Science.gov

Sample records for audio-magnetotelluric station location

  1. Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size, resistivity, and skin depth of the polarizable mineral deposit concealed beneath thick overburden, a regional east-west audio-magnetotelluric sounding profile was acquired. The purpose of this report is to release the audio-magnetotelluric sounding data collected along that east-west profile. No interpretation of the data is included.

  2. Geothermal exploration using audio-magnetotelluric in Pariangan Tanah Datar, West Sumatra

    NASA Astrophysics Data System (ADS)

    Saputra, Andriyan; Widodo, Kholid, Muhammad

    2015-04-01

    The existence of Mt. Marapi in Pariangan Tanah Datar has a big potential of geothermal energy resource. The study area is located in southeastern Mt. Marapi. The geological elements correspond to lava granitic, sandstone quartz, quartzite and conglomerate. The aim of this research is to investigate the geothermal system in this area. Measurements of audio-magnetotelluric (AMT) long line are 10 km with two profiles. The audio-magnetotelluric (AMT) data carried out during July 2014. The models result were done by using 1-D inversion technique. The 1-D inversion was done with Occam and Marquadt algoritm. We assumed that for the first layer indicates as the conductive zone (±10 Ωm), the second layer as the reservoir geothermal system (±100 Ωm) that contains with sandstone quartz, and the third layer can be interpreted as volcanic rock (±1000 - 10000 Ωm) which is the basement of geothermal system.

  3. Audio-magnetotelluric (AMT) study to investigate the genesis of Mujil hill

    NASA Astrophysics Data System (ADS)

    Rahmania, Suryanto, Wiwit

    2017-07-01

    Gunung Mujil is an isolated hill located near Pondoworejo village, Kalibawang sub-district, Kulon Progo district, and Special Province of Yogyakarta. The hill is part of the eastern Kulon Progo mountain range extended relatively in the North-South direction. The lithology of the hill consists of andesite breccia and it's similar with the Old Andesite Formation that built the Kulon Progo Mountains. There are at least two hypothesis about the genesis and the formation mechanism of this hill, (1) it was formed by debris mass from Kulon Progo Mountains, and (2) ) it was formed by an intrusion. Our study intended to determine the subsurface resistivity below the hill and to relating those results to with the scenario of the genesis of the Mujil hill. We conducted Audio-magnetotellurics (AMT) measurements along two lines survey crossing the Mujil hill consisting of 20 measurements. Since the measurements are located near the villages, most of the data has a fair to bad quality and only one station yielded an excellent data. A 1D Forward modeling was then applied to find best-fit model of the AMT data. The results shows that the Mujil hill was built by debris mass of the Old Andesite Formation from Kulon Progo mountain which is represented by a lower resistivity value under the Mujil hill.

  4. Magnetotelluric and Audio-magnetotelluric measurements in Alasehir Graben for geothermal exploration purposes

    NASA Astrophysics Data System (ADS)

    Tekesin-Cankurtaranlar, Ozge; Tuysuz, Okan; Riza Kilic, Ali

    2017-04-01

    In this study, we present the results of Magnetotelluric (MT) and Audio-magnetotelluric (AMT) soundings over a potential geothermal field. Study area is located in the northeasternmost part of the Alasehir (or Gediz) Graben, Western Anatolia, which is delimited by NW-SE trending fault systems and is filled by Miocene to Recent sediments. Study area is also very close to the Kula Quaternary volcanic region, a possible geothermal heat source for the region, last eruption of which was 12.000 years ago. Relatively thin crust, high heat flow values and intense tectonic activity of the Western Anatolia possibly refers to the high geothermal potential. In fact, along the southern and central part of the graben there are many productive areas reaching up to 300 degrees Celsius. By this motivation, to determine the geothermal potential of the study area MT and AMT measurements had been carried out on a total of 45 stations covering about 8 km2 area. All profiles shows higher resistivity values (>140 ohm.m) at greater depths, possibly indicating a metamorphic basement covered by Miocene to Recent sediments. This metamorphic basement gets shallower towards the North where the geothermally weathered schists and marbles crop out. Furthermore, a normal fault interface between metamorphic basement and Neogene sediments shows high resistivity contrast. Results indicate that the metamorphic basement is a less conductive block located at a depth of 1500 - 2000 m at the south and gets shallower towards the north as normal fault blocks.

  5. Identification of kimberlite bodies in Brazil from a 3D audio-magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    De Lugao, P. P.; Eric, C. D. O.; Loureiro, F. O.; Arantes, P. R.; Pastana, A. F.

    2015-12-01

    We report on a succesfull identification of kimberlite bodies in Brazil through the use of the electromagnetic technique audio-magnetotelluric (AMT). Macnae (1979) writes that "In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes." Full tensor AMT data were acquired at 65 points (stations) in a 3D configuration with frequencies ranging from 10kHz to 1Hz. The survey was located in the NW portion of the Mato Grosso state, Brazil, in na area of thick jungle coverage. During the AMT survey, few outcrops were seen because of the dense forest cover. Usually, the occurrences found were of sand deposits, indicating the occurence of Fazenda Casa Branca and Utiariti Formations and gravel from Salto das Nuvens Formation, widely used in paving trails n this region. In the area of the survey, three main targets were confirmed/identified: Kimberlite Area 1 - a classic kimberlite in the region, with the crater facies with different clasts and distinct size. We noted the occurrence of a red-brown soil and an unusual vegetation in this area. The resistivity model provided confirmed the presence of Kimberlite Area 1 and was used to identify other two areas. Area of Interest 1 - area with atypical vegetation along a trail. There is an excavation that displays soil of white color with several blocks present, there are small quartz crystal agglomerates in these blocks. The resistivity model cleary shows a conductive body here, indicative of the presence of a kimberlite. Area of Interest 2 - the presence of a kimberlite was confirmed, not exactly where the targeted Area 2 was, but the southwest of it. Close to this area, there was a very fine rock and a few blocks of pure silica, probably indicating a kimberlitic intrusion. In summary, the 3D resistivity model in depth obtained from inversion of the AMT data confirmed and identified

  6. Portable audio magnetotellurics - experimental measurements and joint inversion with radiomagnetotelluric data from Gotland, Sweden

    NASA Astrophysics Data System (ADS)

    Shan, Chunling; Kalscheuer, Thomas; Pedersen, Laust B.; Erlström, Mikael; Persson, Lena

    2017-08-01

    Field setup of an audio magnetotelluric (AMT) station is a very time consuming and heavy work load. In contrast, radio magnetotelluric (RMT) equipment is more portable and faster to deploy but has shallower investigation depth owing to its higher signal frequencies. To increase the efficiency in the acquisition of AMT data from 10 to 300 Hz, we introduce a modification of the AMT method, called portable audio magnetotellurics (PAMT), that uses a lighter AMT field system and (owing to the disregard of signals at frequencies of less than 10 Hz) shortened data acquisition time. PAMT uses three magnetometers pre-mounted on a rigid frame to measure magnetic fields and steel electrodes to measure electric fields. Field tests proved that the system is stable enough to measure AMT fields in the given frequency range. A PAMT test measurement was carried out on Gotland, Sweden along a 3.5 km profile to study the ground conductivity and to map shallow Silurian marlstone and limestone formations, deeper Silurian, Ordovician and Cambrian sedimentary structures and crystalline basement. RMT data collected along a coincident profile and regional airborne very low frequency (VLF) data support the interpretation of our PAMT data. While only the RMT and VLF data constrain a shallow ( 20-50 m deep) transition between Silurian conductive (< 30 Ωm resistivity) marlstone and resistive (> 1000 Ωm resistivity) limestone, the single-method inversion models of both the PAMT and the RMT data show a transition into a conductive layer of 3 to 30 Ωm resistivity at 80 m depth suggesting the compatibility of the two data sets. This conductive layer is interpreted as saltwater saturated succession of Silurian, Ordovician and Cambrian sedimentary units. Towards the lower boundary of this succession (at 600 m depth according to boreholes), only the PAMT data constrain the structure. As supported by modelling tests and sensitivity analysis, the PAMT data only contain a vague indication of the

  7. Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.

    2016-09-01

    The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (<40 Ohm m) that corresponds to shallow part of the model up to 500 m depth in the centre of the profile. These values have been associated with Quaternary and Neogene sediments formed by silts, clays, conglomerates, sandstones and gravels, and (2) a deeper resistive zone (1000-3000 Ohm m) interpreted as Palaeozoic basement (sandstones, limestones and slates at NW and conglomerates and microconglomerates at SE). The resistive zone is truncated by a discontinuity at the south-east of the profile which is interpreted as the Alp-La Tet Fault. This discontinuity is represented by a more conductive zone (600 Ohm m approx.) and is explained

  8. Numerical Simulation of Response Characteristics of Audio-magnetotelluric for Gas Hydrate in the Qilian Mountain Permafrost, China

    NASA Astrophysics Data System (ADS)

    Xiao, Kun; Zou, Changchun; Yu, Changqing; Pi, Jinyun

    2015-10-01

    Audio-magnetotelluric (AMT) method is a kind of frequency-domain sounding technique, which can be applied to gas hydrate prospecting and assessments in the permafrost region due to its high frequency band. Based on the geological conditions of gas hydrate reservoir in the Qilian Mountain permafrost, by establishing high-resistance abnormal model for gas hydrate and carrying out numerical simulation using finite element method (FEM) and nonlinear conjugate gradient (NLCG) method, this paper analyzed the application range of AMT method and the best acquisition parameters setting scheme. When porosity of gas hydrate reservoir is less than 5%, gas hydrate saturation is greater than 70%, occurrence scale is less than 50 m, or bury depth is greater than 500 m, AMT technique cannot identify and delineate the favorable gas hydrate reservoir. Survey line should be more than twice the length of probable occurrence scale, while tripling the length will make the best result. The number of stations should be no less than 6, and 11 stations are optimal. At the high frequency section (10˜1000 Hz), there should be no less than 3 frequency points, 4 being the best number.

  9. APPLICATION OF AUDIO-MAGNETOTELLURIC SURVEYS ON SAO MIGUEL ISLAND, AZORES PORTUGAL.

    USGS Publications Warehouse

    Hoover, Donald; Rodrigues Da Silva, A.; Pierce, Herbert A.; Amaral, Roberto

    1984-01-01

    Geothermal exploration and development has been under way on Sao Miguel Island, Azores since 1975. This work had been restricted to the Fogo volcano, one of three dormant silicic volcanic centers on the island. The USGS in 1982 and 1983 conducted reconnaissance natural-source audio-magnetotelluric (AMT) surveys of all three silicic centers to evaluate the potential for geothermal systems at each and to demonstrate the utility of the method in areas of difficult terrain. Results on Fogo showed a low resistivity trend extending from the present production area upslope to the caldera boundary. The upper part of this trend is the upwelling zone of a thermal plume which supplies the production area. Further exploration and drilling are now planned for this area.

  10. Synthetic Modeling of A Geothermal System Using Audio-magnetotelluric (AMT) and Magnetotelluric (MT)

    NASA Astrophysics Data System (ADS)

    Mega Saputra, Rifki; Widodo

    2017-04-01

    Indonesia has 40% of the world’s potential geothermal resources with estimated capacity of 28,910 MW. Generally, the characteristic of the geothermal system in Indonesia is liquid-dominated systems, which driven by volcanic activities. In geothermal exploration, electromagnetic methods are used to map structures that could host potential reservoirs and source rocks. We want to know the responses of a geothermal system using synthetic data of Audio-magnetotelluric (AMT) and Magnetotelluric (MT). Due to frequency range, AMT and MT data can resolve the shallow and deeper structure, respectively. 1-D models have been performed using AMT and MT data. The results indicate that AMT and MT data give detailed conductivity distribution of geothermal structure.

  11. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic ;objective anomaly; models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  12. A feasible research of rock porosity and water saturation impact on audio-magnetotelluric propagation in porous media

    NASA Astrophysics Data System (ADS)

    Tian, Z.; Liu, J.

    2015-12-01

    Abstract: Although various factors have impact on the resistivity of subsurface rock formation, in depth range of general electrical prospecting, the conductive actions of rocks are basically realized relying on the aqueous solutions filled in the pores. Therefore, quantitatively studying the impact of the water level on rock resistivity is important to analyze and classify strata, investigate the underground structures. In this research, we proposed a feasible research on building electric property rock formation models with different porosity and water saturation based on theories of two-phase media. The propagation of audio-magnetotelluric (AMT) waves is simulated by using finite-difference (FD) scheme, and theoretic resistivity distribution is calculated on account of the response of AMT. According to a sequence of synthetic examples, through comparing and analyzing the simulated results with various porosity and water saturation respectively, we discuss the impact on layers resistivity while porosity and water saturation of rock stratum are changing. The results shows the extent that the mentioned factors can have impact on the propagation of AMT waves. Key words: audio-magnetotelluric modeling, two-phase media, porosity, water saturation, finite-difference

  13. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  14. Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield (Mauritania): structural and mining implications

    NASA Astrophysics Data System (ADS)

    Bronner, G.; Fourno, J. P.

    1992-11-01

    The M'Haoudat range, considered as an allochthonous unit amid the strongly metamorphosed Archaean basement (Tiris Group), belongs to the Lower Proterozoic Ijil Group, weakly metamorphosed, constituted mainly by iron quartzites including red jaspers and high grade iron ore. Audio-magnetotelluric (AMT) soundings (frequency range 1-7500 HZ) were performed together with the systematic survey of the range (SNIM mining company). The non-linear least squares method was used to perform a smoothness-constrained data model. The obvious AMT resistivity contrasts between the M'Haoudat Unit (150-3500 ohm. m) and the Archaean basement (20 000 ohm. m) allow to state precisely that the two thrust surfaces, on both sides of the range, join together at a depth which increases from North-West to South-East, as the ore bodies. Inside the steeply dipping M'Haoudat Unit, the main beds of iron quartzites (1500-3500 ohm. m), schists (1000-1500 ohm. m) and hematite ores (150-300 ohm. m) were distinguished when their thickness exceeded 30 to 50 m. The existence of an hydrostatic level (1-50 ohm. m) and the steeply dipping architecture, very likely responsible for the lack of resistivity contrast on the upper part of some profiles, complicate the interpretation at high frequencies the thin layers being poorly defined.

  15. 47 CFR 73.1120 - Station location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station location. 73.1120 Section 73.1120... Rules Applicable to All Broadcast Stations § 73.1120 Station location. Each AM, FM, TV and Class A TV... be the geographical station location. ...

  16. Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area

    NASA Astrophysics Data System (ADS)

    Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi

    2017-07-01

    Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.

  17. Space Station location coding that makes sense

    NASA Technical Reports Server (NTRS)

    Lew, Leong W.; Praus, William J.

    1990-01-01

    An alphanumeric interior and exterior location coding system for elements of the Space Station is presented as an aid in identifying specific locations aboard the Station and possibly in locating specific items of loose equipment stowed in these locations. Past experience with long-duration missions has demonstrated the difficulty of tracking loose equipment aboard spacecraft. Inasmuch as over 50,000 items of loose equipment must be accounted for aboard Space Station Freedom there is a high potential for continuing difficulties in this area. It is shown that the alphanumeric location coding system described is simple, logical, and easy to use.

  18. An evaluation of the applicability of the telluric-electric and audio-magnetotelluric methods to mineral assessment on the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Zablocki, Charles J.

    1984-01-01

    Feasibility studies of two electromagnetic methods were made in selected areas of the Jabal Hibshi (1:250,000) quadrangle, 26F, in the Kingdom of Saudi Arabia in March of 1983. The methods tested were the natural source-field telluricelectric and audio-magnetotelluric methods developed and extensively used in recent years by the U.S. Geological Survey in some of its domestic programs related to geothermal and mineral resource assessment. Results from limited studies in the Meshaheed district, the Jabal as Silsilah ring complex, and across a portion of the Raha fault zone clearly demonstrate the appropriateness of these sub-regional scale, reconnaissance-type studies to mineral resource assessment. The favorable results obtained are largely attributed to distinctive and large contrasts in the electrical resistivity of the major rock types encountered. It appears that the predominant controlling factor governing the rock resistivities is the amount of contained clay minerals. Accordingly, unaltered (specifically, non-argillic) igneous and metamorphic rocks have very high resistivities; metasedimentary rocks of the Murdama group that contain several percent clay minerals have intermediate values of resistivity; and highly altered rocks, containing abundant clay minerals, have very low values of resistivity. Water-filled fracture porosity may be a secondary, but important, factor in some settings. However, influences from variations in interstitial or intercrystalline, water-filled porosity are probably small because these types of porosity are generally low. It is reasonable to expect similar results in other areas within the Arabian Shield.

  19. Geoelectric structure of the Gila-San Francisco Wilderness Area, Graham and Greenlee counties, Arizona from audio-magnetotelluric data

    USGS Publications Warehouse

    Klein, D.P.; Baer, M.J.

    1983-01-01

    Electromagnetic induction data using distant field sources, mostly of natural origin, in the frequency range of 4.5-27,000 Hz are analyzed to depict the geoelectric structure in an area of volcanic-rock cover located in southeastern Arizona between the Morenci and Safford porphyry copper deposits. The data for each station consist of scalar electromagnetic measurements at descrete frequencies for two-orthogonal magnetic and electric field pairs. Observations spaced about 5-km apart indicate resistivities in the range of 100-700 ohm-m for the unweathered Tertiary volcanic rocks to a depth of 200 to 500 m. Beneath this zone the data indicate resistivities in the range of 10-100 ohm-m that suggest the existence of an older volcanic rock unit. The less resistive unit appears to be displaced upward beneath Turtle Mountain, an area bounded to the northeast and southwest by mapped Basin and Range faults, and bounded to the southeast by an unmapped fault of older origin that trends northeast. Lateral changes in the resistivity of the two main geoelectric layers result in lowered resistivity in an area of known hot-springs near the confluence of the Gila and San Francisco Rivers, as well as along a north-south trending zone located on the east flank of Turtle Mountain, about 5-km (3-mi) west-northwest of the hot springs. This second anomaly is at a probable depth of 400-500 m and is interpreted to indicate a buried fault or fracture zone.

  20. Prediction of DC current flow between the Otjiwarongo and Katima Mulilo regions, using 3D DC resistivity forward modelling and magnetotelluric and audio-magnetotelluric data recorded during SAMTEX

    NASA Astrophysics Data System (ADS)

    Share, P.; Jones, A. G.; Muller, M. R.; Miensopust, M. P.; Khoza, D. T.; Fourie, S.; Webb, S. J.; Thunehed, H.

