonium tetrafluoroborate. The reduction was carried out using cyclic voltammetry coupled with micro-gravimetric measurements by means of electrochemical quartz crystal microbalance (EQCM). The overall deposited mass on gold was higher than on graphene. However, the Faradaic efficiency was lower on Au (14%) compared to graphene (22%) after the first potential scan. Subsequently, the maleimide functional groups have been tested for immobilization of terminal thiols using (4-nitrobenzyl)mercaptan for the functionalized graphene surface and a cysteine-modified peptide for the functionalized gold surface. The functionalization by p-(N-maleimido)phenyl groups and the following thiol coupling of the particular surface was proven by infrared spectroscopic ellipsometry (IRSE). In addition, the interaction of the tetrabutylammonium and tetrafluoroborate ions present in the electrolyte with the Au and graphene electrodes was investigated by EQCM and revealed less electrostatic interaction of graphene with these ions in solution compared to the metal (Au) surface.

  1. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE PAGES

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; ...

    2017-12-11

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  2. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  3. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase.

    PubMed

    Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-11-20

    We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan A.; Larson, Amanda; Pohl, Karsten

    2017-06-01

    Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.

  5. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    NASA Astrophysics Data System (ADS)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.

  6. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen.

    PubMed

    Cao, Jun-Tao; Yang, Jiu-Jun; Zhao, Li-Zhen; Wang, Yu-Ling; Wang, Hui; Liu, Yan-Ming; Ma, Shu-Hui

    2018-01-15

    A novel and competitive electrochemiluminescence (ECL) aptasensor for prostate specific antigen (PSA) assay was constructed using gold nanorods functionalized graphene oxide (GO@AuNRs) multilabeled with glucose oxidase (GOD) and streptavidin (SA) toward luminol-based ECL system. A strong initial ECL signal was achieved by electrodeposited gold (DpAu) on the electrode because of gold nanoparticles (AuNPs) motivating the luminol ECL signal. The signal probes prepared by loading GOD and SA-biotin-DNA on GO@AuNRs were used for achieving multiple signal amplification. In the absence of PSA, the signal probes can be attached on the electrode by hybridization reaction between PSA aptamer and biotin-DNA. In this state, the GOD loaded on the probe could catalyze glucose to in situ produce H 2 O 2 and then AuNRs catalyze H 2 O 2 to generate abundant reactive oxygen species (ROSs) in luminol ECL reaction. Both the high-content GOD and AuNRs in the signal probe amplified the ECL signal in the ECL system. Moreover, the combination of SA with biotin-DNA further expands ECL intensity. The integration of such amplifying effects in this protocol endows the aptasensor with high sensitivity and good selectivity for PSA detection. This aptasensor exhibits a linear relation in the range of 0.5pgmL -1 to 5.0ngmL -1 with the detection limit of 0.17pgmL -1 (S/N = 3). Besides, the strategy was successfully applied in determination of human serum samples with recovery of 81.4-116.0%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fabrication and characterization of p{sup +}-i-p{sup +} type organic thin film transistors with electrodes of highly doped polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadaki, Daisuke; Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2016-04-21

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p{sup +}-i-p{sup +} type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p{sup +}) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F{sub 4}-TCNQ) was used as the p-type dopant. A fabricating method of p{sup +}-i-p{supmore » +} OTFTs has been developed by using SiO{sub 2} and aluminum films as capping layers for micro-scaled patterning of the p{sup +}-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p{sup +}-i-p{sup +} OTFTs work with carrier injection through a built-in potential at p{sup +}/i interfaces. We found that the p{sup +}-i-p{sup +} OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p{sup +}-P3HT layers.« less

  8. Adsorption of Pyridine at the Au(100)-Solution Interface.

    DTIC Science & Technology

    1987-09-25

    quatiatively characterize the energetics of pyridine adsorption onto a gold ( 100) single crystal electrode surface. Over the potential region investigated...0.8 to +0.6 A., three orientationis of the pyridine molecules on the gold surface have been observed. The pyridine orientation Is strongly 1nflue ied by...the electrode potential. At a positively charged surface, the pyridine assumes a verticle orientation with .fie nitrogen atom facing the gold surface

  9. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component

    PubMed Central

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi

    2018-01-01

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at −0.50 and −0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at −0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at −0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds. PMID:29361775

  10. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

    NASA Astrophysics Data System (ADS)