    2009-12-01

    SAMTEX (Southern African Magnetotelluric Experiment) is a multinational project initiated in 2003 to study the regional-scale electrical conductivity substructure of southern Africa and to infer from it the tectonic processes involved in the formation and deformation of the southern African subcontinental lithosphere. As an additional opportunistic component to SAMTEX, audio-magnetotelluric (AMT) data were acquired during the most recent phase of the experiment (Phase IV) to investigate the local-scale conductivity substructure in the Otjiwarongo and Katima Mulilo regions (northern and north-eastern Namibia), where in future the installation of high-voltage direct current (HVDC) earth electrodes will commence. Both of the AMT surveys are situated close to the edge of the orogenic Neo-Proterozoic Ghanzi-Chobe/Damara belts (collectively termed the Damara Mobile Belt, DMB), which represents in part the collision between the Congo and Kalahari cratons during the amalgamation of South Gondwana. Previous studies using magnetotellurics (MT), magnetometer arrays and geomagnetic observatory data all point to the existence of a highly conductive mid-crustal zone which correlates well with the spatial location of the DMB. Preliminary modelling of the Otjiwarongo AMT data confirms the existence of a high conductive zone at mid-crustal depths (10-15 km), whereas in Katima Mulilo insufficient penetration of electromagnetic energy in the AMT frequency band, due to conductive sediment cover, prevents information being obtained of the conductivity at mid-crustal depths. However, at Katima Mulilo there are sparser broadband MT (BBMT) and long period MT (LMT) measurements that can be incorporated. The high conductivity of the DMB is explained by the presence of conductive materials (graphites, sulphides). In contrast, the lithospheric structure of the neighbouring Archaean cratons, the Congo and Kalahari, are generally found to be electrically resistive and therefore it is

  1. Hydrothermal system beneath the crater of Tarumai volcano, Japan: 3-D resistivity structure revealed using audio-magnetotellurics and induction vector

    NASA Astrophysics Data System (ADS)

    Yamaya, Yusuke; Mogi, Toru; Hashimoto, Takeshi; Ichihara, Hiroshi

    2009-11-01

    Audio-magnetotelluric (AMT) measurements were recorded in the crater area of Tarumai volcano, northeastern Japan. This survey brought the specific structures beneath the lava dome of Tarumai volcano, enabling us to interpret the relationship between the subsurface structure and fumarolic activity in the vicinity of a lava dome. Three-dimensional resistivity modeling was performed to achieve this purpose. The measured induction vectors pointed toward the center of the dome, implying the topographic effect. However, estimation of the topographic effect showed that the measured vector was not explained only by this effect. This suggested that the distribution of induction vectors still held information of the subsurface structure and could be helpful in determining the geometry of 3-D bodies. The 3-D modeling was based on a quasi-one-dimensional layered structure that included topography. The final model revealed that the andesitic lava dome is characterized by comparatively low resistivity (50 Ωm), and that two conductive bodies (50 and 1-5 Ωm) are present beneath the lava dome. The shallower of these conductors is interpreted as an aquifer, such as a buried crater lake. The deeper, extremely conductive body corresponded to a convecting zone containing rising hydrothermal fluid. The shallower aquifer critically controls the temperature and chemical components of the fumarolic gasses. High-temperature gas supplied from deeper part that encounters the shallow aquifer loses its water-soluble components and heat, resulting in weak and low-temperature fumaroles. In contrast, most of the gas, which ascends outside the area of the shallower aquifer, is released as high-temperature fumaroles. This study provides an insight that the shallow aquifer in the crater area plays a significant role in the property of fumaroles at the volcanic surface.

  2. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and

  3. 47 CFR 73.1125 - Station main studio location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station main studio location. 73.1125 Section... A television station shall maintain a main studio at a location within the station's predicted Grade... respect to a group of commonly controlled stations, Class A stations whose predicted Grade B contours...

  4. 30 CFR 77.309-1 - Control stations; location.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Control stations; location. 77.309-1 Section 77... MINES Thermal Dryers § 77.309-1 Control stations; location. Thermal dryer system control stations... control station the widest field of visibility of the system and equipment....

  5. 30 CFR 77.309-1 - Control stations; location.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control stations; location. 77.309-1 Section 77... MINES Thermal Dryers § 77.309-1 Control stations; location. Thermal dryer system control stations constructed after June 30, 1971, shall be installed at a location which will give to the operator of the...

  6. 47 CFR 101.1329 - EA Station license, location, modifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false EA Station license, location, modifications... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multiple Address Systems System Requirements § 101.1329 EA Station license, location, modifications. EA licensees may construct master and remote stations...

  7. 47 CFR 73.6025 - Antenna system and station location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna system and station location. 73.6025... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station location. (a) Applications for modified Class A TV facilities proposing the use of directional...

  8. 47 CFR 73.6025 - Antenna system and station location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna system and station location. 73.6025... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station location. (a) Applications for modified Class A TV facilities proposing the use of directional...

  9. 47 CFR 73.6025 - Antenna system and station location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna system and station location. 73.6025... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station location. (a) Applications for modified Class A TV facilities proposing the use of directional...

  10. 47 CFR 73.6025 - Antenna system and station location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna system and station location. 73.6025... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station location. (a) Applications for modified Class A TV facilities proposing the use of directional...

  11. 47 CFR 73.6025 - Antenna system and station location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna system and station location. 73.6025... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station location. (a) Applications for modified Class A TV facilities proposing the use of directional...

  12. View of camera station located northeast of Building 70022, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of camera station located northeast of Building 70022, facing northwest - Naval Ordnance Test Station Inyokern, Randsburg Wash Facility Target Test Towers, Tower Road, China Lake, Kern County, CA

  13. LOCATING MONITORING STATIONS IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water undergoes changes in quality between the time it leaves the treatment plant and the time it reaches the customer's tap, making it important to select monitoring stations that will adequately monitor these changers. But because there is no uniform schedule or framework for ...

  14. LOCATING MONITORING STATIONS IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water undergoes changes in quality between the time it leaves the treatment plant and the time it reaches the customer's tap, making it important to select monitoring stations that will adequately monitor these changers. But because there is no uniform schedule or framework for ...

  15. 47 CFR 101.815 - Stations at temporary fixed locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations at temporary fixed locations. 101.815... SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.815 Stations at temporary fixed locations. (a) Authorizations may be issued upon proper application for the use of frequencies...

  16. 47 CFR 101.815 - Stations at temporary fixed locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations at temporary fixed locations. 101.815... SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.815 Stations at temporary fixed locations. (a) Authorizations may be issued upon proper application for the use of frequencies...

  17. 47 CFR 101.815 - Stations at temporary fixed locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations at temporary fixed locations. 101.815 Section 101.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.815 Stations at temporary...

  18. 47 CFR 101.815 - Stations at temporary fixed locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations at temporary fixed locations. 101.815 Section 101.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.815 Stations at...

  19. 47 CFR 101.815 - Stations at temporary fixed locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations at temporary fixed locations. 101.815 Section 101.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.815 Stations at...

  20. Global Validation of Single-Station Schumann Resonance Lightning Location

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis; Wong, C.; Williams, E. R.; Boldi, R.; Christian, H. J.; Goodman, S. J.

    1998-01-01

    Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection-Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.

  1. 47 CFR 73.1125 - Station main studio location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... community of license; (2) At any location within the principal community contour of any AM, FM, or TV... paragraph (a): The principal community contour of AM stations that simulcast on a frequency in the 535-1605 kHz band and on a frequency in the 1605-1705 kHz band shall be the 5 mV/m contour of the lower...

  2. Geothermal investigations in Idaho, Part 2, An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho - with a section on a reconnaissance audio-magnetotelluric survey

    USGS Publications Warehouse

    Young, H.W.; Whitehead, R.L.; Hoover, Donald B.; Tippens, C.L.

    1974-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho and is on the southern flank of the large depression (possibly a graben) in which lies the western Snake River Plain. The igneous and sedimentary rocks in the area range in age from Late Cretaceous to Holocene. They are transected by a prominent system of northwest-trending faults. For discussion purposes, the aquifers in the area have been separated into two broad units: (1) the volcanic-rock aquifers, and (2) the overlying sedimentary-rock aquifers. The Idavada Volcanics or underlying rock units probably constitute the reservoir that contains thermal water. An audio-magnetotelluric survey indicates that a large conductive zone having apparent resistivities approaching 2 ohm-metres underlies a part of the area at a relatively shallow depth. Chemical analysis of 94 water samples collected in 1973 show that the thermal waters in the area are of a sodium bicarbonate type. Although dissolved-solids concentrations of water ranged from 181 to 1,100 milligrams per litre (mg/l) in the volcanic-rock aquifers, they were generally less than 500 mg/l. Measured chloride concentrations of water in the volcanic-rock aquifers were less than 20 mg/l. Temperatures of water from wells and springs ranged from 9.5 to 83.0 degrees C. Temperatures of water from the volcanic-rock aquifers ranged from 40.0 to 83.0 degrees C, whereas temperatures of water from the sedimentary-rock aquifers seldom exceeded 35 degrees C. Aquifer temperatures at depth, as estimated by silica and sodium-potassium-calcium geochemical thermometers, probably do not exceed 150 degrees C. However, a mixed-water geochemical thermometer indicates that temperatures at depth may exceed 180 degrees C. The gas in water from the volcanic-rock aquifers is composed chiefly of atmospheric oxygen and nitrogen. Methane gas (probably derived from organic material) was also found in some water from the sedimentary-rock aquifers. The thermal waters

  3. Locating PHEV exchange stations in V2G

    SciTech Connect

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  4. Charging stations location model based on spatiotemporal electromobility use patterns

    NASA Astrophysics Data System (ADS)

    Pagany, Raphaela; Marquardt, Anna; Zink, Roland

    2016-04-01

    One of the major challenges for mainstream adoption of electric vehicles is the provision of infrastructure for charging the batteries of the vehicles. The charging stations must not only be located dense enough to allow users to complete their journeys, but the electric energy must also be provided from renewable sources in order to truly offer a transportation with less CO2 emissions. The examination of potential locations for the charging of electric vehicles can facilitate the adaption of electromobility and the integration of electronic vehicles in everyday life. A geographic information system (GIS) based model for optimal location of charging stations in a small and regional scale is presented. This considers parameters such as the forecast of electric vehicle use penetration, the relevant weight of diverse point of interests and the distance between parking area and destination for different vehicle users. In addition to the spatial scale the temporal modelling of the energy demand at the different charging locations has to be considerate. Depending on different user profiles (commuters, short haul drivers etc.) the frequency of charging vary during the day, the week and the year. In consequence, the spatiotemporal variability is a challenge for a reliable energy supply inside a decentralized renewable energy system. The presented model delivers on the one side the most adequate identified locations for charging stations and on the other side the interaction between energy supply and demand for electromobility under the consideration of temporal aspects. Using ESRI ArcGIS Desktop, first results for the case study region of Lower Bavaria are generated. The aim of the concept is to keep the model transferable to other regions and also open to integrate further and more detailed user profiles, derived from social studies about i.e. the daily behavior and the perception of electromobility in a next step.

  5. RF interference at ground stations located in populated areas

    NASA Astrophysics Data System (ADS)

    Adams, N.; Bitman, J.; Copeland, D.; Srinivasan, D.; Garcia, A.

    Ground stations located in populated areas must contend with RF interference (RFI). While RF interference may disrupt occasional satellite contacts, disruption statistics in many cases are manageable. Thus the RF environment must be statistically characterized in order to predict availability and detect changes in the environment. An RF monitoring and recording system is essential to both characterize the RF environment and send alarms when interference appears. This paper presents a study of RF interference at the Satellite Communications Facility (SCF) located at The Johns Hopkins University Applied Physics Laboratory, and describes the impact of RF interference on the NASA Van Allen Probes mission. The area surrounding the SCF, located in Laurel, Maryland, was rural farmland when the SCF was commissioned in 1963. Since then the area has experienced tremendous commercial and residential development. Concurrent with this development RF activity has increased. In particular, increased RF interference is evident within the Van Allen Probes' S-band downlink allocation. The interference is due to other licensed parties, out-of-band commercial emissions, as well as natural phenomena. Some RFI sources have been identified, whereas others remain unknown. In this paper we describe the RF environment, and present a statistical characterization that shows that RFI has only a small impact on ground station availability. We also discuss operational considerations, including hand-shaking protocols and coordination with spectrum management.

  6. Optimising base station location for UMTS cellular networks

    NASA Astrophysics Data System (ADS)

    Kalata, G.; Pozniak-Koszalka, I.; Koszalka, L.; Kasprzak, A.

    2014-12-01

    Rapid development of universal mobile telecommunication systems put demands on tools for assisting planning of cellular network infrastructure. The tools need to focus on critical issues in modern cellular networks and techniques used for previous generation system no longer serve useful. In this paper, an algorithm based on Branch & Bound approach is proposed for solving base station location problem, covering interference levels, traffic demands and power control mechanism. The efficiency of the algorithm is evaluated with respect to existing approaches for solving this problem - using the designed and implemented experimentation system.

  7. Adjusting flow station job to remote Nigerian location yields savings

    SciTech Connect

    Wooten, R.; Williams, E.C. )

    1994-05-02

    In September 1991, Chevron Nigeria Ltd. and Nigerian National Petroleum Crop. contracted Offshore Pipelines to design, procure, construct, install, and commission the Opuekeba 30,000 b/d crude-oil flow station on an offshore platform near Olero Creek, Nigeria, approximately 22 miles from the nearest deepwater access. Chevron's original project plan included bringing the flow station to the site in small packages and then assembling it in a lengthy field hook-up process. Offshore Pipelines developed a plan early in the project to maximize construction and hook-up in the fabrication yard, then transport the nearly complete structures to site by way of a newly dredged canal. What proved to be most difficult was the site location in Nigeria. Job planning and communication were important in the successful completion of the project. Keeping the components of the large and complex facility simple proved to be effective and efficient and played a key role in completing the project on time and within budget. The paper discusses overcoming obstacles, lift and depth constraints, dredging, fabrication, installation, and large-time problems.

  8. 47 CFR 73.1125 - Station main studio location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... synchronous amplifier transmitters (“AM boosters”) or, (2) AM, FM, or TV stations, when good cause exists for... so doing would be consistent with the operation of the station in the public interest. (c) Each Class... respect to a group of commonly controlled stations, Class A stations whose predicted Grade B contours are...

  9. NASA directory of observation station locations, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The directory documents geodetic information for NASA tracking stations and observation stations in the NASA Geodetic Satellites Program, including stations participating in the National Geodetic Satellite Program. Station positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  10. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  11. Location of vehicles using AM station broadcasting signals

    NASA Technical Reports Server (NTRS)

    Hansen, G. R., Jr.

    1975-01-01

    Imaginary hyperbolic grid patterns formed by three local AM broadcasting stations were utilized in study. Each hyperbola is defined by constant phase difference between arbitrary signals integrally related to those coming from two stations. When three stations are used, grid is formed covering area with intersecting hyperbolas.

  12. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  13. Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  14. Integrated locating of helicopter stations and helipads for wounded transfer under demand location uncertainty.

    PubMed

    Bozorgi-Amiri, Ali; Tavakoli, Shayan; Mirzaeipour, Hossein; Rabbani, Masoud

    2017-03-01

    Health emergency medical service (HEMS) plays an important role in reducing injuries by providing advanced medical care in the shortest time and reducing the transfer time to advanced treatment centers. In the regions without ground relief coverage, it would be faster to transfer emergency patients to the hospital by a helicopter. In this paper, an integer nonlinear programming model is presented for the integrated locating of helicopter stations and helipads by considering uncertainty in demand points. We assume three transfer modes: (1) direct transfer by an ambulance, (2) transfer by an ambulance to a helicopter station and then to the hospital by a helicopter, (3) transfer by an ambulance to a predetermined point and then to the hospital by a helicopter. We also assume that demands occur in a square-shaped area, in which each side follows a uniform distribution. It is also assumed that demands in an area decrease errors in the distances between each two cities. The purpose of this model is to minimize the transfer time from demand points to the hospital by considering different modes. The proposed model is examined in terms of validity and applicability in Lorestan Province and a sensitivity analysis is also conducted on the total allocated budget. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... routine RF environmental evaluation prescribed by § 1.1307(b) of this chapter, if the power of the... (all bands) 250 Repeater stations (all bands) non-building-mounted antennas: height above ground...

  16. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... routine RF environmental evaluation prescribed by § 1.1307(b) of this chapter, if the power of the... (all bands) 250 Repeater stations (all bands) non-building-mounted antennas: height above ground...

  17. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... routine RF environmental evaluation prescribed by § 1.1307(b) of this chapter, if the power of the... (all bands) 250 Repeater stations (all bands) non-building-mounted antennas: height above ground...

  18. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... routine RF environmental evaluation prescribed by § 1.1307(b) of this chapter, if the power of the... (all bands) 250 Repeater stations (all bands) non-building-mounted antennas: height above ground...

  19. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... routine RF environmental evaluation prescribed by § 1.1307(b) of this chapter, if the power of the... (all bands) 250 Repeater stations (all bands) non-building-mounted antennas: height above ground...

  20. Valles Caldera, New Mexico Microearthquakes: Improved Detection and Location with Expanded Caldera Station Coverage

    NASA Astrophysics Data System (ADS)

    House, L. S.; Roberts, P. M.; Ten Cate, J. A.

    2016-12-01

    The Los Alamos Seismic Network (LASN) has operated for 44 years, providing data to locate more than 2,500 earthquakes in north-central New Mexico. Roughly 1-2 earthquakes are detected and located per month within about 150 km of Los Alamos, a total of over 900 from 1973 to present. LASN's primary purpose is to monitor seismicity close to the Los Alamos National Laboratory (LANL) for seismic hazards; monitoring seismicity associated with the nearby Valles Caldera is secondary. Until 2010 the network comprised only 7 stations, all near LANL or in the nearby Jemez Mountains. Just one station (PER, installed in 1998) was close enough to Valles Caldera to be able to detect microearthquakes located in or near the caldera. An initial study of the data from station PER between 1998 and 2002 identified and located 13 events with magnitudes less than 0.5 using the single-station hodogram technique. Those events were all located south of the caldera within a few kilometers of PER. Recently, two new digital broadband stations were installed inside the caldera, one on a northeastern ring-fracture dome, station CDAB, and the other on a northwestern dome, station SAMT. Also, station PER was upgraded with digital broadband instrumentation. Thus, LASN now can detect and record microearthquakes as small as magnitude -1.5 near the caldera, and they can be located using arrival times at multiple stations. Several recent events located near station SAMT on the caldera's ring fracture are the first that have been seen in that area. Additional events were recorded (by all three stations) and located in the area south of the caldera where the earlier hodogram-only events were located. These new multi-station event recordings allow a more quantitative assessment of the uncertainties in the initial single-station hodogram locations. Each event is located using multiple arrival times as well as the hodogram method at as many as three stations. Thus, improvements can be made to the

  1. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.305 Location of... UHF TV channels separated by 2, 3, 4, 5, 7, and 8 TV channels from the television channel in which the...

  2. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.305 Location of... UHF TV channels separated by 2, 3, 4, 5, 7, and 8 TV channels from the television channel in which the...

  3. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.305 Location of... UHF TV channels separated by 2, 3, 4, 5, 7, and 8 TV channels from the television channel in which the...

  4. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.305 Location of... UHF TV channels separated by 2, 3, 4, 5, 7, and 8 TV channels from the television channel in which the...

  5. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.305 Location of... UHF TV channels separated by 2, 3, 4, 5, 7, and 8 TV channels from the television channel in which the...

  6. Considering the dynamic refueling behavior in locating electric vehicle charging stations

    NASA Astrophysics Data System (ADS)

    Liu, K.; Sun, X. H.

    2014-11-01

    Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum waiting time and maximum service accessibility for locating EV charging stations - named as Time-Spatial Location Model (TSLM). The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging stations.

  7. Single Station System and Method of Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  8. Location of Road Emergency Stations in Fars Province, Using Spatial Multi-Criteria Decision Making

    PubMed Central

    Goli, Ali; Ansarizade, Najmeh; Barati, Omid; Kavosi, Zahra

    2015-01-01

    Objectives: To locate the road emergency stations in Fars province based on using spatial multi-criteria decision making (Delphi method). Methods: In this study, the criteria affecting the location of road emergency stations have been identified through Delphi method and their importance was determined using Analytical Hierarchical Process (AHP). With regard to the importance of the criteria and by using Geographical Information System (GIS), the appropriateness of the existing stations with the criteria and the way of their distribution has been explored, and the appropriate arenas for creating new emergency stations were determined. In order to investigate the spatial distribution pattern of the stations, Moran’s Index was used. Results: The accidents (0.318), placement position (0.235), time (0.198), roads (0.160), and population (0.079) were introduced as the main criteria in location road emergency stations. The findings showed that the distribution of the existing stations was clustering (Moran’s I=0.3). Three priorities were introduced for establishing new stations. Some arenas including Abade, north of Eghlid and Khoram bid, and small parts of Shiraz, Farashband, Bavanat, and Kazeroon were suggested as the first priority. Conclusion: GIS is a useful and applicable tool in investigating spatial distribution and geographical accessibility to the setting that provide health care, including emergency stations. PMID:27162894

  9. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    PubMed

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  10. Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms

    NASA Astrophysics Data System (ADS)

    Nooshiri, Nima; Saul, Joachim; Heimann, Sebastian; Tilmann, Frederik; Dahm, Torsten

    2017-02-01

    Global earthquake locations are often associated with very large systematic travel-time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel-time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking-box source-specific station terms technique to regional and teleseismic distances and adopted the algorithm for probabilistic, nonlinear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P- and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation of the travel-time residuals is reduced by 40-60 per cent at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel-time residuals decreased by ˜20 per cent at teleseismic distances (>28°). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high-resolution local catalogue reveals that

  11. Revision of Earthquake Hypocentre Locations in Global Bulletin Data Sets using Source-Specific Station Terms

    NASA Astrophysics Data System (ADS)

    Nooshiri, Nima; Saul, Joachim; Heimann, Sebastian; Tilmann, Frederik; Dahm, Torsten

    2016-10-01

    Global earthquake locations are often associated with very large systematic travel time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking box source-specific station terms (SSST) technique to regional and teleseismic distances and adopted the algorithm for probabilistic, non-linear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P- and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation (MAD) of the travel time residuals is reduced by 40% - 60% at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel time residuals decreased by ˜20% at teleseismic distances (>28°). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high resolution local catalogue reveals that

  12. Estimate of procession and polar motion errors from planetary encounter station location solutions

    NASA Technical Reports Server (NTRS)

    Pease, G. E.

    1978-01-01

    Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.

  13. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    SciTech Connect

    Last, George V.

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  14. Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Lu, Gaopeng; Qie, Xiushu; Jiang, Rubin; Fan, Yanfeng; Tian, Ye; Sun, Zhuling; Liu, Mingyuan; Wang, Zhichao; Liu, Dongxia; Feng, Guili

    2016-06-01

    We developed a method to locate the narrow bipolar events (NBEs) based on the single-station measurement of low-frequency (LF, 40-500 kHz) magnetic fields. The direction finding of a two-axis magnetic sensor provides the azimuth of NBEs relative to the measurement site; the ionospheric reflection pairs in the lightning sferics are used to determine the range and height. We applied this method to determine the three-dimensional (3D) locations of 1475 NBEs with magnetic signals recorded during the SHandong Artificially Triggered Lightning Experiment (SHATLE) in summer of 2013. The NBE detections are evaluated on a storm basis by comparing with radar observations of reflectivity and lightning data from the World Wide Lightning Location Network (WWLLN) for two mesoscale convective systems (MCSs) of different sizes. As revealed by previous studies, NBEs are predominately produced in the convective regions with relatively strong radar echo (with composite reflectivity ≥30 dBZ), although not all the convections with high reflectivity and active lightning production are in favor of NBE production. The NBEs located by the single-station magnetic method also exhibit the distinct segregation in altitude for positive and negative NBEs, namely positive NBEs are mainly produced between 7 km and 15 km, while negative NBEs are predominantly produced above 14 km. In summary, the results of comparison generally show that the single-station magnetic method can locate NBEs with good reliability, although the accuracy of 3D location remains to be evaluated with the traditional multi-station method based on the time-of-arrival technique. This method can be applied to track the motion of storm convection within 800 km, especially when they move out to ocean beyond the detection range (typically <400 km) of meteorological radars, making it possible to study NBEs in oceanic thunderstorms for which the location with multiple ground-based stations is usually not feasible.

  15. 47 CFR 101.817 - Notification of station operation at temporary locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Notification of station operation at temporary locations. 101.817 Section 101.817 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service §...

  16. 47 CFR 24.415 - Technical content of applications; maintenance of list of station locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of list of station locations. 24.415 Section 24.415 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PERSONAL COMMUNICATIONS SERVICES Interim Application... information required by the application forms or associated public notice(s). Applications other than initial...

  17. 47 CFR 24.815 - Technical content of applications; maintenance of list of station locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of list of station locations. 24.815 Section 24.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PERSONAL COMMUNICATIONS SERVICES Interim Application... information required by the application forms or associated Public Notice(s). Applications other than initial...

  18. INTERIOR TUNNEL, CITY LIMITS. STATION 767+00 FEET. LOCATION IS 1/2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TUNNEL, CITY LIMITS. STATION 767+00 FEET. LOCATION IS 1/2 WAY BETWEEN ELLESMERE AND THE CASCADES. LIGHT IN DISTANCE PROVIDED BY INSPECTION WORKERS WALKING TOWARD CAMERA - Los Angeles Aqueduct, Tunnel Interior, Los Angeles, Los Angeles County, CA

  19. LS-44: An improved deep space network station location set for Viking navigation

    NASA Technical Reports Server (NTRS)

    Koble, H. M.; Pease, G. E.; Yip, K. W.

    1976-01-01

    Improved estimates for the spin axis and longitude components of the Deep Space Network station locations were obtained from post-flight processing of radio metric data received from various Mariner planetary missions. The use of an upgraded set of ionospheric calibrations and the incorporation of near-Venus and near-Mercury radio metric data from the Mariner 10 spacecraft are the principal contributing effects to the improvement. These new estimates, designated Location Set (LS) 44, have supported Viking navigation activities in the vicinity of Mars. As such, the station locations were determined relative to the planetary positions inherent in JPL Development Ephemeris (DE) 84, which was used throughout the Viking mission. The article also presents and discusses a version of LS 44 based upon the latest planetary ephemeris, DE 96.

  20. LS-44: An improved deep space network station location set for Viking navigation

    NASA Technical Reports Server (NTRS)

    Koble, H. M.; Pease, G. E.; Yip, K. W.

    1976-01-01

    Improved estimates for the spin axis and longitude components of the Deep Space Network station locations were obtained from post-flight processing of radio metric data received from various Mariner planetary missions. The use of an upgraded set of ionospheric calibrations and the incorporation of near-Venus and near-Mercury radio metric data from the Mariner 10 spacecraft are the principal contributing effects to the improvement. These new estimates, designated Location Set (LS) 44, have supported Viking navigation activities in the vicinity of Mars. As such, the station locations were determined relative to the planetary positions inherent in JPL Development Ephemeris (DE) 84, which was used throughout the Viking mission. The article also presents and discusses a version of LS 44 based upon the latest planetary ephemeris, DE 96.

  1. Particulate Matter Exposure in a Police Station Located near a Highway.

    PubMed

    Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng

    2015-11-13

    People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM-4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM-8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration.

  2. Particulate Matter Exposure in a Police Station Located near a Highway

    PubMed Central

    Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C.; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng

    2015-01-01

    People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM–4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM–8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration. PMID:26580641

  3. The Demonstration of a Robotic External Leak Locator on the International Space Station

    NASA Technical Reports Server (NTRS)

    Naids, Adam; Rossetti, Dino; Bond, Tim; Johnson, Brien; Huang, Alvin; Deal, Alexandra; Fox, Katie; Heiser, Michael; Hartman, William; Mikatarian, Ronald

    2017-01-01

    The International Space Station (ISS) and all currently conceivable future manned spacecraft are susceptible to mission impacts due to fluid/gas leaks to the exterior environment. For example, there is a well-known risk of ammonia leaks from the ISS External Thermal Control System loops and currently no method to locate them. It was, therefore, critical to develop a method for detecting and locating leaks to preserve vehicle health. The Robotic External Leak Locator (RELL) was developed and deployed to the ISS to provide this capability. An on-orbit validation and demonstration was successfully completed in December 2016 and leak locating operations occurred in February 2017. This paper discusses the results of those exercises including measurements of the environment around ISS, detection of the small ammonia leak and implementation of leak locating methodologies.

  4. A General Event Location Algorithm with Applications to Eclispe and Station Line-of-Sight

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  5. Applying Rprop neural network for the prediction of the mobile station location.

    PubMed

    Chen, Chien-Sheng; Lin, Jium-Ming

    2011-01-01

    Wireless location is the function used to determine the mobile station (MS) location in a wireless cellular communications system. When it is very hard for the surrounding base stations (BSs) to detect a MS or the measurements contain large errors in non-line-of-sight (NLOS) environments, then one need to integrate all available heterogeneous measurements to increase the location accuracy. In this paper we propose a novel algorithm that combines both time of arrival (TOA) and angle of arrival (AOA) measurements to estimate the MS in NLOS environments. The proposed algorithm utilizes the intersections of two circles and two lines, based on the most resilient back-propagation (Rprop) neural network learning technique, to give location estimation of the MS. The traditional Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) have convergence problems, and even if the measurements are fairly accurate, the performance of these algorithms depends highly on the relative position of the MS and BSs. Different NLOS models were used to evaluate the proposed methods. Numerical results demonstrate that the proposed algorithms can not only preserve the convergence solution, but obtain precise location estimations, even in severe NLOS conditions, particularly when the geometric relationship of the BSs relative to the MS is poor.

  6. Applying Rprop Neural Network for the Prediction of the Mobile Station Location

    PubMed Central

    Chen, Chien-Sheng; Lin, Jium-Ming

    2011-01-01

    Wireless location is the function used to determine the mobile station (MS) location in a wireless cellular communications system. When it is very hard for the surrounding base stations (BSs) to detect a MS or the measurements contain large errors in non-line-of-sight (NLOS) environments, then one need to integrate all available heterogeneous measurements to increase the location accuracy. In this paper we propose a novel algorithm that combines both time of arrival (TOA) and angle of arrival (AOA) measurements to estimate the MS in NLOS environments. The proposed algorithm utilizes the intersections of two circles and two lines, based on the most resilient back-propagation (Rprop) neural network learning technique, to give location estimation of the MS. The traditional Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) have convergence problems, and even if the measurements are fairly accurate, the performance of these algorithms depends highly on the relative position of the MS and BSs. Different NLOS models were used to evaluate the proposed methods. Numerical results demonstrate that the proposed algorithms can not only preserve the convergence solution, but obtain precise location estimations, even in severe NLOS conditions, particularly when the geometric relationship of the BSs relative to the MS is poor. PMID:22163844

  7. Audio-magnetotelluric methods in reconnaissance geothermal exploration

    USGS Publications Warehouse

    Hoover, D.B.; Long, C.L.

    1976-01-01

    and 18 600 Hz where artificial VLF sources are available. As a reconnaissance technique we use AMT surveys in conjunction with regional gravity, magnetic, and telluric surveys. The exploration depth is a function of the resistivities of the lithologic section, but typically ranges from the surface to 0.2 km in low-resistivity areas and to greater than 2 km in high-resistivity regions. Results of the initial reconnaissance AMT surveys provide a rational basis for deciding on the extent of costlier follow-up surveys. As part of the U.S. Geological Survey geothermal program, surveys were conducted in Long Valley and Surprise Valley, California; the Vale, Ore-Weiser, Idaho region; and Bruneau-Grand View, Raft River, and Island Park regions of Idaho. AMT surveys in five additional known geothermal resource areas (KGRA's) have been scheduled for completion by May 1975. In the Raft River and Bruneau-Grand View regions and Long Valley, follow-up electrical surveys substantiated the effectiveness of the AMT technique for reconnaissance surveying.

  8. Identifying optimal tag-along station locations for improving VLBI Intensive sessions

    NASA Astrophysics Data System (ADS)

    Kareinen, Niko; Klopotek, Grzegorz; Hobiger, Thomas; Haas, Rüdiger

    2017-01-01

    Very Long Baseline Interferometry (VLBI) is a unique space-geodetic technique capable of direct observation of the Earth's phase of rotation, namely Universal Time (UT1). The International VLBI Service for Geodesy and Astrometry (IVS) conducts daily 1-h Intensive VLBI sessions to determine rapid variations in the difference between UT1 and Coordinated Universal Time (UTC). The main objective of the Intensive sessions is to provide timely UT1-UTC estimates. These estimates are especially crucial for Global Navigation Satellite Systems (GNSS). The monitoring of rapid variations in Earth rotation also provides insight into various geophysical phenomena. There is an ongoing effort to improve the quality of the UT1-UTC estimates from single-baseline Intensive sessions to realise the expected accuracy and to bring them to a better agreement with the 24-h VLBI sessions. In this paper, we investigate the possibility to improve the Intensives by including a third station in tag-along mode to these regularly observed sessions. The impact of the additional station is studied via extensive simulations using the c5++ analysis software. The location of the station is varied within a predetermined grid. Based on actual Intensive session schedules, a set of simulated observations are generated for the two original stations and each grid point. These simulated data are used to estimate UT1-UTC for every Intensive session scheduled during the year 2014 on the Kokee-Wettzell and Tsukuba-Wettzell baselines, with the addition of a third station. We find that in tag-along mode when a third station is added to the schedule we can identify areas where the UT1-UTC estimates are improved up to 67% w.r.t. the original single-baseline network. There are multiple operational VLBI stations in these areas, which could with little effort be included in a tag-along mode to the currently scheduled Intensive sessions, thus providing the possibility to improve the UT1-UTC estimates by extending the

  9. A probabilistic framework for single-station location of seismicity on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.

    2017-01-01

    Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of

  10. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-04

    Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less

  11. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.

  12. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  13. Analytical and experimental studies of leak location and environment characterization for the international space station

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  14. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  15. High precision mobile location framework and its service based on virtual reference station of GPS

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Sun, Liangyu; Yao, Lianbi

    2008-10-01

    The wireless communication technology and space technology are synchronously developed in recent years, which bring up the development of location based service (LBS). At present, many location technology methods were developed. However, all these methods can only provide a relative poor location precision and depend on high cost. The technology of Virtual Reference Station (VRS) of GPS is then involved in this paper. One of the objective in this paper is aim to give the LBS position structure to improve the mobile location position when a mobile position instrument is connected with VRS network. The cheaper GPS built-in Personal Designer Aid (PDA) is then used to achieve a higher precision by using RTCM data from existing VRS network. In order to obtain a high precision position when using the low-cost GPS receiver as a rover, the infrusture of the mobile differential correction system is then put forward. According to network transportation of RTCM via internet protocol (NTRIP), the message is communicated through wireless network, such as GPRS, CDMA and so on. The rough coordinate information is sent to VRS control center continuously, and then the VRS correction information is replied to rover in the data format of RTCM3.1. So the position will be updated based on mathematic solution after the decoding of RTCM3.1 data. The thought of LBS position can improve the precision, and can speed the LBS.

  16. Analytical and experimental studies of leak location and environment characterization for the international space station

    SciTech Connect

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  17. An iterative inversion technique to improve single station event locations on Mars

    NASA Astrophysics Data System (ADS)

    Khan, Amir; Ceylan, Savas; van Driel, Martin; Clinton, John; Böse, Maren; Euchner, Fabian; Giardini, Domenico; Garcia, Raphael F.; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce

    2017-04-01

    The InSight mission will deploy a single seismic station on Mars in November 2018. The main task of the Marsquake Service (MQS) within the project includes detecting, characterisation of seismicity and managing the marsquake catalogue. Together with the Mars Structural Service, we will use observed seismicity to improve our knowledge of the Martian structure, which in turn will be used to refine our catalogue. In preparation for the mission, we continually calibrate our single-station location algorithms, using a priori 1 and 3D structural models. Target synthetic waveforms are generated using AxiSEM/Instaseis and combined with realistic Martian noise. For the inversion, seismic phase travel times are computed for a wide range of plausible structural models. However, our knowledge on the interior structure of Mars is limited, which in turn affects our ability to locate events accurately. In this study, we present an iterative inversion method for computation of Martian structural models and the ensuing revision of event locations. We first locate seismic multiple events using manual identification of clearly observed seismic phases, including estimate of timing uncertainty. In the inversion for event distance, we use differential arrival times for a large suite of a priori initial models. These models are built considering a one-dimensional average crust and current estimates of bulk mantle chemistry and areotherm. Then, we invert for the interior structure employing the arrival times for the picked phases, and generate an updated suite of models. Predicted travel times from these updated models are subsequently used to revise the initial phase picks (relabeling mis-identified phases, selection of additional phases) and relocate the events. We repeat this procedure for each additional and new entry in the travel time database (modified or new phases and/or additional events) to improve event locations and radial models of Mars' interior. In order to test our

  18. 41 CFR 302-3.409 - Is there any required minimum distance between an official station and a TCS location that must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... minimum distance between an official station and a TCS location that must be met for me to qualify for a... Temporary Change Of Station § 302-3.409 Is there any required minimum distance between an official station... distance between an official station and a TCS location that must be met for you to qualify for a TCS...

  19. 41 CFR 302-3.409 - Is there any required minimum distance between an official station and a TCS location that must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minimum distance between an official station and a TCS location that must be met for me to qualify for a... Temporary Change Of Station § 302-3.409 Is there any required minimum distance between an official station... distance between an official station and a TCS location that must be met for you to qualify for a TCS...

  20. Use of satellites to determine optimum locations for solar power stations

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1976-01-01

    Ground measurements of solar radiation are too sparse to determine important mesoscale differences that can be of major significance in solar power station locations. Cloud images in the visual spectrum from the SMS/GOES geostationary satellites are used to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska. Cloud coverage and density as a function of time of day and season are considered through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. The seasonal geographic distributions of sunshine are converted to Langleys of solar radiation received at the earth's surface through the use of transform equations developed from long-term measurements of these two parameters at 18 widely distributed stations. The high correlation between measurements of sunshine and radiation makes this possible. The output product will be maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface during each season.

  1. Use of satellites to determine optimum locations for solar power stations

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1976-01-01

    Ground measurements of solar radiation are too sparse to determine important mesoscale differences that can be of major significance in solar power station locations. Cloud images in the visual spectrum from the SMS/GOES geostationary satellites are used to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska. Cloud coverage and density as a function of time of day and season are considered through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. The seasonal geographic distributions of sunshine are converted to Langleys of solar radiation received at the earth's surface through the use of transform equations developed from long-term measurements of these two parameters at 18 widely distributed stations. The high correlation between measurements of sunshine and radiation makes this possible. The output product will be maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface during each season.

  2. Space station integrated wall design and penetration damage control. Task 4: Impact detection/location system

    NASA Technical Reports Server (NTRS)

    Nelson, J. M.; Lempriere, B. M.

    1987-01-01

    A program to develop a methodology is documented for detecting and locating meteoroid and debris impacts and penetrations of a wall configuration currently specified for use on space station. Testing consisted of penetrating and non-penetrating hypervelocity impacts on single and dual plate test configurations, including a prototype 1.22 m x 2.44 m x 3.56 mm (4 ft x 8 ft x 0.140 in) aluminum waffle grid backwall with multilayer insulation and a 0.063-in shield. Acoustic data were gathered with transducers and associated data acquisition systems and stored for later analysis with a multichannel digitizer. Preliminary analysis of test data included sensor evaluation, impact repeatability, first waveform arrival, and Fourier spectral analysis.