    Shah, Muhammad Tariq; Balouch, Aamna; Panah, Pirah; Rajar, Kausar; Mahar, Ali Muhammad; Khan, Abdullah; Jagirani, Muhammad Saqaf; Khan, Humaira

    2018-06-01

    In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

  11. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresistmore » top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.« less

  12. Effect of electrode material on characteristics of non-volatile resistive memory consisting of Ag{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jaewon, E-mail: j1jang@knu.ac.kr

    2016-07-15

    In this study, Ag{sub 2}S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag{sub 2}S films are successfully crystallized on plastic substrates with synthesized Ag{sub 2}S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag{sub 2}S/metal structures are fabricated and tested. The effect of the electrode materialmore » on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 10{sup 3} cycles and 10{sup 4} sec, respectively.« less

  13. The improvement of low-resistance and high-transmission ohmic contact to p-GaN by Zn + implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Shirong; Shi, Ying; Li, Hongjian; He, Qingyao

    2010-05-01

    The electrical and optical characteristics of Zn + ion-implanted Ni/Au ohmic contacts to p-GaN were investigated. After the preparation of Ni/Au electrode on the surface of p-GaN, the metal/ p-GaN contact interface was doped by 35 keV Zn + implantation with fluences of 5 × 10 15-5 × 10 16 cm -2. Subsequent rapid thermal annealing of the implanted samples were carried in air at 200-400 °C for 5 min. Obvious improvements of the electrode contact characteristics were observed, i.e. the decrease of specific contact resistance and the increase of light transmittance. The lowest specific contact resistance of 5.46 × 10 -5 Ω cm 2 was achieved by 1 × 10 16 cm -2 Zn + implantation. The transmission enhancement of the electrodes was found as the annealing temperature rises. Together with the morphology and structure analyses of the contacts by scanning and transmission electron microscope, the corresponding mechanism for such an improvement was discussed.

  14. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    PubMed

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan T.

    This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis. The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes. The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back-fill solution of a carbon fiber microelectrode, there is a significant enhancement in detection. Additionally we used solid state nanopores to detect individual phospholipid vesicles in solution. Vesicles are key cellular components that play essential biological roles especially in neurotransmission. This work represents preliminary studies in detection and size determination from vesicles isolated from individual cells.

  16. Highly Sensitive and Long Term Stable Electrochemical Microelectrodes for Implantable Glucose Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Qiang, Liangliang

    A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth, homemade miniature wireless potentisotat was fabricated based on low power consumption integrated circuits and surface mount parts. The miniature wireless potentisotat with up to two week life-time for continuous glucose sensing has a size less than 9x22x10 mm and weight ˜3.4 grams. Primary in vivo experiment showed homemade system has the exactly same respond and trend as commercial glucose meter.

  17. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  18. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    PubMed

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  19. Synthesis of Flexible Graphene/Polymer Composites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Pal, Himangshu; Bhubna, Shuvam; Kumar, Praduman; Mahapatra, Rajat; Chatterjee, Somenath

    2018-01-01

    In this paper, the graphene was synthesized using biocompatible cellulosic component from onions. Onion epidermal cells were chosen as raw material. During heating at high temperature, the bonding among atoms in material was rearranged and forms two-dimensional hexagonal carbon layer (graphene). The characterization of synthesized graphene was done by x-ray diffractometer, Raman spectrometer and field emission scanning electron microscopy, respectively. An attempt has been taken to form the capacitors with two different current collector electrodes, anticipating the performance of the supercapacitors. The observed capacitance values as-obtained for Al and Au current collector were 1.3 μF and 6.08 μF, respectively. However, when thermally exfoliated graphene was used as an electrode on Al and Au current collector, the capacitance value was drastically increased and found to be 1.6 and 41.25 μF, respectively.

  20. Single-molecule quantum dot as a Kondo simulator

    NASA Astrophysics Data System (ADS)

    Hiraoka, R.; Minamitani, E.; Arafune, R.; Tsukahara, N.; Watanabe, S.; Kawai, M.; Takagi, N.