  3. [Flaw of demand coverage based method for optimal locations of monitoring stations and modification].

    PubMed

    Liu, Shu-Ming; Li, Zhen-Yu; Chen, Jin-Duan; Wang, Qi; Meng, Fan-Lin

    2010-01-01

    The method of locating online sensor on a water distribution system for monitoring water quality was investigated. A flaw of demand coverage method was identified. To overcome this flaw, a demand coverage index based method was proposed in this paper. The demand coverage index method evaluates a node's representativeness by taking both the total amount of demand coverage and its temporal distribution into account. This increases the calculation accuracy and data representativeness. In order to increase the speed of optimization, a genetic algorithm was employed to solve the optimization problem in this work. Two example water distribution systems were employed to evaluate the performances of both methods. It was obtained that more than 85% of node demand can be covered by 7 monitoring stations for the example water distribution system with 95 nodes. Example applications show that results from this method have better representativeness than the one from demand coverage method. An online monitoring network based on optimal locations obtained from demand coverage method can better represent water quality of the distribution systems.

  4. The effect of clock, media, and station location errors on Doppler measurement accuracy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1993-01-01

    Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

  5. The RING and Seismic Network: Data Acquisition of Co-located Stations

    NASA Astrophysics Data System (ADS)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  6. Building a panel data set on fuel stations located in the Spanish regional areas of Madrid and Barcelona.

    PubMed

    Balaguer, Jacint; Ripollés, Jordi

    2016-06-01

    The data described in this article were collected daily over the period June 10, 2010, to November 25, 2012, from the website of the Spanish Ministry of Industry, Energy and Tourism. The database includes information about fuel stations regarding to their prices (both gross and net of taxes), brand, location (latitude and longitude), and postal code in the Spanish provinces of Madrid and Barcelona. Moreover, obtaining the postal codes has allowed us to select those stations that are operating within the metropolitan areas of Madrid and Barcelona. By considering those fuel stations that uninterruptedly provided prices during the entire period, the data can be especially useful to explore the dynamics of prices in fuel markets. This is the case of Balaguer and Ripollés (2016), "Asymmetric fuel price responses under heterogeneity" [1], who, taking into account the presence of the potential heterogeneity of the behaviour of fuel stations, used this statistical information to perform an analysis on asymmetric fuel price responses.

  7. An improved wave impedance approach for locating close lightning stroke from single station observation and its validation

    NASA Astrophysics Data System (ADS)

    Chen, Mingli; Lu, Tao; Du, Yaping

    2015-01-01

    An improved wave impedance approach for locating close lightning strokes based on single station observation was proposed and practiced. In the approach, a lightning stroke was modelled with an electrical dipole carrying current components in VLF/LF frequency bands. For a lightning stroke, the ratio of its electrical and magnetic fields at ground is theoretically a function of the frequency and distance to the stroke. Distance of the stroke can then be obtained by fitting the theoretical function with the observed data. The approach was examined by applying it to broadband VLF/LF electrical and magnetic fields observed simultaneously at one station for several strokes in ranges of 10-50 km. Furthermore, a prototypal single-station lightning location system (S-LLS), which can be analogized to a modified VLF/LF broadband magnetic direction-finder programmed with the proposed lightning stroke distance determining approach, was built up and tested. Comparisons of individual stroke locations with the local lightning location network show that the S-LLS has a good location accuracy of 0.1-4 km for close strokes in ranges of 15-60 km, but has a poor location accuracy of 12.4-26 km for distant strokes in ranges of 80-130 km.

  8. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209... communication between the United States and Canada or Mexico. Stations authorized to operate at temporary fixed... Mexico, without prior specific notification to, and authorization from, the Commission. Notification of...

  9. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209... communication between the United States and Canada or Mexico. Stations authorized to operate at temporary fixed... Mexico, without prior specific notification to, and authorization from, the Commission. Notification of...

  10. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209... communication between the United States and Canada or Mexico. Stations authorized to operate at temporary fixed... Mexico, without prior specific notification to, and authorization from, the Commission. Notification of...

  11. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation of stations at temporary fixed locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...

  12. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of stations at temporary fixed locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED...

  13. Analysis of biases from parallel observations of co-located manual and automatic weather stations in Indonesia

    NASA Astrophysics Data System (ADS)

    Sopaheluwakan, Ardhasena; Fajariana, Yuaning; Satyaningsih, Ratna; Aprilina, Kharisma; Astuti Nuraini, Tri; Ummiyatul Badriyah, Imelda; Lukita Sari, Dyah; Haryoko, Urip

    2017-04-01

    Inhomogeneities are often found in long records of climate data. These can occur because of various reasons, among others such as relocation of observation site, changes in observation method, and the transition to automated instruments. Changes to these automated systems are inevitable, and it is taking place worldwide in many of the National Meteorological Services. However this shift of observational practice must be done cautiously and a sufficient period of parallel observation of co-located manual and automated systems should take place as suggested by the World Meteorological Organization. With a sufficient parallel observation period, biases between the two systems can be analyzed. In this study we analyze the biases of a yearlong parallel observation of manual and automatic weather stations in 30 locations in Indonesia. The location of the sites spans from east to west of approximately 45 longitudinal degrees covering different climate characteristics and geographical settings. We study measurements taken by both sensors for temperature and rainfall parameters. We found that the biases from both systems vary from place to place and are more dependent to the setting of the instrument rather than to the climatic and geographical factors. For instance, daytime observations of the automatic weather stations are found to be consistently higher than the manual observation, and vice versa night time observations of the automatic weather stations are lower than the manual observation.

  14. A Plan for Seismic Location Calibration of 30 IMS Stations in Eastern Asia

    DTIC Science & Technology

    2000-09-01

    called "ground truth " seismic events in Eastern Asia that have been accurately located by regional or local networks. These will be used to obtain...empirical discrete ground truth data; and they must be demonstrated to improve location estimates of new events, over the estimates obtained on the basis of...will contribute numerous newly- obtained ground truth locations in Eastern Asia whose errors are thought to be of the order of five km or better (so

  15. Building a panel data set on fuel stations located in the Spanish regional areas of Madrid and Barcelona

    PubMed Central

    Balaguer, Jacint; Ripollés, Jordi

    2016-01-01

    The data described in this article were collected daily over the period June 10, 2010, to November 25, 2012, from the website of the Spanish Ministry of Industry, Energy and Tourism. The database includes information about fuel stations regarding to their prices (both gross and net of taxes), brand, location (latitude and longitude), and postal code in the Spanish provinces of Madrid and Barcelona. Moreover, obtaining the postal codes has allowed us to select those stations that are operating within the metropolitan areas of Madrid and Barcelona. By considering those fuel stations that uninterruptedly provided prices during the entire period, the data can be especially useful to explore the dynamics of prices in fuel markets. This is the case of Balaguer and Ripollés (2016), “Asymmetric fuel price responses under heterogeneity” [1], who, taking into account the presence of the potential heterogeneity of the behaviour of fuel stations, used this statistical information to perform an analysis on asymmetric fuel price responses. PMID:26933671

  16. 47 CFR 101.817 - Notification of station operation at temporary locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.817...: (1) The call sign, manufacturer's name, type or model number, output power and specific location of...

  17. 47 CFR 101.817 - Notification of station operation at temporary locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.817...: (1) The call sign, manufacturer's name, type or model number, output power and specific location of...

  18. 47 CFR 101.817 - Notification of station operation at temporary locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.817...: (1) The call sign, manufacturer's name, type or model number, output power and specific location of...

  19. 47 CFR 101.817 - Notification of station operation at temporary locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.817...: (1) The call sign, manufacturer's name, type or model number, output power and specific location of...

  20. Co-location of VLBI reference point and GPS permanent station using rapid static and kinematic GPS

    NASA Astrophysics Data System (ADS)

    Negusini, M.; Sarti, P.; Sillard, P.; Tomasi, P.; Vittuari, L.

    2003-04-01

    During a one day measurement campaign carried out in 2001 and 2002, we used rapid static and kinematic GPS techniques in order to determine the reference point of the VLBI antenna situated at the radioastronomical observatory of Medicina. Triangulation and trilateration using high precision total stations have demonstrated millimetre accuracy but can be very time consuming. This latter approach also requires a complete inactivity of the VLBI antenna. We have therefore pursued the same task using GPS measurements, expecting lower precisions with respect to classical measurements, but allowing the determination in much shorter time. The use of absolute calibration of GPS antennae (GEO++ GNPCV DB) is tested and thanks to the statistical approach developed for classical measurements treatment (described in an a separate presentation) co-location between VLBI reference point and GPS permanent station was rigorously computed.

  1. A Memetic Algorithm for the Location-Based Continuously Operating Reference Stations Placement Problem in Network Real-Time Kinematic.

    PubMed

    Tang, Maolin

    2015-10-01

    Network real-time kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real-time, and it is enabled by a network of continuously operating reference stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a memetic algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper, we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.

  2. A single-station method for the detection, classification and location of fin whale calls using ocean-bottom seismic stations.

    PubMed

    Matias, Luis; Harris, Danielle

    2015-07-01

    Passive seismic monitoring in the oceans uses long-term deployments of Ocean Bottom Seismometers (OBSs). An OBS usually records the three components of ground motion and pressure, typically at 100 Hz. This makes the OBS an ideal tool to investigate fin and blue whales that vocalize at frequencies below 45 Hz. Previous applications of OBS data to locate whale calls have relied on single channel analyses that disregard the information that is conveyed by the horizontal seismic channels. Recently, Harris, Matias, Thomas, Harwood, and Geissler [J. Acoust. Soc. Am. 134, 3522-3535 (2013)] presented a method that used all four channels recorded by one OBS to derive the range and azimuth of fin whale calls. In this work, the detection, classification, and ranging of calls using this four-channel method were further investigated, focusing on methods to increase the accuracy of range estimates to direct path arrivals. Corrections to account for the influences of the sound speed in the water layer and the velocity structure in the top strata of the seabed were considered. The single station method discussed here is best implemented when OBSs have been deployed in deep water on top of seabed strata with low P-wave velocity. These conditions maximize the ability to detect and estimate ranges to fin whale calls.

  3. Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms

    NASA Astrophysics Data System (ADS)

    Khan, A.; van Driel, M.; Böse, M.; Giardini, D.; Ceylan, S.; Yan, J.; Clinton, J.; Euchner, F.; Lognonné, P.; Murdoch, N.; Mimoun, D.; Panning, M.; Knapmeyer, M.; Banerdt, W. B.

    2016-09-01

    In anticipation of the upcoming InSight mission, which is expected to deploy a single seismic station on the Martian surface in November 2018, we describe a methodology that enables locating marsquakes and obtaining information on the interior structure of Mars. The method works sequentially and is illustrated using single representative 3-component seismograms from two separate events: a relatively large teleseismic event (Mw5.1) and a small-to-moderate-sized regional event (Mw3.8). Location and origin time of the event is determined probabilistically from observations of Rayleigh waves and body-wave arrivals. From the recording of surface waves, averaged fundamental-mode group velocity dispersion data can be extracted and, in combination with body-wave arrival picks, inverted for crust and mantle structure. In the absence of Martian seismic data, we performed full waveform computations using a spectral element method (AxiSEM) to compute seismograms down to a period of 1 s. The model (radial profiles of density, P- and S-wave-speed, and attenuation) used for this purpose is constructed on the basis of an average Martian mantle composition and model areotherm using thermodynamic principles, mineral physics data, and viscoelastic modeling. Noise was added to the synthetic seismic data using an up-to-date noise model that considers a whole series of possible noise sources generated in instrument and lander, including wind-, thermal-, and pressure-induced effects and electromagnetic noise. The examples studied here, which are based on the assumption of spherical symmetry, show that we are able to determine epicentral distance and origin time to accuracies of ∼ 0.5-1° and ± 3-6 s, respectively. For the events and the particular noise level chosen, information on Rayleigh-wave group velocity dispersion in the period range ∼ 14-48 s (Mw5.1) and ∼ 14-34 s (Mw3.8) could be determined. Stochastic inversion of dispersion data in combination with body-wave travel time

  4. 0-1 integer linear programming model for location selection of fire station: A case study in Indonesia

    NASA Astrophysics Data System (ADS)

    Bahri, Susila

    2016-04-01

    In this research, the minimization of the fire station model is constructed. The maximum time data required by the firefighter is used to construct the minimization model of the fire station in Padang. The model is used to determine the minimum number of the available fire station in Padang town. By using Matlab 2013a, the solution of the model can be found based on the Branch and Bound method. It denotes that the fire station must be built in Lubuk Begalung and Kuranji sub-districts.

  5. Waveforms clustering and single-station location of microearthquake multiplets recorded in the northern Sicilian offshore region

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Mangano, Giorgio; D'Anna, Giuseppe; Luzio, Dario

    2013-09-01

    In 2009 December, the OBSLab-INGV (Istituto Nazionale di Geofisica e Vulcanologia) deployed an Ocean Bottom Seismometer with Hydrophone (OBS/H) near the epicentral area of the main shock of the Palermo seismic sequence of 2002. The monitoring activity had a total duration of about 8 months. During this experiment, the OBS/H recorded 247 very local microearthquakes, whose local magnitude is between -0.5 and 2.5 and TS - TP delay time between 0.2 and 5 s, almost all of which were undetected by the Italian National Seismic Network. This local microseismicity has been analysed using an innovative clustering technique that exploits the similarity between the waveforms generated by different events. The clustering technique implemented, based on hierarchical agglomerative algorithms, nearest neighbour technique and dendrogram representation, allowed us to identify nine distinct multiplets characterized by a high degree of similarity between the waveforms. The microevents were located through an improved single-station location (SSL) technique based on the polarization analysis of the 3C signals and on the estimation of the TS - TP time. In the new SSL technique, an unbiased covariance matrix was defined and a ray tracer-based determination of the epicentral distance and hypocentral depth was proposed. All the multiplets were generated by events with hypocentres that were very close to each other. However, not all the identified clusters are also clustered in the time-magnitude domain. It was also observed that some multiplets have clouds of hypocentres overlapping each other. These clusters, indistinguishable without the application of a waveforms clustering technique, show differences in the waveforms that must be attributed to differences in the focal mechanisms which generated the waveforms. The local seismic events recorded are typical of a seismicity generated by a volume characterized by a highly complex fracturing pattern and by an important role in the dynamics

  6. 47 CFR 95.406 - (CB Rule 6) Are there any special restrictions on the location of my CB station?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo the environmental review, § 1.1312 of this chapter, before commencement of construction. How To Operate a CB Station ...

  7. 47 CFR 95.406 - (CB Rule 6) Are there any special restrictions on the location of my CB station?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo the environmental review, § 1.1312 of this chapter, before commencement of construction. How To Operate a CB Station ...

  8. 47 CFR 95.406 - (CB Rule 6) Are there any special restrictions on the location of my CB station?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo the environmental review, § 1.1312 of this chapter, before commencement of construction. How To Operate a CB Station ...

  9. 47 CFR 95.406 - (CB Rule 6) Are there any special restrictions on the location of my CB station?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo the environmental review, § 1.1312 of this chapter, before commencement of construction. How To Operate a CB Station ...

  10. 47 CFR 95.406 - (CB Rule 6) Are there any special restrictions on the location of my CB station?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo the environmental review, § 1.1312 of this chapter, before commencement of construction. How To Operate a CB Station ...

  11. Imaging hydrothermal systems at Furnas caldera (Azores, Portugal): Insights from Audio-Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa

    2016-04-01

    The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike angle, a deep structure starting north of the major mapped fault crossing this profile can be found. It extends far to the south, with a top of approximately 150 m below the surface at the northern limit. A deeper conductive structure (top at about 300 m) is emerging at the southern end of the profile, though not fully resolved by the existing data. This work will focus on the processing, analysis and preliminary modelling results of the AMT data. A joint interpretation of the AMT results together with the ERT data covering the shallow regime with much higher resolution will be presented.

  12. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT)

    NASA Astrophysics Data System (ADS)

    Sanny, Teuku A.

    2017-07-01

    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.

  13. A multi-station matched filter and coherent network processing approach to the automatic detection and relative location of seismic events

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, Sven Peter; Kværna, Tormod

    2014-05-01

    Correlation detectors facilitate seismic monitoring in the near vicinity of previously observed events at far lower detection thresholds than are possible using the methods applied in most existing processing pipelines. The use of seismic arrays has been demonstrated to be highly beneficial in pressing down the detection threshold, due to superior noise suppression, and also in eliminating vast numbers of false alarms by performing array processing on the multi-channel output of the correlation detectors. This last property means that it is highly desirable to run continuous detectors for sites of repeating seismic events on a single-array basis for many arrays across a global network. Spurious detections for a given signal template on a single array can however still occur when an unrelated wavefront crosses the array from a very similar direction to that of the master event wavefront. We present an algorithm which scans automatically the output from multiple stations - both array and 3-component - for coherence between the individual station correlator outputs that is consistent with a disturbance in the vicinity of the master event. The procedure results in a categorical rejection of an event hypothesis in the absence of support from stations other than the one generating the trigger and provides a fully automatic relative event location estimate when patterns in the correlation detector outputs are found to be consistent with a common event. This coherence-based approach removes the need to make explicit measurements of the time-differences for single stations and this eliminates a potential source of error. The method is demonstrated for the North Korea nuclear test site and the relative event location estimates obtained for the 2006, 2009, and 2013 events are compared with previous estimates from different station configurations.

  14. Assessing the validity of station location assumptions made in the calculation of the geomagnetic disturbance index, Dst

    USGS Publications Warehouse

    Gannon, Jennifer

    2012-01-01

    In this paper, the effects of the assumptions made in the calculation of the Dst index with regard to longitude sampling, hemisphere bias, and latitude correction are explored. The insights gained from this study will allow operational users to better understand the local implications of the Dst index and will lead to future index formulations that are more physically motivated. We recompute the index using 12 longitudinally spaced low-latitude stations, including the traditional 4 (in Honolulu, Kakioka, San Juan, and Hermanus), and compare it to the standard United States Geological Survey definitive Dst. We look at the hemisphere balance by comparing stations at equal geomagnetic latitudes in the Northern and Southern hemispheres. We further separate the 12-station time series into two hemispheric indices and find that there are measurable differences in the traditional Dst formulation due to the undersampling of the Southern Hemisphere in comparison with the Northern Hemisphere. To analyze the effect of latitude correction, we plot latitudinal variation in a disturbance observed during the year 2005 using two separate longitudinal observatory chains. We separate these by activity level and find that while the traditional cosine form fits the latitudinal distributions well for low levels of activity, at higher levels of disturbance the cosine form does not fit the observed variation. This suggests that the traditional latitude scaling is insufficient during active times. The effect of the Northern Hemisphere bias and the inadequate latitude scaling is such that the standard correction underestimates the true disturbance by 10–30 nT for storms of main phase magnitude deviation greater than 150 nT in the traditional Dst index.

  15. Human performance capabilities in a simulated space station-like environment. 1: Fixed beam luminance and location

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Bartz, A. E.; Zahn, J. R.