    2017-06-01

    Structural flexibility of molecule-based systems is key to realizing the novel functionalities. Tuning the structure in the atomic scale enables us to manipulate the quantum state in the molecule-based system. Here we present the reversible Hamiltonian manipulation in a single-molecule quantum dot consisting of an iron phthalocyanine molecule attached to an Au electrode and a scanning tunnelling microscope tip. We precisely controlled the position of Fe2+ ion in the molecular cage by using the tip, and tuned the Kondo coupling between the molecular spins and the Au electrode. Then, we realized the crossover between the strong-coupling Kondo regime and the weak-coupling regime governed by spin-orbit interaction in the molecule. The results open an avenue to simulate low-energy quantum many-body physics and quantum phase transition through the molecular flexibility.

  1. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  2. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    PubMed

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.

    PubMed

    Yola, Mehmet Lütfi; Eren, Tanju; Atar, Necip

    2014-10-15

    The molecular imprinting technique depends on the molecular recognition. It is a polymerization method around the target molecule. Hence, this technique creates specific cavities in the cross-linked polymeric matrices. In present study, a sensitive imprinted electrochemical biosensor based on Fe@Au nanoparticles (Fe@AuNPs) involved in 2-aminoethanethiol (2-AET) functionalized multi-walled carbon nanotubes (f-MWCNs) modified glassy carbon (GC) electrode was developed for determination of cefexime (CEF). The results of X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS) confirmed the formation of the developed surfaces. CEF imprinted film was constructed by cyclic voltammetry (CV) for 9 cycles in the presence of 80 mM pyrrole in phosphate buffer solution (pH 6.0) containing 20mM CEF. The developed electrochemical biosensor was validated according to the International Conference on Harmonisation (ICH) guideline and found to be linear, sensitive, selective, precise and accurate. The linearity range and the detection limit were obtained as 1.0 × 10(-10)-1.0 × 10(-8)M and 2.2 × 10(-11)M, respectively. The developed CEF imprinted sensor was successfully applied to real samples such as human plasma. In addition, the stability and reproducibility of the prepared molecular imprinted electrode were investigated. The excellent long-term stability and reproducibility of the prepared CEF imprinted electrodes make them attractive in electrochemical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Analyzing the electrooxidation of ethylene glycol and glucose over platinum-modified gold electrocatalysts in alkaline electrolyte using in-situ infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahoney, Elizabeth G.; Sheng, Wenchao; Cheng, Mei; Lee, Kevin X.; Yan, Yushan; Chen, Jingguang G.

    2016-02-01

    Platinum modified gold (Pt/Au) catalysts are evaluated for the electrooxidation of ethylene glycol (EG) and glucose (Glc). The Pt/Au catalysts are synthesized on an Au disk and supported Au/C particles through the galvanic displacement of a copper monolayer with Pt. The Pt/Au catalysts are compared to monometallic Pt and Au catalysts for the oxidation of EG and Glc in alkaline electrolyte. The Pt/Au disk has an onset potential for these reactions that is similar to Pt and is lower than Au. The supported catalysts are less active toward the electrooxidation of EG and Glc than the corresponding disk electrodes, but the Pt/Au/C also has an onset potential similar to Pt/C. In-situ FTIR is used to analyze the C-C bond scission in both reactions on the surfaces of Pt, Au, and Pt/Au disks. While the Pt/Au disk is found to have a low onset potential for the oxidation of EG, it does not produce as much CO2 as bulk Pt. On the other hand, the FTIR results show that CO2 is produced for the oxidation of Glc on the Pt/Au disk. These results show promise for the possibility of decreasing the amount of Pt needed for the electrooxidation of polyol molecules.

  5. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires

    NASA Astrophysics Data System (ADS)

    Kang, Mijeong; Yoo, Seung Min; Gwak, Raekeun; Eom, Gayoung; Kim, Jihwan; Lee, Sang Yup; Kim, Bongsoo

    2015-12-01

    A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06021d

  6. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Wang, Shuqi; Xu, Li-Ping; Wen, Yongqiang; Du, Hongwu; Wang, Shutao; Zhang, Xueji

    2013-05-01

    Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices. Electronic supplementary information (ESI) available: SEM images. See DOI: 10.1039/c3nr00313b

  7. Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detection.

    PubMed

    Oliveira, Thiago M B F; Barroso, M Fátima; Morais, Simone; Araújo, Mariana; Freire, Cristina; de Lima-Neto, Pedro; Correia, Adriana N; Oliveira, Maria B P P; Delerue-Matos, Cristina

    2014-08-01

    A bi-enzymatic biosensor (LACC-TYR-AuNPs-CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC-TYR-AuNPs-CS/GPE exhibited an improved Michaelis-Menten kinetic constant (26.9±0.5M) when compared with LACC-AuNPs-CS/GPE (37.8±0.2M) and TYR-AuNPs-CS/GPE (52.3±0.4M). Using 4-aminophenol as substrate at pH5.5, the device presented wide linear ranges, low detection limits (1.68×10(-9)±1.18×10(-10)-2.15×10(-7)±3.41×10(-9)M), high accuracy, sensitivity (1.13×10(6)±8.11×10(4)-2.19×10(8)±2.51×10(7)%inhibitionM(-1)), repeatability (1.2-5.8% RSD), reproducibility (3.2-6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8±0.3% (lemon) to 97.8±0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    PubMed Central

    Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.

    2018-01-01

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580

  9. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    PubMed

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  10. Polyaniline modified flexible conducting paper for cancer detection

    NASA Astrophysics Data System (ADS)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.

    2016-05-01

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  11. How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), mn(II), and S(−II) in undisturbed soils and sediments using voltammetry

    USGS Publications Warehouse

    Slowey, Aaron J.; Marvin-DiPasquale, Mark

    2012-01-01

    Conclusions - Despite their intrinsic variability, Hg/Au electrodes fabricated by hand can be used to quantify O2, S(−II), Fe(II), and Mn(II) without calibrating every electrode for every constituent of interest. The pilot ion method can achieve accuracies to within 20% or less, provided that the underlying principle—the independence of slope ratios—is demonstrated for all voltammetric techniques used, and effects of the physicochemical properties of the system on voltammetric signals are addressed through baseline subtraction.

  12. Simulating the Effect of Contact Atomic Structure on the Spin-Dependent Transport Properties of Gold Nanowires

    NASA Astrophysics Data System (ADS)

    Ansarino, Masoud; Ravan, Bahram Abedi

    Some experimental research works report on the superb magnetoresistance properties of magnetically contacted gold nanowires. With the intention of trying to understand the spin-dependent transport mechanism of these structures, in this work we have used first-principles density functional theory methods to investigate effects of interface structure on the spintronic characteristics of Au nanowires. Monatomic chains of gold are sandwiched between two ferromagnetic electrodes of Fe and by substituting the interfacial Fe atoms with some other transition metal elements (including Cr, Mn, Co and Ni) the occurrence of possible enhancement in the electronic conductance and magnetoresistance characteristics of the device are investigated. It is observed that replacing the interfacial atoms with Ni raises the junction’s magnetoresistance ratio to as high as 2000%.

  13. Influence of Adsorbed Hydroxyl and Carbon Monoxide on Potential-Induced Reconstruction of Au(100) as Examined by Scanning Tunneling Microscopy

    DTIC Science & Technology

    1994-02-01

    years have witnessed substantial advances in our knowledge of metal reconstruction in electrochemical systems, primarily for low-index gold surfaces in...index gold surfaces, reconstruction can be formed or removed by applying electrode potentials corresponding to negative or positive electronic charge...potential and gold oxidation regions, for Au(100) in 0.1 M KOH, obtained in a conventional electrochemical cell (solid trace). The voltammetric

  14. Polarization of gold in nanopores leads to ion current rectification

    DOE PAGES

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less

  15. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  16. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.

    PubMed

    Wang, Yonghong; Wang, Ping; Wang, Yiqiang; He, Xiaoxiao; Wang, Kemin

    2015-08-15

    In this work, a simple and sensitive electrochemical strategy for arsenite detection based on the ability of arsenite bound to single-strand DNA (ssDNA) and the signal transduction of single wall carbon nanotubes (SWCNTs) is developed. To realize this purpose, the ssDNA/SWCNTs complexes were formed at first by making ssDNA wrapped around SWCNTs via π-stacking. In the presence of arsenite, the arsenite could strongly bind with the G/T bases of ssDNA and decrease the π-π interaction between ssDNA and SWCNTs, resulting in a certain amount of ssDNA dissociating from the complexes. The separated SWCNTs were selectively assembled on the self-assembled monolayer (SAM) modified Au electrode. Then the SWCNTs onto the SAM-modified Au electrode substantially restored heterogeneous electron transfer that was almost totally blocked by the SAM. The assembled SWCNTs could generate a considerably sensitive and specific tactic for signal transduction, which was related to the concentration of the arsenite. Through detecting the currents mediated by SWCNTs, a linear response to concentration of arsenite ranging from 0.5 to 10ppb and a detection limit of 0.5ppb was readily achieved with desirable specificity and sensitivity. Such a SWCNTs-based biosensor creates a simple, sensitive, nonradioactive route for detection of arsenite. In addition, this demonstration provides a new approach to fabrication of stable biosensors with favorable electrochemical properties believed to be appealing to electroanalytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cathodic Corrosion of a Bulk Wire to Nonaggregated Functional Nanocrystals and Nanoalloys