    1972-01-01

    The effects of a fixed, intense, one-foot diameter beam of simulated sunlight imaged within the field of view, upon responses to a battery of visual, body balance and stability, eye-hand coordination, and mental tests were studied. Each subject's electrocardiogram and electro-oculograms (vertical and horizontal) were recorded throughout each two-hour testing period within the space-station-like environment. It is possible to say that both subjects adapted to the brightly illuminated white panels in approximately 30 seconds after their first exposure each day and thereafter did not experience ocular fatigue, eye strain, or other kinds of disturbances as a result of these viewing conditions.

  16. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  17. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  18. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  19. [Research on impact of dust event frequency on atmosphere visibility variance: a case study of typical weather stations locating in the dust route to Beijing].

    PubMed

    Qiu, Yu-jun; Zou, Xue-yong; Zhang, Chun-lai

    2006-06-01

    Relationship between dust event frequency and atmosphere visibility deviation is analyzed by using the data of daily visibility and various dust events in Beijing and other 13 typical weather stations locating in the dust events route to Beijing from 1971 to 2000. Results show that the visibility variance increases a standard deviation in the response to the dust event frequency decrease once. The influence of dust event to visibility comes from the high-frequency change of wind velocity. The change of wind velocity in one standard deviation can result in dust event frequency increasing by 30%. The high-frequency changes of near-surface wind influence the occurrence of dust event, and also the fluctuation of daily visibility deviation. The relationship between abnormal low visibility event and visibility deviation is in significant positive correlation. The increase of wind average distance leads to the enhance frequency of dust event and consequently the abnormal low visibility event. There are different relationships between abnormal low visibility event and floating dust, sandstorm and flying-dust respectively.

  20. Improved tremor and LP event locations using station-corrected waveforms: applications to data recorded with a small aperture array at Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Lyons, J. J.

    2010-12-01

    Accurate Green functions are required in order to determine the source mechanisms of low-frequency seismic events on volcanoes. Given the steep topography and alternating layers of ash and lava flows found on many volcanoes, this is particularly difficult for LP band (.5-5 Hz) tremor and discrete events. We have found that large variations in signals from LPs and tremor recorded on a small-aperture array near the active vent of Fuego volcano, Guatemala are primarily due to station site effects. This variation complicates array analyses that rely on waveform similarity and results in poorly-resolved slowness parameters. We use an iterative approach to correct for the site effects for a class of repetitive LP events and then apply those corrections to investigate non-harmonic tremor in the same frequency band. Fuego volcano, Guatemala, is an open-vent basaltic-andesite stratovolcano characterized by nearly constant, but varied low-level eruptive activity since 1999. In January 2008, we deployed small antennas of six broadband seismic and five acoustic sensors 900 m north of the active vent to investigate the source of explosions and low-frequency seismicity. The seismic array had stations spaced 30 m apart, a total aperture of ~140 m, and was deployed on the western side of a long ridge that extends from the active vent to an older portion of the edifice to the north. The infrasound sensors were deployed in a similar array, but with average station spacing of 50 m. There was no lava effusion during the deployment, but explosions were recorded approximately once per hour, with varied amounts of ash and durations from 20-150 s. In addition to the explosions, our seismic array recorded narrow band tremor with dominant frequencies of 1.6 and 1.9 Hz and discrete events that were not generally detected by the acoustic array. The dominant class of these events, which repeated approximately 10-15 times per hour, had an impulsive onset with first motion toward the vent, a

  1. 41 CFR 302-3.409 - Is there any required minimum distance between an official station and a TCS location that must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Is there any required... TCS? 302-3.409 Section 302-3.409 Public Contracts and Property Management Federal Travel Regulation... Temporary Change Of Station § 302-3.409 Is there any required minimum distance between an official station...

  2. 41 CFR 302-3.409 - Is there any required minimum distance between an official station and a TCS location that must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Is there any required... TCS? 302-3.409 Section 302-3.409 Public Contracts and Property Management Federal Travel Regulation... Temporary Change Of Station § 302-3.409 Is there any required minimum distance between an official station...

  3. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... installation. (b) If your R/C station will be constructed on an environmental sensitive site, or will be operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo environmental...

  4. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... installation. (b) If your R/C station will be constructed on an environmental sensitive site, or will be operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo environmental...

  5. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... installation. (b) If your R/C station will be constructed on an environmental sensitive site, or will be operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo environmental...

  6. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... installation. (b) If your R/C station will be constructed on an environmental sensitive site, or will be operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo environmental...

  7. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... installation. (b) If your R/C station will be constructed on an environmental sensitive site, or will be operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must provide an environmental assessment, as set forth in § 1.1311 of this chapter, and undergo environmental...

  8. Space Station

    NASA Image and Video Library

    1989-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  9. Regional location in western China

    SciTech Connect

    Cogbill, A.H.; Steck, L.K.

    1996-10-01

    Accurately locating seismic events in western China using only regional seismic stations is a challenge. Not only is the number of seismic stations available for locating events small, but most stations available to researchers are often over 10{degree} distant. Here the authors describe the relocation, using regional stations, of both nuclear and earthquake sources near the Lop Nor test site in western China. For such relocations, they used the Earthquake Data Reports provided by the US Geological Survey (USGS) for the reported travel times. Such reports provide a listing of all phases reported to the USGS from stations throughout the world, including many stations in the People`s Republic of China. LocSAT was used as the location code. The authors systematically relocated each event int his study several times, using fewer and fewer stations at reach relocation, with the farther stations being eliminated at each step. They found that location accuracy, judged by comparing solutions from few stations to the solution provided using all available stations, remained good typically until fewer than seven stations remained.With a good station distribution, location accuracy remained surprisingly good (within 7 km) using as few as 3 stations. Because these relocations were computed without good station corrections and without source-specific station corrections (that is, path corrections), they believe that such regional locations can be substantially improved, largely using static station corrections and source-specific station corrections, at least in the Lop nor area, where sources have known locations. Elsewhere in China, one must rely upon known locations of regionally-recorded explosions. Locating such sources is clearly one of the major problems to be overcome before one can provide event locations with any assurance from regional stations.

  10. Identification of absorbing organic (brown carbon) aerosols through Sun Photometry: results from AEROCAN / AERONET stations in high Arctic and urban Locations

    NASA Astrophysics Data System (ADS)

    Kerr, G. H.; Chaubey, J. P.; O'Neill, N. T.; Hayes, P.; Atkinson, D. B.

    2014-12-01

    Light absorbing organic aerosols or brown carbon (BrC) aerosols are prominent species influencing the absorbing aerosol optical depth (AAOD) of the total aerosol optical depth (AOD) in the UV wavelength region. They, along with dust, play an important role in modifying the spectral AAOD and the spectral AOD in the UV region: this property can be used to discriminate BrC aerosols from both weakly absorbing aerosols such as sulfates as well as strongly absorbing aerosols such as black carbon (BC). In this study we use available AERONET inversions (level 1.5) retrieved for the measuring period from 2009 to 2013, for the Arctic region (Eureka, Barrow and Hornsund), Urban/ Industrial regions (Kanpur, Beijing), and the forest regions (Alta Foresta and Mongu), to identify BrC aerosols. Using Dubovik's inversion algorithm results, we analyzed parameters that were sensitive to BrC presence, notably AAOD, AAODBrC estimated using the approach of Arola et al. [2011], the fine-mode-aerosol absorption derivative (αf, abs) and the fine-mode-aerosol absorption 2nd derivative (αf, abs'), all computed at a near UV wavelength (440 nm). Temporal trends of these parameters were investigated for all test stations and compared to available volume sampling surface data as a means of validating / evaluating the sensitivity of ostensible sunphotometer indicators of BrC aerosols to the presence of BrC as measured using independent indicators. Reference: Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215-225, doi:10.5194/acp-11-215-2011, 2011

  11. Space Station

    NASA Image and Video Library

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  12. Constraining the MSL-SAM Methane Detected Source Location Through Mars Regional Atmospheric Modeling System (MRAMS) and Rover Environmental Monitoring Station (REMS) Observations

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S. C.

    2016-12-01

    The putative in situ detection of methane by SAM instrument has garnered significant attention. There are many major unresolved questions regarding this detection: 1) Where is the release location? 2) How spatially extensive is the release? 3) For how long is CH4 released? In an effort to better address the potential mixing and remaining questions, atmospheric circulation studies of Gale Crater were performed with MRAMS mesoscale model, ideally suited for this investigation. The model was focused on rover locations using nested grids with a spacing of 330 meters on the innermost grid that is centered over the landing. In order to characterize seasonal mixing changes throughout the Martian year, simulations were conducted at Ls0, 90, 180 and 270. Ls270 was shown to be an anomalous season when air within and outside the crater was well mixed by strong, flushing, northerly flow and large amplitude breaking mountain waves: air flowing downslope (buoyancy and dynamical forcing) at night penetrate all the way to the surface. At other seasons, the air in the crater is more isolated -but not completely- from the surrounding environment: simulations indicate that the air flowing down the crater rims does not easily make it to the crater floor. Instead, the air encounters very cold and stable air pooled in the bottom of the crater, which forces the air to glide right over the colder, more dense air below. Thus, the mixing of near surface crater air with the external environment is potentially more limited at seasons other than Ls270. The rise in CH4 concentration was reported to start around Ls336, peaked shortly after Ls82, and then dropped to background prior to Ls103. Two scenarios are considered in the context of the circulations predicted by MRAMS. The first scenario is the release of CH4 from somewhere outside the crater. The second is a release of CH4 within the crater. In both cases, the release is assumed to take place near the season when the rise of concentration

  13. 47 CFR 22.1009 - Transmitter locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations. Offshore stations must not transmit from locations outside the boundaries of the appropriate... stations must not transmit from altitudes exceeding 305 meters (1000 feet) above mean sea level....

  14. 47 CFR 22.1009 - Transmitter locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stations. Offshore stations must not transmit from locations outside the boundaries of the appropriate... stations must not transmit from altitudes exceeding 305 meters (1000 feet) above mean sea level....

  15. 47 CFR 22.1009 - Transmitter locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations. Offshore stations must not transmit from locations outside the boundaries of the appropriate... stations must not transmit from altitudes exceeding 305 meters (1000 feet) above mean sea level....

  16. 47 CFR 22.1009 - Transmitter locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations. Offshore stations must not transmit from locations outside the boundaries of the appropriate... stations must not transmit from altitudes exceeding 305 meters (1000 feet) above mean sea level....

  17. 47 CFR 22.1009 - Transmitter locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stations. Offshore stations must not transmit from locations outside the boundaries of the appropriate... stations must not transmit from altitudes exceeding 305 meters (1000 feet) above mean sea level....

  18. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... immediately followed by the community or communities specified in its license as the station's location... on the station's license, and/or the station's network affiliation may be inserted between the call... following format: Station WYYY-DT, community of license (call sign and community of license of the station...

  19. 47 CFR 22.657 - Transmitter locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... at the Grade B contour of an adjacent channel TV station. Note: All coordinates are referenced to... contour of a co-channel TV station. (1) The protected TV station locations are as follows (all coordinates... main transmitter location of the TV station to its Grade B contour in the direction of the...

  20. 47 CFR 22.657 - Transmitter locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... at the Grade B contour of an adjacent channel TV station. Note: All coordinates are referenced to... contour of a co-channel TV station. (1) The protected TV station locations are as follows (all coordinates... main transmitter location of the TV station to its Grade B contour in the direction of the...

  1. 47 CFR 22.657 - Transmitter locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at the Grade B contour of an adjacent channel TV station. Note: All coordinates are referenced to... contour of a co-channel TV station. (1) The protected TV station locations are as follows (all coordinates... main transmitter location of the TV station to its Grade B contour in the direction of the...

  2. 47 CFR 22.657 - Transmitter locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... at the Grade B contour of an adjacent channel TV station. Note: All coordinates are referenced to... contour of a co-channel TV station. (1) The protected TV station locations are as follows (all coordinates... main transmitter location of the TV station to its Grade B contour in the direction of the...

  3. Method for determining depth and shape of a sub-surface conductive object

    NASA Astrophysics Data System (ADS)

    Lee, D. O.; Montoya, P. C.; Wayland, J. R., Jr.

    1984-06-01

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak.

  4. Method for determining depth and shape of a sub-surface conductive object

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  5. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  6. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-15

    Construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists Jim Reilly (on robotic arm), and John “Danny” Olivas joined forces with their colleagues inside the Shuttle and station, and controllers in Houston, to complete the delicate process of folding an older solar array, Port 6 (P6), so that it can be moved from its temporary location to its permanent home during an upcoming Fall scheduled Shuttle mission. The EVA lasted nearly 8 hours.

  9. [Analysis of the importance of cosmonaut's location and orientation onboard the International space station to levels of visceral irradiation during traverse of the region of the South Atlantic Anomaly].

    PubMed

    Drobyshev, S G; Benghin, V V

    2015-01-01

    Parametric analysis of absorbed radiation dose to the cosmonaut working in the Service module (SM) of the International space station (ISS) was made with allowance for anisotropy of the radiation field of the South Atlantic Anomaly. Calculation data show that in weakly shielded SM compartments the radiation dose to poorly shielded viscera may depend essentially on cosmonaut's location and orientation relative to the ISS shell. Difference of the lens absorbed dose can be as high as 5 times depending on orientation of the cosmonaut and the ISS. The effect is less pronounced on the deep seated hematopoietic system; however, it may increase up to 2.5 times during the extravehicular activities. When the cosmonaut is outside on the ISS SM side presented eastward, the absorbed dose can be affected noticeably by remoteness from the SM. At a distance less than 1.5 meters away from the SM east side in the course of ascending circuits, the calculated lens dose is approximately half as compared with the situation when the cosmonaut is not shielded by the ISS material.

  10. Space Station

    NASA Image and Video Library

    1972-01-01

    This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.

  11. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  12. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  13. Enabler operator station

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Kietzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). The LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an Earth-bound model. The operator station is designed to be dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which include life support). The proposed operator station will support and restrain an astronaut as well as to provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of rigid members, semi-rigid members, and woven fabrics.

  14. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  15. Enabler operator station

    NASA Astrophysics Data System (ADS)

    Bailey, Andrea; Keitzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). This LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an earth-bound model. Several recommendations are made in the appendix as to the changes needed in material selection for the lunar environment. The operator station is designed dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which includes life support). The proposed operator station will support and restrain an astronaut as well as provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of grid members, semi-rigid members and woven fabrics.

  16. 47 CFR 74.1237 - Antenna location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  17. 47 CFR 74.1237 - Antenna location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  18. 47 CFR 74.1237 - Antenna location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  19. 47 CFR 74.1237 - Antenna location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  20. 47 CFR 74.1237 - Antenna location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  1. Space Station

    NASA Image and Video Library

    1952-01-01

    This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

  2. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  3. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  4. Space Station

    NASA Image and Video Library

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  5. Station Climatic Summaries, USSR and Mongolian PR.

    DTIC Science & Technology

    1987-02-01

    9 KAPUSTIN YAR 345710 8605 .................................... 13 KAUNAS 266290 8512 .................................... 17...8217 OPERATIONAL CLIMATIC DATA SUMMARY STATION: KAPUSTIN YAR, USSR STATION #: 345710 ICAO ID: LOCATION: 48*35’N, 45043’E ELEVATION (FEET): 30 LST...SUPPLEMENT STATION: KAPUSTIN YAR, USSR STATION #: 345710 ICAO ID: LOCATION: 48035’N, 45043’E ELEVATION (FEET): 30 LST = GMT +4 PREPARED BY USAFETAC/ECR

  6. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  7. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  8. Sighting the International Space Station

    ERIC Educational Resources Information Center

    Teets, Donald

    2008-01-01

    This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…

  9. Sighting the International Space Station

    ERIC Educational Resources Information Center

    Teets, Donald

    2008-01-01

    This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…

  10. Stations Outdoors

    ERIC Educational Resources Information Center

    Madison, John P.; And Others

    1976-01-01

    Described is a program of outdoor education utilizing activity-oriented learning stations. Described are 13 activities including: a pond study, orienteering, nature crafts, outdoor mathematics, linear distance measurement, and area measurement. (SL)

  11. Space Station

    NASA Image and Video Library

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  12. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  13. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility attempt to open the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility attempt to open the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  14. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility attempt to open the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility attempt to open the hatch on the Italian-built Node 2, a future element of the International Space Station. Node 2 arrived at KSC June 1. The second of three Station connecting modules, the module attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  15. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  18. Space Station

    NASA Image and Video Library

    1971-01-01

    This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.

  19. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  20. View west of Thirtieth Street Station: load dispatch center is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west of Thirtieth Street Station: load dispatch center is located on the fourth floor, immediately to the right of the east portico of the station. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  1. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-09

    The STS-117 crew patch symbolizes the continued construction of the International Space Station (ISS) and our ongoing human presence in space. The ISS is shown orbiting high above the Earth. Gold is used to highlight the portion of the ISS that will be installed by the STS-117 crew. It consists of the second starboard truss section, S3 and S4, and a set of solar arrays. The names of the STS-117 crew are located above and below the orbiting outpost. The two gold astronaut office symbols, emanating from the 117 at the bottom of the patch, represent the concerted efforts of the shuttle and station programs toward the completion of the station. The orbiter and unfurled banner of red, white, and blue represent our Nation and renewed patriotism as we continue to explore the universe.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist, Dave Williams, representing the Canadian Space Agency, was anchored on the foot restraint of the Canadarm2 as he participated in the second session of Extra Vehicular Activity (EVA) for the mission. Assisting Williams was Rick Mastracchio (out of frame). During the 6 hour, 28 minute space walk, the two removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the Z1 truss. The failed CMG will remain in its temporary stowage location on the exterior of the station until it is returned to Earth on a later Shuttle mission. The new gyroscope is one of four CMGs that are used to control the orbital attitude of the station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio participated in the second session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Canadian Space Agency representative Dave Williams (out of frame). During the 6 hour, 28 minute space walk, the two removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the Z1 truss. The failed CMG will remain in its temporary stowage location on the exterior of the station until it is returned to Earth on a later Shuttle mission. The new gyroscope is one of four CMGs that are used to control the orbital attitude of the station.

  4. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  5. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  6. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  7. Space Station

    NASA Image and Video Library

    1985-12-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  8. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  9. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  10. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  11. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  12. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  13. Location Privacy

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    With rapid development of sensor and wireless mobile devices, it is easy to access mobile users' location information anytime and anywhere. On one hand, LBS is becoming more and more valuable and important. On the other hand, location privacy issues raised by such applications have also gained more attention. However, due to the specificity of location information, traditional privacy-preserving techniques in data publishing cannot be used. In this chapter, we will introduce location privacy, and analyze the challenges of location privacy-preserving, and give a survey of existing work including the system architecture, location anonymity and query processing.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2007-05-21

    STS-118 astronaut and mission specialist Dafydd R. “Dave” Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  15. Locations and monitoring well completion logs of wells surveyed by U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, Fort Worth area, Texas

    USGS Publications Warehouse

    Williams, M.D.; Kuniansky, E.L.

    1996-01-01

    Completion logs are presented for 16 monitoring wells installed by the U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, in the Fort Worth area, Texas. Natural gamma-ray logs are presented for selected monitoring wells. Also included are survey data for eight wells installed by Geo-Marine, Inc.

  16. Location | FNLCR

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  17. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-10

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  3. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  4. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-15

    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  6. Space Station maintenance concept study

    NASA Technical Reports Server (NTRS)

    Nelson, Eric E.

    1988-01-01

    The relationships among NASA Space Station operational constraints and logistical requirements are presently investigated. The concepts studied locate organizational, intermediate, and depot maintenance at the Space Station, at the Kennedy Space Center (KSC), and at a depot remote from the KSC. Measures of reliability, maintainability, and availability were selected; a life-cycle study was then conducted to ascertain the optimum Space Station system maintenance concept. The results obtained indicate that orbital replacement unit MTBFs should not be less than 36,000 hours.

  7. Station Climatic Summaries, Europe

    DTIC Science & Technology

    1989-01-01

    1 I n a 9 2 1 OPERATIONAL CLIMATIC DATA SUMMARY STATION: PRAGUE, CZECHOSLOVAKIA STATION #: 115180 ICAO ID: LKPR LOCATION: 50006 ’N, 140 17’E ELEVATION...I 5 1 IU UD U 15 U’ PC: 37 35 36 46 16 16 3.5 0.3 0.9 84 .1 32 120 U 7 45 8 5 18 6 If 0 0 16 0 M 4 3 36 54 12 18 49 02 12 8 .1 33 ISO W 7 46 6 6 18 5...20 13 17A G IS b8 59 :; 5513 4 •% . :ST A9 3 .2 5SI 5 1 EAk"(IMSI 3 2 I I 0 0 0 0 2 9 17. 17 SEP 69 61 53 .6 59 .3e 51 ISO S S % 24 1k. "IN ON (INSf

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  9. Battery charging stations

    SciTech Connect

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-08

    Astronaut Michael E. Fossum, STS-121 mission specialist, used a digital still camera to expose a photo of his helmet visor during a session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). Also visible in the visor reflections are fellow space walker Piers J. Sellers, mission specialist, Earth's horizon, and a station solar array. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph show the Safety Coordination Manager (SCM) at a work station. The SCM monitors science experiments to ensure they are conducted in a safe manner in accordance with strict safety regulations.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Payload Communications Manager (PAYCOM) at a work station. The PAYCOM coordinates payload-related voice communications between the POC and the ISS crew. The PAYCOM is the voice of the POC.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Photo and TV Operations Manager (PHANTOM) at a work station. The PHANTOM configures all video systems aboard the ISS and ensures they are working properly, providing a video link from the ISS to the POC.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Command and Payload Multiplexer/Demultiplexer (MDM) Officers (CPO's) at their work stations. The CPO maintains the command link between the Operation Center at MSFC and Mission Control at Johnson Space Center in Houston, Texas, and configures the link to allow the international partners and remote scientists to operate their payloads from their home sites.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles, operating, plarning for, and controlling various systems and payloads. This photograph shows the Payload Operations Director (POD) at work. The POD is the leader of the POC flight control team. The Director guides all payload activities in coordination with Mission Control at Johnson Space Center at Houston, Texas, the Station crew, the international partners, and other research facilities.

  18. Space Station

    NASA Image and Video Library

    1977-01-01

    The Marshall Space Flight Center (MSFC) and the Johnson Space Center (JSC) were each awarded 16-month contracts in April 1976 for the Space Station Systems Analysis Study (SSSAS). Grumman Aerospace Corporation was MSFC's contractor and McDornell Douglas Aerospace Company was JSC's contractor. The goal of this study was to formulate plans for a permanent operational base and laboratory facility in Earth orbit in addition to developing a space construction base design for implementing the program. An expended Space Shuttle external tank was to be the central core platform of the base, and additional pressurized modules could be added to provide laboratory facilities. This artist's concept depicts a space construction base design for implementing the SSSAS.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  3. 47 CFR 73.1020 - Station license period.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations located in: (1) Maryland, District of Columbia, Virginia and West Virginia: (i) Radio stations, October 1, 2011. (ii) Television stations, October 1, 2012. (2) North Carolina and South Carolina: (i...) Television stations, February 1, 2014. (10) Minnesota, North Dakota, South Dakota, Montana and Colorado: (i...

  4. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  5. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  6. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  7. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  8. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-20

    Astronaut Daniel W. Bursch, Expedition Four flight engineer, was delighted in capturing this image of Mt. Everest in the Himalayan Range from aboard the International Space Station (ISS). The mountain is near frame center. Because the photo was taken close to orbital sunrise, the low sun angle gave tremendous relief to the mountains. Named for Sir George Everest, the British surveyor-general of India, Mount Everest is the tallest point on earth. Standing 29,028 feet tall, it is 5 1/2 miles above sea level. Mount Everest is located half in Nepal and half in Tibet.

  10. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and 2...

  11. KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  12. KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  13. Development of double-pair double difference earthquake location algorithm for improving earthquake locations

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Zhang, Haijiang

    2017-01-01

    Event-pair double-difference (DD) earthquake location method, as incorporated in hypoDD, has been widely used to improve relative earthquake locations by using event-pair differential arrival times from pairs of events to common stations because some common path anomalies outside the source region can be cancelled out due to similar ray paths. Similarly, station-pair differential arrival times from one event to pairs of stations can also be used to improve earthquake locations by cancelling out the event origin time and some path anomalies inside the source region. To utilize advantages of both DD location methods, we have developed a new double-pair DD location method to use differential times constructed from pairs of events to pairs of stations to determine higher-precision relative earthquake locations. Compared to the event-pair and station-pair DD location methods, the new method can remove event origin times and station correction terms from the inversion system and cancel out path anomalies both outside and inside the source region at the same time. The new method is tested on earthquakes around the San Andreas Fault, California to validate its performance. From earthquake relocations it is demonstrated that the double-pair DD location method is able to better sharpen the images of seismicity with smaller relative location uncertainties compared to the event-pair DD location method and thus to reveal more fine-scale structures. In comparison, among three DD location methods, station-pair DD location method can better improve the absolute earthquake locations. For this reason, we further propose a hybrid double-pair DD location method combining station-pair and double-pair differential times to determine accurate absolute and relative locations at the same time, which is validated by both synthetic and real data sets.

  14. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  15. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  16. ATS-F ground station integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The ATS ground stations were described, including a system description, operational frequencies and bandwidth, and a discussion of individual subsystems. Each station configuration is described as well as its floor plan. The station performance, as tested by the GSI, is displayed in chart form providing a summary of the more important parameters tested. This chart provides a listing of test data, by site, for comparison purposes. Also included is a description of the ATS-6 experiments, the equipment, and interfaces required to perform these experiments. The ADP subsystem and its role in the experiments is also described. A description of each program task and a summary of the activities performed were then given. These efforts were accomplished at the Rosman II Ground Station, located near Rosman N.C., the Mojave Ground Station, located near Barstow Ca., and the GSI Contractors plant located near Baltimore, Md.

  17. Aerospace crew station design

    NASA Technical Reports Server (NTRS)

    Carr, Gerald P. (Editor); Montemerlo, Melvin D. (Editor)

    1984-01-01

    Consideration is given to spacecraft cockpits and work stations, commercial aircraft cockpits and crew stations, high performance aircraft cockpits and crew stations, and space stations and habitat crew stations. Particular attention is given to an historical review of NASA manned spacecraft crew stations, ESA spacelab crew stations, the evolution of commercial aircraft flight station design, Boeing 757/767 flight deck, a historical review of Concorde flight deck design, trends in the cockpit design of new European fighters, and state-of-the-art applications for Space Station crew interface design.

  18. 34. Photocopy of aerial photograph (original print located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Photocopy of aerial photograph (original print located in the U.S. Coast Guard, Civil Engineering Unit, Oakland, Calif.) General view of the light station - Point Wilson Light Station, Harbor Defense Way, Port Townsend, Jefferson County, WA

  19. 35. Photocopy of aerial photograph (original print located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of aerial photograph (original print located in the U.S. Coast Guard, Civil Engineering Unit, Oakland, Calif.) General view of the light station - Point Wilson Light Station, Harbor Defense Way, Port Townsend, Jefferson County, WA

  20. 36. Photocopy of aerial photograph (original print located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Photocopy of aerial photograph (original print located in the U.S. Coast Guard, Civil Engineering Unit, Oakland, Calif.) General view of the light station 1951 - Point Wilson Light Station, Harbor Defense Way, Port Townsend, Jefferson County, WA

  1. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located....

  2. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  3. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  4. 49 CFR 236.814 - Station, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  5. Historical annotated bibliography: Space Station documents

    NASA Technical Reports Server (NTRS)

    Whalen, Jessie E. (Compiler); Mckinley, Sarah L. (Compiler); Gates, Thomas G. (Compiler)

    1988-01-01

    Information is presented regarding documentation which has been produced in the Space Station program. This information will enable the researcher to locate readily documents pertinent to a particular study. It is designed to give the historian the necessary data from which to compile the written histories and to preserve records of historically significant aspects of Marshall's involvement in Space Shuttle and Space Station.

  6. International Space Station Overview

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1999-01-01

    The overview of the International Space Station (ISS) is comprised of the program vision and mission; Space Station uses; definition of program phases; as well as descriptions and status of several scheduled International Space Station Overview assembly flights.

  7. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  8. Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  9. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  10. Hurricane Sandy From the International Space Station

    NASA Image and Video Library

    The International Space Station flew high above Hurricane Sandy just before 12 p.m. CDT Thursday. The storm was located about 85 miles south-southeast of Great Exuma Island. The storm’s maximum s...

  11. 46 CFR 133.120 - Launching stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station in the forward part of the OSV must— (1) Be located aft of the collision bulkhead in a sheltered position; and (2) Have a launching appliance approved as being of sufficient strength for forward...

  12. TOR station for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Y.; Arshinova, V. G.; Belan, Boris D.; Davydov, Denis K.; Kovalevskii, Valentin K.; Plotnikov, Aleksandr P.; Pokrovskii, Evgenii V.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    1997-05-01

    In December 1992 a station for atmospheric observations has been put into operation at the Institute of Atmospheric Optics within the frameworks of the program of ecological monitoring of Siberia. The station provides for acquiring data on gas and aerosol composition of the atmosphere, on meteorological quantities, and the background of gamma radiation. The station operates day and night and the whole year round. All the measurement procedures are fully automated. Readouts from the measuring devices are performed very hour 10 minutes averaged. In addition, synoptic information is also received at the station. Periodically gas chromatographic analysis is being done to determine concentrations of hydrocarbons from the methane row. Occasionally, chemical composition of suspended matter is determined relative to 39 ingredients. The station is located to the north-east of Tomsk, Akademgorodok. Therefore sometimes it measures air mass coming from Tomsk down town area and sometimes the air mass from rural areas. As a result information obtained at this station should be typical for recreation zones around Tomsk.

  13. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  14. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  15. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  16. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  17. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  18. Southeast Regional Experiment Station

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

  19. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  20. Draper Station Analysis Tool

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip

    2011-01-01

    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  1. Space station user's handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A user's handbook for the modular space station concept is presented. The document is designed to acquaint science personnel with the overall modular space station program, the general nature and capabilities of the station itself, some of the scientific opportunities presented by the station, the general policy governing its operation, and the relationship between the program and participants from the scientific community.

  2. Mapping an Ice Station

    NASA Image and Video Library

    2017-09-27

    On July 10, 2011, Melinda Webster of University of Washington mapped the locations where measurements were collected during the 2011 ICESCAPE mission's fourth sea ice station in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  5. Local control stations

    SciTech Connect

    Brown, W.S.; Higgins, J.C.; Wachtel, J.A.

    1993-05-01

    This paper describes research concerning the effects of human engineering design at local control stations (i.e., operator interfaces located outside the control room) on human performance and plant safety. The research considered both multifunction panels (e.g. remote shutdown panels) as well as single-function interfaces (e.g., valves, breakers, gauges, etc.). Changes in performance shaping factors associated with variations in human engineering at LCSs were estimated based on expert opinion. By means of a scaling procedure, these estimates were used to modify the human error probabilities in a PRA model, which was then employed to generate estimates of plant risk and scoping-level value/impact ratios for various human engineering upgrades. Recent documentation of human engineering deficiencies at single-function LCSs was also reviewed, and an assessment of the current status of LCSs with respect to human engineering was conducted.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2005-06-09

    The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  7. 47 CFR 80.469 - Maritime mobile repeater stations in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Maritime mobile repeater stations in Alaska. 80... Maritime mobile repeater stations in Alaska. (a) Maritime mobile repeater stations are authorized to extend the range of communication between a VHF public coast station located in Alaska and ship stations. (b...

  8. 47 CFR 80.469 - Maritime mobile repeater stations in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Maritime mobile repeater stations in Alaska. 80... Maritime mobile repeater stations in Alaska. (a) Maritime mobile repeater stations are authorized to extend the range of communication between a VHF public coast station located in Alaska and ship stations. (b...

  9. 47 CFR 80.469 - Maritime mobile repeater stations in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Maritime mobile repeater stations in Alaska. 80... Maritime mobile repeater stations in Alaska. (a) Maritime mobile repeater stations are authorized to extend the range of communication between a VHF public coast station located in Alaska and ship stations. (b...

  10. 47 CFR 80.469 - Maritime mobile repeater stations in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Maritime mobile repeater stations in Alaska. 80... Maritime mobile repeater stations in Alaska. (a) Maritime mobile repeater stations are authorized to extend the range of communication between a VHF public coast station located in Alaska and ship stations. (b...

  11. Space Station Photovoltaic power modules

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1988-01-01

    Silicon cell Photovoltaic (PV) power modules are key components of the Space Station Electrical Power System (EPS) scheduled to begin deployment in 1994. Four PV power modules, providing 75 KWe of user ac power, form the cornerstone of the EPS; which is comprised of Photovoltaic (PV) power modules, Solar Dynamic (SD) power modules, and the Power Management and Distribution (PMAD) system. The PV modules are located on rotating outboard sections of the Space Station (SS) structure and each module incorporates its own nickel-hydrogen energy storage batteries, its own thermal control system, and some autonomous control features. The PV modules are a cost-effective and technologically mature approach for providing reliable SS electrical power and are a solid base for EPS growth, which is expected to reach 300 KWe by the end of the Space Station's 30-year design lifetime.

  12. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  13. Space Stations using the Skylon Launch System

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    After the International Space Station is decommissioned in 2020 or soon after, Skylon will be an operating launch system and it is the obvious means to launch any successor in orbit infrastructure. The study looked at establishing 14 stations of 7 different types located from Low Earth Orbit to the Moon's surface with common elements all launched by Skylon. The key reason for the study was to validate Skylon could launch such an infrastructure, but the study's secondary objectives were to contribute to consideration of what should replace the ISS, and explore a ``multiple small station'' architecture. It was found that the total acquisition costs for LEO stations could be below 1 billion (2010) while for stations beyond LEO total acquisition costs were found to be between 3 and £5 billion. No technical constraints on the Skylon launch system were found that would prevent it launching all 14 stations in under 5 years.

  14. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Sampson, Jay A.; Rodriguez, Brian D.; Asch, Theodore H.

    2006-01-01

    Introduction: The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. The MT data presented in this report will help refine what is known about the character, thickness, and lateral extent of pre Tertiary confining units. Subsequent interpretation will include a three dimensional (3 D) character analysis and a two-dimensional (2 D) resistivity model. The purpose of this report is to release the MT sounding data. No interpretation of the data is included here.

  15. KENNEDY SPACE CENTER, FLA. - At the Shuttle Landing Facility, the nose of the Beluga aircraft is open to offload the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - At the Shuttle Landing Facility, the nose of the Beluga aircraft is open to offload the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  16. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is lowered toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is lowered toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  17. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility moves the U.S. Node 2 across the floor to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility moves the U.S. Node 2 across the floor to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  18. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, waits at the Space Station Processing Facility for the door to open. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, waits at the Space Station Processing Facility for the door to open. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  19. KKENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility with its cargo of the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-01

    KKENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility with its cargo of the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  20. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  1. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility carries the U.S. Node 2 across the floor to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility carries the U.S. Node 2 across the floor to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  2. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is secured on a transporter after its arrival at the Shuttle Landing Facility. It will be taken to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is secured on a transporter after its arrival at the Shuttle Landing Facility. It will be taken to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  3. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, arrives at the Space Station Processing Facility after its move from the Shuttle Landing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, arrives at the Space Station Processing Facility after its move from the Shuttle Landing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  4. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, moves past the Vehicle Assembly Building as it is transferred to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, moves past the Vehicle Assembly Building as it is transferred to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  5. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga aircraft at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga aircraft at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  6. KENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility with its cargo of the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-01

    KENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility with its cargo of the Italian-built module, U.S. Node 2, for the International Space Station. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  7. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 moves toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 moves toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  8. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, moves past the Beluga aircraft that brought it to KSC as it is transferred to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, moves past the Beluga aircraft that brought it to KSC as it is transferred to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, work is ongoing on the U.S. Node 2, the second of three Space Station connecting modules. The Italian-built Node 2 attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, work is ongoing on the U.S. Node 2, the second of three Space Station connecting modules. The Italian-built Node 2 attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  10. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is lowered onto a transporter after its arrival at the Shuttle Landing Facility. It will be taken to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is lowered onto a transporter after its arrival at the Shuttle Landing Facility. It will be taken to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  11. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station after offloading from a Beluga aircraft at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station after offloading from a Beluga aircraft at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  12. KENNEDY SPACE CENTER, FLA. - The inside of the Italian-built Node 2 looks pristine after opening of the hatch. A future element of the International Space Station, Node 2 arrived at KSC June 1. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The inside of the Italian-built Node 2 looks pristine after opening of the hatch. A future element of the International Space Station, Node 2 arrived at KSC June 1. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  13. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  14. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, begins its transfer from the Shuttle Landing Facility to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, begins its transfer from the Shuttle Landing Facility to the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  15. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is lowered onto a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is lowered onto a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  16. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is moved toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is moved toward a workstand in the Space Station Processing Facility. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  17. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is unveiled after its arrival in the Space Station Processing Facility. The second of three Station connecting modules, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is unveiled after its arrival in the Space Station Processing Facility. The second of three Station connecting modules, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  18. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is moved into the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, is moved into the Space Station Processing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  19. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  20. KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, nears the Space Station Processing Facility after its move from the Shuttle Landing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-02

    KENNEDY SPACE CENTER, FLA. - The Italian-built module, U.S. Node 2, nears the Space Station Processing Facility after its move from the Shuttle Landing Facility. The second of three connecting modules on the International Space Station, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  1. KENNEDY SPACE CENTER, FLA. - Work is ongoing on the U.S. Node 2 in the Space Station Processing Facility. The second of three Space Station connecting modules, the Italian-built Node 2 attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - Work is ongoing on the U.S. Node 2 in the Space Station Processing Facility. The second of three Space Station connecting modules, the Italian-built Node 2 attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  2. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  3. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  4. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  10. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  11. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility are lined up at consoles during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) and U.S. Node 2. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility are lined up at consoles during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) and U.S. Node 2. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  12. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  13. 47 CFR 73.507 - Minimum distance separations between stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum distance separations between stations... separations between stations. (a) Minimum distance separations. No application for a new station, or change in... proposed facilities will be located so as to meet the adjacent channel distance separations specified...

  14. 47 CFR 73.507 - Minimum distance separations between stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum distance separations between stations... separations between stations. (a) Minimum distance separations. No application for a new station, or change in... proposed facilities will be located so as to meet the adjacent channel distance separations specified...