    PubMed Central

    2018-01-01

    A key enabling step in leveraging the properties of nanoparticles (NPs) is to explore new, simple, controllable, and scalable nanotechnologies for their syntheses. Among “wet” methods, cathodic corrosion has been used to synthesize catalytic aggregates with some control over their size and preferential faceting. Here, we report on a modification of the cathodic corrosion method for producing a range of nonaggregated nanocrystals (Pt, Pd, Au, Ag, Cu, Rh, Ir, and Ni) and nanoalloys (Pt50Au50, Pd50Au50, and AgxAu100–x) with potential for scaling up the production rate. The method employs poly(vinylpyrrolidone) (PVP) as a stabilizer in an electrolyte solution containing nonreducible cations (Na+, Ca2+), and cathodic corrosion of the corresponding wires takes place in the electrolyte under ultrasonication. The ultrasonication not only promotes particle–PVP interactions (enhancing NP dispersion and diluting locally high NP concentration) but also increases the production rate by a factor of ca. 5. Further increase in the production rate can be achieved through parallelization of electrodes to construct comb electrodes. With respect to applications, carbon-supported Pt NPs prepared by the new method exhibit catalytic activity and durability for methanol oxidation comparable or better than the commercial benchmark catalyst. A variety of AgxAu100–x nanoalloys are characterized by ultraviolet–visible absorption spectroscopy and high-resolution transmission electron microscopy. The protocol for NP synthesis by cathodic corrosion should be a step toward its further use in academic research as well as in its practical upscaling. PMID:29446912

  18. Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism.

    PubMed

    Gao, Hongfang; Wang, Xiaofei; Li, Man; Qi, Honglan; Gao, Qiang; Zhang, Chengxiao

    2017-12-15

    A proximity hybridization-regulated electrogenerated chemiluminescence (PLA-ECL) bioassay was developed for the detection of α-fetoprotein (AFP) on basis of the sensitization of gold nanoparticles (AuNPs) and target-induced quenching mechanism. Ru(bpy) 3 2+ was used as ECL signal while ferrocene (Fc) was used as ECL quencher. Ru(bpy) 3 2+ was electrostatically adsorbed into the AuNPs/Nafion film prepared by casting the mixture of Nafion and AuNPs onto the surface of glassy carbon electrode (GCE) to form an ECL platform (Ru(bpy) 3 2+ /AuNPs/Nafion/GCE), which displayed strong ECL emissions. A recognition platform was fabricated by self-assembling a capture DNA via thiol-gold bond on the surface of Ru(bpy) 3 2+ /AuNPs/Nafion/GCE. After sandwich immunoassay and proximity hybridization assay among capture DNA, AFP, a pair of antibody-oligonucleotide conjugates and a signal probe (DNA-Fc), Fc in DNA-Fc was brought close to the surface of electrode in conjunction with target induced ECL quenching. The ECL intensity decreased with the increasing concentration of the AFP and AFP was monitored with a linear range of 0.05-50ng/mL along with a detection limit of 0.04ng/mL. The ECL bioassay is successfully applied to the detection of AFP in serum samples with one-step recognition, short operating time and good accuracy. This method displays great potential for point-of-care testing and commercial application. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection.

    PubMed

    Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-11-21

    A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.

  20. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A.

    PubMed

    Jiang, Ling; Qian, Jing; Yang, Xingwang; Yan, Yuting; Liu, Qian; Wang, Kan; Wang, Kun

    2014-01-02

    An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs-rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs-rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs-rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 10(7) redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7~ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL(-1)-50 ng mL(-1) and could detect extremely low OTA concentration, namely, 0.3 pg mL(-1) or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2013 Elsevier B.V. All rights reserved.

Top