  15. 47 CFR 73.507 - Minimum distance separations between stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum distance separations between stations... separations between stations. (a) Minimum distance separations. No application for a new station, or change in... proposed facilities will be located so as to meet the adjacent channel distance separations specified...

  16. 30 CFR 57.4261 - Shaft-station waterlines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft-station waterlines. 57.4261 Section 57... and Control Firefighting Equipment § 57.4261 Shaft-station waterlines. Waterline outlets that are located at underground shaft stations and are part of the mine's fire protection system shall have...

  17. 25. Photocopy of scale drawing (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawing, c.1939 GENERAL ARRANGEMENT OF THE HISTORIC SITE, SHOWS THE LOCATION OF THE TURBINES AND BOILERS WITHIN THE BUILDINGS OF STATION 'L' - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  18. Fortaleza Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo

    2013-01-01

    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  19. Space station particulate contamination environment

    NASA Technical Reports Server (NTRS)

    Miller, E. R.; Clifton, K. S.

    1988-01-01

    The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented.

  20. Application of magnetotelluric in the modeling of underlying structure of Gour Oumelalen (Egere-Aleksod terrane, Central Hoggar, South of Algeria)

    NASA Astrophysics Data System (ADS)

    Boukhalfa, Zakaria; Abderrezak, Bouzid; Khadidja, Ouzegane; Abderrahmane, Bendaoud; Mohamed, Hamoudi; Abdeslam, Abtout; Abdelhamid, Bendekken; Sofiane Said, Bougchiche; Walid, Boukhlouf; Abdelgharfour, Boukar; Aboubakr, Deramchi; Mohamed, Bendali; Abdenaceur, Lemgharbi; Mohammed, Djeddi

    2016-04-01

    The results of a magnetotelluric experiment crossing Ounane granodiorite to the east until the Amadror Wadi to the West, passing through Adrar Ounane in our study area are presented. The magnetotelluric field survey was carried out in the Gour Oumelalen (GO) area during March 2015. We deployed 34 magnetotelluric sites along two parallel EW profiles of a hundred km long. Time series were collected using a V5 system 2000® of Phoenix Geophysics. The first profile located to the north is composed of 18 braodband measurement sites obtained from merging magnetotelluri with audio-magnetotelluric (AMT) data. The second one located 10 km south of the first, is composed of 15 MT sites. An inter-station distance of ~5 km provides good lateral resolution. The MT time series were recorded during about 20 hours which allows to reach a depth of 100 km or more and the AMT data 30 minutes. This allows to get broadband magnetotelluric soundings with good quality data in period range from 0.001 s to 3000 s. In this study we will use the south profile data for modeling the underlying structure of GO. The crustal part of the model shows a resistance bloc, divided by conductive parts which can be interpreted as faults, as regards the lithospheric part it less resistant the upper part, the transition crust / mantle corresponding to MOHO is estimated at more or less 35 km.

  1. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  2. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  3. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  4. 34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, PULLEY, AND LANYARDS LOCATED ON EAST SIDE OF SLC-3W MST STATION 85.5. LANYARDS (STOWED BEHIND SOME TUBING ON STATION 78 IN THIS PHOTO) PASS THROUGH OPENINGS IN STATION 78 TO BE ATTACHED NEAR TOP OF ATLAS AIRFRAME. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 27. Photocopy of scale drawing (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric proposal to city/state, 10/15/1929 FOUNDATION AND LOCATION OF THE STATION SCREEN HOUSE AND A LOOK AT THE TYPICAL DREDGING OF THE RIVER BED WHICH TOOK PLACE ON A PERIODIC BASIS AT STATION 'L' - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  6. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  7. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  8. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  9. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  10. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  11. 47 CFR 95.1505 - Authorized locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Authorized locations. 95.1505 Section 95.1505 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO... locations. Operation of DSRCS On-Board Units is authorized anywhere CB station operation is permitted under...

  12. Locating air quality monitoring station using wind impact area diagram.

    PubMed

    George, K V; Verma, P; Devotta, S

    2008-10-01

    In this study a new methodology is suggested to approximate the impact area downwind of an air pollution source, where air quality monitoring can be carried out to capture the maximum pollutant concentration. Hourly wind speed for a given month is grouped in to different wind speed ranges and the distance of pollutant travel is approximated from the average wind speed of that wind speed range. Since change in wind direction causes the impact distance to rotate, its rotation is approximated by the SD of wind direction change. Using this approach, area or region down wind of a source is determined and plotted. The pattern of monthly change of wind is better represented by the new type of diagram as compared to the wind rose diagram.

  13. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  14. Station Tour: Russian Segment

    NASA Image and Video Library

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  15. INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE CYLINDRICAL TANKS ON THE RIGHT SIDE OF THE PHOTOGRAPH ARE SAND-GRAVEL FILTERS. THE DIESEL POWERED PUMPS LOCATED IN THE CENTER LEFT FOREGOUND SUPPLIED FRESH WATER THROUGH A 16" LINE TO THE POWER PLANT BOILERS LOCATED ONE MILE SOUTH OF THE PUMP STATION - New York, New Haven & Hartford Railroad, Mianus River Pumping Station, River Road & Boston Post Road, Greenwich, Fairfield County, CT

  16. Radio spectrum surveillance station

    NASA Technical Reports Server (NTRS)

    Hersey, D. R.

    1979-01-01

    The paper presents a general and functional description of a low-cost surveillance station designed as the first phase of NASA's program to develop a radio spectrum surveillance capability for deep space stations for identifying radio frequency interference sources. The station described has identified several particular interferences and is yielding spectral signature data which, after cataloging, will serve as a library for rapid identification of frequently observed interference. Findings from the use of the station are discussed.

  17. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  18. HalleyVI - a station for science

    NASA Astrophysics Data System (ADS)

    Rose, Mike; Tuplin, Karl

    2013-04-01

    There has been a research station at Halley in Antarctica (75°35'S, 26°34'W) since 1956. Halley has a long and successful scientific record, notably the discovery of the Ozone Hole and significant contributions to areas as diverse as Geology and Space physics. Halley is located on a floating and flowing iceshelf with constant surface accumulation. These conditions have resulted in the necessary regular rebuilding of the station and HalleyVI has just been completed. Halley VI has been fully scientifically operational since Feb 2012. The station supports a chemical and turbulence clean area, an electromagnetic quiet zone, an area for radars, and flexible facilities on the station to support a wide variety of science activities. This presentation outlines the major features of the new station, its current scientific activities, and the facilities that allow the hosting of a wide variety of scientific experiments.

  19. Space Station Live: Station Communications Upgrade

    NASA Image and Video Library

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  20. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  1. Space Station attached payloads

    NASA Technical Reports Server (NTRS)

    Clark, Lenwood G.

    1990-01-01

    The Space Station Freedom is being designed and developed with user requirements being used to shape the configuration. Plans include accommodation provisions for a wide variety of attached payloads including the Earth sciences research activities which are the focus of this conference. The station program is even beginning some preliminary payload manifesting which involves planning for accommodation of payload during the station's assembly flights. Potential payload organizations should be aware of the station's plans for payload accommodations so as to guide their own payload activities for future space station use.

  2. Neuroradiology viewing station

    NASA Astrophysics Data System (ADS)

    Lou, Shyhliang A.; Lufkin, Robert B.; Valentino, Daniel J.; Huang, H. K.; Hanafee, William; Jabour, Bradly; Bentsen, John R.; Duckwiler, Gary R.; Dion, Jacques E.

    1990-07-01

    A distributed CT/MR digital viewing station for the neuroradiology section has been developed and is being evaluated in our department. The major components of the station consist of a SUN host computer, a PIXAR II image processor, and four 1K x 1K progressive video monitors. The software modules operating in the station include an image acquisition process, a local database process, and an user image display and processing process. Functions provided by the station are described. Preliminary results obtained from clinical evaluation are reported. Future plans to refine the station are presented.

  3. Towards GGOS Stations in New Zealand

    NASA Astrophysics Data System (ADS)

    Gulyaev, Sergei; Weston, Stuart; Natusch, Tim

    2015-04-01

    The accuracy of positioning and dynamic measurements can be greatly improved when two or more geodetic techniques are used from the same geographic locations. The Global Geodetic Observational System (GGOS) was created in 1990s in order to combine existing methods of geodetic observations and take advantage from joint use of these techniques. At the moment New Zealand has one geodetic observatory which has features of a GGOS station - Warkworth, which combines VLBI, GNSS and gravity stations. Preliminary geodetic results from Warkworth are presented and the opportunity for establishing the second GGOS station (in New Zealand's Southland) is discussed.

  4. Locating The Geocenter From GPS Measurements

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Lichten, Stephen M.; Blewitt, Geoffrey; Heflin, Michael B.; Malla, Rajendra P.

    1994-01-01

    Report presents analysis of Global Positioning System (GPS) measurements taken during 3-week geodetic experiment in early 1991. Involved constellation of 15 GPS satellites operational at that time, plus 21 GPS receiving stations at widely distributed sites, all but 4 of which in Northern Hemisphere. Analysis consisted principally of estimation of location of center of mass of Earth relative to GPS receiving stations. As part of analysis, GPS estimates of geocenter compared with estimates obtained by satellite laser ranging (SLR).

  5. Catalog of strong motion stations in Eastern North America

    NASA Astrophysics Data System (ADS)

    Busby, R. W.

    1990-04-01

    The catalog contains information on all strong motion stations operating in Eastern North America known to the National Center for Earthquake Engineering Research (NCEER). The location, coordinates, installation dates, type of instrument, operator, structure type and size, and site geology are listed for each station. The format of the catalog is patterned after the United States Geological Survey (USGS) Open-File Report 81-664, 'Western Hemisphere Strong-Motion Accelerograph Station List-1980' but the entries have been updated as of January 1990. There are 237 stations listed in the catalog which include 414 recording instruments. One third of these stations are intended to record free-field ground motion while the rest are associated with large engineered structures. The relationship of station location to seismicity is shown in a series of figures and a method is described to predict peak acceleration levels from an earthquake where the magnitude and distance to station are known.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2003-01-16

    In this International Space Station (ISS) onboard photo, Expedition Six Science Officer Donald R. Pettit works to set up the Pulmonary Function in Flight (PuFF) experiment hardware in the Destiny Laboratory. Expedition Six is the fourth and final crew to perform the PuFF experiment. The PuFF experiment was developed to better understand what effects long term exposure to microgravity may have on the lungs. The focus is on measuring changes in the everness of gas exchange in the lungs, and on detecting changes in respiratory muscle strength. It allows astronauts to measure blood flow through the lungs, the ability of the lung to take up oxygen, and lung volumes. Each PuFF session includes five lung function tests, which involve breathing only cabin air. For each planned extravehicular (EVA) activity, a crew member performs a PuFF test within one week prior to the EVA. Following the EVA, those crew members perform another test to document the effect of exposure of the lungs to the low-pressure environment of the space suits. This experiment utilizes the Gas Analyzer System for Metabolic Analysis Physiology, or GASMAP, located in the Human Research Facility (HRF), along with a variety of other Puff equipment including a manual breathing valve, flow meter, pressure-flow module, pressure and volume calibration syringes, and disposable mouth pieces.

  7. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  8. Index of stations: surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  9. Automating existing stations

    SciTech Connect

    Little, J.E.

    1986-09-01

    The task was to automate 20 major compressor stations along ANR Pipeline Co.'s Southeastern and Southwestern pipelines in as many months. Meeting this schedule required standardized hardware and software design. Working with Bristol Babcock Co., ANR came up with an off-the-shelf station automation package suitable for a variety of compressor stations. The project involved 148 engines with 488,880-hp in the 20 stations. ANR Pipeline developed software for these engines and compressors, including horsepower prediction and efficiency. The system places processors ''intelligence'' at each station and engine to monitor and control operations. The station processor receives commands from the company's gas dispatch center at Detroit and informs dispatchers of alarms, conditions, and decision it makes. The automation system is controlled by the Detroit center through a central communications network. Operating orders from the center are sent to the station processor, which obeys orders using the most efficient means of operation at the station's disposal. In a malfunction, a control and communications backup system takes over. Commands and information are directly transmitted between the center and the individual compressor stations. Stations receive their orders based on throughput, with suction and discharge pressure overrides. Additionally, a discharge temperature override protects pipeline coatings.

  10. Position location technique and GDOP analysis in multistatic systems

    NASA Astrophysics Data System (ADS)

    He, Lixing; Sun, Zhongkang

    Position location methods and GDOP analysis in multistatic systems are presented, and a unified equation of position location and that of location error for several kinds of location methods is introduced. A unified mathematical expression for GDOP is also derived. A method for arranging the geometrical position of stations is discussed as an illustration.

  11. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  12. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  13. 47 CFR 90.1331 - Restrictions on the operation of base and fixed stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-3700 MHz Band § 90.1331 Restrictions on the operation of base and fixed stations. (a)(1) Except as provided in paragraph (a)(2) of this section, base and fixed stations may not be located within 150 km of... these stations are available at http://www.fcc.gov/ib/sd/3650/. (2) Base and fixed stations may be...

  14. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  15. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  16. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  17. Control of space stations

    NASA Technical Reports Server (NTRS)

    Lee, K. Y.

    1983-01-01

    A study is made to develop controllers for the NASA-JSC Triangular Space Station and evaluate their performances to make recommendations for structural design and/or control alternatives. The control system design assumes the rigid body of the Space Station and developes the lumped parameter control system by using the Inverse Optimal Control Theory. In order to evaluate the performance of the control system, a Parameter Estimation algorithm is being developed which will be used in modeling an equivalent but simpler Space Station model. Finally, a scaled version of the Space Station is being built for the purpose of physical experiments to evaluate the control system performance.

  18. Space Station fluid resupply

    NASA Astrophysics Data System (ADS)

    Winters, Al

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  19. Station Crew Celebrates Christmas

    NASA Image and Video Library

    Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

  20. Status of DORIS stations in Antarctica for precise geodesy

    NASA Technical Reports Server (NTRS)

    Willis, P.; Amalvict, M.; Shibuya, K.

    2005-01-01

    In Antarctica, besides the quite numerous GPS stations, four DORIS stations are permanently operating. In addition to the permanent DORIS stations, episodic campaigns took place at DomeC/Conccordia and on Sorsdal and Lambert glaciers. In this paper, we first collect general information concerning the stations and the campaigns (location, start of measurements, etc). We then present the results of observations of the permanent stations keeping in mind that we are primarily interested here in the vertical component, which is the most uncertain component.

  1. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  2. Levels at streamflow gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1990-01-01

    This manual establishes the surveying procedures for (1) setting gages at a streamflow gaging station to datum and (2) checking the gages periodically for errors caused by vertical movement of the structures that support them. Surveying terms and concepts are explained, and procedures for testing, adjusting, and operating the instruments are described in detail. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are also described.

  3. KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  4. "Inventive" Learning Stations

    ERIC Educational Resources Information Center

    Jarrett, Olga

    2010-01-01

    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  5. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-06

    Though very close to the International Space Station, the majority of Discovery's underside is visible in this frame. The image was captured by one of the Expedition 13 crew members onboard the International Space Station (ISS) during the STS-121 Rotating Pitch Maneuver (RPM) survey prior to docking of the two spacecraft.

  6. Summit Station Skiway Review

    DTIC Science & Technology

    2013-03-01

    delivery of personnel and materials, is by skied airplanes (currently Twin Otters and LC-130s) or by annual traverse. To support aircraft, the station...Station during the first sea - son (2009) of skiway construction at Pegasus Airfield (Haehnel et al. 2013) but consistently lower than densities of

  7. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    Back dropped by the blue and white Earth is a Materials International Space Station Experiment (MISSE) on the exterior of the Station. The photograph was taken during the second bout of STS-118 Extra Vehicular Activity (EVA). MISSE collects information on how different materials weather in the environment of space.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-01

    This image of the International Space Station in orbit was taken from the Space Shuttle Endeavour prior to docking. Most of the Station's components are clearly visible in this photograph. They are the Node 1 or Unity Module docked with the Functional Cargo Block or Zarya (top) that is linked to the Zvezda Service Module. The Soyuz spacecraft is at the bottom.

  9. "Inventive" Learning Stations

    ERIC Educational Resources Information Center

    Jarrett, Olga

    2010-01-01

    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  10. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  11. Enabler operator station. [lunar surface vehicle

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Keitzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). This LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an earth-bound model. Several recommendations are made in the appendix as to the changes needed in material selection for the lunar environment. The operator station is designed dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which includes life support). The proposed operator station will support and restrain an astronaut as well as provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of grid members, semi-rigid members and woven fabrics.

  12. Strategic planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.

    1990-01-01

    The concept for utilization and operations planning for the International Space Station Freedom was developed in a NASA Space Station Operations Task Force in 1986. Since that time the concept has been further refined to definitize the process and products required to integrate the needs of the international user community with the operational capabilities of the Station in its evolving configuration. The keystone to the process is the development of individual plans by the partners, with the parameters and formats common to the degree that electronic communications techniques can be effectively utilized, while maintaining the proper level and location of configuration control. The integration, evaluation, and verification of the integrated plan, called the Consolidated Operations and Utilization Plan (COUP), is being tested in a multilateral environment to prove out the parameters, interfaces, and process details necessary to produce the first COUP for Space Station in 1991. This paper will describe the concept, process, and the status of the multilateral test case.

  13. Strategic planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.

    1990-01-01

    The concept for utilization and operations planning for the International Space Station Freedom was developed in a NASA Space Station Operations Task Force in 1986. Since that time the concept has been further refined to definitize the process and products required to integrate the needs of the international user community with the operational capabilities of the Station in its evolving configuration. The keystone to the process is the development of individual plans by the partners, with the parameters and formats common to the degree that electronic communications techniques can be effectively utilized, while maintaining the proper level and location of configuration control. The integration, evaluation, and verification of the integrated plan, called the Consolidated Operations and Utilization Plan (COUP), is being tested in a multilateral environment to prove out the parameters, interfaces, and process details necessary to produce the first COUP for Space Station in 1991. This paper will describe the concept, process, and the status of the multilateral test case.

  14. [STEM on Station Education

    NASA Technical Reports Server (NTRS)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  15. Classification of nodal stations in gastric cancer

    PubMed Central

    Costamagna, Guido; Doglietto, Giovanni Battista; Alfieri, Sergio

    2017-01-01

    The lymphatic drainage from the stomach is anatomically elaborate and it is very hard to predict the pattern of lymph node (LN) metastases from gastric cancer (GC). However, there are LN stations metastases that are more frequently observed depending on the tumor location. Furthermore, the incidence of metastasis to various regional LN stations depends on the depth of gastric-wall invasion. The Japanese Gastric Cancer Association (JGCA) classifies the regional LNs draining the stomach into 33 regional lymphatic stations. These are distinguished into three (N1–N3) groups with respect to the location of the primary tumor. The aim of this classification is to provide a common language for the clinical, surgical, and pathological description of GC. PMID:28217752

  16. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from a television pickup station covering a single event from various locations, within a single... would interrupt a single consecutive speech, play, religious service, symphony concert, or any type of... period of operation. (d) A period of operation is defined as a single uninterrupted transmission or...

  17. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from a television pickup station covering a single event from various locations, within a single... would interrupt a single consecutive speech, play, religious service, symphony concert, or any type of... period of operation. (d) A period of operation is defined as a single uninterrupted transmission or...

  18. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from a television pickup station covering a single event from various locations, within a single... would interrupt a single consecutive speech, play, religious service, symphony concert, or any type of... period of operation. (d) A period of operation is defined as a single uninterrupted transmission or...

  19. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from a television pickup station covering a single event from various locations, within a single... would interrupt a single consecutive speech, play, religious service, symphony concert, or any type of... period of operation. (d) A period of operation is defined as a single uninterrupted transmission or...

  20. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from a television pickup station covering a single event from various locations, within a single... would interrupt a single consecutive speech, play, religious service, symphony concert, or any type of... period of operation. (d) A period of operation is defined as a single uninterrupted transmission or...

  1. Developing Study Stations on Your School Site.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Natural Resources, Columbus. Office of Information and Education.

    The school site is a convenient location for study stations since it is available for short periods of time and can be used consistently. Special preparations, such as transportation, required for off-site fieldtrips can be eliminated. In addition, on-site activities provide students with concrete experiences necessary to understand difficult…

  2. Developing Study Stations on Your School Site.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Natural Resources, Columbus. Office of Information and Education.

    The school site is a convenient location for study stations since it is available for short periods of time and can be used consistently. Special preparations, such as transportation, required for off-site fieldtrips can be eliminated. In addition, on-site activities provide students with concrete experiences necessary to understand difficult…

  3. 47 CFR 74.183 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.183 Section 74.183 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... make aural or visual announcements of its call letters and location at the beginning and end of...

  4. 47 CFR 22.575 - Use of mobile channel for remote control of station functions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... controlled by persons not authorized by the licensee to control the station. (c) The control transmitter location must be within the composite service contour of the licensee's authorized station on the...

  5. 47 CFR 22.575 - Use of mobile channel for remote control of station functions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... controlled by persons not authorized by the licensee to control the station. (c) The control transmitter location must be within the composite service contour of the licensee's authorized station on the...

  6. 76. (Credit CBF) Inside of laboratory at McNeil Street Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. (Credit CBF) Inside of laboratory at McNeil Street Station, c1912. Laboratory located over clear water well at this time. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  7. 47 CFR 25.119 - Assignment or transfer of control of station authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing... each station by call sign, station location and expiration date of license. (f) Assignments and... obtained in good faith with the intent to construct a satellite system. ...

  8. 47 CFR 25.119 - Assignment or transfer of control of station authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing... each station by call sign, station location and expiration date of license. (f) Assignments and... obtained in good faith with the intent to construct a satellite system. ...

  9. 47 CFR 25.119 - Assignment or transfer of control of station authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing... each station by call sign, station location and expiration date of license. (f) Assignments and... obtained in good faith with the intent to construct a satellite system. ...

  10. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. Therefore...

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-16

    Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-13

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  13. Overview of guideway, Pratt Street Station, Bridge Street Station and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of guideway, Pratt Street Station, Bridge Street Station and train yard, looking east. Dyre street in foreground. - Frankford Elevated, 52100-5400 Frankford Avenue (guideway & stations), Philadelphia, Philadelphia County, PA

  14. 4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  15. Station Climatic Summaries, Asia

    DTIC Science & Technology

    1989-07-01

    MANDALAY 480420 8809 (OCDS) .................................................. .022 MYITKYINA 480080 8809 (OCDS...0 1 0 0 0 2 0 5 2 1 06-20 LST 8 3 # 1 # 1 1 2 4 10 11 13 4 ECR-KRW-7a OZi OPERATIONAL CLIMATIC DATA SUMMARY STATION: MANDALAY , BM STATION #: 480420...18-20 LST # 0 # 0 # 1 0 2 1 # 1 1 1 06-20 LST 1 2 2 1 1 1 2 1 1 1 2 5 1 ECR-KRW-6 oZ3 OPERATIONAL CLIMATIC DATA SUPPLEMENT STATION: MANDALAY , BM

  16. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    Artist's digital concept of the International Space Station (ISS), a gateway to permanent human presence in space, after all assembly is completed in Year 2003. The Station will be powered by almost an acre of solar panels and have a mass of almost one million pounds. Station modules are being provided by the United States, Russia, Japan, and Europe. Canada is providing a mechanical arm and Canada Hand. Sixteen countries are cooperating to provide a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  17. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  18. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  19. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  20. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  1. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with table 76.50-10(a). Table 76.50-10(a) Space Hand portable fire extinguisher and semiportable.... (Not required in both spaces.) (Multiple classification may be recognized.) Stairway and elevator.... (May be located in stairway enclosures.) Lifeboat embarkation and lowering stations None...

  2. 46 CFR 193.50-10 - Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Space Classification (see § 193.50-5) Quantity and location Safety Areas 1 Wheelhouse or fire control... stations None required. Radio room C-I 2 2 in vicinity of exit. 2 Accommodations 1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries open decks, etc None...

  3. 46 CFR 193.50-10 - Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Space Classification (see § 193.50-5) Quantity and location Safety Areas 1 Wheelhouse or fire control... stations None required. Radio room C-I 2 2 in vicinity of exit. 2 Accommodations 1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries open decks, etc None...

  4. 49 CFR 195.260 - Valves: Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY... locations: (a) On the suction end and the discharge end of a pump station in a manner that permits...

  5. 49 CFR 195.260 - Valves: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY... locations: (a) On the suction end and the discharge end of a pump station in a manner that permits...

  6. 49 CFR 195.260 - Valves: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY... locations: (a) On the suction end and the discharge end of a pump station in a manner that permits...

  7. 49 CFR 195.260 - Valves: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY... locations: (a) On the suction end and the discharge end of a pump station in a manner that permits...

  8. 49 CFR 195.260 - Valves: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY... locations: (a) On the suction end and the discharge end of a pump station in a manner that permits...

  9. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with table 76.50-10(a). Table 76.50-10(a) Space Hand portable fire extinguisher and semiportable.... (Not required in both spaces.) (Multiple classification may be recognized.) Stairway and elevator.... (May be located in stairway enclosures.) Lifeboat embarkation and lowering stations None required...

  10. 46 CFR 193.50-10 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Space Classification (see § 193.50-5) Quantity and location Safety Areas 1 Wheelhouse or fire control... stations None required. Radio room C-I 2 2 in vicinity of exit. 2 Accommodations 1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries open decks, etc None required...

  11. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with table 76.50-10(a). Table 76.50-10(a) Space Hand portable fire extinguisher and semiportable.... (Not required in both spaces.) (Multiple classification may be recognized.) Stairway and elevator.... (May be located in stairway enclosures.) Lifeboat embarkation and lowering stations None required...

  12. 47 CFR 74.15 - Station license period.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... networks for the purpose of providing program service to affiliated stations under subpart D of this part, and by eligible networks, cable television operators, motion picture producers and television program... licensing period for broadcast stations located in the same area of operation. (c) The license of an...

  13. 47 CFR 74.15 - Station license period.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... networks for the purpose of providing program service to affiliated stations under subpart D of this part, and by eligible networks, cable television operators, motion picture producers and television program... licensing period for broadcast stations located in the same area of operation. (c) The license of an...

  14. Compressor station noise-abatement: a case study

    SciTech Connect

    Bianucci, J.A.; Bush, R.C.; Dooher, C.A.

    1980-01-01

    This paper describes the noise abatement measures incorporated by Pacific Gas and Electric Company into the design of its Brannan Island Compressor Station. This two unit reciprocating compressor station is located within 100 feet of a state park and 600 feet of a camp site. Operating noise level data is presented and compared to design expectations.

  15. 47 CFR 25.277 - Temporary fixed earth station operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....277 Section 25.277 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.277 Temporary fixed earth station operations. (a) When an earth station in the Fixed-Satellite Service is to remain at a single location for fewer...

  16. 55. Photocopy of scale diagram (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Photocopy of scale diagram (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawing, 1926 PLAN DEPICTING THE LOCATION OF THE CONDENSATE UNITS BUILDING L1 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  17. 29. Photocopy of scale drawing (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Contractor/draftsman unknown, c.1911 FRONT ELEVATION AND LONGITUDINAL SECTION OF THE ORIGINAL EIGHT BOILERS LOCATED IN THE L.P. BOILER ROOM BUILDING L2 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  18. Topographic and location map of Bonita Point Coast Guard and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic and location map of Bonita Point Coast Guard and lighthouse station, June 1940, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Fort Barry and Bonita Ridge (upper left) before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  19. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so...

  20. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so...

  1. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  2. The Space Station Chronicles

    NASA Image and Video Library

    As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...

  3. Station Assembly Animation

    NASA Image and Video Library

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  4. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  5. Station Commander Praises AMS

    NASA Image and Video Library

    When asked what's the most important International Space Station experiment, Commander Chris Hadfield names the Alpha Magnetic Spectrometer-2, a state-of-the-art particle physics detector that coul...

  6. Multiple Craft Stations.

    ERIC Educational Resources Information Center

    Johns, Mary Sue

    1980-01-01

    Described are three craft stations (claywork, papermaking, and stamp designing) for intermediate grade students, to correlate with their classroom study which focused on Ohio: its history, geography, cities, industries, products and famous natives. (KC)

  7. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.

  9. International Space Station (ISS)

    NASA Image and Video Library

    1994-04-20

    An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-01

    This image of the International Space Station (ISS) in orbit was taken during a fly-around inspection by the Space Shuttle Endeavour after successfull attachment of the 240-foot-long, 38-foot-wide solar array.

  12. International Space Station (ISS)

    NASA Image and Video Library

    1994-09-21

    Artist's concept of the final configuration of the International Space Station (ISS) Alpha. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  13. Space Station Live! Tour

    NASA Image and Video Library

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  14. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  15. Destination Station Atlanta

    NASA Image and Video Library

    Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city’s well known Atlanta Science Tavern Meet Up gro...

  16. Station characteristics of the Singapore Infrasound Array

    NASA Astrophysics Data System (ADS)

    Perttu, Anna; Taisne, Benoit; Caudron, Corentin; Garces, Milton; Avila Encillo, Jeffrey; Ildefonso, Sorvigenaleon

    2016-04-01

    Singapore, located in Southeast Asia, presents an ideal location for an additional regional infrasound array, with diverse persistent natural and anthropogenic regional infrasound sources, including ~750 active or potentially active volcanoes within 4,000 kilometers. Previous studies have focused on theoretical and calculated regional signal detection capability improvement with the addition of a Singapore array. The Earth Observatory of Singapore installed a five element infrasound array in northcentral Singapore in late 2014, and this station began consistent real-time data transmission mid-2015. The Singapore array uses MB2005s microbarometers and Nanometrics Taurus digitizers. Automated array processing is carried out with the INFrasonic EneRgy Nth Octave (INFERNO) energy estimation suite, and PMCC (Progressive MultiChannel Correlation). The addition of the Singapore infrasound array to the existing International Monitoring System (IMS) infrasound stations in the region has increased regional infrasound detection capability, which is illustrated with the preliminary work on three observed meteor events of various sizes in late 2015. A meteor observed in Bangkok, Thailand in early September, 2015 was picked up by the CTBTO, however, another meteor observed in Bangkok in November was only recorded on the Singapore array. Additionally, another meteor observed over Sumatra was only recorded by one IMS station and the Singapore array. This study uses array processing and Power Spectral Density results for both the Singapore and publicly available regional IMS stations to examine station characteristics and detection capability of the Singapore array in the context of the regional IMS network.

  17. INVESTIGATION OF WASTE RAG GENERATION AT NAVAL STATION MAYPORT

    EPA Science Inventory

    This report presents the results of an investigation examining pollution prevention alternatives for reducing the volume of waste rags generated at Naval Station Mayport, located near Jacksonville Beach, Florida. he report recommends five specific pollution prevention alternative...

  18. Synthetic Minor NSR Permit: Arrow Pipeline, LLC - Station #7

    EPA Pesticide Factsheets

    This page contains the administratively revised synthetic minor permit to construct for the Arrow Pipeline, LLC, Station #7, located within the exterior boundaries of the Fort Berthold Indian Reservation in Dunn County, North Dakota.

  19. Synthetic Minor NSR Permit: Questar Pipeline, LLC - Fidlar Compressor Station

    EPA Pesticide Factsheets

    This page contains documents related to the synthetic minor NSR permit for the Questar Pipeline Company Fidlar Compressor Station, located on the Uintah and Ouray Indian Reservation in Uintah County, UT.

  20. INVESTIGATION OF WASTE RAG GENERATION AT NAVAL STATION MAYPORT

    EPA Science Inventory

    This report presents the results of an investigation examining pollution prevention alternatives for reducing the volume of waste rags generated at Naval Station Mayport, located near Jacksonville Beach, Florida. he report recommends five specific pollution prevention alternative...

  1. Synthetic Minor NSR Permit: Questar Pipeline Company - Fidlar Compressor Station

    EPA Pesticide Factsheets

    This page contains documents related to the synthetic minor NSR permit for the Questar Pipeline Company Fidlar Compressor Station, located on the Uintah and Ouray Indian Reservation in Uintah County, UT.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-01

    Not long after separation of the Space Shuttle Discovery from the International Space Station (ISS), a crew member was able to use a 70mm handheld camera to grab this image of the station, featuring its newest additions. Backdropped against the blackness of space, the Z1 truss structure and its anterna, as well as the new Pressurized Mating Adapter (PMA-3), are visible in the foreground.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-04-28

    A Canadian "handshake" in space occurred on April 28, 2001, as the Canadian-built space station robotic arm (Canadarm-2) transferred its launch cradle over to Endeavor's robotic arm. Marning the controls from the shuttle's aft flight deck, Canadian Mission Specialist Chris A. Hadfield of the Canadian Space Agency (CSA) was instrumental in the activity. The Spacelab pallet that carried the Canadarm2 robotic arm to the station was developed at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-17

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-14

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-17

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-17

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000 pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS fly-around mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to manuever spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-17

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-17

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  10. NASA develops Space Station

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    The NASA Space Station program's planning stage began in 1982, with a view to development funding in FY1987 and initial operations within a decade. An initial cost of $8 billion is projected for the continuously habitable, Space Shuttle-dependent system, not including either operational or scientific and commercial payload-development costs. As a customer-oriented facility, the Space Station will be available to foreign countries irrespective of their participation in the development phase.

  11. Leadership at Antarctic Stations.

    DTIC Science & Technology

    1987-03-01

    Claseification 6. No. Pegees LEADERSHIP AT ANTARTIC STATIONS hxIs i4 5, C =r~eta(C), 17 Rfs~W (R, Udusiied U)J 7. No Refs 8. Author(s) Edocumesnt I...whether there is a "best" approach to leadership at an Antartic Station and what leadership style may have the most to offer. 3~~ __ ___ Tipesis to be

  12. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by our colorful Earth, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by the blackness of space, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  14. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station... (Surry) for Renewed Facility Operating License Nos. DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for operation of NAPS and Surry located in Louisa County, Virginia, and...

  15. Index of stations: surface-water data-collection network of Texas, September 1999

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    2001-01-01

    As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2003-06-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named "Kibo" (Hope). Node 2, the "utility hub" and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  17. Space station mobile transporter

    NASA Technical Reports Server (NTRS)

    Renshall, James; Marks, Geoff W.; Young, Grant L.

    1988-01-01

    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-01

    The Space Shuttle Atlantis, STS-110 mission, deployed this railcar, called the Mobile Transporter, and an initial 43-foot section of track, the S0 (S-zero) truss, preparing the International Space Station (ISS) for future spacewalks. The first railroad in space, the Mobile Transporter will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The 27,000-pound S0 truss is the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002. STS-110's Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-16

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2002-04-08

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first "space railroad," which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-08

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  4. International Space Station Remote Sensing Pointing Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Craig A.

    2007-01-01

    This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

  5. ANSS Backbone Station Installation and Site Characterization

    NASA Astrophysics Data System (ADS)

    Meremonte, M.; Leeds, A.; Overturf, D.; McMillian, J.; Allen, J.; McNamara, D.

    2004-12-01

    During 2004 several new broadband seismic stations have been deployed as a part of the USGS's Advanced National Seismic System (ANSS) backbone and regional networks. New stations include: ERPA, MNTX, OGLA, AMTX, NATX, KCCO, BMO, MARC, TZTN, LAO, DGMT, REDW, KSU1, MOOW, TPAW, LOHW, RAMW. Permanent station locations were chosen to minimize the local noise conditions by recording continuous data and using a quantitative analysis of the statistical distribution of noise power estimates. For each one-hour segment of continuous data, a power spectral density (PSD) is estimated and smoothed in full octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in one dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. Examination of earthquake signal, artifacts related to station operation and episodic cultural noise in the PDFs allow us to estimate both the overall station quality and the level of earth noise at each potential backbone site. The main function of a seismic network, such as the ANSS, is to provide high quality data for earthquake monitoring, source studies, and Earth structure research. The utility of seismic data is greatly increased when noise levels are reduced. A good quantification and understanding of seismic noise is a first step at reducing noise levels in seismic data and improving overall data quality from the ANSS backbone network.

  6. 2. Photocopy of photograph (original print located at Prescott National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of photograph (original print located at Prescott National Forest, 344 South Cortez Street, Prescott, Arizona). Photograph is an enlargement of the negative. Photographer unknown, 1926 'TONTO RANGER STATION PRESCOTT N.F. 1926.' VIEW LOOKING SOUTH. FROM LEFT TO RIGHT: HOUSE, WINDMILL, WATER STORAGE TANK, GARAGE, BARN. - Tonto Ranger Station, Forest Service Road 65 at Tonto Wash, Skull Valley, Yavapai County, AZ

  7. 47 CFR 80.1129 - Locating and homing signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Operating Procedures... rescue radar transponders to assist the searching units. (b) Homing singnals are those locating signals... searching units with a signal that can be used to determine the bearing to the transmitting stations....

  8. 47 CFR 80.1129 - Locating and homing signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Operating Procedures... rescue radar transponders to assist the searching units. (b) Homing singnals are those locating signals... searching units with a signal that can be used to determine the bearing to the transmitting stations....

  9. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  10. International Space Station Capabilities and Payload Accommodations

    NASA Technical Reports Server (NTRS)

    Kugler, Justin; Jones, Rod; Edeen, Marybeth

    2010-01-01

    This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.

  11. Rawhide Energy Station, Fort Collins, Colorado

    SciTech Connect

    Peltier, R.

    2008-10-15

    The staff of Platte River Power Authority's Rawhide Energy Station have been racking up operating stats and an environmental performance record that is the envy of other plant managers. In the past decade Rawhide has enjoyed an equivalent availability factor in the mid to high 90s and an average capacity factor approaching 90%. Still not content with this performance, Rawhide invested in new technology and equipment upgrades to further optimise performance, reduce emissions, and keep cost competitive. The Energy Station includes four GE France 7EA natural gas-fired turbines totalling 260 MW and a 274 MW coal-fired unit located in northeastern Colorado. 7 figs.

  12. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  13. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  14. Detail view of condensor located below the floor level of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of condensor located below the floor level of the pumphouse. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  15. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). WEST ELEVATION - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  16. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). SOUTH ELEVATION, TRANSVERSE SECTION, NORTH ELEVATION - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  17. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). SECOND FLOOR PLAN - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  18. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). EAST ELEVATION - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  19. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). BIN TOWER SECTIONS AND PLAN - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  20. Photographic copy of architectural drawing, 1921 (original located at University ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawing, 1921 (original located at University of Minnesota Facilities Management Office, Minneapolis). DETAIL OF MAIN STAIR AND MISCELLANEOUS PLANS - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN