Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.
Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile
2014-07-01
We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.
Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio
2014-12-01
To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani
2018-05-17
Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Tracing the neural basis of auditory entrainment.
Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc
2016-11-19
Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Auditory Brainstem Responses in Autism: Brainstem Dysfunction or Peripheral Hearing Loss?
ERIC Educational Resources Information Center
Klin, Ami
1993-01-01
A review of 11 studies of auditory brainstem response (ABR) in individuals with autism concludes that the ABR data are only suggestive (rather than supportive) of brainstem involvement in autism. The presence of peripheral hearing impairment was observed in some of the autistic individuals. (Author/DB)
Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias
2017-10-10
Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.
Nonlinear Processing of Auditory Brainstem Response
2001-10-25
Kraków, Poland Abstract: - Auditory brainstem response potentials (ABR) are signals calculated from the EEG signals registered as responses to an...acoustic activation of the auditory system. The ABR signals provide an objective, diagnostic method, widely applied in examinations of hearing organs
Electrophysiological Evidence for the Sources of the Masking Level Difference.
Fowler, Cynthia G
2017-08-16
The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.
Ansari, M S; Rangasayee, R; Ansari, M A H
2017-03-01
Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.
Gordon, K A; Papsin, B C; Harrison, R V
2007-08-01
The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.
Auditory Brainstem Responses in Childhood Psychosis.
ERIC Educational Resources Information Center
Gillberg, Christopher; And Others
1983-01-01
Auditory brainstem responses (ABR) were compared in 24 autistic children, seven children with other childhood psychoses, and 31 normal children. One-third of the autistic Ss showed abnormal ABR indicating brainstem dysfunction and correlating with muscular hypotonia and severe language impairment. Ss with other psychoses and normal Ss showed…
Matas, Carla Gentile; Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Gonçalves, Isabela Crivellaro
2006-08-01
We examined the peripheral auditory system and the auditory brainstem pathway of children with Acquired Immunodeficiency Syndrome (AIDS). One hundred and one children, 51 with AIDS diagnosis and 50 normal children were evaluated. Audiological assessment included immittance measures, pure tone and speech audiometry and auditory brainstem response (ABR). The children with AIDS more frequently had abnormal results than did their matched controls, presenting either peripheral or auditory brainstem impairment. We suggest that AIDS be considered a risk factor for peripheral and/or auditory brainstem disorders. Further research should be carried out to investigate the auditory effects of HIV infection along the auditory pathway.
Auditory Detection of the Human Brainstem Auditory Evoked Response.
ERIC Educational Resources Information Center
Kidd, Gerald, Jr.; And Others
1993-01-01
This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…
Altered auditory function in rats exposed to hypergravic fields
NASA Technical Reports Server (NTRS)
Jones, T. A.; Hoffman, L.; Horowitz, J. M.
1982-01-01
The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s).
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-07-01
Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users.
Plonek, M; Nicpoń, J; Kubiak, K; Wrzosek, M
2017-03-01
Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.
Brainstem processing following unilateral and bilateral hearing-aid amplification.
Dawes, Piers; Munro, Kevin J; Kalluri, Sridhar; Edwards, Brent
2013-04-17
Following previous research suggesting hearing-aid experience may induce functional plasticity at the peripheral level of the auditory system, click-evoked auditory brainstem response was recorded at first fitting and 12 weeks after hearing-aid use by unilateral and bilateral hearing-aid users. A control group of experienced hearing-aid users was tested over a similar time scale. No significant alterations in auditory brainstem response latency or amplitude were identified in any group. This does not support the hypothesis of plastic changes in the peripheral auditory system induced by hearing-aid use for 12 weeks.
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s)
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-01-01
Introduction Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. Objective This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. Methods This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Results Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. Conclusion The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users. PMID:27413404
Dyslexia risk gene relates to representation of sound in the auditory brainstem.
Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D
2017-04-01
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo
2017-10-01
Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Auditory Brainstem Responses in Young Adults with Down Syndrome.
ERIC Educational Resources Information Center
Widen, Judith E.; And Others
1987-01-01
In a study of 15 individuals (ages 15-21) with Down Syndrome, auditory brainstem response (ABR) detection levels were elevated, response amplitude reduced, and latency-intensity functions were significantly steeper than for a matched control group. Findings were associated with an impairment in hearing sensitivity at 8000 Hz for the experimental…
Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.
ERIC Educational Resources Information Center
Marler, Jeffrey A.; Champlin, Craig A.
2005-01-01
The purpose of this study was to examine the possible contribution of sensory mechanisms to an auditory processing deficit shown by some children with language-learning impairment (LLI). Auditory brainstem responses (ABRs) were measured from 2 groups of school-aged (8-10 years) children. One group consisted of 10 children with LLI, and the other…
Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine
2010-01-01
Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…
Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.
ERIC Educational Resources Information Center
Miyamoto, Richard T.; Wong, Donald
2001-01-01
Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…
Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer
2017-10-28
The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.
Pearce, Wendy; Golding, Maryanne; Dillon, Harvey
2007-05-01
Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.
Deletion of Fmr1 Alters Function and Synaptic Inputs in the Auditory Brainstem
Rotschafer, Sarah E.; Marshak, Sonya; Cramer, Karina S.
2015-01-01
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1 -/- mice, an animal model of FXS. We found that Fmr1 -/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1 -/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1 -/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1 -/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem. PMID:25679778
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
Neonatal Auditory Brainstem Responses Recorded from Four Electrode Montages.
ERIC Educational Resources Information Center
Stuart, Andrew; And Others
1996-01-01
Simultaneous auditory brainstem responses (ABRs) to click stimuli at 30 and 60 decibels were recorded from 16 full-term neonates with 4 different electrode arrays. Results indicated that ABR waveforms were morphologically similar to those recorded in adults. Waveform expression was variable with different electrode recording montages. (Author/DB)
Clinical applications of the human brainstem responses to auditory stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Hecox, K.
1975-01-01
A technique utilizing the frequency following response (FFR) (obtained by auditory stimulation, whereby the stimulus frequency and duration are mirror-imaged in the resulting brainwaves) as a clinical tool for hearing disorders in humans of all ages is presented. Various medical studies are discussed to support the clinical value of the technique. The discovery and origin of the FFR and another significant brainstem auditory response involved in studying the eighth nerve is also discussed.
ERIC Educational Resources Information Center
Gorga, Michael P.; And Others
1989-01-01
Auditory brainstem responses (ABR) were measured in 535 children from 3 months to 3 years of age. Results suggested that changes in wave V latency with age are due to central (neural) factors and that age-appropriate norms should be used in evaluations of ABR latencies in children. (Author/DB)
Aberrant Lateralization of Brainstem Auditory Evoked Responses by Individuals with Down Syndrome.
ERIC Educational Resources Information Center
Miezejeski, Charles M.; And Others
1994-01-01
Brainstem auditory evoked response latencies were studied in 80 males (13 with Down's syndrome). Latencies for waves P3 and P5 were shorter for Down's syndrome subjects, who also showed a different pattern of left versus right ear responses. Results suggest decreased lateralization and receptive and expressive language ability among people with…
Electrophysiological Evidence for the Sources of the Masking Level Difference
ERIC Educational Resources Information Center
Fowler, Cynthia G.
2017-01-01
Purpose: The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). Method: A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used…
Exploring the Relationship between Physiological Measures of Cochlear and Brainstem Function
Dhar, S.; Abel, R.; Hornickel, J.; Nicol, T.; Skoe, E.; Zhao, W.; Kraus, N.
2009-01-01
Objective Otoacoustic emissions and the speech-evoked auditory brainstem response are objective indices of peripheral auditory physiology and are used clinically for assessing hearing function. While each measure has been extensively explored, their interdependence and the relationships between them remain relatively unexplored. Methods Distortion product otoacoustic emissions (DPOAE) and speech-evoked auditory brainstem responses (sABR) were recorded from 28 normal-hearing adults. Through correlational analyses, DPOAE characteristics were compared to measures of sABR timing and frequency encoding. Data were organized into two DPOAE (Strength and Structure) and five brainstem (Onset, Spectrotemporal, Harmonics, Envelope Boundary, Pitch) composite measures. Results DPOAE Strength shows significant relationships with sABR Spectrotemporal and Harmonics measures. DPOAE Structure shows significant relationships with sABR Envelope Boundary. Neither DPOAE Strength nor Structure is related to sABR Pitch. Conclusions The results of the present study show that certain aspects of the speech-evoked auditory brainstem responses are related to, or covary with, cochlear function as measured by distortion product otoacoustic emissions. Significance These results form a foundation for future work in clinical populations. Analyzing cochlear and brainstem function in parallel in different clinical populations will provide a more sensitive clinical battery for identifying the locus of different disorders (e.g., language based learning impairments, hearing impairment). PMID:19346159
Newborn Auditory Brainstem Evoked Responses (ABRs): Longitudinal Correlates in the First Year.
ERIC Educational Resources Information Center
Murray, Ann D.
1988-01-01
Aimed to determine to what degree newborns' auditory brainstem evoked responses (ABRs) predict delayed or impaired development during the first year. When 93 infants' ABRs were evaluated at three, six, and nine months, newborn ABR was moderately sensitive for detecting hearing impairment and more sensitive than other indicators in detecting…
ERIC Educational Resources Information Center
Student, M.; Sohmer, H.
1978-01-01
In an attempt to resolve the question as to whether children with autistic traits have an organic nervous system lesion, auditory nerve and brainstem evoked responses were recorded in a group of 15 children (4 to 12 years old) with autistic traits. (Author)
Newborn Auditory Brainstem Evoked Responses (ABRs): Prenatal and Contemporary Correlates.
ERIC Educational Resources Information Center
Murray, Ann D.
1988-01-01
Presented are a literature review and new data on correlates of newborn auditory brainstem evoked responses (ABRs). Concludes that disorders of the central components of the ABR may be more of prenatal than of postnatal origin. The I-V interval had low but reliable correlations with four of 11 Brazelton scale variables. (RH)
Learning Disability Assessed through Audiologic and Physiologic Measures: A Case Study.
ERIC Educational Resources Information Center
Greenblatt, Edward R.; And Others
1983-01-01
The report describes a child with central auditory dysfunction, the first reported case where brain-stem dysfunction on audiologic tests were associated with specific electrophysiologic changes in the brain-stem auditory-evoked responses. (Author/CL)
Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811
Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.
Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede
2016-11-25
Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
ERIC Educational Resources Information Center
Zaitoun, Maha; Cumming, Steven; Purcell, Alison; O'Brien, Katie
2017-01-01
Purpose: This study assesses the impact of patient clinical history on audiologists' performance when interpreting auditory brainstem response (ABR) results. Method: Fourteen audiologists' accuracy in estimating hearing threshold for 16 infants through interpretation of ABR traces was compared on 2 occasions at least 5 months apart. On the 1st…
ERIC Educational Resources Information Center
Stuart, Andrew; Yang, Edward Y.
1994-01-01
Simultaneous 3- channel recorded auditory brainstem responses (ABR) were obtained from 20 neonates with various high-pass filter settings and low intensity levels. Results support the advocacy of less restrictive high-pass filtering for neonatal and infant ABR screening to air-conducted and bone-conducted clicks. (Author/JDD)
ERIC Educational Resources Information Center
Billiet, Cassandra R.; Bellis, Teri James
2011-01-01
Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…
Auditory Brainstem Evoked Responses in Newborns with Down Syndrome
ERIC Educational Resources Information Center
Kittler, Phyllis M.; Phan, Ha T. T.; Gardner, Judith M.; Miroshnichenko, Inna; Gordon, Anne; Karmel, Bernard Z.
2009-01-01
Auditory brainstem evoked responses (ABRs) were compared in 15 newborns with Down syndrome and 15 sex-, age-, and weight-matched control newborns. Participants had normal ABRs based upon values specific to 32- to 42-weeks postconceptional age. Although Wave III and Wave V component latencies and the Wave I-III interpeak latency (IPL) were shorter…
Infant Temperament and the Brainstem Auditory Evoked Response in Later Childhood.
ERIC Educational Resources Information Center
Woodward, Sue A.; McManis, Mark H.; Kagan, Jerome; Deldin, Patricia; Snidman, Nancy; Lewis, Melissa; Kahn, Vali
2001-01-01
Evaluated brainstem auditory evoked responses (BAERs) on 10- to 12-year-olds who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. Found that children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, possibly suggesting greater excitability in…
Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance
ERIC Educational Resources Information Center
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-01-01
Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…
Screening the High-Risk Newborn for Hearing Loss: The Crib-O-Gram v the Auditory Brainstem Response.
ERIC Educational Resources Information Center
Cox, L. Clarke
1988-01-01
Presented are a rationale for identifying hearing loss in infancy and a history of screening procedures. The Crib-O-Gram and auditory brainstem response (ABR) tests are evaluated for reliability, validity, and cost-effectiveness. The ABR is recommended, and fully automated ABR instrumentation, which lowers expenses for trained personnel and…
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait
2012-01-01
This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917
Sanguebuche, Taissane Rodrigues; Peixe, Bruna Pias; Bruno, Rúbia Soares; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas
2018-01-01
Introduction The auditory system consists of sensory structures and central connections. The evaluation of the auditory pathway at a central level can be performed through behavioral and electrophysiological tests, because they are complementary to each other and provide important information about comprehension. Objective To correlate the findings of speech brainstem-evoked response audiometry with the behavioral tests Random Gap Detection Test and Masking Level Difference in adults with hearing loss. Methods All patients were submitted to a basic audiological evaluation, to the aforementioned behavioral tests, and to an electrophysiological assessment, by means of click-evoked and speech-evoked brainstem response audiometry. Results There were no statistically significant values among the electrophysiological test and the behavioral tests. However, there was a significant correlation between the V and A waves, as well as the D and F waves, of the speech-evoked brainstem response audiometry peaks. Such correlations are positive, indicating that the increase of a variable implies an increase in another and vice versa. Conclusion It was possible to correlate the findings of the speech-evoked brainstem response audiometry with those of the behavioral tests Random Gap Detection and Masking Level Difference. However, there was no statistically significant correlation between them. This shows that the electrophysiological evaluation does not depend uniquely on the behavioral skills of temporal resolution and selective attention. PMID:29379574
Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.
Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J
2014-04-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus
Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.
2014-01-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368
Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias
2016-01-01
The auditory-brainstem response (ABR) to short and simple acoustical signals is an important clinical tool used to diagnose the integrity of the brainstem. The ABR is also employed to investigate the auditory brainstem in a multitude of tasks related to hearing, such as processing speech or selectively focusing on one speaker in a noisy environment. Such research measures the response of the brainstem to short speech signals such as vowels or words. Because the voltage signal of the ABR has a tiny amplitude, several hundred to a thousand repetitions of the acoustic signal are needed to obtain a reliable response. The large number of repetitions poses a challenge to assessing cognitive functions due to neural adaptation. Here we show that continuous, non-repetitive speech, lasting several minutes, may be employed to measure the ABR. Because the speech is not repeated during the experiment, the precise temporal form of the ABR cannot be determined. We show, however, that important structural features of the ABR can nevertheless be inferred. In particular, the brainstem responds at the fundamental frequency of the speech signal, and this response is modulated by the envelope of the voiced parts of speech. We accordingly introduce a novel measure that assesses the ABR as modulated by the speech envelope, at the fundamental frequency of speech and at the characteristic latency of the response. This measure has a high signal-to-noise ratio and can hence be employed effectively to measure the ABR to continuous speech. We use this novel measure to show that the ABR is weaker to intelligible speech than to unintelligible, time-reversed speech. The methods presented here can be employed for further research on speech processing in the auditory brainstem and can lead to the development of future clinical diagnosis of brainstem function. PMID:27303286
NASA Technical Reports Server (NTRS)
Hoffman, L. F.; Horowitz, J. M.
1984-01-01
The effect of decreasing of brain temperature on the brainstem auditory evoked response (BAER) in rats was investigated. Voltage pulses, applied to a piezoelectric crystal attached to the skull, were used to evoke stimuli in the auditory system by means of bone-conducted vibrations. The responses were recorded at 37 C and 34 C brain temperatures. The peaks of the BAER recorded at 34 C were delayed in comparison with the peaks from the 37 C wave, and the later peaks were more delayed than the earlier peaks. These results indicate that an increase in the interpeak latency occurs as the brain temperature is decreased. Preliminary experiments, in which responses to brief angular acceleration were used to measure the brainstem vestibular evoked response (BVER), have also indicated increases in the interpeak latency in response to the lowering of brain temperature.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults
ERIC Educational Resources Information Center
Cobb, Kensi M.; Stuart, Andrew
2016-01-01
Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…
Brainstem auditory evoked responses and ophthalmic findings in llamas and alpacas in eastern Canada
Cullen, Cheryl L.; Lamont, Leigh A.
2006-01-01
Abstract Seventeen llamas and 23 alpacas of various coat and iris colors were evaluated for: 1) deafness by using brainstem auditory evoked response testing; and 2) for ocular abnormalities via complete ophthalmic examination. No animals were deaf. The most common ocular abnormalities noted were iris-to-iris persistent pupillary membranes and incipient cataracts. PMID:16536233
Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav
2018-03-01
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile
2014-03-01
This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.
Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem
TANG, YE-ZHONG; CARR, CATHERINE E.
2012-01-01
N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608
Brainstem transcription of speech is disrupted in children with autism spectrum disorders
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083
Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse
Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362
Adult plasticity in the subcortical auditory pathway of the maternal mouse.
Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.
Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...
ERIC Educational Resources Information Center
Roth, Daphne Ari-Even; Muchnik, Chava; Shabtai, Esther; Hildesheimer, Minka; Henkin, Yael
2012-01-01
Aim: The aim of this study was to characterize the auditory brainstem responses (ABRs) of young children with suspected autism spectrum disorders (ASDs) and compare them with the ABRs of children with language delay and with clinical norms. Method: The ABRs of 26 children with suspected ASDs (21 males, five females; mean age 32.5 mo) and an age-…
Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.
Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P
2016-08-01
The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.
Reduced auditory efferent activity in childhood selective mutism.
Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava
2004-06-01
Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.
2016-11-28
of low spontaneous rate auditory nerve fibers (ANFs) and reduction of auditory brainstem response wave-I amplitudes. The goal of this research is...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram
Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha
2012-08-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09-0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.
Encoding of speech sounds at auditory brainstem level in good and poor hearing aid performers.
Shetty, Hemanth Narayan; Puttabasappa, Manjula
Hearing aids are prescribed to alleviate loss of audibility. It has been reported that about 31% of hearing aid users reject their own hearing aid because of annoyance towards background noise. The reason for dissatisfaction can be located anywhere from the hearing aid microphone till the integrity of neurons along the auditory pathway. To measure spectra from the output of hearing aid at the ear canal level and frequency following response recorded at the auditory brainstem from individuals with hearing impairment. A total of sixty participants having moderate sensorineural hearing impairment with age range from 15 to 65 years were involved. Each participant was classified as either Good or Poor Hearing aid Performers based on acceptable noise level measure. Stimuli /da/ and /si/ were presented through loudspeaker at 65dB SPL. At the ear canal, the spectra were measured in the unaided and aided conditions. At auditory brainstem, frequency following response were recorded to the same stimuli from the participants. Spectrum measured in each condition at ear canal was same in good hearing aid performers and poor hearing aid performers. At brainstem level, better F 0 encoding; F 0 and F 1 energies were significantly higher in good hearing aid performers than in poor hearing aid performers. Though the hearing aid spectra were almost same between good hearing aid performers and poor hearing aid performers, subtle physiological variations exist at the auditory brainstem. The result of the present study suggests that neural encoding of speech sound at the brainstem level might be mediated distinctly in good hearing aid performers from that of poor hearing aid performers. Thus, it can be inferred that subtle physiological changes are evident at the auditory brainstem in a person who is willing to accept noise from those who are not willing to accept noise. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Durand-Rivera, A; Gonzalez-Pina, R; Hernandez-Godinez, B; Ibanez-Contreras, A; Bueno-Nava, A; Alfaro-Rodriguez, A
2012-10-01
We describe two clinical cases and examine the effects of piracetam on the brainstem auditory response in infantile female rhesus monkeys (Macaca mulatta). We found that the interwave intervals show a greater reduction in a 3-year-old rhesus monkey compared to a 1-year-old rhesus monkey. In this report, we discuss the significance of these observations. © 2012 John Wiley & Sons A/S.
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Herr, David W; Graff, Jaimie E; Moser, Virginia C; Crofton, Kevin M; Little, Peter B; Morgan, Daniel L; Sills, Robert C
2007-01-01
Carbonyl sulfide (COS), a chemical listed by the original Clean Air Act, was tested for neurotoxicity by a National Institute of Environmental Health Sciences/National Toxicology Program and U.S. Environmental Protection Agency collaborative investigation. Previous studies demonstrated that COS produced cortical and brainstem lesions and altered auditory neurophysiological responses to click stimuli. This paper reports the results of expanded neurophysiological examinations that were an integral part of the previously published experiments (Morgan et al., 2004, Toxicol. Appl. Pharmacol. 200, 131-145; Sills et al., 2004, Toxicol. Pathol. 32, 1-10). Fisher 334N rats were exposed to 0, 200, 300, or 400 ppm COS for 6 h/day, 5 days/week for 12 weeks, or to 0, 300, or 400 ppm COS for 2 weeks using whole-body inhalation chambers. After treatment, the animals were studied using neurophysiological tests to examine: peripheral nerve function, somatosensory-evoked potentials (SEPs) (tail/hindlimb and facial cortical regions), brainstem auditory-evoked responses (BAERs), and visual flash-evoked potentials (2-week study). Additionally, the animals exposed for 2 weeks were examined using a functional observational battery (FOB) and response modification audiometry (RMA). Peripheral nerve function was not altered for any exposure scenario. Likewise, amplitudes of SEPs recorded from the cerebellum were not altered by treatment with COS. In contrast, amplitudes and latencies of SEPs recorded from cortical areas were altered after 12-week exposure to 400 ppm COS. The SEP waveforms were changed to a greater extent after forelimb stimulation than tail stimulation in the 2-week study. The most consistent findings were decreased amplitudes of BAER peaks associated with brainstem regions after exposure to 400 ppm COS. Additional BAER peaks were affected after 12 weeks, compared to 2 weeks of treatment, indicating that additional regions of the brainstem were damaged with longer exposures. The changes in BAERs were observed in the absence of altered auditory responsiveness in FOB or RMA. This series of experiments demonstrates that COS produces changes in brainstem auditory and cortical somatosensory neurophysiological responses that correlate with previously described histopathological damage.
Inferior colliculus contributions to phase encoding of stop consonants in an animal model
Warrier, Catherine M; Abrams, Daniel A; Nicol, Trent G; Kraus, Nina
2011-01-01
The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase-differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady-state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. PMID:21945200
Stein, Aryeh D.; Wang, Meng; Rivera, Juan A.; Martorell, Reynaldo; Ramakrishnan, Usha
2012-01-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18–22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26–0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79–0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09–0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo. PMID:22739364
Golub, Mari S; Slotkin, Theodore A; Tarantal, Alice F; Pinkerton, Kent E
2007-06-02
The impact of perinatal exposure to environmental tobacco smoke (ETS) on cognitive development is controversial. We exposed rhesus monkeys to ETS or filtered air (5 animals per group) beginning in utero on day 50 of pregnancy and continuing throughout postnatal testing. In infancy, we evaluated both groups for visual recognition memory and auditory function (auditory brainstem response). The ETS group showed significantly less novelty preference in the visual recognition task whereas no effects on auditory function were detected. These preliminary results support the view that perinatal ETS exposure has adverse effects on cognitive function and indicate further that rhesus monkeys may provide a valuable nonhuman primate model for investigating this link.
Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju
2014-08-01
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)
NASA Astrophysics Data System (ADS)
Brittan-Powell, Elizabeth F.; Dooling, Robert J.
2004-06-01
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.
Brainstem Auditory Evoked Potential in HIV-Positive Adults.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C
2015-10-20
To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.
Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y
2011-05-01
To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
Klump, Georg M.; Tollin, Daniel J.
2016-01-01
The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077
Age-Related Changes in Binaural Interaction at Brainstem Level.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M
2016-01-01
Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.
NASA Astrophysics Data System (ADS)
Verhulst, Sarah; Shera, Christopher A.
2015-12-01
Forward and reverse cochlear latency and its relation to the frequency tuning of the auditory filters can be assessed using tone bursts (TBs). Otoacoustic emissions (TBOAEs) estimate the cochlear roundtrip time, while auditory brainstem responses (ABRs) to the same stimuli aim at measuring the auditory filter buildup time. Latency ratios are generally close to two and controversy exists about the relationship of this ratio to cochlear mechanics. We explored why the two methods provide different estimates of filter buildup time, and ratios with large inter-subject variability, using a time-domain model for OAEs and ABRs. We compared latencies for twenty models, in which all parameters but the cochlear irregularities responsible for reflection-source OAEs were identical, and found that TBOAE latencies were much more variable than ABR latencies. Multiple reflection-sources generated within the evoking stimulus bandwidth were found to shape the TBOAE envelope and complicate the interpretation of TBOAE latency and TBOAE/ABR ratios in terms of auditory filter tuning.
Electrically-evoked frequency-following response (EFFR) in the auditory brainstem of guinea pigs.
He, Wenxin; Ding, Xiuyong; Zhang, Ruxiang; Chen, Jing; Zhang, Daoxing; Wu, Xihong
2014-01-01
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.
Auditory brainstem response to complex sounds: a tutorial
Skoe, Erika; Kraus, Nina
2010-01-01
This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007
Cousineau, Marion; Bidelman, Gavin M.; Peretz, Isabelle; Lehmann, Alexandre
2015-01-01
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception. PMID:26720000
NASA Astrophysics Data System (ADS)
Lauter, Judith
2002-05-01
Several noninvasive methods are available for studying the neural bases of human sensory-motor function, but their cost is prohibitive for many researchers and clinicians. The auditory cross section (AXS) test battery utilizes relatively inexpensive methods, yet yields data that are at least equivalent, if not superior in some applications, to those generated by more expensive technologies. The acronym emphasizes access to axes-the battery makes it possible to assess dynamic physiological relations along all three body-brain axes: rostro-caudal (afferent/efferent), dorso-ventral, and right-left, on an individually-specific basis, extending from cortex to the periphery. For auditory studies, a three-level physiological ear-to-cortex profile is generated, utilizing (1) quantitative electroencephalography (qEEG); (2) the repeated evoked potentials version of the auditory brainstem response (REPs/ABR); and (3) otoacoustic emissions (OAEs). Battery procedures will be explained, and sample data presented illustrating correlated multilevel changes in ear, voice, heart, brainstem, and cortex in response to circadian rhythms, and challenges with substances such as antihistamines and Ritalin. Potential applications for the battery include studies of central auditory processing, reading problems, hyperactivity, neural bases of voice and speech motor control, neurocardiology, individually-specific responses to medications, and the physiological bases of tinnitus, hyperacusis, and related treatments.
Zakaria, Mohd Normani; Jalaei, Bahram
2017-11-01
Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Krizman, Jennifer; Skoe, Erika; Marian, Viorica; Kraus, Nina
2014-01-01
Auditory processing is presumed to be influenced by cognitive processes – including attentional control – in a top-down manner. In bilinguals, activation of both languages during daily communication hones inhibitory skills, which subsequently bolster attentional control. We hypothesize that the heightened attentional demands of bilingual communication strengthens connections between cognitive (i.e., attentional control) and auditory processing, leading to greater across-trial consistency in the auditory evoked response (i.e., neural consistency) in bilinguals. To assess this, we collected passively-elicited auditory evoked responses to the syllable [da] and separately obtained measures of attentional control and language ability in adolescent Spanish-English bilinguals and English monolinguals. Bilinguals demonstrated enhanced attentional control and more consistent brainstem and cortical responses. In bilinguals, but not monolinguals, brainstem consistency tracked with language proficiency and attentional control. We interpret these enhancements in neural consistency as the outcome of strengthened attentional control that emerged from experience communicating in two languages. PMID:24413593
McCullagh, Elizabeth A; Salcedo, Ernesto; Huntsman, Molly M; Klug, Achim
2017-11-01
Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances. © 2017 Wiley Periodicals, Inc.
Zucki, Fernanda; Morata, Thais C; Duarte, Josilene L; Ferreira, Maria Cecília F; Salgado, Manoel H; Alvarenga, Kátia F
The literature has reported the association between lead and auditory effects, based on clinical and experimental studies. However, there is no consensus regarding the effects of lead in the auditory system, or its correlation with the concentration of the metal in the blood. To investigate the maturation state of the auditory system, specifically the auditory nerve and brainstem, in rats exposed to lead acetate and supplemented with ferrous sulfate. 30 weanling male rats (Rattus norvegicus, Wistar) were distributed into six groups of five animals each and exposed to one of two concentrations of lead acetate (100 or 400mg/L) and supplemented with ferrous sulfate (20mg/kg). The maturation state of the auditory nerve and brainstem was analyzed using Brainstem Auditory Evoked Potential before and after lead exposure. The concentration of lead in blood and brainstem was analyzed using Inductively Coupled Plasma-Mass Spectrometry. We verified that the concentration of Pb in blood and in brainstem presented a high correlation (r=0.951; p<0.0001). Both concentrations of lead acetate affected the maturation state of the auditory system, being the maturation slower in the regions corresponding to portion of the auditory nerve (wave I) and cochlear nuclei (wave II). The ferrous sulfate supplementation reduced significantly the concentration of lead in blood and brainstem for the group exposed to the lowest concentration of lead (100mg/L), but not for the group exposed to the higher concentration (400mg/L). This study indicate that the lead acetate can have deleterious effects on the maturation of the auditory nerve and brainstem (cochlear nucleus region), as detected by the Brainstem Auditory Evoked Potentials, and the ferrous sulphate can partially amend this effect. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. All rights reserved.
Grose, John H; Buss, Emily; Hall, Joseph W
2017-01-01
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
Jiang, Ze D; Wang, Cui
2016-12-01
To examine brainstem auditory function at 36-37weeks of postconceptional age in preterm infants who are diagnosed to have neonatal chronic lung disease (CLD). Preterm infants, born at 31 and less weeks of gestation, were studied at 36-37weeks of postconceptional age when they were diagnosed to have neonatal CLD. Brainstem auditory evoked response (BAER) was recorded and analyzed at different click rates. Compared with healthy controls at the same postconceptional age, the CLD infants showed a slightly increase in BAER wave V latency. However, the I-V, and III-V interpeak intervals in the CLD infants were significantly increased. The III-V/I-III interval ratio was also significantly increased. The amplitudes of BAER waves III and V in the CLD infants tended to be reduced. These BAER findings were similar at all 21, 51 and 91/s clicks, although the abnormalities tended to be more significant at higher than at low click rates. At 36-37weeks of postconceptional age, BAER was abnormal in preterm infants who were diagnosed to have neonatal CLD. This suggests that at time when the diagnosis of CLD is made there is functional impairment, reflecting poor myelination, in the brainstem auditory pathway in preterm infants with neonatal CLD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Escera, Carles; Leung, Sumie; Grimm, Sabine
2014-07-01
Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Sparreboom, Marloes; Beynon, Andy J; Snik, Ad F M; Mylanus, Emmanuel A M
2016-07-01
In many studies evaluating the effect of sequential bilateral cochlear implantation in congenitally deaf children, device use is not taken into account. In this study, however, device use was analyzed in relation to auditory brainstem maturation and speech recognition, which were measured in children with early-onset deafness, 5-6 years after bilateral cochlear implantation. We hypothesized that auditory brainstem maturation is mostly functionally driven by auditory stimulation and is therefore influenced by device use and not mainly by inter-implant delay. Twenty-one children participated and had inter-implant delays between 1.2 and 7.2 years. The electrically-evoked auditory brainstem response was measured for both implants separately. The difference in interaural wave V latency and speech recognition between both implants were used in the analyses. Device use was measured with a Likert scale. Results showed that the less the second device is used, the larger the difference in interaural wave V latencies is, which consequently leads to larger differences in interaural speech recognition. In children with early-onset deafness, after various periods of unilateral deprivation, full-time device use can lead to similar auditory brainstem responses and speech recognition between both ears. Therefore, device use should be considered as a relevant factor contributing to outcomes after sequential bilateral cochlear implantation. These results are indicative for a longer window between implantations in children with early-onset deafness to obtain symmetrical auditory pathway maturation than is mentioned in the literature. Results, however, must be interpreted as preliminary findings as actual device use with data logging was not yet available at the time of the study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Song, Mee Hyun; Bae, Mi Ran; Kim, Hee Nam; Lee, Won-Sang; Yang, Won Sun; Choi, Jae Young
2010-08-01
Cochlear implantation in patients with narrow internal auditory canal (IAC) can result in variable outcomes; however, preoperative evaluations have limitations in accurately predicting outcomes. In this study, we analyzed the outcomes of cochlear implantation in patients with narrow IAC and correlated the intracochlear electrically evoked auditory brainstem response (EABR) findings to postoperative performance to determine the prognostic significance of intracochlear EABR. Retrospective case series at a tertiary hospital. Thirteen profoundly deaf patients with narrow IAC who received cochlear implantation from 2002 to 2008 were included in this study. Postoperative performance was evaluated after at least 12 months of follow-up, and postoperative intracochlear EABR was measured to determine its correlation with outcome. The clinical significance of electrically evoked compound action potential (ECAP) was also analyzed. Patients with narrow IAC showed postoperative auditory performances ranging from CAP 0 to 4 after cochlear implantation. Intracochlear EABR measured postoperatively demonstrated prognostic value in the prediction of long-term outcomes, whereas ECAP measurements failed to show a significant correlation with outcome. Consistent with the advantages of intracochlear EABR over extracochlear EABR, this study demonstrates that intracochlear EABR has prognostic significance in predicting long-term outcomes in patients with narrow IAC. Intracochlear EABR measured either intraoperatively or in the early postoperative period may play an important role in deciding whether to continue with auditory rehabilitation using a cochlear implant or to switch to an auditory brainstem implant so as not to miss the optimal timing for language development.
Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
Kraus, Nina; Nicol, Trent
2005-04-01
We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.
Crowell, Sara E.; Wells-Berlin, Alicia M.; Therrien, Ronald E.; Yannuzzi, Sally E.; Carr, Catherine E.
2016-01-01
Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000−3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.
Crowell, Sara E; Wells-Berlin, Alicia M; Therrien, Ronald E; Yannuzzi, Sally E; Carr, Catherine E
2016-05-01
Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Galbraith, G C; Jhaveri, S P; Kuo, J
1997-01-01
Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.
Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds
Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.
2005-01-01
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos
2013-01-01
Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.
Pasman, J W; Rotteveel, J J; de Graaf, R; Stegeman, D F; Visco, Y M
1992-12-01
Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.
Pinniped Hearing in Complex Acoustic Environments
2013-09-30
published] Mulsow, J. & Reichmuth, C. (2013). The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus...California sea lion can keep the beat : Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, online first. [published
Speech-evoked auditory brainstem responses in children with hearing loss.
Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine
2017-08-01
The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.
Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.
Thakur, L; Anand, J P; Banerjee, P K
2004-10-01
The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.
Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-01-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557
Huang, Lihui; Han, Demin; Guo, Ying; Liu, Sha; Cui, Xiaoyan; Mo, Lingyan; Qi, Beier; Cai, Zhenghua; Liu, Hui; En, Hui; Guo, Liansheng
2008-10-01
Audiological characteristics were investigated in 81 ears of 53 infants with abnormal transient evoked otoacoustic emission (TEOAE) and normal auditory brainstem response (ABR). The relationship between ABR and other hearing testing methods, including 40Hz auditory event-related potential (40Hz-AERP), auditory steady state response (ASSR), distortion product otoacoustic emission (DPOAE), tympanometry, and acoustic reflex, was analyzed. Of the 81 ears, 18 ears (22.2%) were normal, while 63 ears (77.8%) were abnormal according to the tests. Testing of the 40 Hz AERP (36 ears) and ASSR (45 ears) revealed that 14 ears (38.9%) and 27 ears (60.0%) were abnormal, respectively. Testing of DPOAE in 68 ears revealed that 50 ears (73.5%) were abnormal. Testing of tympanometry in 50 ears and acoustic reflex in 47 ears revealed that 9 ears (18%) and 27 ears (57.4%) were abnormal, respectively. The present data suggests that the hearing of infants cannot be sufficiently evaluated with ABR only and that it must be evaluated with integrative audiological testing methods.
Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale
2017-04-01
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Hall, Joseph W.; Grose, John H.
1993-01-01
This study of 14 children (ages 5-9) with a history of otitis media with effusion found that subjects had significantly reduced masking-level differences (MLD) compared to controls. Results suggest that the reduction in MLD may be related to abnormal brainstem processing. (Author/JDD)
The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response.
Carcagno, Samuele; Plack, Christopher J; Portron, Arthur; Semal, Catherine; Demany, Laurent
2014-08-01
The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this "enhancement" phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a target tone that was not enhanced. In order to record neural responses originating in the brainstem, the ASSR was elicited by amplitude modulating the target tone at a frequency close to 80 Hz. The results did not show evidence of an amplified neural response to enhanced tones. In a control condition, we measured the ASSR to a target tone that, instead of being perceptually enhanced by a precursor sound, was acoustically increased in level. This level increase matched the magnitude of enhancement estimated psychophysically with a forward masking paradigm in a previous experimental phase. We found that the ASSR to the tone acoustically increased in level was significantly greater than the ASSR to the tone enhanced by the precursor sound. Overall, our results suggest that the enhancement effect cannot be explained by an amplified neural response at the level of the brainstem. However, an alternative possibility is that brainstem neurons with enhanced responses do not contribute to the scalp-recorded ASSR.
Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-06-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Keohane, Bernie M; Mason, Steve M; Baguley, David M
2004-02-01
A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.
Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, a metabolite of carbon disulfide, a byproduct of the combustion of organic material, and a naturally occurring compound. COS was included in a Toxic Substances Control Act request fo...
Krishnan, Ananthanarayan; Gandour, Jackson T
2014-12-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
Krishnan, Ananthanarayan; Gandour, Jackson T.
2015-01-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information. PMID:25838636
Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.
ERIC Educational Resources Information Center
Wong, Virginia; Wong, Sik Nin
1991-01-01
Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…
Round window closure affects cochlear responses to suprathreshold stimuli.
Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua
2013-12-01
The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Wang, Qiuju; Gu, Rui; Han, Dongyi; Yang, Weiyan
2003-09-01
Auditory neuropathy is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses and normal cochlear outer hair cell function as measured by otoacoustic emission recordings. Many risk factors are thought to be involved in its etiology and pathophysiology. Four Chinese pedigrees with familial auditory neuropathy were presented to demonstrate involvement of genetic factors in the etiology of auditory neuropathy. Probands of the above-mentioned pedigrees, who had been diagnosed with auditory neuropathy, were evaluated and followed in the Department of Otolaryngology-Head and Neck Surgery, China People Liberation Army General Hospital (Beijing, China). Their family members were studied, and the pedigree maps established. History of illness, physical examination, pure-tone audiometry, acoustic reflex, auditory brainstem responses, and transient evoked and distortion-product otoacoustic emissions were obtained from members of these families. Some subjects received vestibular caloric testing, computed tomography scan of the temporal bone, and electrocardiography to exclude other possible neuropathic disorders. In most affected patients, hearing loss of various degrees and speech discrimination difficulties started at 10 to 16 years of age. Their audiological evaluation showed absence of acoustic reflex and auditory brainstem responses. As expected in auditory neuropathy, these patients exhibited near-normal cochlear outer hair cell function as shown in distortion product otoacoustic emission recordings. Pure-tone audiometry revealed hearing loss ranging from mild to profound in these patients. Different inheritance patterns were observed in the four families. In Pedigree I, 7 male patients were identified among 43 family members, exhibiting an X-linked recessive pattern. Affected brothers were found in Pedigrees II and III, whereas in pedigree IV, two sisters were affected. All the patients were otherwise normal without evidence of peripheral neuropathy at the time of writing. Patients with characteristics of nonsyndromic hereditary auditory neuropathy were identified in one large and three smaller Chinese families. Pedigree analysis suggested an X-linked, recessive hereditary pattern in one pedigree and autosomal recessive inheritances in the other three pedigrees. The phenotypes in the study were typical of auditory neuropathy; they were transmitted in different inheritance patterns, indicating clinical and genetic heterogeneity of this disorder. The observed inheritance and clinical audiological findings are different from those previously described for nonsyndromic low-frequency sensorineural hearing loss. This information should facilitate future molecular linkage analyses and positional cloning for the relative genes contributing to auditory neuropathy.
Lina, Ioan A; Lauer, Amanda M
2013-04-01
The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.
Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.
2009-01-01
Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118
Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.
Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan
2018-06-01
Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.
Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants
Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.
2008-01-01
In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839
Akhoun, Idrick; Moulin, Annie; Jeanvoine, Arnaud; Ménard, Mikael; Buret, François; Vollaire, Christian; Scorretti, Riccardo; Veuillet, Evelyne; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung
2008-11-15
Speech elicited auditory brainstem responses (Speech ABR) have been shown to be an objective measurement of speech processing in the brainstem. Given the simultaneous stimulation and recording, and the similarities between the recording and the speech stimulus envelope, there is a great risk of artefactual recordings. This study sought to systematically investigate the source of artefactual contamination in Speech ABR response. In a first part, we measured the sound level thresholds over which artefactual responses were obtained, for different types of transducers and experimental setup parameters. A watermelon model was used to model the human head susceptibility to electromagnetic artefact. It was found that impedances between the electrodes had a great effect on electromagnetic susceptibility and that the most prominent artefact is due to the transducer's electromagnetic leakage. The only artefact-free condition was obtained with insert-earphones shielded in a Faraday cage linked to common ground. In a second part of the study, using the previously defined artefact-free condition, we recorded speech ABR in unilateral deaf subjects and bilateral normal hearing subjects. In an additional control condition, Speech ABR was recorded with the insert-earphones used to deliver the stimulation, unplugged from the ears, so that the subjects did not perceive the stimulus. No responses were obtained from the deaf ear of unilaterally hearing impaired subjects, nor in the insert-out-of-the-ear condition in all the subjects, showing that Speech ABR reflects the functioning of the auditory pathways.
Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem
Tzounopoulos, Thanos; Kraus, Nina
2009-01-01
Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149
Evaluation of Hearing in Children with Autism by Using TEOAE and ABR
ERIC Educational Resources Information Center
Tas, Abdullah; Yagiz, Recep; Tas, Memduha; Esme, Meral; Uzun, Cem; Karasalihoglu, Ahmet Rifat
2007-01-01
Assessment of auditory abilities is important in the diagnosis and treatment of children with autism. The aim was to evaluate hearing objectively by using transient evoked otoacoustic emission (TEOAE) and auditory brainstem response (ABR). Tests were performed on 30 children with autism and 15 typically developing children, following otomicroscopy…
Liu, Fang; Maggu, Akshay R.; Lau, Joseph C. Y.; Wong, Patrick C. M.
2015-01-01
Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain. PMID:25646077
Liu, Fang; Maggu, Akshay R; Lau, Joseph C Y; Wong, Patrick C M
2014-01-01
Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.
Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve.
Sekiya, Tetsuji; Holley, Matthew C; Kojima, Ken; Matsumoto, Masahiro; Helyer, Richard; Ito, Juichi
2007-04-01
Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.
The Role of the Auditory Brainstem in Processing Linguistically-Relevant Pitch Patterns
ERIC Educational Resources Information Center
Krishnan, Ananthanarayan; Gandour, Jackson T.
2009-01-01
Historically, the brainstem has been neglected as a part of the brain involved in language processing. We review recent evidence of language-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem. We argue that there is enhancing…
Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula
2017-08-02
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS. Copyright © 2017 the authors 0270-6474/17/377403-17$15.00/0.
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
The Role of the Auditory Brainstem in Processing Musically Relevant Pitch
Bidelman, Gavin M.
2013-01-01
Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294
Auditory Brainstem Responses in Young Males with Fragile X Syndrome
ERIC Educational Resources Information Center
Roberts, Joanne; Hennon, Elizabeth A.; Anderson, Kathleen; Roush, Jackson; Gravel, Judith; Skinner, Martie; Misenheimer, Jan; Reitz, Patricia
2005-01-01
Fragile X syndrome (FXS) is the most common inherited cause of mental retardation resulting in developmental delays in males. Atypical outer ear morphology is characteristic of FXS and may serve as a marker for abnormal auditory function. Despite this abnormality, studies of the hearing of young males with FXS are generally lacking. A few studies…
Bidelman, Gavin M; Alain, Claude
2015-02-01
Natural soundscapes often contain multiple sound sources at any given time. Numerous studies have reported that in human observers, the perception and identification of concurrent sounds is paralleled by specific changes in cortical event-related potentials (ERPs). Although these studies provide a window into the cerebral mechanisms governing sound segregation, little is known about the subcortical neural architecture and hierarchy of neurocomputations that lead to this robust perceptual process. Using computational modeling, scalp-recorded brainstem/cortical ERPs, and human psychophysics, we demonstrate that a primary cue for sound segregation, i.e., harmonicity, is encoded at the auditory nerve level within tens of milliseconds after the onset of sound and is maintained, largely untransformed, in phase-locked activity of the rostral brainstem. As then indexed by auditory cortical responses, (in)harmonicity is coded in the signature and magnitude of the cortical object-related negativity (ORN) response (150-200 ms). The salience of the resulting percept is then captured in a discrete, categorical-like coding scheme by a late negativity response (N5; ~500 ms latency), just prior to the elicitation of a behavioral judgment. Subcortical activity correlated with cortical evoked responses such that weaker phase-locked brainstem responses (lower neural harmonicity) generated larger ORN amplitude, reflecting the cortical registration of multiple sound objects. Studying multiple brain indices simultaneously helps illuminate the mechanisms and time-course of neural processing underlying concurrent sound segregation and may lead to further development and refinement of physiologically driven models of auditory scene analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
BAER - brainstem auditory evoked response
... Updated by: Sumana Jothi, MD, specialist in laryngology, Assistant Clinical Professor, UCSF Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, ...
Audiological and electrophysiological assessment of professional pop/rock musicians.
Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M
2012-01-01
In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.
ERIC Educational Resources Information Center
Jiang, Ze D.
1998-01-01
A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)
Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2009-12-01
We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.
Impact of monaural frequency compression on binaural fusion at the brainstem level.
Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I
2015-08-01
A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.
Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J
2008-01-01
We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.
Källstrand, Johan; Olsson, Olle; Nehlstedt, Sara Fristedt; Sköld, Mia Ling; Nielzén, Sören
2010-01-01
Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward masking in adults diagnosed with Asperger syndrome (AS). Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16), schizophrenic patients (n = 16) and attention deficit hyperactivity disorder patients (n = 16), respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005), which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking) may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases. PMID:20628629
Block-Dependent Sedation during Epidural Anaesthesia is Associated with Delayed Brainstem Conduction
Wadhwa, Anupama; Shah, Yunus M.; Lin, Chum-Ming; Haugh, Gilbert S.; Sessler, Daniel I.
2005-01-01
Neuraxial anaesthesia produces a sedative and anesthetic-sparing effect. Recent evidence suggests that spinal cord anaesthesia modifies reticulo-thalamo-cortical arousal by decreasing afferent sensory transmission. We hypothesized that epidural anaesthesia produces sensory deafferentation-dependent sedation that is associated with impairment of brainstem transmission. We used brainstem auditory evoked potentials (BAEP) to evaluate reticular function in 11 volunteers. Epidural anaesthesia was induced with 2% 2-chloroprocaine. Hemodynamic and respiratory responses, sensory block level, sedation depth and BAEP were assessed throughout induction and resolution of epidural anaesthesia. Sedation was evaluated using verbal rating score (VRS), observer's assessment alertness/sedation (OAA/S) score, and bispectral index (BIS). Prediction probability (PK) was used to associate sensory block with sedation, as well as BIS with other sedation measures. Spearman rank order correlation was used to associate block level and sedation with the absolute and interpeak BAEP latencies. Sensory block level significantly predicted VRS (PK = 0.747), OAA/S score (PK = 0.748) and BIS. Bispectral index predicted VRS and OAA/S score (PK = 0.728). The latency of wave III of BAEP significantly correlated with sedation level (rho = 0.335, P < 0.01) and sensory block (rho = 0.394, P < 0.01). The other BAEP parameters did not change during epidural anaesthesia. Hemodynamic and respiratory responses remained stable throughout the study. Sedation during epidural anaesthesia depends on sensory block level and is associated with detectable block-dependent alterations in the brainstem auditory evoked responses. Sensory deafferentation may reduce CNS alertness through mechanisms related to brainstem neural activity. PMID:15220178
Plasticity in the adult human auditory brainstem following short-term linguistic training
Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina
2009-01-01
Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594
Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar dos Santos
2017-01-01
Introduction The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months. PMID:29018492
Beneficial auditory and cognitive effects of auditory brainstem implantation in children.
Colletti, Liliana
2007-09-01
This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.
Short GSM mobile phone exposure does not alter human auditory brainstem response.
Stefanics, Gábor; Kellényi, Lóránd; Molnár, Ferenc; Kubinyi, Györgyi; Thuróczy, György; Hernádi, István
2007-11-12
There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Auditory Brainstem Response (ABR) was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18-26 years) with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF) emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
Electrophysiological measurement of human auditory function
NASA Technical Reports Server (NTRS)
Galambos, R.
1975-01-01
Knowledge of the human auditory evoked response is reviewed, including methods of determining this response, the way particular changes in the stimulus are coupled to specific changes in the response, and how the state of mind of the listener will influence the response. Important practical applications of this basic knowledge are discussed. Measurement of the brainstem evoked response, for instance, can state unequivocally how well the peripheral auditory apparatus functions. It might then be developed into a useful hearing test, especially for infants and preverbal or nonverbal children. Clinical applications of measuring the brain waves evoked 100 msec and later after the auditory stimulus are undetermined. These waves are clearly related to brain events associated with cognitive processing of acoustic signals, since their properties depend upon where the listener directs his attention and whether how long he expects the signal.
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
Marsh, John E.; Campbell, Tom A.
2016-01-01
The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.
Marsh, John E; Campbell, Tom A
2016-01-01
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.
Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses.
Clinard, Christopher G; Hodgson, Sarah L; Scherer, Mary Ellen
2017-04-01
The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (S π N o or S o N π , respectively), relative to detection when signal and noise are in identical phase at each ear (S o N o ). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: S o N o , S π N o , and S o N π . BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21-26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the S π N o condition relative to S o N o and S o N π conditions, consistent with negative effects of phase summation from left and right ear FFRs. FFR amplitude differences between stimulus conditions (e.g., S o N o amplitude-S π N o amplitude) were significantly predictive of behavioral S π N o BMLDs; individuals with larger amplitude differences had larger (better) behavioral B MLDs and individuals with smaller amplitude differences had smaller (poorer) behavioral B MLDs. These data indicate a role for sustained phase-locked neural activity in BMLDs of humans and are the first to show predictive relationships between behavioral BMLDs and human brainstem responses.
An Analysis of The Parameters Used In Speech ABR Assessment Protocols.
Sanfins, Milaine D; Hatzopoulos, Stavros; Donadon, Caroline; Diniz, Thais A; Borges, Leticia R; Skarzynski, Piotr H; Colella-Santos, Maria Francisca
2018-04-01
The aim of this study was to assess the parameters of choice, such as duration, intensity, rate, polarity, number of sweeps, window length, stimulated ear, fundamental frequency, first formant, and second formant, from previously published speech ABR studies. To identify candidate articles, five databases were assessed using the following keyword descriptors: speech ABR, ABR-speech, speech auditory brainstem response, auditory evoked potential to speech, speech-evoked brainstem response, and complex sounds. The search identified 1288 articles published between 2005 and 2015. After filtering the total number of papers according to the inclusion and exclusion criteria, 21 studies were selected. Analyzing the protocol details used in 21 studies suggested that there is no consensus to date on a speech-ABR protocol and that the parameters of analysis used are quite variable between studies. This inhibits the wider generalization and extrapolation of data across languages and studies.
Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆
Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; Xu, Tao
2012-01-01
In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited. Immunohistochemical staining and western blot analysis showed that the expression of phosphorylated p38 mitogen-activated protein kinase and phosphorylated c-Jun N-terminal kinase in mouse cochlea was significantly decreased. The experimental findings suggest that phosphorylated p38 and phosphorylated c-Jun N-terminal kinase mediated kanamycin-induced ototoxic injury in BALB/c mice. Alpha-lipoic acid effectively attenuated kanamycin ototoxicity by inhibiting the kanamycin-induced high expression of phosphorylated p38 and phosphorylated c-Jun N-terminal kinase. PMID:25317129
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652
Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent
2017-09-01
The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.
A novel method of brainstem auditory evoked potentials using complex verbal stimuli.
Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios
2014-08-01
The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. We describe a new method with the use of the disyllable word "baba" corresponding to English "daddy" that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli "baba" were found to be significantly increased in the dyslexic group in comparison with the control group. The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management.
Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-02-01
To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
Reiman, Milla; Parkkola, Riitta; Johansson, Reijo; Jääskeläinen, Satu K; Kujari, Harry; Lehtonen, Liisa; Haataja, Leena; Lapinleimu, Helena
2009-08-01
Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2010-01-01
Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.
Lee, Jyung Hyun; Park, Hyo Soon; Wei, Qun; Kim, Myoung Nam; Cho, Jin-Ho
2017-01-02
ABSTACT To ensure the safety and efficacy of implantable hearing aids, animal experiments are an essential developmental procedure, in particular, auditory brainstem responses (ABRs) can be used to verify the objective effectiveness of implantable hearing aids. This study measured and compared the ABRs generated when applying the same vibration stimuli to an oval window and round window. The ABRs were measured using a TDT system 3 (TDT, USA), while the vibration stimuli were applied to a round window and oval window in 4 guinea pigs using a piezo-electric transducer with a proper contact tip. A paired t-test was used to determine any differences between the ABR amplitudes when applying the stimulation to an oval window and round window. The paired t-test revealed a significant difference between the ABR amplitudes generated by the round and oval window stimulation (t = 10.079, α < .0001). Therefore, the results confirmed that the biological response to round window stimulation was not the same as that to oval window stimulation.
A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement
2015-10-01
guinea pigs . Initial results show improved electrically-evoked auditory brainstem responses in cell-seeded implants compared to control, cell-free...scaffold’s conduit, but the IAM of the guinea pig and limits imposed by the surgical approach make this difficult. Alternatives are being pursued...transplantation of the seeded nanofibrous scaffold Task 13. Group 1: Pilot deafening. Confirm efficacy of ß-bungarotoxin in guinea pig and time point of
Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander
2016-08-01
We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.
A comparison of auditory brainstem responses across diving bird species
Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.
2015-01-01
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.
A comparison of auditory brainstem responses across diving bird species
Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.
2015-01-01
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644
A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
Willis, Katie L; Carr, Catherine E
2017-11-15
The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles. © 2017. Published by The Company of Biologists Ltd.
Krishnan, Ananthanarayan; Bidelman, Gavin M; Smalt, Christopher J; Ananthakrishnan, Saradha; Gandour, Jackson T
2012-10-01
Neural representation of pitch-relevant information at both the brainstem and cortical levels of processing is influenced by language or music experience. However, the functional roles of brainstem and cortical neural mechanisms in the hierarchical network for language processing, and how they drive and maintain experience-dependent reorganization are not known. In an effort to evaluate the possible interplay between these two levels of pitch processing, we introduce a novel electrophysiological approach to evaluate pitch-relevant neural activity at the brainstem and auditory cortex concurrently. Brainstem frequency-following responses and cortical pitch responses were recorded from participants in response to iterated rippled noise stimuli that varied in stimulus periodicity (pitch salience). A control condition using iterated rippled noise devoid of pitch was employed to ensure pitch specificity of the cortical pitch response. Neural data were compared with behavioral pitch discrimination thresholds. Results showed that magnitudes of neural responses increase systematically and that behavioral pitch discrimination improves with increasing stimulus periodicity, indicating more robust encoding for salient pitch. Absence of cortical pitch response in the control condition confirms that the cortical pitch response is specific to pitch. Behavioral pitch discrimination was better predicted by brainstem and cortical responses together as compared to each separately. The close correspondence between neural and behavioral data suggest that neural correlates of pitch salience that emerge in early, preattentive stages of processing in the brainstem may drive and maintain with high fidelity the early cortical representations of pitch. These neural representations together contain adequate information for the development of perceptual pitch salience. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review
Anderson, Samira; Kraus, Nina
2011-01-01
Background Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker’s voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system’s transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training. PMID:21241645
Zhang, Daogong; Fan, Zhaomin; Han, Yuechen; Wang, Mingming; Xu, Lei; Luo, Jianfen; Ai, Yu; Wang, Haibo
2012-01-01
To investigate the diagnostic value of vestibular test and high stimulus rate auditory brainstem response (ABR) test and the possible mechanism responsible for benign paroxysmal vertigo of childhood (BPVC). Data of 56 patients with BPVC in vertigo clinic of our hospital from May 2007 to September 2008 were retrospectively analyzed in this study. Patients with BPVC were tested with pure tone audiometry, high stimulus rate auditory brainstem response test (ABR), transcranial Doppler sonography (TCD), bithermal caloric test, and VEMP. The results of the hearing and vestibular function test were compared and analyzed. There were 56 patients with BPVC, including 32 men, 24 women, aged 3-12 years old, with an average of 6.5 years. Among 56 cases of BPVC patients, the results of pure tone audiometry were all normal. High stimulus rate ABR was abnormal in 66.1% (37/56) of cases. TCD showed 57.1% abnormality in 56 cases, including faster flow rate in 28 cases and slower flow rate in 4 cases. High stimulus rate ABR and TCD were both abnormal in 48.2% (27/56) of cases. Bithermal caloric test was abnormal in 14.3% (8/56) of cases. VEMP showed 32.1% abnormality, including amplitude abnormality in 16 cases and latency abnormality in 2 cases. The abnormal rate of VEMP was much higher than that of caloric test. Vascular mechanisms might be involved in the pathogenesis of BPVC and there is strong evidence for close relationship between BPVC and migraine. High stimulus rate ABR is helpful in the diagnosis of BPVC. The inferior vestibular pathway is much more impaired than the superior vestibular pathway in BPVC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio
Angrisani, Rosanna M. Giaffredo; Bautzer, Ana Paula D.; Matas, Carla Gentile; de Azevedo, Marisa Frasson
2013-01-01
OBJECTIVE: To investigate the influence of gender and weight/gestational age ratio on the Auditory Brainstem Response (ABR) in preterm (PT) and term (T) newborns. METHODS: 176 newborns were evaluated by ABR; 88 were preterm infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). The preterm infants were compared to 88 term infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). All newborns had bilateral presence of transient otoacoustic emissions and type A tympanometry. RESULTS: No interaural differences were found. ABR response did not differentiate newborns regarding weight/gestational age in males and females. Term newborn females showed statistically shorter absolute latencies (except on wave I) than males. This finding did not occur in preterm infants, who had longer latencies than term newborns, regardless of gender. CONCLUSIONS: Gender and gestational age influence term infants' ABR, with lower responses in females. The weight/gestational age ratio did not influence ABR response in either groups. PMID:24473955
[Forensic application of brainstem auditory evoked potential in patients with brain concussion].
Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin
2008-12-01
To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (P<0.05). The abnormal rate of BAEP in the brainstem pathway for patients with brain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.
Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar
2017-01-01
Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399
Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem
Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M.; Studer, Michèle
2013-01-01
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. PMID:23408898
Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.
Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M; Studer, Michèle
2013-01-01
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.
Effects of acute brainstem compression on auditory brainstem response in the guinea pig.
Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F
1998-11-01
The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.
NASA Astrophysics Data System (ADS)
Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza
The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence.
Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles
2015-01-01
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective.
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence
Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles
2015-01-01
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628
Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.
2012-01-01
Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR. PMID:22666193
Elberling, Claus; Don, Manuel
2010-01-01
A recent study evaluates auditory brainstem responses (ABRs) evoked by chirps of different durations (sweeping rates) [Elberling et al. (2010). J. Acoust. Soc. Am. 128, 215–223]. The study demonstrates that shorter chirps are most efficient at higher levels of stimulation whereas longer chirps are most efficient at lower levels. Mechanisms other than the traveling wave delay, in particular, upward spread of excitation and changes in cochlear-neural delay with level, are suggested to be responsible for these findings. As a consequence, delay models based on estimates of the traveling wave delay are insufficient for the design of chirp stimuli, and another delay model based on a direct approach is therefore proposed. The direct approach uses ABR-latencies from normal-hearing subjects in response to octave-band chirps over a wide range of levels. The octave-band chirps are constructed by decomposing a broad-band chirp, and constitute a subset of the chirp. The delay compensations of the proposed model are similar to those found in the previous experimental study, which thus verifies the results of the proposed model. PMID:21110591
Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.
2017-01-01
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254
Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T
2017-03-27
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Brainstem auditory evoked responses in an equine patient population: part I--adult horses.
Aleman, M; Holliday, T A; Nieto, J E; Williams, D C
2014-01-01
Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms.
Szymanski, M D; Bain, D E; Kiehl, K; Pennington, S; Wong, S; Henry, K R
1999-08-01
Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.
... ears. Brainstem Implant - auditory prosthesis that bypasses the cochlea and auditory nerve. This type of implant helps individuals who cannot benefit from a cochlear implant because the auditory nerves are not working. ...
Ito, Tetsufumi; Bishop, Deborah C.; Oliver, Douglas L.
2011-01-01
Glutamate is the main excitatory neurotransmitter in the auditory system, but associations between glutamatergic neuronal populations and the distribution of their synaptic terminations have been difficult. Different subsets of glutamatergic terminals employ one of three vesicular glutamate transporters (VGLUT) to load synaptic vesicles. Recently, VGLUT1 and VGLUT2 terminals were found to have different patterns of organization in the inferior colliculus suggesting that there are different types of glutamatergic neurons in the brainstem auditory system with projections to the colliculus. To positively identify VGLUT-expressing neurons as well as inhibitory neurons in the auditory brainstem, we used in situ hybridization to identify the mRNA for VGLUT1, VGLUT2, and VIAAT (the vesicular inhibitory amino acid transporter used by GABAergic and glycinergic terminals). Similar expression patterns were found in subsets of glutamatergic and inhibitory neurons in the auditory brainstem and thalamus of adult rats and mice. Four patterns of gene expression were seen in individual neurons. 1) VGLUT2 expressed alone was the prevalent pattern. 2) VGLUT1 co-expressed with VGLUT2 was seen in scattered neurons in most nuclei but was common in the medial geniculate body and ventral cochlear nucleus. 3) VGLUT1 expressed alone was found only in granule cells. 4) VIAAT expression was common in most nuclei but dominated in some. These data show that the expression of the VGLUT1/2 and VIAAT genes can identify different subsets of auditory neurons. This may facilitate the identification of different components in auditory circuits. PMID:21165977
A Novel Method of Brainstem Auditory Evoked Potentials Using Complex Verbal Stimuli
Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios
2014-01-01
Background: The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Aims: Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. Materials and Methods: We describe a new method with the use of the disyllable word “baba” corresponding to English “daddy” that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. Results: This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli “baba” were found to be significantly increased in the dyslexic group in comparison with the control group. Conclusions: The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management. PMID:25210677
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.
Moncho, Dulce; Poca, Maria A; Minoves, Teresa; Ferré, Alejandro; Sahuquillo, Juan
2015-10-01
Limits of the interside differences are invaluable when interpreting asymmetry in brainstem auditory evoked potentials and somatosensory evoked potentials (SEP) recordings. The aim of this study was to analyze the normal upper limits of interside latency differences of brainstem auditory evoked potentials and SEP from the posterior tibial nerve and median nerve to determine asymmetry. The authors performed a prospective study in 56 healthy subjects aged 15 to 64 years with no neurological or hearing disorders. They analyzed (1) the latencies of I, III, and V waves and I-III, III-V, and I-V intervals and the amplitude ratios V/I and IV/I for brainstem auditory evoked potentials bilaterally; (2) the latencies of N8, N22, N28, and P37 waves and the interval N22-P37 and the amplitude P37 for posterior tibial nerve SEP bilaterally; and (3) the latencies and amplitudes of N9, N13, and N20 waves and N9-N13 and N13-N20 intervals for median nerve SEP bilaterally. The interside differences for these parameters were calculated and analyzed. The authors obtained an upper limit for the interside latency differences from brainstem auditory evoked potentials that was significantly lower than the previously published data. However, the upper limits of interside latency differences for SEP were similar to those previously reported. The findings of this study should be considered when laboratories analyze asymmetry using the normative data published by another center, however temporarily, in organizing new laboratories.
Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula
2016-01-01
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Comprehensive evaluation of a child with an auditory brainstem implant.
Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P
2008-02-01
We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.
ERIC Educational Resources Information Center
Shannon, Dorothy A.; And Others
1984-01-01
The brainstem auditory evoked potential (BAEP) was evaluated as a hearing screening test in 168 high-risk newborns. The BAEP was found to be a sensitive procedure for the early identification of hearing-impaired newborns. However, the yield of significant hearing abnormalities was less than predicted in other studies using BAEP. (Author/CL)
ERIC Educational Resources Information Center
Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan
2011-01-01
Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively…
Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio
2017-01-01
Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729
Functional modeling of the human auditory brainstem response to broadband stimulationa)
Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.
2015-01-01
Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802
Cochlear third window in the scala vestibuli: an animal model.
Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I
2009-08-01
Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
ERIC Educational Resources Information Center
Cone-Wesson, Barbara
1995-01-01
This article discusses the accuracy of bone-conduction auditory brainstem response (BC-ABR) tests to determine the presence and severity of conductive hearing impairment. It provides warnings about technical pitfalls and recommends incorporating BC-ABR protocols for routine clinical use. It concludes that the method allows estimating cochlear…
Identification and Treatment of Very Young Children with Hearing Loss.
ERIC Educational Resources Information Center
Madell, Jane R.
1988-01-01
Hearing loss in infants and young children can be identified through behavioral observation audiometry, visual reinforcement audiometry, or auditory brainstem response testing. Habilitation may involve amplification with hearing aids, other assistive listening devices, or cochlear implants. Expectations for children with different degrees of…
Gender Disparities in Speech-evoked Auditory Brainstem Response in Healthy Adults.
Jalaei, Bahram; Zakaria, Mohd Normani; Mohd Azmi, Mohd Hafiz Afifi; Nik Othman, Nik Adilah; Sidek, Dinsuhaimi
2017-04-01
Gender disparities in speech-evoked auditory brainstem response (speech-ABR) outcomes have been reported, but the literature is limited. The present study was performed to further verify this issue and determine the influence of head size on speech-ABR results between genders. Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed. Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size. Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.
Auditory effects of aircraft noise on people living near an airport.
Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C
1997-01-01
Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.
Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder.
Jafari, Zahra; Malayeri, Saeed; Rostami, Reza
2015-02-01
There is little information about processing of nonspeech and speech stimuli at the subcortical level in individuals with attention deficit hyperactivity disorder (ADHD). The auditory brainstem response (ABR) provides information about the function of the auditory brainstem pathways. We aim to investigate the subcortical function in neural encoding of click and speech stimuli in children with ADHD. The subjects include 50 children with ADHD and 34 typically developing (TD) children between the ages of 8 and 12 years. Click ABR (cABR) and speech ABR (sABR) with 40 ms synthetic /da/ syllable stimulus were recorded. Latencies of cABR in waves of III and V and duration of V-Vn (P⩽0.027), and latencies of sABR in waves A, D, E, F and O and duration of V-A (P⩽0.034) were significantly longer in children with ADHD than in TD children. There were no apparent differences in components the sustained frequency following response (FFR). We conclude that children with ADHD have deficits in temporal neural encoding of both nonspeech and speech stimuli. There is a common dysfunction in the processing of click and speech stimuli at the brainstem level in children with suspected ADHD. Copyright © 2015. Published by Elsevier Ireland Ltd.
Binaural interaction in the auditory brainstem response: a normative study.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M
2015-04-01
Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion
Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon
2012-01-01
The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322
Surgical monitoring with auditory evoked potentials.
Lüders, H
1988-07-01
This comprehensive review of surgical monitoring with auditory evoked potentials (AEPs) includes a detailed discussion of techniques used for recording brainstem auditory evoked potentials, direct eight-nerve potentials, and electrocochleograms. The normal waveform of these different potentials is discussed, and the typical patterns of abnormalities seen with different insults to the peripheral or central auditory pathways are presented. The mechanisms most probably responsible for changes in AEPs during surgical procedures are analyzed. A critical analysis is made of what represents a significant change in AEPs. Also considered is the predictive value of intrasurgical changes of AEPs. Finally, attempts are made to determine whether AEPs monitoring can assist the surgeon in the prevention of postsurgical complications.
Yang, Y; Li, P; Ye, H C
2000-02-28
To explore personality test and brainstem auditory potentials (BAEPs) in patients with migraine. BAEPs and eysenck personality scale were recorded in 30 patients with migraine. The abnormal rate of BAEPs was 53%. The latency of individual wave I, III and V were prolonged, so did the interval of the wave III and wave V. The results of personality test showed that 3 patients(10%) manifested introvert personality, 12 patients (40%) extravert personality, and 17 patients (56%) the intermediate personality. It is indicated that migraine may be related to the disturbance of brainstem disfunction and personality of patients.
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-01-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current–voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem. PMID:20937712
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse.
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-12-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.
Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin
2015-01-01
Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.
Parthasarathy, Aravindakshan; Bartlett, Edward
2012-07-01
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Screening Procedures Used to Identify Children with Hearing Loss.
ERIC Educational Resources Information Center
Barringer, Donald G.; And Others
1993-01-01
Analysis of data on 1,404 young children with hearing losses indicated that 80% of the children were identified via informal hearing-screening procedures, such as parental suspicion and referral. Auditory brainstem response technology provided the lowest mean identification age. The study concludes that formal screening programs are not locating…
Matas, Carla Gentile; Samelli, Alessandra Giannella; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio
2017-08-02
The Human Immunodeficiency Virus (HIV) and infections related to it can affect multiple sites in the hearing system. The use of High-Activity Anti-Retroviral Therapy (HAART) can cause side effects such as ototoxicity. Thus, no consistent patterns of hearing impairment in adults with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome have been established, and the problems that affect the hearing system of this population warrant further research. This study aimed to compare the audiological and electrophysiological data of Human Immunodeficiency Virus-positive patients with and without Acquired Immune Deficiency Syndrome, who were receiving High-Activity Anti-Retroviral Therapy, to healthy individuals. It was a cross-sectional study conducted with 71 subjects (30-48 years old), divided into groups: Research Group I: 16 Human Immunodeficiency Virus-positive individuals without Acquired Immunodeficiency Syndrome (not receiving antiretroviral treatment); Research Group II: 25 Human Immunodeficiency Virus-positive individuals with Acquired Immunodeficiency Syndrome (receiving antiretroviral treatment); Control Group: 30 healthy subjects. All individuals were tested by pure-tone air conduction thresholds at 0.25-8kHz, extended high frequencies at 9-20kHz, electrophysiological tests (Auditory Brainstem Response - ABR, Middle Latency Responses - MLR, Cognitive Potential - P300). Research Group I and Research Group II had higher hearing thresholds in both conventional and high frequency audiometry when compared to the control group, prolonged latency of waves I, III, V and interpeak I-V in Auditory Brainstem Response and prolonged latency of P300 Cognitive Potential. Regarding Middle Latency Responses, there was a decrease in the amplitude of the Pa wave of Research Group II compared to the Research Group I. Both groups with Human Immunodeficiency Virus had higher hearing thresholds when compared to healthy individuals (group exposed to antiretroviral treatment showed the worst hearing threshold) and seemed to have lower neuroelectric transmission speed along the auditory pathway in the brainstem, subcortical and cortical regions. Copyright © 2017. Published by Elsevier Editora Ltda.
Auditory brainstem responses to stop consonants predict literacy.
Neef, Nicole E; Schaadt, Gesa; Friederici, Angela D
2017-03-01
Precise temporal coding of speech plays a pivotal role in sound processing throughout the central auditory system, which, in turn, influences literacy acquisition. The current study tests whether an electrophysiological measure of this precision predicts literacy skills. Complex auditory brainstem responses were analysed from 62 native German-speaking children aged 11-13years. We employed the cross-phaseogram approach to compute the quality of the electrophysiological stimulus contrast [da] and [ba]. Phase shifts were expected to vary with literacy. Receiver operating curves demonstrated a feasible sensitivity and specificity of the electrophysiological measure. A multiple regression analysis resulted in a significant prediction of literacy by delta cross-phase as well as phonological awareness. A further commonality analysis separated a unique variance that was explained by the physiological measure, from a unique variance that was explained by the behavioral measure, and common effects of both. Despite multicollinearities between literacy, phonological awareness, and subcortical differentiation of stop consonants, a combined assessment of behavior and physiology strongly increases the ability to predict literacy skills. The strong link between the neurophysiological signature of sound encoding and literacy outcome suggests that the delta cross-phase could indicate the risk of dyslexia and thereby complement subjective psychometric measures for early diagnoses. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice
Rotschafer, Sarah E.
2017-01-01
Abstract Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development. PMID:29291238
[A case of transient auditory agnosia and schizophrenia].
Kanzaki, Jin; Harada, Tatsuhiko; Kanzaki, Sho
2011-03-01
We report a case of transient functional auditory agnosia and schizophrenia and discuss their relationship. A 30-year-old woman with schizophrenia reporting bilateral hearing loss was found in history taking to be able to hear but could neither understand speech nor discriminate among environmental sounds. Audiometry clarified normal but low speech discrimination. Otoacoustic emission and auditory brainstem response were normal. Magnetic resonance imaging (MRI) elsewhere evidenced no abnormal findings. We assumed that taking care of her grandparents who had been discharged from the hospital had unduly stressed her, and her condition improved shortly after she stopped caring for them, returned home and started taking a minor tranquilizer.
Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M
2013-01-01
This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support earlier work on the differential susceptibility to noise of the F0 and F1 components of the evoked response. In the case of F0, the results support the view that in speech, the pitch of resolved harmonics and that of unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. Pitch plays an important role in speech perception, and speech ABR can offer a window into the neural extraction of the pitch of speech and how it may change with hearing impairment.
Prediction of permanent hearing loss in high-risk preterm infants at term age.
Valkama, A M; Laitakari, K T; Tolonen, E U; Väyrynen, M R; Vainionpää, L K; Koivisto, M E
2000-06-01
The aim of this series was to assess hearing screenings; auditory brainstem responses (ABR), transient evoked otoacoustic emissions (TEOAE) and free field auditory responses (FF) for the prediction of permanent bilateral hearing loss in high-risk preterm infants at term post-conceptional age. A total of 51 preterm infants (gestational age < 34 weeks, birth weight < 1500 g) underwent examinations at term and hearing, speech and neurological development were followed up until a corrected age of 18 months. Significant hearing defects were verified by broader ABR examinations under sedation and by clinical ward observation including responsiveness to sounds and enhancement of hearing using an amplification device. Seven bilateral fails in ABR were found, together with nine bilateral fails in TEOAE and four fails in FF screening at term age. Six preterm infants were later confirmed to have a significant permanent bilateral hearing loss, four of whom had also cerebral palsy. Bilateral failure in ABR screening predicted hearing loss with a sensitivity of 100% and a specificity of 98%, TEOAE with a sensitivity of 50% and a specificity of 84% and in the FF examination at the levels of 50% and 98%, respectively. Transient evoked otoacoustic emissions alone seem not to be so applicable to the neonatal screening of hearing in high-risk preterm infants as shown earlier in full-term infants, possibly because a hearing defect may be due to retrocochlear damage. Consequently, auditory brainstem response screening seems to be more suitable for very low birth weight preterm infants.
Neurotrophic factor intervention restores auditory function in deafened animals
NASA Astrophysics Data System (ADS)
Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.
2002-02-01
A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.
Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons
Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.
2015-01-01
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830
Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials
NASA Astrophysics Data System (ADS)
Bibikov, Nikolay G.
2002-05-01
Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.
Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.
2016-01-01
Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498
Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.
Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith
2017-01-01
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P
2018-01-15
To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.
Neurobehavioral and Neurophysiological Assessment of Healthy and "At-Risk" Full-Term Infants.
ERIC Educational Resources Information Center
Eldredge, Lynnette; Salamy, Alan
1988-01-01
Study evaluates the functioning of the central nervous system (CNS) of 15 neonates born at-risk for neurological sequelae and 15 healthy controls. CNS information was generated through the use of two measures: (1) the Neurological and Adaptive Capacity Score (NACS) and the auditory brainstem response (ABR). (Author/RWB)
Kubota, Kazuo; Saito, Yoshiaki; Ohba, Chihiro; Saitsu, Hirotomo; Fukuyama, Tetsuhiro; Ishiyama, Akihiko; Saito, Takashi; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki; Matsumoto, Naomichi
2015-01-01
A boy with spastic paraplegia type 2 (SPG2) due to a novel splice site mutation of PLP1 presented with progressive spasticity of lower limbs, which was first observed during late infancy, when he gained the ability to walk with support. His speech was slow and he had dysarthria. The patient showed mildly delayed intellectual development. Subtotal dysmyelination in the central nervous system was revealed, which was especially prominent in structures known to be myelinated during earlier period, whereas structures that are myelinated later were better myelinated. These findings on the brain magnetic resonance imaging were unusual for subjects with PLP1 mutations. Peaks I and II of the auditory brainstem response (ABR) were normally provoked, but peaks III-V were not clearly demarcated, similarly to the findings in Pelizaeus-Merzbacher disease. These findings of brain MRI and ABR may be characteristic for a subtype of SPG2 patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Mishra, Girish; Sharma, Yojana; Mehta, Kanishk; Patel, Gunjan
2013-04-01
Deafness is commonest curable childhood handicap. Most remedies and programmes don't address this issue at childhood level leading to detrimental impact on development of newborns. Aims and objectives are (A) screen all newborns for deafness and detect prevalence of deafness in children less than 2 years of age. and (B) assess efficacy of multi-staged OAE/ABR protocol for hearing screening. Non-randomized, prospective study from August 2008 to August 2011. All infants underwent a series of oto-acoustic emission (OAE) and final confirmatory auditory brainstem evoked response (ABR) audiometry. Finally, out of 1,101 children, 1,069 children passed the test while 12 children had impaired hearing after final testing, confirmed by ABR. Positive predictive value of OAE after multiple test increased to 100 %. OAE-ABR test series is effective in screening neonates and multiple tests reduce economic burden. High risk screening will miss nearly 50 % deaf children, thus universal screening is indispensable in picking early deafness.
Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.
Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O
2017-03-01
Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.
Gopal, Kamakshi V; Thomas, Binu P; Mao, Deng; Lu, Hanzhang
2015-03-01
Tinnitus, or ringing in the ears, is an extremely common ear disorder. However, it is a phenomenon that is very poorly understood and has limited treatment options. The goals of this case study were to identify if the antioxidant acetyl-L-carnitine (ALCAR) provides relief from tinnitus, and to identify if subjective satisfaction after carnitine treatment is accompanied by changes in audiological and imaging measures. Case Study. A 41-yr-old female with a history of hearing loss and tinnitus was interested in exploring the benefits of antioxidant therapy in reducing her tinnitus. The patient was evaluated using a standard audiological/tinnitus test battery and magnetic resonance imaging (MRI) recordings before carnitine treatment. After her physician's approval, the patient took 500 mg of ALCAR twice a day for 30 consecutive days. The audiological and MRI measures were repeated after ALCAR treatment. Pure-tone audiometry, tympanometry, distortion-product otoacoustic emissions, tinnitus questionnaires (Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire), auditory brainstem response, functional MRI (fMRI), functional connectivity MRI, and cerebral blood flow evaluations were conducted before intake of ALCAR and were repeated 30 days after ALCAR treatment. The patient's pretreatment pure-tone audiogram indicated a mild sensorineural hearing loss at 6 kHz in the right ear and 4 kHz in the left ear. Posttreatment evaluation indicated marginal improvement in the patient's pure-tone thresholds, but was sufficient to be classified as being clinically normal in both ears. Distortion-product otoacoustic emissions results showed increased overall emissions after ALCAR treatment. Subjective report from the patient indicated that her tinnitus was less annoying and barely noticeable during the day after treatment, and the posttreatment tinnitus questionnaire scores supported her statement. Auditory brainstem response peak V amplitude growth between stimulus intensity levels of 40-80 dB nHL indicated a reduction in growth for the posttreatment condition compared with the pretreatment condition. This was attributed to a possible active gating mechanism involving the auditory brainstem after ALCAR treatment. Posttreatment fMRI recordings in response to acoustic stimuli indicated a statistically significant reduction in brain activity in several regions of the brain, including the auditory cortex. Cerebral blood flow showed increased flow in the auditory cortex after treatment. The functional connectivity MRI indicated increased connectivity between the right and left auditory cortex, but a decrease in connectivity between the auditory cortex and some regions of the "default mode network," namely the medial prefrontal cortex and posterior cingulate cortex. The changes observed in the objective and subjective test measures after ALCAR treatment, along with the patient's personal observations, indicate that carnitine intake may be a valuable pharmacological option in the treatment of tinnitus. American Academy of Audiology.
Çeliker, Metin; Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Yılmaz, Mustafa; Kalkan, Yıldıray; Erdoğan, Ender
The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.
Galbraith, G C
2001-06-01
The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.
Horiuchi, Timothy K.
2011-01-01
Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps. PMID:21409439
Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa
2011-07-01
A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
Prins, John M; Brooks, Diane M; Thompson, Charles M; Lurie, Diana I
2010-12-01
Lead (Pb) exposure is a risk factor for neurological dysfunction. How Pb produces these behavioral deficits is unknown, but Pb exposure during development is associated with auditory temporal processing deficits in both humans and animals. Pb disrupts cellular energy metabolism and efficient energy production is crucial for auditory neurons to maintain high rates of synaptic activity. The voltage-dependent anion channel (VDAC) is involved in the regulation of mitochondrial physiology and is a critical component in controlling mitochondrial energy production. We have previously demonstrated that VDAC is an in vitro target for Pb, therefore, VDAC may represent a potential target for Pb in the auditory system. In order to determine whether Pb alters VDAC expression in central auditory neurons, CBA/CaJ mice (n=3-5/group) were exposed to 0.01mM, or 0.1mM Pb acetate during development via drinking water. At P21, immunohistochemistry reveals a significant decrease for VDAC in neurons of the Medial Nucleus of the Trapezoid Body. Western blot analysis confirms that Pb results in a significant decrease for VDAC. Decreases in VDAC expression could lead to an upregulation of other cellular energy producing systems as a compensatory mechanism, and a Pb-induced increase in brain type creatine kinase is observed in auditory regions of the brainstem. In addition, comparative proteomic analysis shows that several proteins of the glycolytic pathway, the phosphocreatine circuit, and oxidative phosphorylation are also upregulated in response to developmental Pb exposure. Thus, Pb-induced decreases in VDAC could have a significant effect on the function of auditory neurons. Copyright © 2010 Elsevier Inc. All rights reserved.
[Development of auditory evoked potentials of the brainstem in relation to age].
Tarantino, V; Stura, M; Vallarino, R
1988-01-01
In order to study the various changes which occur in the waveform, latency and amplitude of the auditory brainstem evoked response (BSER) as a function of age, the authors recorded the BSER from the scalp's surface of 20 newborns and 50 infants, 3 months, 6 months, 1 year and 3 years old as well as from 20 normal adults. The data obtained show that the most reliable waves during the first month of life are waves I, III, V, which is often present even when other vertex-positive peaks are absent. The latencies of the various potential components decreased with maturation. Wave V, evoked by 90 dB sensation level clicks, changed in latency from 7, 12 msec at 1-4 weeks of age to 5,77 msec at 3 years of life. The auditory processes related to peripheral and central transmission were shown to mature at differential rates during the first period of life. By the 6th month, in fact, wave I latency had reached the adult value; in contrast, wave V latency did match that of the adult until approximately 1 year old. One obvious explanation for the age-related latency shift is progressive myelination of the auditory tract in infants, for this is know to occur. The authors conclude that the clinical application of this technique in paediatric patients couldn't provide reliable informations about auditory brain stem activity regardless of evaluation of the relationship between age and characteristics of BSER.
Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.
Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi
2016-05-01
Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.
The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition
McLachlan, Neil M.; Wilson, Sarah J.
2017-01-01
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850
Chonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R; Shao, Jie; Lozoff, Betsy
2013-03-01
Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64-ms intervals presented at 80 dB. We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory - Putonghua version (CCDI-P). Wave V latency z-scores of the 64-ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI-P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI-P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low-level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children. © 2012 Blackwell Publishing Ltd.
Poncelet, L; Coppens, A; Deltenre, P
2000-01-01
This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.
Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B
2016-01-01
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
Current understanding of auditory neuropathy.
Boo, Nem-Yun
2008-12-01
Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.
Click-evoked auditory brainstem responses and autism spectrum disorder: A meta-analytic review.
Talge, Nicole M; Tudor, Brooke M; Kileny, Paul R
2018-06-01
Behavior does not differentiate ASD risk prior to 12 months of age, but biomarkers may inform risk before symptoms emerge. Click-evoked auditory brainstem responses (ABRs) may be worth consideration due to their measurement properties (noninvasiveness; reliability) and conceptual features (well-characterized neural generators), but participant characteristics and assessment protocols vary considerably across studies. Our goal is to perform a meta-analysis of the association between ABRs and ASD. Following an electronic database search (PubMed, Medline, PsycInfo, PsycArticles), we included papers that were written in English, included ASD and typically-developing (TD) groups, and reported the information needed to calculate standardized mean differences (Hedges's g) for at least one ABR latency component (I, III, V, I-III, III-V, I-V). We weighted and averaged effect sizes across conditions and subsets of participants to yield one estimate per component per study. We then performed random-effects regressions to generate component-specific estimates. ASD was associated with longer ABR latencies for Waves III (g = 0.5, 95% CI 0.1, 0.9), V (g = 0.7, 95% CI 0.3, 1.1), I-III (g = 0.7, 95% CI 0.2, 1.2), and I-V (g = 0.6, 95% CI 0.2, 1.0). All components showed significant heterogeneity. Associations were strongest among participants ≤8 years of age and those without middle ear abnormalities or elevated auditory thresholds. In sum, associations between ABRs and ASD are medium-to-large in size, but exhibit heterogeneity. Identifying sources of heterogeneity is challenging, however, due to power limitations and co-occurrence of sample/design characteristics across studies. Research addressing the above limitations is crucial to determining the etiologic and/or prognostic value of ABRs for ASD. Autism Res 2018, 11: 916-927. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Auditory brainstem responses (ABR) may be associated with ASD, but participant characteristics and assessment protocols vary considerably across individual studies. Our goal is to combine the results across these studies to facilitate clarity on the topic. Doing so represents a first step in evaluating whether ABRs yield potential for informing the etiology of ASD risk and/or ASD symptom profiles. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B
1995-07-01
Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.
Juselius Baghdassarian, Eva; Nilsson Markhed, Maria; Lindström, Eva; Nilsson, Björn M; Lewander, Tommy
2018-06-01
To evaluate the performances of two auditory brainstem response (ABR) profiling tests as potential biomarkers and diagnostic support for schizophrenia and adult attention-deficit hyperactivity disorder (ADHD), respectively, in an investigator-initiated blinded study design. Male and female patients with schizophrenia (n=26) and adult ADHD (n=24) meeting Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM IV) diagnostic criteria and healthy controls (n=58) comprised the analysis set (n=108) of the total number of study participants (n=119). Coded sets of randomized ABR recordings were analysed by an independent party blinded to clinical diagnoses before a joint code-breaking session. The ABR profiling test for schizophrenia identified schizophrenia patients versus controls with a sensitivity of 84.6% and a specificity of 93.1%. The ADHD test identified patients with adult ADHD versus controls with a sensitivity of 87.5% and a specificity of 91.4%. The ABR profiling tests discriminated schizophrenia and ADHD versus healthy controls with high sensitivity and specificity. The methods deserve to be further explored in larger clinical studies including a broad range of psychiatric disorders to determine their utility as potential diagnostic biomarkers.
Auditory brainstem response screening for hearing loss in high risk neonates.
Watson, D R; McClelland, R J; Adams, D A
1996-07-01
The present paper reports the findings of a 7 year study evaluating the use of the auditory brainstem response (ABR) as the basis of a hearing screening procedure in a group of newborns at increased risk of hearing impairment. A Special Care Baby Unit (SCBU) population of 417 infants with diverse clinical backgrounds and treatment histories was tested for hearing impairment at birth using ABR audiometry. Some 332 passed the original screen at 30 dBnHL test level in both ears. Of the failure group, 18 did not survive and 32 had some degree of hearing impairment confirmed, nine of which were sensorineural in origin. An increased incidence of persistent middle ear disease was also noted in the failure group. A detailed operational analysis demonstrates that provided appropriate pass/fail criteria are adopted, the ABR technique offers excellent sensitivity and specificity for the detection of significant hearing loss in the test population. Furthermore, the study establishes that implementation of an ABR-based screening programme could reduce the average age at detection of permanent hearing loss by 7 months. A cost assessment shows that the introduction of such a targetted screening procedure could be done at a reasonable outlay.
Test-retest reliability of auditory brainstem responses to chirp stimuli in newborns.
Cobb, Kensi M; Stuart, Andrew
2014-11-01
The purpose of this study was to examine the test-retest reliability of auditory brainstem responses (ABRs) to air- and bone-conducted chirp stimuli in newborns as a function of intensity. A repeated measures quasi-experimental design was employed. Thirty healthy newborns participated. ABRs were evoked using 60, 45, and 30 dB nHL air-conducted CE-Chirps and 45, 30, and 15 dB nHL bone-conducted CE-Chirps at a rate of 57.7/s. Measures were repeated by a second tester. Statistically significant correlations (p <.0001) and predictive linear relations (p <.0001) were found between testers for wave V latencies and amplitudes to air- and bone-conducted CE-Chirps. There were also no statistically significant differences between testers with wave V latencies and amplitudes to air- and bone-conducted CE-Chirps (p >.05). As expected, significant differences in wave V latencies and amplitudes were seen as a function of stimulus intensity for air- and bone-conducted CE-Chirps (p <.0001). These results suggest that ABRs to air- and bone-conducted CE-Chirps can be reliably repeated in newborns with different testers. The CE-Chirp may be valuable for both screening and diagnostic audiologic assessments of newborns.
Audiological findings in Noonan syndrome.
Tokgoz-Yilmaz, Suna; Turkyilmaz, Meral Didem; Cengiz, Filiz Basak; Sjöstrand, Alev Pektas; Kose, Serdal Kenan; Tekin, Mustafa
2016-10-01
The aim of this study was to evaluate audiologic properties of patients with Noonan syndrome and compare these findings with those of unaffected peers. The study included 17 children with Noonan syndrome and 20 typically developing children without Noonan syndrome. Pure tone and speech audiometry, immitancemetric measurement, otoacoustic emissions measurement and auditory brainstem response tests were applied to all (n = 37) children. Hearing thresholds of children with Noonan syndrome were higher (poorer) than those observed unaffected peers, while the hearing sensitivity of the both groups were normal limits (p = 0.013 for right, p = 0.031 for left ear). Transient evoked otoacoustic emissions amplitudes of the children with Noonan syndrome were lower than the children without Noonan syndrome (p = 0.005 for right, p = 0.002 for left ear). Middle ear pressures and auditory brainstem response values were within normal limits and there was no difference between the two groups (p > 0.05). General benefit of the present study is to characterize the audiologic findings of children with Noonan syndrome, which is beneficial in clinics evaluating children with Noonan syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils
Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter
2015-01-01
This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003
[The characteristics of auditory brainstem response in preterm very low birth weight babies].
Wang, Xiaoya; Luo, Renzhong; Wen, Ruijin; Chen, Qian; Zhou, Jialin; Zou, Yu
2009-08-01
To discuss the characteristics of auditory brainstem response in preterm very low birth weight (VLBW) babies and to investigate the correlations between the ABR and clinical characteristics. Fifty-nine VLBW babies (118 ears) were enrolled in the study and 30 term normal babies as the control group. Tympanometry, acoustic reflex, DPOAE, ABR were obtained in all the babies. The prevalence of hearing loss in VLBW babies was higher than normal term babies and babies with perinatal complications higher than those without perinatal complications. There was no correlations between ABR threshold and gestational age, birth weight, postconceptional age, negative correlations between wave I, III and V latencies I - III, III - V and I - V intervals and postconceptional age. Wave I and V latencies, I - III and III - V intervals differed significantly between the two groups. The perinatal complications were the most important causes of the hearing loss in preterm VLBW babies than the gestational age and birth weight. There was a high prevalence of peripheral hearing loss in the preterm VLBW babies. Combining OAE and automated ABR should be applied for hearing screening. Regular follow-up was very important in all the preterm VLBW neonatal.
Centanni, T M; Pantazis, D; Truong, D T; Gruen, J R; Gabrieli, J D E; Hogan, T P
2018-05-26
Individuals with dyslexia exhibit increased brainstem variability in response to sound. It is unknown as to whether increased variability extends to neocortical regions associated with audition and reading, extends to visual stimuli, and whether increased variability characterizes all children with dyslexia or, instead, a specific subset of children. We evaluated the consistency of stimulus-evoked neural responses in children with (N = 20) or without dyslexia (N = 12) as measured by magnetoencephalography (MEG). Approximately half of the children with dyslexia had significantly higher levels of variability in cortical responses to both auditory and visual stimuli in multiple nodes of the reading network. There was a significant and positive relationship between the number of risk alleles at rs6935076 in the dyslexia-susceptibility gene KIAA0319 and the degree of neural variability in primary auditory cortex across all participants. This gene has been linked with neural variability in rodents and in typical readers. These findings indicate that unstable representations of auditory and visual stimuli in auditory and other reading-related neocortical regions are present in a subset of children with dyslexia and support the link between the gene KIAA0319 and the auditory neural variability across children with or without dyslexia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Glavaski-Joksimovic, Aleksandra; Thonabulsombat, Charoensri; Wendt, Malin; Eriksson, Mikael; Palmgren, Björn; Jonsson, Anna; Olivius, Petri
2008-03-01
The poor regeneration capability of the mammalian hearing organ has initiated different approaches to enhance its functionality after injury. To evaluate a potential neuronal repair paradigm in the inner ear and cochlear nerve we have previously used embryonic neuronal tissue and stem cells for implantation in vivo and in vitro. At present, we have used in vitro techniques to study the survival and differentiation of Sox1-green fluorescent protein (GFP) mouse embryonic stem (ES) cells as a monoculture or as a coculture with rat auditory brainstem slices. For the coculture, 300 microm-thick brainstem slices encompassing the cochlear nucleus and cochlear nerve were prepared from postnatal SD rats. The slices were propagated using the membrane interface method and the cochlear nuclei were prelabeled with DiI. After some days in culture a suspension of Sox1 cells was deposited next to the brainstem slice. Following deposition Sox1 cells migrated toward the brainstem and onto the cochlear nucleus. GFP was not detectable in undifferentiated ES cells but became evident during neural differentiation. Up to 2 weeks after transplantation the cocultures were fixed. The undifferentiated cells were evaluated with antibodies against progenitor cells whereas the differentiated cells were determined with neuronal and glial markers. The morphological and immunohistochemical data indicated that Sox1 cells in monoculture differentiated into a higher percentage of glial cells than neurons. However, when a coculture was used a significantly lower percentage of Sox1 cells differentiated into glial cells. The results demonstrate that a coculture of Sox1 cells and auditory brainstem present a useful model to study stem cell differentiation.
NASA Astrophysics Data System (ADS)
Araya, Mussie K.; Brownell, William E.
2015-12-01
Hearing requires precise detection and coding of acoustic signals by the inner ear and equally precise communication of the information through the auditory brainstem. A membrane based motor in the outer hair cell lateral wall contributes to the transformation of sound into a precise neural code. Structural, molecular and energetic similarities between the outer hair cell and auditory brainstem neurons suggest that a similar membrane based motor may contribute to signal processing in the auditory CNS. Cooperative activation of voltage gated ion channels enhances neuronal temporal processing and increases the upper frequency limit for phase locking. We explore the possibility that membrane mechanics contribute to ion channel cooperativity as a consequence of the nearly instantaneous speed of electromechanical signaling and the fact that membrane composition and mechanics modulate ion channel function.
P50 Suppression in Children with Selective Mutism: A Preliminary Report
ERIC Educational Resources Information Center
Henkin, Yael; Feinholz, Maya; Arie, Miri; Bar-Haim, Yair
2010-01-01
Evidence suggests that children with selective mutism (SM) display significant aberrations in auditory efferent activity at the brainstem level that may underlie inefficient auditory processing during vocalization, and lead to speech avoidance. The objective of the present study was to explore auditory filtering processes at the cortical level in…
Pushpalatha, Zeena Venkatacheluvaiah; Konadath, Sreeraj
2016-01-01
Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs) among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group) consisted of 20 (40 ears) individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3). Group 2 (control group) consisted of 20 individuals (40 ears). Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR's obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR. PMID:27762255
Auditory Implant Research at the House Ear Institute 1989–2013
Shannon, Robert V.
2014-01-01
The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House – in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8–10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. PMID:25449009
Neonatal brainstem dysfunction risks infant social engagement
Sopher, Koreen; Kurtzman, Lea; Galili, Giora; Feldman, Ruth; Kuint, Jacob
2013-01-01
The role of the brainstem in mediating social signaling in phylogenetic ancestral organisms has been demonstrated. Evidence for its involvement in social engagement in human infants may deepen the understanding of the evolutionary pathway of humans as social beings. In this longitudinal study, neonatal brainstem functioning was measured by auditory brainstem-evoked responses (ABRs) in 125 healthy neonates born prematurely before 35 weeks’ gestational age. At 4 months, infants were tested in a set of structured vignettes that required varying levels of social engagement and cardiac vagal tone was assessed. Data show that neonates with a disrupted I–V waveform, evident mostly by delayed wave V, exhibit shorter latencies to gaze averts in episodes involving direct face-to-face interactions but engage gaze as controls when interacting with masked agents or with agents whose faces are partly veiled by toys. Analysis of variance of infants’ social engagement with ABR, neonatal risk, maternal stress and cardiac vagal tone showed a main effect for ABR and an ABR by gestational age interaction. The integrity of brainstem transmission of sensory information during the final weeks of gestation may scaffold the development of social disengagement, thereby attesting to the brainstem's preserved evolutionary role in developing humans as social organisms prior to engaging in social encounters. PMID:22146141
NASA Astrophysics Data System (ADS)
Mills, David M.
2003-02-01
Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.
Auditory Brainstem Responses and EMFs Generated by Mobile Phones.
Khullar, Shilpa; Sood, Archana; Sood, Sanjay
2013-12-01
There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.
Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.
Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin
2015-01-01
Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.
Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid
2017-03-01
Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.
Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari
2017-01-01
Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.
Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers
Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari
2017-01-01
Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829
ERIC Educational Resources Information Center
Salamy, A.
1981-01-01
Determines the frequency distribution of Brainstem Auditory Evoked Potential variables (BAEP) for premature babies at different stages of development--normal newborns, infants, young children, and adults. The author concludes that the assumption of normality underlying most "standard" statistical analyses can be met for many BAEP…
The Potential Role of the cABR in Assessment and Management of Hearing Impairment
Anderson, Samira; Kraus, Nina
2013-01-01
Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults. PMID:23431313
NASA Astrophysics Data System (ADS)
Belanger, Andrea J.; Higgs, Dennis M.
2005-04-01
The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.
Perception of speech in noise: neural correlates.
Song, Judy H; Skoe, Erika; Banai, Karen; Kraus, Nina
2011-09-01
The presence of irrelevant auditory information (other talkers, environmental noises) presents a major challenge to listening to speech. The fundamental frequency (F(0)) of the target speaker is thought to provide an important cue for the extraction of the speaker's voice from background noise, but little is known about the relationship between speech-in-noise (SIN) perceptual ability and neural encoding of the F(0). Motivated by recent findings that music and language experience enhance brainstem representation of sound, we examined the hypothesis that brainstem encoding of the F(0) is diminished to a greater degree by background noise in people with poorer perceptual abilities in noise. To this end, we measured speech-evoked auditory brainstem responses to /da/ in quiet and two multitalker babble conditions (two-talker and six-talker) in native English-speaking young adults who ranged in their ability to perceive and recall SIN. Listeners who were poorer performers on a standardized SIN measure demonstrated greater susceptibility to the degradative effects of noise on the neural encoding of the F(0). Particularly diminished was their phase-locked activity to the fundamental frequency in the portion of the syllable known to be most vulnerable to perceptual disruption (i.e., the formant transition period). Our findings suggest that the subcortical representation of the F(0) in noise contributes to the perception of speech in noisy conditions.
Henry, Kenneth S.; Kale, Sushrut; Scheidt, Ryan E.; Heinz, Michael G.
2011-01-01
Non-invasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise induced hearing loss. ABRs were recorded for 1–8 kHz tone burst stimuli both before and several weeks after four hours of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. PMID:21699970
Reversal of age-related neural timing delays with training
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-01-01
Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541
Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming
2017-02-01
Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.
Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.
2014-01-01
Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742
Subcortical processing of speech regularities underlies reading and music aptitude in children.
Strait, Dana L; Hornickel, Jane; Kraus, Nina
2011-10-17
Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.
Threshold changes of ABR results in toddlers and children.
Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria
2016-06-01
Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.
2016-01-01
Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555
Brainstem Transcription of Speech Is Disrupted in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or…
Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.
2012-01-01
It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336
Ochi, A; Yasuhara, A; Kobayashi, Y
1998-11-01
This study compares the clinical usefulness of distortion product otoacoustic emissions (DPOAEs) with the auditory brain-stem response (ABR) for neonates in the neonatal intensive care unit for the evaluation of hearing impairment. Both DPOAEs and ABR were performed on 36 neonates (67 ears) on the same day. We defined neonates as having normal hearing when the thresholds of wave V of ABR were < or =45 dB hearing level. (1) We could not obtain DPOAEs at f2 = 977 Hz in neonates with normal hearing because of high noise floors. DPOAE recording time was 36 min shorter than that of ABR. (2) We defined as normal DPOAEs, the number of frequencies which showed the DPgram-noise floor > or =4 dB was > or =4 at 6 f2 frequencies, from 1416 Hz to 7959 Hz. (3) Normal thresholds of ABR and normal DPOAEs showed the same percentages, i.e. 68.7%, but the percentage of different results between ABR and DPOAEs was 6.0%. Our study indicates that DPOAEs represent a simple procedure, which can be easily performed in the NICU to obtain reliable results in high-risk neonates. Results obtained by DPOAEs were comparable to those obtained by the more complex procedure of ABR.
Riazi, Mariam; Marcario, Joanne K; Samson, Frank K.; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D.
2013-01-01
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV) related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 co-receptor virus, SIVmac239 (R71/E17), which crosses the blood brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus (HIV) infection. The cohort was divided into 3 groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in sub-clinically infected macaques were evident as early as eight weeks post-inoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest CSF viral loads and clinical disease showed more abnormalities than those with sub-clinical disease, confirming our previous work (Raymond et al, 1998, 1999, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine treated compared to untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and CNS tissues (Marcario et al., 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged. PMID:19283490
Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A
2010-10-01
Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
The relationship between neonatal hyperbilirubinemia and sensorineural hearing loss.
Corujo-Santana, Cándido; Falcón-González, Juan Carlos; Borkoski-Barreiro, Silvia Andrea; Pérez-Plasencia, Daniel; Ramos-Macías, Ángel
2015-01-01
Severe jaundice that requires exchange transfusion has become a relatively rare situation today. About 60% of full term neonates and 80% of premature ones will suffer from jaundice within the first week of life. Hyperbilirubinemia at birth is a risk factor associated with hearing loss that is usually further linked to other factors that might have an effect on hearing synergistically. This study aimed to identify the relationship between hyperbilirubinemia at birth as a risk factor for sensorineural hearing loss in children born at Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, in the 2007-2011 period. This was a retrospective study of 796 newborns that had hyperbilirubinemia at birth, using transient evoked otoacoustic emissions and evoked auditory brainstem response. Hundred eighty-five newborns (23.24%) were referred for evoked auditory brainstem response. Hearing loss was diagnosed for 35 (4.39%): 18 neonates (51.43%) with conductive hearing loss and 17 (48.57%) with sensorineural hearing loss, 3 of which were diagnosed as bilateral profound hearing loss. Half of the children had other risk factors associated, the most frequent being exposure to ototoxic medications. The percentage of children diagnosed with sensorineural hearing loss that suffered hyperbilirubinemia at birth is higher than for the general population. Of those diagnosed, none had levels of indirect bilirubin≥20mg/dl, only 47% had hyperbilirubinemia at birth as a risk factor and 53% had another auditory risk factor associated. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Brain-stem evoked potentials and noise effects in seagulls.
Counter, S A
1985-01-01
Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.
Talking back: Development of the olivocochlear efferent system.
Frank, Michelle M; Goodrich, Lisa V
2018-06-26
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner
2016-01-01
The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD-related cytoskeletal pathology in some of these brainstem nuclei points to a major and strategic role of the brainstem in the induction and brain spread of the AD-related cytoskeletal pathology.
Auditory function in children with Charcot-Marie-Tooth disease.
Rance, Gary; Ryan, Monique M; Bayliss, Kristen; Gill, Kathryn; O'Sullivan, Caitlin; Whitechurch, Marny
2012-05-01
The peripheral manifestations of the inherited neuropathies are increasingly well characterized, but their effects upon cranial nerve function are not well understood. Hearing loss is recognized in a minority of children with this condition, but has not previously been systemically studied. A clear understanding of the prevalence and degree of auditory difficulties in this population is important as hearing impairment can impact upon speech/language development, social interaction ability and educational progress. The aim of this study was to investigate auditory pathway function, speech perception ability and everyday listening and communication in a group of school-aged children with inherited neuropathies. Twenty-six children with Charcot-Marie-Tooth disease confirmed by genetic testing and physical examination participated. Eighteen had demyelinating neuropathies (Charcot-Marie-Tooth type 1) and eight had the axonal form (Charcot-Marie-Tooth type 2). While each subject had normal or near-normal sound detection, individuals in both disease groups showed electrophysiological evidence of auditory neuropathy with delayed or low amplitude auditory brainstem responses. Auditory perception was also affected, with >60% of subjects with Charcot-Marie-Tooth type 1 and >85% of Charcot-Marie-Tooth type 2 suffering impaired processing of auditory temporal (timing) cues and/or abnormal speech understanding in everyday listening conditions.
Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.
Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi
2015-08-01
To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Krishnan, Ananthanarayan; Gandour, Jackson T.; Smalt, Christopher J.; Bidelman, Gavin M.
2010-01-01
Experience-dependent enhancement of neural encoding of pitch in the auditory brainstem has been observed for only specific portions of native pitch contours exhibiting high rates of pitch acceleration, irrespective of speech or nonspeech contexts. This experiment allows us to determine whether this language-dependent advantage transfers to…
Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf
2015-02-12
Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and bipolar disorder. A positive result from the study could imply that brainstem audiometry could become an important supportive tool for clinicians in their efforts to diagnose patients with these disorders in a timely and accurate manner. ClinicalTrials.gov NCT01629355; https://clinicaltrials.gov/ct2/show/NCT01629355 (Archived by WebCite at http://www.webcitation.org/6VBfTwx5H).
The Development of Auditory Perception in Children Following Auditory Brainstem Implantation
Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio
2014-01-01
Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987
Karmakar, Kajari; Narita, Yuichi; Fadok, Jonathan; Ducret, Sebastien; Loche, Alberto; Kitazawa, Taro; Genoud, Christel; Di Meglio, Thomas; Thierry, Raphael; Bacelo, Joao; Lüthi, Andreas; Rijli, Filippo M
2017-01-03
Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Effects of underwater noise on auditory sensitivity of a cyprinid fish.
Scholik, A R; Yan, H Y
2001-02-01
The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise affects fish hearing. In this study, the fathead minnow (Pimephales promelas) was used to examine: (1) the immediate effects of white noise exposure (0.3-4.0 kHz, 142 dB re: 1 microPa) on auditory thresholds and (2) recovery after exposure. Audiograms were measured using the auditory brainstem response protocol and compared to baseline audiograms of fathead minnows not exposed to noise. Immediately after exposure to 24 h of white noise, five out of the eight frequencies tested showed a significantly higher threshold compared to the baseline fish. Recovery was found to depend on both duration of noise exposure and auditory frequency. These results support the hypothesis that the auditory threshold of the fathead minnow can be altered by white noise, especially in its most sensitive hearing range (0.8-2.0 kHz), and provide evidence that these effects can be long term (>14 days).
Schrode, Katrina M.; Bee, Mark A.
2015-01-01
ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Aleman, M; Williams, D C; Guedes, A; Madigan, J E
2015-01-01
An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Delayed auditory pathway maturation and prematurity.
Koenighofer, Martin; Parzefall, Thomas; Ramsebner, Reinhard; Lucas, Trevor; Frei, Klemens
2015-06-01
Hearing loss is the most common sensory disorder in developed countries and leads to a severe reduction in quality of life. In this uncontrolled case series, we evaluated the auditory development in patients suffering from congenital nonsyndromic hearing impairment related to preterm birth. Six patients delivered preterm (25th-35th gestational weeks) suffering from mild to profound congenital nonsyndromic hearing impairment, descending from healthy, nonconsanguineous parents and were evaluated by otoacoustic emissions, tympanometry, brainstem-evoked response audiometry, and genetic testing. All patients were treated with hearing aids, and one patient required cochlear implantation. One preterm infant (32nd gestational week) initially presented with a 70 dB hearing loss, accompanied by negative otoacoustic emissions and normal tympanometric findings. The patient was treated with hearing aids and displayed a gradual improvement in bilateral hearing that completely normalized by 14 months of age accompanied by the development of otoacoustic emission responses. Conclusions We present here for the first time a fully documented preterm patient with delayed auditory pathway maturation and normalization of hearing within 14 months of birth. Although rare, postpartum development of the auditory system should, therefore, be considered in the initial stages for treating preterm hearing impaired patients.
On wavelet analysis of auditory evoked potentials.
Bradley, A P; Wilson, W J
2004-05-01
To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.
Biological impact of preschool music classes on processing speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; O’Connell, Samantha; Kraus, Nina
2013-01-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. PMID:23872199
Biological impact of preschool music classes on processing speech in noise.
Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina
2013-10-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.
Auditory cortical responses in patients with cochlear implants
Burdo, S; Razza, S; Di Berardino, F; Tognola, G
2006-01-01
Summary Currently, the most commonly used electrophysiological tests for cochlear implant evaluation are Averaged Electrical Voltages (AEV), Electrical Advisory Brainstem Responses (EABR) and Neural Response Telemetry (NRT). The present paper focuses on the study of acoustic auditory cortical responses, or slow vertex responses, which are not widely used due to the difficulty in recording, especially in young children. Aims of this study were validation of slow vertex responses and their possible applications in monitoring postimplant results, particularly restoration of hearing and auditory maturation. In practice, the use of tone-bursts, also through hearing aids or cochlear implants, as in slow vertex responses, allows many more frequencies to be investigated and louder intensities to be reached than with other tests based on a click as stimulus. Study design focused on latencies of N1 and P2 slow vertex response peaks in cochlear implants. The study population comprised 45 implant recipients (aged 2 to 70 years), divided into 5 different homogeneous groups according to chronological age, age at onset of deafness, and age at implantation. For each subject, slow vertex responses and free-field auditory responses (PTAS) were recorded for tone-bursts at 500 and 2000 Hz before cochlear implant surgery (using hearing aid amplification) and during scheduled sessions at 3rd and 12th month after implant activation. Results showed that N1 and P2 latencies decreased in all groups starting from 3rd through 12th month after activation. Subjects implanted before school age or at least before age 8 yrs showed the widest latency changes. All subjects showed a reduction in the gap between subjective thresholds (obtained with free field auditory responses) and objective thresholds (obtained with slow vertex responses), obtained in presurgery stage and after cochlear implant. In conclusion, a natural evolution of neurophysiological cortical activities of the auditory pathway, over time, was found especially in young children with prelingual deafness and implanted in preschool age. Cochlear implantation appears to provide hearing restoration, demonstrated by the sharp reduction of the gap between subjective free field auditory responses and slow vertex responses threshold obtained with hearing aids vs. cochlear implant. PMID:16886849
Płonek, Marta; Giza, Elżbieta; Niedźwiedź, Artur; Kubiak, Krzysztof; Nicpoń, Józef; Wrzosek, Marcin
2016-12-01
Canine congenital sensorineural deafness (CCSD) affects predisposed breeds of dogs and is primarily caused by an atrophy of the stria vascularis of the organ of Corti. The analysis of the brainstem auditory evoked response (BAER) is a reliable method for the evaluation of hearing in animals as it allows an accurate detection of unilateral or bilateral deafness. The occurrence of unilateral and bilateral deafness using the BAER was determined in a representative group of dogs in Poland, including Bull Terriers (n = 117), Australian Cattle Dogs (n = 62), English Setters (n = 32) and the Dogo Argentino (n = 32). Overall deafness, deafness in each dog breed and an association between deafness and phenotype were studied. Among the 243 dogs tested, 156 (81%) had a normal BAER, 27 (11%) were unilaterally deaf, and 12 (5%) were bilaterally deaf. The amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, and wave I-V, I-III and III-V inter-peak intervals were recorded for each dog. Unilaterally and bilaterally deaf dogs were present in all the dog breeds studied. There were 17 (14.5%) deaf Bull Terriers, three (4.8%) deaf Australian Cattle Dogs, seven (21.9%) deaf English Setters, and 12 (37.5%) deaf Dogos Argentinos. Preventive BAER screening should be routinely performed in these four breeds to prevent the spread of genes responsible for deafness.
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.
Moncho, Dulce; Poca, Maria-Antonia; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan
2015-04-01
The aim of this study was to describe the abnormalities found in the recordings of evoked potentials (EPs), in particular those of brainstem auditory evoked potentials and somatosensory evoked potentials, in a homogeneous series of patients with Chiari type 1 malformation (CM-1) and study their relationship with clinical symptoms and malformation severity. CM-1 is characterized by cerebellar tonsils that descend below the foramen magnum and may be associated with EP alterations. However, only a small number of authors have described these tests in CM-1, and the patient groups studied to date have been small and heterogeneous. The clinical findings, neuroimages, and EP findings were retrospectively studied in a cohort of 50 patients with CM-1. Seventy percent of patients had EP abnormalities (brainstem auditory evoked potential: 52%, posterior tibial nerve somatosensory evoked potential: 42%, and median nerve somatosensory evoked potential: 34%). The most frequent alteration was an increased central conduction time. Morphometric measurements differed between the normal and pathological groups, although no statistical significance was found when comparing these groups. A high percentage of patients with CM-1 show EP alterations regardless of their clinical or radiological findings, thus highlighting the necessity of performing these tests, especially in patients with few or no symptoms.
Combined evoked potentials in co-occuring attention deficit hyperactivity disorder and epilepsy.
Major, Zoltán Zsigmond
2011-07-30
Evoked potentials, both stimulus related and event related, show disturbances in attention deficit-hyperactivity disorder and epilepsies, too. This study was designed to evaluate if these potentials are characteristically influenced by the presence of the two diseases, individually, and in the case of co-occurrence. Forty children were included, and four groups were formed, control group, ADHD group, epilepsy group and a group with the comorbidity of epilepsy and ADHD. Epilepsy patients were under proper antiepileptic treatment; ADHD patients were free of specific therapy. Brainstem auditory evoked potentials, visual evoked potentials and auditory P300 evaluation were performed. The latency of the P100 and N135 visual evoked potential components was significantly extended by the presence of epilepsy. If ADHD was concomitantly present, this effect was attenuated. Brainstem auditory evoked potential components were prolonged in the presence of the comorbidity, considering the waves elicited in the brainstem. P300 latencies were prolonged by the presence of co-occurring ADHD and epilepsy. Feedback parameters showed overall reduction of the tested cognitive performances in the ADHD group. Disturbances produced by the presence of ADHD-epilepsy comorbidity reveal hypothetically a linked physiopathological path for both diseases, and offers an approach with possible diagnostic importance, combined evoked potential recordings.
Forward Masking of the Speech-Evoked Auditory Brainstem Response.
Hodge, Sarah E; Menezes, Denise C; Brown, Kevin D; Grose, John H
2018-02-01
The hypothesis tested was that forward masking of the speech-evoked auditory brainstem response (sABR) increases peak latency as an inverse function of masker-signal interval (Δt), and that the overall persistence of forward masking is age dependent. Older listeners exhibit deficits in forward masking. If forward-masked sABRs provide an objective measure of the susceptibility of speech sounds to prior stimulation, then this provides a novel approach to examining the age dependence of temporal processing. A /da/ stimulus forward masked by speech-shaped noise (Δt = 4-64 ms) was used to measure sABRs in 10 younger and nine older participants. Forward masking of subsegments of the /da/ stimulus (Δt = 16 ms) and click trains (Δt = 0-64 ms) was also measured. Forward-masked sABRs from young participants showed an increase in latency with decreasing Δt for the initial peak. Latency shifts for later peaks were smaller and more uniform. None of the peak latencies returned to baseline by Δt = 64 ms. Forward-masked /da/ subsegments showed peak latency shifts that did not depend simply on peak position, while forward-masked click trains showed latency shifts that were dependent on click position. The sABRs from older adults were less robust but confirmed the viability of the approach. Forward masking of the sABR provides an objective measure of the susceptibility of the auditory system to prior stimulation. Failure of recovery functions to return to baseline suggests an interaction between forward masking by the prior masker and temporal effects within the stimulus itself.
Individual Differences in Auditory Brainstem Response Wave Characteristics
Jagadeesh, Anoop; Mauermann, Manfred; Ernst, Frauke
2016-01-01
Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI–W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies. PMID:27837052
Oysu, Cagatay; Topak, Murat; Celik, Oner; Yilmaz, H Baki; Sahin, A Asli
2005-10-01
The purpose of this study was to evaluate the short-term effects of the electromagnetic fields (EMF) of mobile phones on human auditory brainstem responses. This prospective study of healthy adults evaluated the influence of EMF. Eighteen healthy adult volunteers participated in this study. Mobile telephones emitting signals in the region of 900 MHz and with the highest SAR value of 0.82 W/kg were positioned in direct contact to the right ear, which was exposed to the phone signal for 15 min before and after ABR testing with click stimuli of 60 and 80 dB nHL intensities. The latencies of the waves and interwave latencies were measured on screen by an experienced audiologist. The differences of the mean latencies of waves I, III and IV were not significant in initial and post-exposure ABR measurements at both 60 and 80 dB nHL stimulus levels ( P >0.05). Similarly, differences of the mean interwave intervals I-III, I-V and III-V remained insignificant at the initial and postexposure ABR measurements at stimulus levels of both 60 and 80 dB nHL ( P >0.05). Acute exposure to the EMF of mobile phones does not cause perturbations in ABR latencies. However, these negative results should not encourage excessive mobile communication, because minor biological and neurophysiological influences may not be detectable by the current technology.
Ramkumar, Vidya; Vanaja, C S; Hall, James W; Selvakumar, K; Nagarajan, Roopa
2018-05-01
This study assessed the validity of DPOAE screening conducted by village health workers (VHWs) in a rural community. Real-time click evoked tele-auditory brainstem response (tele-ABR) was used as the gold standard to establish validity. A cross-sectional design was utilised to compare the results of screening by VHWs to those obtained via tele-ABR. Study samples: One hundred and nineteen subjects (0 to 5 years) were selected randomly from a sample of 2880 infants and young children who received DPOAE screening by VHWs. Real time tele-ABR was conducted by using satellite or broadband internet connectivity at the village. An audiologist located at the tertiary care hospital conducted tele-ABR testing through a remote computing paradigm. Tele-ABR was recorded using standard recording parameters recommended for infants and young children. Wave morphology, repeatability and peak latency data were used for ABR analysis. Tele-ABR and DPOAE findings were compared for 197 ears. The sensitivity of DPOAE screening conducted by the VHW was 75%, and specificity was 91%. The negative and positive predictive values were 98.8% and 27.2%, respectively. The validity of DPOAE screening conducted by trained VHW was acceptable. This study supports the engagement of grass-root workers in community-based hearing health care provision.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.
Cobb, Kensi M; Stuart, Andrew
2016-08-01
The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.
Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi
2017-01-01
Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group < early gestational exposure group < mid-gestational exposure group and late gestational exposure group. Noise exposure during pregnancy influenced ABR thresholds in neonatal guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L.; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R.; Madsen, Peter T.; Carr, Catherine E.
2012-01-01
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500–600 Hz with a maximum of 300 µm s−1 Pa−1, approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300–500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20–30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc. PMID:22438494
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R; Madsen, Peter T; Carr, Catherine E
2012-07-22
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 µm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
Laumen, Geneviève; Tollin, Daniel J.; Beutelmann, Rainer; Klump, Georg M.
2016-01-01
The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. PMID:27173973
NASA Astrophysics Data System (ADS)
Wolski, Lawrence F.; Anderson, Rindy C.; Bowles, Ann E.; Yochem, Pamela K.
2003-01-01
Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 μPa2.s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.
Aging affects neural precision of speech encoding
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2012-01-01
Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485
Hearing status in adult individuals with lifetime, untreated isolated growth hormone deficiency.
Prado-Barreto, Valéria M; Salvatori, Roberto; Santos Júnior, Ronaldo C; Brandão-Martins, Mariane B; Correa, Eric A; Garcez, Flávia B; Valença, Eugênia H O; Souza, Anita H O; Pereira, Rossana M C; Nunes, Marco A P; D'Avila, Jeferson S; Aguiar-Oliveira, Manuel H
2014-03-01
To evaluate the hearing status of growth hormone (GH)-naive adults with isolated GH deficiency (IGHD) belonging to an extended Brazilian kindred with a homozygous mutation in the GH-releasing hormone receptor gene. Cross-sectional. Divisions of Endocrinology and Otorhinolaryngology of the Federal University of Sergipe. Twenty-six individuals with IGHD (age, 47.6 ± 15.1 years; 13 women) and 25 controls (age, 46.3 ± 14.3 years; 15 women) were administered a questionnaire on hearing complaints and hearing health history. We performed pure-tone audiometry, logoaudiometry, electroacoustic immittance, and stapedial reflex. To assess outer hair cell function in the cochlea, we completed transient evoked otoacoustic emissions (TEOAEs). To assess the auditory nerve and auditory brainstem, we obtained auditory brainstem responses (ABRs). Misophonia and dizziness complaints were more frequent in those with IGHD than in controls (P = .011). Patients with IGHD had higher thresholds at 250 Hz (P = .005), 500 Hz (P = .006), 3 KHz (P = .008), 4 KHz (P = .038), 6 KHz (P = .008), and 8 KHz (P = .048) and mild high-tones hearing loss (P = .029). Stapedial reflex (P < .001) and TEOAEs (P = .025) were more frequent in controls. There were no differences in ABR latencies. Hearing loss in patients with IGHD occurred earlier than in controls (P < .001). Compared with controls of the same area, subjects with untreated, congenital lifetime IGHD report more misophonia and dizziness, have predominance of mild high-tones sensorineural hearing loss, and have an absence of stapedial reflex and TEOAEs.
Nozaradan, Sylvie; Schönwiesner, Marc; Keller, Peter E; Lenc, Tomas; Lehmann, Alexandre
2018-02-01
The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Brainstem auditory evoked potentials in children with lead exposure.
Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob
2015-01-01
Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Effect of Human Auditory Efferent Feedback on Cochlear Gain and Compression
Drga, Vit; Plack, Christopher J.
2014-01-01
The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain. PMID:25392499
Hirai, Yasuharu; Nishino, Eri
2015-01-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950
Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori
2015-06-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.
Schrode, Katrina M; Bee, Mark A
2015-03-01
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.
Subcortical processing of speech regularities underlies reading and music aptitude in children
2011-01-01
Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation. PMID:22005291
Four cases of acoustic neuromas with normal hearing.
Valente, M; Peterein, J; Goebel, J; Neely, J G
1995-05-01
In 95 percent of the cases, patients with acoustic neuromas will have some magnitude of hearing loss in the affected ear. This paper reports on four patients who had acoustic neuromas and normal hearing. Results from the case history, audiometric evaluation, auditory brainstem response (ABR), electroneurography (ENOG), and vestibular evaluation are reported for each patient. For all patients, the presence of unilateral tinnitus was the most common complaint. Audiologically, elevated or absent acoustic reflex thresholds and abnormal ABR findings were the most powerful diagnostic tools.
Montie, Eric W; Manire, Charlie A; Mann, David A
2011-03-15
In June 2008, two pygmy killer whales (Feresa attenuata) were stranded alive near Boca Grande, FL, USA, and were taken into rehabilitation. We used this opportunity to learn about the peripheral anatomy of the auditory system and hearing sensitivity of these rare toothed whales. Three-dimensional (3-D) reconstructions of head structures from X-ray computed tomography (CT) images revealed mandibles that were hollow, lacked a bony lamina medial to the pan bone and contained mandibular fat bodies that extended caudally and abutted the tympanoperiotic complex. Using auditory evoked potential (AEP) procedures, the modulation rate transfer function was determined. Maximum evoked potential responses occurred at modulation frequencies of 500 and 1000 Hz. The AEP-derived audiograms were U-shaped. The lowest hearing thresholds occurred between 20 and 60 kHz, with the best hearing sensitivity at 40 kHz. The auditory brainstem response (ABR) was composed of seven waves and resembled the ABR of the bottlenose and common dolphins. By changing electrode locations, creating 3-D reconstructions of the brain from CT images and measuring the amplitude of the ABR waves, we provided evidence that the neuroanatomical sources of ABR waves I, IV and VI were the auditory nerve, inferior colliculus and the medial geniculate body, respectively. The combination of AEP testing and CT imaging provided a new synthesis of methods for studying the auditory system of cetaceans.
Smith, Adam B; Pacini, Aude F; Nachtigall, Paul E
2018-04-01
Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville's beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.
Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan
2012-01-01
The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808
Núñez-Batalla, Faustino; Noriega-Iglesias, Sabel; Guntín-García, Maite; Carro-Fernández, Pilar; Llorente-Pendás, José Luis
2016-01-01
Conventional audiometry is the gold standard for quantifying and describing hearing loss. Alternative methods become necessary to assess subjects who are too young to respond reliably. Auditory evoked potentials constitute the most widely used method for determining hearing thresholds objectively; however, this stimulus is not frequency specific. The advent of the auditory steady-state response (ASSR) leads to more specific threshold determination. The current study describes and compares ASSR, auditory brainstem response (ABR) and conventional behavioural tone audiometry thresholds in a group of infants with various degrees of hearing loss. A comparison was made between ASSR, ABR and behavioural hearing thresholds in 35 infants detected in the neonatal hearing screening program. Mean difference scores (±SD) between ABR and high frequency ABR thresholds were 11.2 dB (±13) and 10.2 dB (±11). Pearson correlations between the ASSR and audiometry thresholds were 0.80 and 0.91 (500Hz); 0.84 and 0.82 (1000Hz); 0.85 and 0.84 (2000Hz); and 0.83 and 0.82 (4000Hz). The ASSR technique is a valuable extension of the clinical test battery for hearing-impaired children. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Kenet, T.; Froemke, R. C.; Schreiner, C. E.; Pessah, I. N.; Merzenich, M. M.
2007-01-01
Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination. PMID:17460041
Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin
2017-01-01
Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n = 5) or dentate cerebellar nucleus (DCBN, n = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.
Bramhall, Naomi F.; Konrad-Martin, Dawn; McMillan, Garnett P.; Griest, Susan E.
2017-01-01
Objectives Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. Design Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. Results After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. Conclusions Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted for by sex or variability in outer hair cell function. This change is similar to the decreased ABR wave I amplitudes observed in animal models of noise-induced cochlear synaptopathy. However, without post mortem examination of the temporal bone, no direct conclusions can be drawn concerning the presence of synaptopathy in the study groups with higher noise exposure histories. PMID:27992391
Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J
2015-04-01
The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt
2014-08-01
Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.
Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
Junius, Dirk; Dau, Torsten
2005-07-01
The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications.
Effects of maternal inhalation of gasoline evaporative ...
In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Liu, Ke; Ji, Fei; Yang, Guan; Hou, Zhaohui; Sun, Jianhe; Wang, Xiaoyu; Guo, Weiwei; Sun, Wei; Yang, Weiyan; Yang, Xiao; Yang, Shiming
2016-10-01
More than 100 genes have been associated with deafness. However, SMAD4 is rarely considered a contributor to deafness in humans, except for its well-defined role in cell differentiation and regeneration. Here, we report that a SMAD4 defect in mice can cause auditory neuropathy, which was defined as a mysterious hearing and speech perception disorder in human for which the genetic background remains unclear. Our study showed that a SMAD4 defect induces failed formation of cochlear ribbon synapse during the earlier stage of auditory development in mice. Further investigation found that there are nearly normal morphology of outer hair cells (OHCs) and post-synapse spiral ganglion nerves (SGNs) in SMAD4 conditional knockout mice (cKO); however, a preserved distortion product of otoacoustic emission (DPOAE) and cochlear microphonic (CM) still can be evoked in cKO mice. Moreover, a partial restoration of hearing detected by electric auditory brainstem response (eABR) has been obtained in the cKO mice using electrode stimuli toward auditory nerves. Additionally, the ribbon synapses in retina are not affected by this SMAD4 defect. Thus, our findings suggest that this SMAD4 defect causes auditory neuropathy via specialized disruption of cochlear ribbon synapses.
Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y. C.; Hou, Sanna
2016-01-01
With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922
Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying
2011-03-01
Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P < 0.05), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.
A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate responses
NASA Astrophysics Data System (ADS)
Sumner, Christian J.; O'Mard, Lowel P.; Lopez-Poveda, Enrique A.; Meddis, Ray
2003-06-01
The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.
Evaluation of very low birth weight (≤ 1,500 g) as a risk indicator for sensorineural hearing loss.
Borkoski-Barreiro, Silvia A; Falcón-González, Juan C; Limiñana-Cañal, José M; Ramos-Macías, Angel
2013-01-01
Hearing plays an essential role in the acquisition, development and maintenance of the properties of the speech and language. Birth weight is an indicator of biological maturation of the newborn. Premature newborns with very low birth weight (VLBW<1,500 g) constitute a group with the highest risk of sensorineural hearing loss. Our objective was to ascertain the degree of hearing loss, sensorineural hearing loss and presence of the association to other risk factors for hearing loss in VLBW infants included in the Universal Hearing Loss Screening Programme at the University Mother-Child Hospital of Gran Canaria (Spain) in the 2007-2010 period. This was a retrospective study of 364 infants with VLBW, measured by transient evoked otoacoustic emissions and auditory brainstem response. There were 112 newborn (30.8%) referred for auditory brainstem response. A diagnosis of hearing loss was given to 22 newborns (2.2%), 14 had conductive hearing loss and 8, sensorineural hearing loss (SNHL), of which 2 had bilateral profound hearing loss. The VLBW newborn presented the association to another risk factor in more than a quarter of the sample studied. All those diagnosed with SNHL were premature. The percentage of VLBW newborns diagnosed with hearing loss is higher than expected in the general population. All those diagnosed with SNHL were premature and presented one or 2 hearing risk factors associated with VLBW. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs.
Guan, Xiying; Gan, Rong Z
2011-07-01
Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 0.2 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions. Copyright © 2011 Elsevier B.V. All rights reserved.
Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M
2016-07-01
The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Albert H; Mann, David; Error, Marc E; Miller, Matthew; Firpo, Matthew A; Wang, Yong; Alder, Stephen C; Schleiss, Mark R
2013-01-01
To assess the validity of the guinea pig as a model for congenital cytomegalovirus (CMV) infection by comparing the effectiveness of detecting the virus by real-time polymerase chain reaction (PCR) in blood, urine, and saliva. Case-control study. Academic research. Eleven pregnant Hartley guinea pigs. Blood, urine, and saliva samples were collected from guinea pig pups delivered from pregnant dams inoculated with guinea pig CMV. These samples were then evaluated for the presence of guinea pig CMV by real-time PCR assuming 100% transmission. Thirty-one pups delivered from 9 inoculated pregnant dams and 8 uninfected control pups underwent testing for guinea pig CMV and for auditory brainstem response hearing loss. Repeated-measures analysis of variance demonstrated no statistically significantly lower weight for the infected pups compared with the noninfected control pups. Six infected pups demonstrated auditory brainstem response hearing loss. The sensitivity and specificity of the real-time PCR assay on saliva samples were 74.2% and 100.0%, respectively. The sensitivity of the real-time PCR on blood and urine samples was significantly lower than that on saliva samples. Real-time PCR assays of blood, urine, and saliva revealed that saliva samples show high sensitivity and specificity for detecting congenital CMV infection in guinea pigs. This finding is consistent with recent screening studies in human newborns. The guinea pig may be a good animal model in which to compare different diagnostic assays for congenital CMV infection.
Label-Free Ferrocene-Loaded Nanocarrier Engineering for In Vivo Cochlear Drug Delivery and Imaging.
Youm, Ibrahima; Musazzi, Umberto M; Gratton, Michael Anne; Murowchick, James B; Youan, Bi-Botti C
2016-10-01
It is hypothesized that ferrocene (FC)-loaded nanocarriers (FC-NCs) are safe label-free contrast agents for cochlear biodistribution study by transmission electron microscopy (TEM). To test this hypothesis, after engineering, the poly(epsilon-caprolactone)/polyglycolide NCs are tested for stability with various types and ratios of sugar cryoprotectants during freeze-drying. Their physicochemical properties are characterized by UV-visible spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS). The biodistribution of the FC-NCs in the cochlear tissue after intratympanic injection in guinea pigs is visualized by TEM. Auditory brainstem responses are measured before and after 4-day treatments. These FC-NCs have 153.4 ± 8.7 nm, 85.5 ± 11.2%, and -22.1 ± 1.1 mV as mean diameters, percent drug association efficiency, and zeta potential, respectively (n = 3). The incorporation of FC into the NCs is confirmed by Fourier transform infrared spectroscopy and SEM/EDS spectra. Lactose (3:1 ratio, v/v) is the most effective stabilizer after a 12-day study. The administered NCs are visible by TEM in the scala media cells of the cochlea. Based on auditory brainstem response data, FC-NCs do not adversely affect hearing. Considering the electrondense, radioactive, and magnetic properties of iron inside FC, FC-NCs are promising nanotemplate for future inner ear theranostics. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Physiologic correlates to background noise acceptance
NASA Astrophysics Data System (ADS)
Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna
2004-05-01
Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.
Encke, Jörg; Hemmert, Werner
2018-01-01
The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.
Formby, Craig; Korczak, Peggy; Sherlock, LaGuinn P; Hawley, Monica L; Gold, Susan
2017-02-01
In this report of three cases, we consider electrophysiologic measures from three hyperacusic hearing-impaired individuals who, prior to treatment to expand their dynamic ranges for loudness, were problematic hearing aid candidates because of their diminished sound tolerance and reduced dynamic ranges. Two of these individuals were treated with structured counseling combined with low-level broadband sound therapy from bilateral sound generators and the third case received structured counseling in combination with a short-acting placebo sound therapy. Each individual was highly responsive to his or her assigned treatment as revealed by expansion of the dynamic range by at least 20 dB at one or more frequencies posttreatment. Of specific interest in this report are their latency and amplitude measures taken from tone burst-evoked auditory brainstem response (ABR) and cortically derived middle latency response (MLR) recordings, measured as a function of increasing loudness at 500 and 2,000 Hz pre- and posttreatment. The resulting ABR and MLR latency and amplitude measures for each case are considered here in terms of pre- and posttreatment predictions. The respective pre- and posttreatment predictions anticipated larger pretreatment response amplitudes and shorter pretreatment response latencies relative to typical normal control values and smaller normative-like posttreatment response amplitudes and longer posttreatment response latencies relative to the corresponding pretreatment values for each individual. From these results and predictions, we conjecture about the neural origins of the hyperacusis conditions (i.e., brainstem versus cortical) and the neuronal sites responsive to treatment. The only consistent finding in support of the pre- and posttreatment predictions and, thus, the strongest index of hyperacusis and positive treatment-related effects was measured for MLR latency responses for wave Pa at 2,000 Hz. Other response indices, including ABR wave V latency and wave V-V' amplitude and MLR wave Na-Pa amplitude for 500 and 2,000 Hz, appear either ambiguous across and/or within these individuals. Notwithstanding significant challenges for interpreting these findings, including associated confounding effects of their sensorineural hearing losses and differences in the presentation levels of the toneburst stimuli used to collect these measures for each individual, our limited analyses of three cases suggest measures of MLR wave Pa latency at 2,000 Hz (reflecting cortical contributions) may be a promising objective indicator of hyperacusis and dynamic range expansion treatment effects.
Lapsiwala, Samir B; Pyle, G Mark; Kaemmerle, Ann W; Sasse, Frank J; Badie, Behnam
2002-05-01
Hearing loss is the most common presenting symptom in patients who harbor a vestibular schwannoma (VS). Although mechanical injury to the cochlear nerve and vascular compromise of the auditory apparatus have been proposed, the exact mechanism of this hearing loss remains unclear. To test whether pressure on the cochlear nerve from tumor growth in the internal auditory canal (IAC) is responsible for this clinical finding, the authors prospectively evaluated intracanalicular pressure (ICaP) in patients with VS and correlated this with preoperative brainstem response. In 40 consecutive patients undergoing a retrosigmoid-transmeatal approach for tumor excision, ICaP was measured by inserting a pressure microsensor into the IAC before any tumor manipulation. Pressure recordings were correlated with tumor size and preoperative auditory evoked potential (AEP) recordings. The ICaP, which varied widely among patients (range 0-45 mm Hg), was significantly elevated in most patients (median 16 mm Hg). Although these pressure measurements directly correlated to the extension of tumor into the IAC (p = 0.001), they did not correlate to total tumor size (p = 0.2). In 20 patients in whom baseline AEP recordings were available, the ICaP directly correlated to wave V latency (p = 0.0001), suggesting that pressure from tumor growth in the IAC may be responsible for hearing loss in these patients. Tumor growth into the IAC results in elevation of ICaP and may play a role in hearing loss in patients with VS. The relevance of these findings to the surgical treatment of these tumors is discussed.
Melcher, J R; Knudson, I M; Fullerton, B C; Guinan, J J; Norris, B E; Kiang, N Y
1996-04-01
This paper is the first in a series aimed at identifying the cellular generators of the brainstem auditory evoked potential (BAEP) in cats. The approach involves (1) developing experimental procedures for making small selective lesions and determining the corresponding changes in BAEP waveforms, (2) identifying brainstem regions involved in BAEP generation by examining the effects of lesions on the BAEP and (3) identifying specific cell populations involved by combining the lesion results with electrophysiological and anatomical information from other kinds of studies. We created lesions in the lower brainstem by injecting kainic acid which is generally toxic for neuronal cell bodies but not for axons and terminals. This first paper describes the justifications for using kainic acid, explains the associated problems, and develops a methodology that addresses the main difficulties. The issues and aspects of the specific methods are generally applicable to physiological and anatomical studies using any neurotoxin, as well as to the present BAEP study. The methods chosen involved (1) measuring the BAEP at regular intervals until it reached a post-injection steady state and perfusing the animals with fixative shortly after the last BAEP recordings were made, (2) using objective criteria to distinguish injection-related BAEP changes from unrelated ones, (3) making control injections to identify effects not due to kainic acid toxicity, (4) verifying the anatomical and functional integrity of axons in lesioned regions, and (5) examining injected brainstems microscopically for cell loss and cellular abnormalities indicating dysfunction. This combination of methods enabled us to identify BAEP changes which are clearly correlated with lesion locations.
Human auditory evoked potentials. I - Evaluation of components
NASA Technical Reports Server (NTRS)
Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.
1974-01-01
Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.
Aleman, M; Davis, E; Williams, D C; Madigan, J E; Smith, F; Guedes, A
2015-01-01
An intravenous (IV) overdose of pentobarbital sodium is the most commonly used method of euthanasia in veterinary medicine. However, this compound is not available in many countries or rural areas resulting in usage of alternative methods such as intrathecal lidocaine administration after IV anesthesia. Its safety and efficacy as a method of euthanasia have not been investigated in the horse. To investigate changes in mean arterial blood pressure and electrical activity of the cerebral cortex, brainstem, and heart during intrathecal administration of lidocaine. Our hypothesis was that intrathecal lidocaine affects the cerebral cortex and brainstem before affecting cardiovascular function. Eleven horses requiring euthanasia for medical reasons. Prospective observational study. Horses were anesthetized with xylazine, midazolam, and ketamine; and instrumented for recording of electroencephalogram (EEG), electrooculogram (EOG), brainstem auditory evoked response (BAER), and electrocardiogram (ECG). Physical and neurological (brainstem reflexes) variables were monitored. Mean arterial blood pressure was recorded throughout the study. Loss of cerebro-cortical electrical activity occurred up to 226 seconds after the end of the infusion of lidocaine solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of BAER occurred subsequently. Undetectable heart sounds, nonpalpable arterial pulse, and extremely low mean arterial blood pressure supported cardiac death; a recordable ECG was the last variable to disappear after the infusion (300-1,279 seconds). Intrathecal administration of lidocaine is an effective alternative method of euthanasia in anesthetized horses, during which brain death occurs before cardiac death. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.
Seino, Shizuka; Watanabe, Satoshi; Ito, Namiko; Sasaki, Konosuke; Shoji, Kaori; Miura, Shoko; Kozawa, Kanoko; Nakai, Kunihiko; Sato, Hiroshi; Kanazawa, Motoyori; Fukudo, Shin
2012-01-01
Background The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS) are unclear. We hypothesized that children with chronic gastrointestinal (GI) symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP) responses and receive more inadequate parental bonding. Methodology/Principal Findings Children aged seven and their mothers (141 pairs) participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI) and Parental Bonding Instrument (PBI). CSI results revealed 66 (42%) children without GI symptoms (controls) and 75 (58%) children with one or more GI symptoms (GI group). The III wave in the GI group (median 4.10 interquartile range [3.95–4.24] ms right, 4.04 [3.90–4.18] ms left) had a significantly shorter peak latency than controls (4.18 [4.06–4.34] ms right, p = 0.032, 4.13 [4.02–4.24] ms left, p = 0.018). The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90–4.18] ms) than controls (4.18 [3.97–4.31] ms, p = 0.034) in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = −0.192, p = 0.025). The maternal care PBI scores in the GI group (29 [26]–[33]) were significantly lower than controls (31 [28.5–33], p = 0.010), while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]–[17]) than controls (13 [10.5–16], p = 0.024). Multiple regression analysis in females also supported these findings. Conclusions It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms. PMID:22470430
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus((+)) and tinnitus((-)) groups and detected no evidence of tinnitus in tinnitus((-)) and control rats. In addition, the tinnitus((+)) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus((+)) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
A vestibular phenotype for Waardenburg syndrome?
NASA Technical Reports Server (NTRS)
Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.
2001-01-01
OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.
Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow
Caras, Melissa L.; Brenowitz, Eliot; Rubel, Edwin W
2010-01-01
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds. PMID:20563817
Hemispheric asymmetry of auditory steady-state responses to monaural and diotic stimulation.
Poelmans, Hanne; Luts, Heleen; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan
2012-12-01
Amplitude modulations in the speech envelope are crucial elements for speech perception. These modulations comprise the processing rate at which syllabic (~3-7 Hz), and phonemic transitions occur in speech. Theories about speech perception hypothesize that each hemisphere in the auditory cortex is specialized in analyzing modulations at different timescales, and that phonemic-rate modulations of the speech envelope lateralize to the left hemisphere, whereas right lateralization occurs for slow, syllabic-rate modulations. In the present study, neural processing of phonemic- and syllabic-rate modulations was investigated with auditory steady-state responses (ASSRs). ASSRs to speech-weighted noise stimuli, amplitude modulated at 4, 20, and 80 Hz, were recorded in 30 normal-hearing adults. The 80 Hz ASSR is primarily generated by the brainstem, whereas 20 and 4 Hz ASSRs are mainly cortically evoked and relate to speech perception. Stimuli were presented diotically (same signal to both ears) and monaurally (one signal to the left or right ear). For 80 Hz, diotic ASSRs were larger than monaural responses. This binaural advantage decreased with decreasing modulation frequency. For 20 Hz, diotic ASSRs were equal to monaural responses, while for 4 Hz, diotic responses were smaller than monaural responses. Comparison of left and right ear stimulation demonstrated that, with decreasing modulation rate, a gradual change from ipsilateral to right lateralization occurred. Together, these results (1) suggest that ASSR enhancement to binaural stimulation decreases in the ascending auditory system and (2) indicate that right lateralization is more prominent for low-frequency ASSRs. These findings may have important consequences for electrode placement in clinical settings, as well as for the understanding of low-frequency ASSR generation.
Poliva, Oren
2017-01-01
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls. PMID:28928931
Shim, Hyun Joon; An, Yong-Hwi; Kim, Dong Hyun; Yoon, Ji Eun; Yoon, Ji Hyang
2017-01-01
Recently, "hidden hearing loss" with cochlear synaptopathy has been suggested as a potential pathophysiology of tinnitus in individuals with a normal hearing threshold. Several studies have demonstrated that subjects with tinnitus and normal audiograms show significantly reduced auditory brainstem response (ABR) wave I amplitudes compared with control subjects, but normal wave V amplitudes, suggesting increased central auditory gain. We aimed to reconfirm the "hidden hearing loss" theory through a within-subject comparison of wave I and wave V amplitudes and uncomfortable loudness level (UCL), which might be decreased with increased central gain, in tinnitus ears (TEs) and non-tinnitus ears (NTEs). Human subjects included 43 unilateral tinnitus patients (19 males, 24 females) with normal and symmetric hearing thresholds and 18 control subjects with normal audiograms. The amplitudes of wave I and V from the peak to the following trough were measured twice at 90 dB nHL and we separately assessed UCLs at 500 Hz and 3000 Hz pure tones in each TE and NTE. The within-subject comparison between TEs and NTEs showed no significant differences in wave I and wave V amplitude, or wave V/I ratio in both the male and female groups. Individual data revealed increased V/I amplitude ratios > mean + 2 SD in 3 TEs, but not in any control ears. We found no significant differences in UCL at 500 Hz or 3000 Hz between the TEs and NTEs, but the UCLs of both TEs and NTEs were lower than those of the control ears. Our ABR data do not represent meaningful evidence supporting the hypothesis of cochlear synaptopathy with increased central gain in tinnitus subjects with normal audiograms. However, reduced sound level tolerance in both TEs and NTEs might reflect increased central gain consequent on hidden synaptopathy that was subsequently balanced between the ears by lateral olivocochlear efferents.
The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.
Yao, Lu; Zhang, Lei; Qi, Lin-Song; Liu, Wei; An, Jing; Wang, Bin; Xue, Jun-Hui; Zhang, Zuo-Ming
2016-01-01
Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.
An, Yong-Hwi; Kim, Dong Hyun; Yoon, Ji Eun; Yoon, Ji Hyang
2017-01-01
Objective Recently, “hidden hearing loss” with cochlear synaptopathy has been suggested as a potential pathophysiology of tinnitus in individuals with a normal hearing threshold. Several studies have demonstrated that subjects with tinnitus and normal audiograms show significantly reduced auditory brainstem response (ABR) wave I amplitudes compared with control subjects, but normal wave V amplitudes, suggesting increased central auditory gain. We aimed to reconfirm the “hidden hearing loss” theory through a within-subject comparison of wave I and wave V amplitudes and uncomfortable loudness level (UCL), which might be decreased with increased central gain, in tinnitus ears (TEs) and non-tinnitus ears (NTEs). Subjects and methods Human subjects included 43 unilateral tinnitus patients (19 males, 24 females) with normal and symmetric hearing thresholds and 18 control subjects with normal audiograms. The amplitudes of wave I and V from the peak to the following trough were measured twice at 90 dB nHL and we separately assessed UCLs at 500 Hz and 3000 Hz pure tones in each TE and NTE. Results The within-subject comparison between TEs and NTEs showed no significant differences in wave I and wave V amplitude, or wave V/I ratio in both the male and female groups. Individual data revealed increased V/I amplitude ratios > mean + 2 SD in 3 TEs, but not in any control ears. We found no significant differences in UCL at 500 Hz or 3000 Hz between the TEs and NTEs, but the UCLs of both TEs and NTEs were lower than those of the control ears. Conclusions Our ABR data do not represent meaningful evidence supporting the hypothesis of cochlear synaptopathy with increased central gain in tinnitus subjects with normal audiograms. However, reduced sound level tolerance in both TEs and NTEs might reflect increased central gain consequent on hidden synaptopathy that was subsequently balanced between the ears by lateral olivocochlear efferents. PMID:29253030
The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.
Hoth, Sebastian; Dziemba, Oliver Christian
2017-12-01
: Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.
Preservation of Auditory P300-Like Potentials in Cortical Deafness
Cavinato, Marianna; Rigon, Jessica; Volpato, Chiara; Semenza, Carlo; Piccione, Francesco
2012-01-01
The phenomenon of blindsight has been largely studied and refers to residual abilities of blind patients without an acknowledged visual awareness. Similarly, “deaf hearing” might represent a further example of dissociation between detection and perception of sounds. Here we report the rare case of a patient with a persistent and complete cortical deafness caused by damage to the bilateral temporo-parietal lobes who occasionally showed unexpected reactions to environmental sounds despite she denied hearing. We applied for the first time electrophysiological techniques to better understand auditory processing and perceptual awareness of the patient. While auditory brainstem responses were within normal limits, no middle- and long-latency waveforms could be identified. However, event-related potentials showed conflicting results. While the Mismatch Negativity could not be evoked, robust P3-like waveforms were surprisingly found in the latency range of 600–700 ms. The generation of P3-like potentials, despite extensive destruction of the auditory cortex, might imply the integrity of independent circuits necessary to process auditory stimuli even in the absence of consciousness of sound. Our results support the reverse hierarchy theory that asserts that the higher levels of the hierarchy are immediately available for perception, while low-level information requires more specific conditions. The accurate characterization in terms of anatomy and neurophysiology of the auditory lesions might facilitate understanding of the neural substrates involved in deaf-hearing. PMID:22272260
Short- and long-latency auditory evoked potentials in individuals with vestibular dysfunction.
Santos Filha, Valdete Alves Valentins Dos; Bruckmann, Mirtes; Garcia, Michele Vargas
2018-01-01
Purpose Evaluate the auditory pathway at the brainstem and cortical levels in individuals with peripheral vestibular dysfunction. Methods The study sample was composed 19 individuals aged 20-80 years that presented exam results suggestive of Peripheral Vestibular Disorder (PVD) or Vestibular Dysfunction (VD). Participants underwent evaluation of the auditory pathway through Brainstem Auditory Evoked Potentials (BAEP) (short latency) and P1, N1, P2, N2, and P300 cortical potentials (long latency). Results Nine individuals presented diagnosis of VD and 10 participants were diagnosed with PVD. The overall average of the long latency potentials of the participants was within the normal range, whereas an increased mean was observed in the short latency of waves III and V of the left ear, as well as in the I - III interpeak interval of both ears. Association of the auditory potentials with VD and PVD showed statistically significant correlation only in the III - V interpeak interval of the right ear for short latency. Comparison between the long and short latencies in the groups showed differences between VD and PVD, but without statistical significance. Conclusion No statistically significant correlation was observed between VD/PVD and the auditory evoked potentials; however, for the long latency potentials, individuals with VD presented higher latency in P1, N1, P2, and N2, where as participants with PVD showed higher latency in P300. In the short latency potentials, there was an increase in the absolute latencies in the VD group and in the interpeak intervals in the PVD group.
Heeringa, A N; van Dijk, P
2014-06-01
Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis
2014-05-01
The recording of the auditory brainstem response (ABR) is used worldwide for hearing screening purposes. In this process, a precise estimation of the most relevant components is essential for an accurate interpretation of these signals. This evaluation is usually carried out subjectively by an audiologist. However, the use of automatic methods for this purpose is being encouraged nowadays in order to reduce human evaluation biases and ensure uniformity among test conditions, patients, and screening personnel. This article describes a new method that performs automatic quality assessment and identification of the peaks, the fitted parametric peaks (FPP). This method is based on the use of synthesized peaks that are adjusted to the ABR response. The FPP is validated, on one hand, by an analysis of amplitudes and latencies measured manually by an audiologist and automatically by the FPP method in ABR signals recorded at different stimulation rates; and on the other hand, contrasting the performance of the FPP method with the automatic evaluation techniques based on the correlation coefficient, FSP, and cross correlation with a predefined template waveform by comparing the automatic evaluations of the quality of these methods with subjective evaluations provided by five experienced evaluators on a set of ABR signals of different quality. The results of this study suggest (a) that the FPP method can be used to provide an accurate parameterization of the peaks in terms of amplitude, latency, and width, and (b) that the FPP remains as the method that best approaches the averaged subjective quality evaluation, as well as provides the best results in terms of sensitivity and specificity in ABR signals validation. The significance of these findings and the clinical value of the FPP method are highlighted on this paper. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese
2013-01-01
Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179
Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F
2016-08-01
To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.
Orton, Llwyd D.; Poon, Paul W. F.; Rees, Adrian
2012-01-01
The auditory pathways coursing through the brainstem are organized bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC). Anatomical studies have revealed that these fibers make reciprocal connections which follow the tonotopic organization of the inferior colliculus (IC), and that the commissure contains both excitatory and, albeit fewer, inhibitory fibers. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetized guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs) before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20°C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ~8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signaling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other. PMID:23248587
Le Prell, Colleen G; Brungart, Douglas S
2016-09-01
In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.
Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.
Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H
2018-03-01
The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan
2016-12-01
The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P < .01). We found that in a resource-constrained setting, classical kernicterus was the most common bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.
Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T
2018-01-01
Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503
Brainstem timing: implications for cortical processing and literacy.
Banai, Karen; Nicol, Trent; Zecker, Steven G; Kraus, Nina
2005-10-26
The search for a unique biological marker of language-based learning disabilities has so far yielded inconclusive findings. Previous studies have shown a plethora of auditory processing deficits in learning disabilities at both the perceptual and physiological levels. In this study, we investigated the association among brainstem timing, cortical processing of stimulus differences, and literacy skills. To that end, brainstem timing and cortical sensitivity to acoustic change [mismatch negativity (MMN)] were measured in a group of children with learning disabilities and normal-learning children. The learning-disabled (LD) group was further divided into two subgroups with normal and abnormal brainstem timing. MMNs, literacy, and cognitive abilities were compared among the three groups. LD individuals with abnormal brainstem timing were more likely to show reduced processing of acoustic change at the cortical level compared with both normal-learning individuals and LD individuals with normal brainstem timing. This group was also characterized by a more severe form of learning disability manifested by poorer reading, listening comprehension, and general cognitive ability. We conclude that abnormal brainstem timing in learning disabilities is related to higher incidence of reduced cortical sensitivity to acoustic change and to deficient literacy skills. These findings suggest that abnormal brainstem timing may serve as a reliable marker of a subgroup of individuals with learning disabilities. They also suggest that faulty mechanisms of neural timing at the brainstem may be the biological basis of malfunction in this group.
Systematic Review of Nontumor Pediatric Auditory Brainstem Implant Outcomes.
Noij, Kimberley S; Kozin, Elliott D; Sethi, Rosh; Shah, Parth V; Kaplan, Alyson B; Herrmann, Barbara; Remenschneider, Aaron; Lee, Daniel J
2015-11-01
The auditory brainstem implant (ABI) was initially developed for patients with deafness as a result of neurofibromatosis type 2. ABI indications have recently extended to children with congenital deafness who are not cochlear implant candidates. Few multi-institutional outcome data exist. Herein, we aim to provide a systematic review of outcomes following implantation of the ABI in pediatric patients with nontumor diagnosis, with a focus on audiometric outcomes. PubMed, Embase, and Cochrane. A systematic review of literature was performed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations. Variables assessed included age at implantation, diagnosis, medical history, cochlear implant history, radiographic findings, ABI device implanted, surgical approach, complications, side effects, and auditory outcomes. The initial search identified 304 articles; 21 met inclusion criteria for a total of 162 children. The majority of these patients had cochlear nerve aplasia (63.6%, 103 of 162). Cerebrospinal fluid leak occurred in up to 8.5% of cases. Audiometric outcomes improved over time. After 5 years, almost 50% of patients reached Categories of Auditory Performance scores >4; however, patients with nonauditory disabilities did not demonstrate a similar increase in scores. ABI surgery is a reasonable option for the habilitation of deaf children who are not cochlear implant candidates. Although improvement in Categories of Auditory Performance scores was seen across studies, pediatric ABI users with nonauditory disabilities have inferior audiometric outcomes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations.
Melcher, J R; Kiang, N Y
1996-04-01
This paper examines the relationship between different brainstem cell populations and the brainstem auditory evoked potential (BAEP). First, we present a mathematical model relating the BAEP to underlying cellular activity. Then, we identify specific cellular generators of the click-evoked BAEP in cats by combining model-derived insights with key experimental data. These data include (a) a correspondence between particular brainstem regions and specific extrema in the BAEP waveform, determined from lesion experiments, and (b) values for model parameters derived from published physiological and anatomical information. Ultimately, we conclude (with varying degrees of confidence) that: (1) the earliest extrema in the BAEP are generated by spiral ganglion cells, (2) P2 is mainly generated by cochlear nucleus (CN) globular cells, (3) P3 is partly generated by CN spherical cells and partly by cells receiving inputs from globular cells, (4) P4 is predominantly generated by medial superior olive (MSO) principal cells, which are driven by spherical cells, (5) the generators of P5 are driven by MSO principal cells, and (6) the BAEP, as a whole, is generated mainly by cells with characteristic frequencies above 2 kHz. Thus, the BAEP in cats mainly reflects cellular activity in two parallel pathways, one originating with globular cells and the other with spherical cells. Since the globular cell pathway is poorly represented in humans, we suggest that the human BAEP is largely generated by brainstem cells in the spherical cell pathway. Given our conclusions, it should now be possible to relate activity in specific cell populations to psychophysical performance since the BAEP can be recorded in behaving humans and animals.
Aihara, Noritaka; Murakami, Shingo; Takahashi, Mariko; Yamada, Kazuo
2014-01-01
We classified the results of preoperative auditory brainstem response (ABR) in 121 patients with useful hearing and considered the utility of preoperative ABR as a preliminary assessment for intraoperative monitoring. Wave V was confirmed in 113 patients and was not confirmed in 8 patients. Intraoperative ABR could not detect wave V in these 8 patients. The 8 patients without wave V were classified into two groups (flat and wave I only), and the reason why wave V could not be detected may have differed between the groups. Because high-frequency hearing was impaired in flat patients, an alternative to click stimulation may be more effective. Monitoring cochlear nerve action potential (CNAP) may be useful because CNAP could be detected in 4 of 5 wave I only patients. Useful hearing was preserved after surgery in 1 patient in the flat group and 2 patients in wave I only group. Among patients with wave V, the mean interaural latency difference of wave V was 0.88 ms in Class A (n = 57) and 1.26 ms in Class B (n = 56). Because the latency of wave V is already prolonged before surgery, to estimate delay in wave V latency during surgery probably underestimates cochlear nerve damage. Recording intraoperative ABR is indispensable to avoid cochlear nerve damage and to provide information for surgical decisions. Confirming the condition of ABR before surgery helps to solve certain problems, such as choosing to monitor the interaural latency difference of wave V, CNAP, or alternative sound-evoked ABR.
Sensorineural hearing loss--a common finding in early-onset type 2 diabetes mellitus.
Lerman-Garber, Israel; Cuevas-Ramos, Daniel; Valdés, Samantha; Enríquez, Lorena; Lobato, Marlette; Osornio, Melannie; Escobedo, Ana Rosa; Pascual-Ramos, Virginia; Mehta, Roopa; Ramírez-Anguiano, Jacqueline; Gómez-Pérez, Francisco J
2012-01-01
To evaluate the prevalence and potential associations of hearing impairment in patients 30 to 50 years old with diabetes diagnosed before age 40 years-early-onset type 2 diabetes mellitus (T2DM). The study cohorts consisted of 46 consecutive patients with early-onset T2DM and 47 age-matched control subjects with rheumatoid arthritis. All study subjects completed clinical, serologic, and auditory assessments. The patients with T2DM had a mean age of 42 ± 6 years and a mean disease duration of 11 ± 6 years. Microalbuminuria was present in 26.1%, proliferative retinopathy in 26.1%, and symptomatic peripheral neuropathy in 23.9%. The prevalence of unilateral or bilateral hearing loss was significantly higher in the patients with T2DM than in the patients with rheumatoid arthritis (21.7% versus 6.4%, respectively; P = .01). Most cases of hearing loss were mild and involved high or acute tones. After multivariate analysis with adjustment for age, there was a significant association between hearing loss and hemoglobin A1c (odds ratio, 1.3; 95% confidence interval, 1.02 to 1.81; P = .035). In the patients with T2DM, the lengthening of the brainstem response was not significantly increased; however, the wave morphologic features were abnormal and the reproducibility was poor in both ears in 11 patients (24%). Patients with early-onset T2DM and poor glycemic control have an increased prevalence of subclinical hearing loss and impaired auditory brainstem responses. Hearing impairment may be an underrecognized complication of diabetes.
Hearing loss by week of gestation and birth weight in very preterm neonates.
van Dommelen, Paula; Verkerk, Paul H; van Straaten, Henrica L M
2015-04-01
To gain insight into health and related costs associated with very preterm births, one needs accurate information about the prevalence of the disabling conditions, including neonatal hearing loss (NHL). We assessed the prevalence of NHL by week of gestation and categories of birth weight in very preterm neonates. Results of the 2-stage Automated Auditory Brainstem Response nationwide Newborn Hearing Screening Program in Dutch Neonatal Intensive Care Units and diagnostic examinations were centrally registered between October 1998 and December 2012 and included in this study. NHL was defined as impaired when the neonate conventional Auditory Brainstem Response level exceeded 35 dB near Hearing Level at diagnostic examination. Birth weight was stratified into <750 g, 750-999 g, 1000-1249 g, 1250-1499 g, and ≥ 1500 g, and by small for gestational age (SGA; <10th percentile) vs appropriate for gestational age. Logistic regression analyses and recursive partitioning were performed. In total, 18,564 very preterm neonates were eligible. The prevalence of NHL consistently increased with decreasing week of gestation (1.2%-7.5% from 31 to 24 weeks) and decreasing birth weight (1.4%-4.8% from ≥ 1500 g to <750 g, all P < .002). Most vulnerable to NHL were girls <28 weeks, boys <30 weeks, and SGA neonates. The SGA effect started at 27 weeks. Gestational age and birth weight quantify the risk of NHL. This information can be used at the individual level for parent counseling and at the population level for medical decision making. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Z D; Brosi, D M; Wilkinson, A R
2001-12-01
Seventy preterm babies who were born with a birthweight <1500 g were studied with brainstem auditory evoked responses (BAER) at 37-42 wk of postconceptional age. The data were compared with those of normal term neonates to determine the prevalence of hearing impairment in preterm very low birthweight (VLBW) babies when they reached term. The BAER was recorded with click stimuli at 21 s(-1). Wave I and V latencies increased significantly (ANOVA p < 0.01 and 0.001). I-V and III-V intervals also increased significantly (p < 0.05 and 0.001). Wave V amplitude and V/I amplitude ratio did not differ significantly from those in the normal term controls. Ten of the 70 VLBW babies had a significant elevation in BAER threshold (>30 dB normal hearing level). Eleven had an increase in I-V interval (>2.5 SD above the mean in the normal controls) and one had a decrease in V/I amplitude ratio (<0.45). These results suggest that 14% (10/70) of the VLBW babies had a peripheral hearing impairment and 17% (12/70) a central impairment. Three babies had both an increase in I-V interval and an elevation in BAER threshold, suggesting that 4% (3/70) had both peripheral and central impairments. Thus, the total prevalence of hearing impairment was 27% (19/70). About one in four preterm VLBW babies has peripheral and/or central hearing impairment at term. VLBW and its associated unfavourable perinatal factors predispose the babies to hearing impairment.
Auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice.
Saluja, Satish; Agarwal, Asha; Kler, Neelam; Amin, Sanjiv
2010-11-01
To evaluate if severe jaundice is associated with acute auditory neuropathy spectrum disorder in otherwise healthy late preterm and term neonates. In a prospective observational study, all neonates who were admitted with severe jaundice at which exchange transfusion may be indicated as per American Academy of Pediatrics guidelines had comprehensive auditory evaluation performed before discharge to home. Neonates with infection, perinatal asphyxia, chromosomal disorders, cranio-facial malformations, or family history of childhood hearing loss were excluded. Comprehensive auditory evaluations (tympanometry, oto-acoustic emission tests, and auditory brainstem evoked responses) were performed by an audiologist unaware of the severity of jaundice. Total serum bilirubin and serum albumin were measured at the institutional chemistry laboratory using the Diazo and Bromocresol purple method, respectively. A total of 13 neonates with total serum bilirubin concentration at which exchange transfusion is indicated as per American Academy of Pediatrics were admitted to the Neonatal Intensive Care Unit over 3 month period. Six out of 13 neonates (46%) had audiological findings of acute auditory neuropathy spectrum disorder. There was no significant difference in gestational age, birth weight, hemolysis, serum albumin concentration, peak total serum bilirubin concentrations, and peak bilirubin:albumin molar ratio between six neonates who developed acute auditory neuropathy and seven neonates who had normal audiological findings. Only two out of six infants with auditory neuropathy spectrum disorder had clinical signs and symptoms of acute bilirubin encephalopathy. Our findings strongly suggest that auditory neuropathy spectrum disorder is a common manifestation of acute bilirubin-induced neurotoxicity in late preterm and term infants with severe jaundice. Our findings also suggest that comprehensive auditory evaluations should be routinely performed in neonates with severe jaundice irrespective of the presence of clinical findings of acute bilirubin encephalopathy. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Evidence for an Auditory Fovea in the New Zealand Kiwi (Apteryx mantelli)
Corfield, Jeremy; Kubke, M. Fabiana; Parsons, Stuart; Wild, J. Martin; Köppl, Christine
2011-01-01
Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role. PMID:21887317
Maksimova, M Yu; Sermagambetova, Zh N; Skrylev, S I; Fedin, P A; Koshcheev, A Yu; Shchipakin, V L; Sinicyn, I A
To assess brain stem dysfunction in patients with hemodynamically significant stenosis of vertebral arteries (VA) using short latency brainstem auditory evoked potentials (BAEP). The study group included 50 patients (mean age 64±6 years) with hemodynamically significant extracranial VA stenosis. Patients with hemodynamically significant extracranial VA stenosis had BAEP abnormalities including the elongation of interpeak intervals I-V and peak V latency as well as the reduction of peak I amplitude. After transluminal balloon angioplasty with stenting of VA stenoses, there was a shortening of peak V latency compared to the preoperative period that reflected the improvement of brain stem conductive functions. Atherostenosis of vertebral arteries is characterized by the signs of brain stem dysfunction, predominantly in the pontomesencephal brain stem. After transluminal balloon angioplasty with stenting of VA, the improvement of brain stem conductive functions was observed.
Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark
2014-01-01
Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.
Processing of voices in deafness rehabilitation by auditory brainstem implant.
Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Kalamarides, Michel; Bizaguet, Eric; Syrota, André; Samson, Yves; Sterkers, Olivier
2009-10-01
The superior temporal sulcus (STS) is specifically involved in processing the human voice. Profound acquired deafness by post-meningitis ossified cochlea and by bilateral vestibular schwannoma in neurofibromatosis type 2 patients are two indications for auditory brainstem implantation (ABI). In order to objectively measure the cortical voice processing of a group of ABI patients, we studied the activation of the human temporal voice areas (TVA) by PET H(2)(15)O, performed in a group of implanted deaf adults (n=7) with more than two years of auditory brainstem implant experience, with an intelligibility score average of 17%+/-17 [mean+/-SD]. Relative cerebral blood flow (rCBF) was measured in the three following conditions: during silence, while passive listening to human voice, and to non-voice stimuli. Compared to silence, the activations induced by voice and non-voice stimuli were bilaterally located in the superior temporal regions. However, compared to non-voice stimuli, the voice stimuli did not induce specific supplementary activation of the TVA along the STS. The comparison of ABI group with a normal-hearing controls group (n=7) showed that TVA activations were significantly enhanced among controls group. ABI allowed the transmission of sound stimuli to temporal brain regions but lacked transmitting the specific cues of the human voice to the TVA. Moreover, among groups, during silent condition, brain visual regions showed higher rCBF in ABI group, although temporal brain regions had higher rCBF in the controls group. ABI patients had consequently developed enhanced visual strategies to keep interacting with their environment.
Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.
Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R
2014-01-01
Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments. PMID:24069375
The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries.
Wang, Xi; Wang, Ye; Ding, Zhong-jia; Yue, Bo; Zhang, Peng-zhi; Chen, Xiao-dong; Chen, Xin; Chen, Jun; Chen, Fu-quan; Chen, Yang; Wang, Ren-feng; Mi, Wen-juan; Lin, Ying; Wang, Jie; Qiu, Jian-hua
2014-08-22
Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Clinical Uses of Electrocochleography
Gibson, William P.
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode. PMID:28634435
The Clinical Uses of Electrocochleography.
Gibson, William P
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode.
[Auditory function in children with Brachmann-de Lange syndrom].
Kozłowski, Jacek; Wierzba, Jolanta; Narozny, Waldemar; Balcerska, Anna; Stankiewicz, Czesław; Kuczkowski, Jerzy
2006-01-01
The aim of the research work is the evaluation of auditory function in children with rare, genetically determined Brachmann-de Lange syndrome. Test material came from 18 children (7 girls and 11 boys) between 11 months and 18 years of age with Brachmann-de Lange syndrome who have been diagnosed and treated at ENT Department and Department of Paediatrics, Haematology, Oncology and Endocrinology Medical University of Gdansk with support of Cornelia de Lange Association - Poland. In all children examinations of brainstem auditory evoked potential have been carried out as well as tympanometric examination in case of finding hearing loss. All these examinations were carried out in ENT Department of Medical University of Gdansk, using Racia-Alvar Centor C apparatus and Madsen-Zodiak 901. 9 (50%) of patients demonstrated hearing loss. In 3 (16.7%) cases the conduction hearing loss was connected with the chronic diseases of middle ear which required medical treatment. In remaining 6 (33.3%) cases due to sensorineural hearing loss children had hearing aids applied and underwent rehabilitation. The results indicate that all children with Brachmann-de Lange syndrome should undergo examinations of brainstem auditory evoked potential. It enables to detect hypoacusis and initiate proper treatment. Lack of the opportunity of having a hearing aid applied and further rehabilitation deepens the social isolation of the little patients and inhibits their natural progress in communication. In such cases mental retardation may subsequently occur.
Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W
2014-01-01
Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.
The modulation rate transfer function of a harbour porpoise (Phocoena phocoena).
Linnenschmidt, Meike; Wahlberg, Magnus; Damsgaard Hansen, Janni
2013-02-01
During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I-VI), and 1.4 ms (II-IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal's size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.
Wang, Jingxuan; Lu, Jianren; Tian, Lan
2016-06-01
The purpose of this study was to evaluate the effects of fiberoptic collimation technique on auditory neural stimulation in the cochlea with 808 nm wavelength lasers. Recently, the pulsed near-infrared lasers in the 800-1000 nm wavelength range have been investigated as an emerging technique to trigger auditory neural response in the cochlea. A laser beam divergence in the optical stimulation pathway exists, which may affect stimulation efficiency and spatial selectivity. The fiberoptic collimation technique was proposed for cochlear neuron stimulation, and the C-lens element was designed as the collimation structure. The spiral ganglion cells in deafened guinea pigs' cochlea were irradiated with collimated and uncollimated near-infrared lasers. Optically evoked auditory brainstem response (OABR) under the two laser output modes were recorded. Laser with the collimation technique evoked an average 58% higher OABR amplitude than the uncollimated laser output. In addition, the collimated laser setup consumed on average 35.2% of laser energy compared with the uncollimated laser when evoking the same OABR amplitude. The fiberoptic collimation technique improved stimulation efficiency and reduced stimulating energy consumption in near-infrared neural stimulation in cochlea. The positive effects of laser collimation technique could benefit further research in optically based cochlear implants.
Tziridis, Konstantin; Ahlf, Sönke; Jeschke, Marcus; Happel, Max F. K.; Ohl, Frank W.; Schulze, Holger
2015-01-01
In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development. PMID:25713557
Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin
2018-01-01
Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.
Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin
2018-01-01
Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220
A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice.
Lv, Kun; Huang, Haiyang; Yi, Xing; Chertoff, Mark E; Li, Chaoyuan; Yuan, Baozhi; Hinton, Robert J; Feng, Jian Q
2017-10-01
Genetic mouse models are widely used for understanding human diseases but we know much less about the anatomical structure of the auditory ossicles in the mouse than we do about human ossicles. Furthermore, current studies have mainly focused on disease conditions such as osteomalacia and rickets in patients with hypophosphatemia rickets, although the reason that these patients develop late-onset hearing loss is unknown. In this study, we first analyzed Dmp1 lac Z knock-in auditory ossicles (in which the blue reporter is used to trace DMP1 expression in osteocytes) using X-gal staining and discovered a novel bony membrane surrounding the mouse malleus. This finding was further confirmed by 3-D micro-CT, X-ray, and alizarin red stained images. We speculate that this unique structure amplifies and facilitates sound wave transmissions in two ways: increasing the contact surface between the eardrum and malleus and accelerating the sound transmission due to its mineral content. Next, we documented a progressive deterioration in the Dmp1-null auditory ossicle structures using multiple imaging techniques. The auditory brainstem response test demonstrated a conductive hearing loss in the adult Dmp1-null mice. This finding may help to explain in part why patients with DMP1 mutations develop late-onset hearing loss, and supports the critical role of DMP1 in maintaining the integrity of the auditory ossicles and its bony membrane. Copyright © 2017 Elsevier Inc. All rights reserved.
Plasticity of peripheral auditory frequency sensitivity in Emei music frog.
Zhang, Dian; Cui, Jianguo; Tang, Yezhong
2012-01-01
In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.
Why middle-aged listeners have trouble hearing in everyday settings.
Ruggles, Dorea; Bharadwaj, Hari; Shinn-Cunningham, Barbara G
2012-08-07
Anecdotally, middle-aged listeners report difficulty conversing in social settings, even when they have normal audiometric thresholds [1-3]. Moreover, young adult listeners with "normal" hearing vary in their ability to selectively attend to speech amid similar streams of speech. Ignoring age, these individual differences correlate with physiological differences in temporal coding precision present in the auditory brainstem, suggesting that the fidelity of encoding of suprathreshold sound helps explain individual differences [4]. Here, we revisit the conundrum of whether early aging influences an individual's ability to communicate in everyday settings. Although absolute selective attention ability is not predicted by age, reverberant energy interferes more with selective attention as age increases. Breaking the brainstem response down into components corresponding to coding of stimulus fine structure and envelope, we find that age alters which brainstem component predicts performance. Specifically, middle-aged listeners appear to rely heavily on temporal fine structure, which is more disrupted by reverberant energy than temporal envelope structure is. In contrast, the fidelity of envelope cues predicts performance in younger adults. These results hint that temporal envelope cues influence spatial hearing in reverberant settings more than is commonly appreciated and help explain why middle-aged listeners have particular difficulty communicating in daily life. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smit, Adriana L; Seehase, Matthias; Stokroos, Robert J; Jellema, Reint K; Felipe, Lilian; Chenault, Michelene N; Anteunis, Lucien J C; Kremer, Bernd; Kramer, Boris W
2013-07-01
Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.
Abnormalities in auditory efferent activities in children with selective mutism.
Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael
2013-01-01
Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.
Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi
2013-01-01
Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.
Kwiatkowska, Miłosława; Pomianowski, Andrzej; Adamiak, Zbigniew; Bocheńska, Aneta
2013-03-01
The aim of the study was to determine the diagnostic usefulness of magnetic resonance imaging (MRI) and brainstem auditory evoked responses (BAER) in dogs suspected of having cerebellar cortical degeneration (CCD). In the years 2009-2011, six dogs with suspected CCD were examined. Both MRI and BAER examinations revealed abnormalities in all dogs (100%). By MRI, T2-weighted midsagittal images revealed an increased amount of cerebrospinal fluid (CSF) surrounding the cerebellum within the sulci of the folia in all dogs (100%). In 4 out of the 6 dogs (66.66%), cerebellar hypoplasia was more visible in the region of the dorsal cerebellar lobules. In 5 out of the 6 dogs (83.33%), the fourth ventricle was enlarged. In our studies, the brain to cerebellum ratio evaluated on the midsagittal image was 11.93%, in comparison to 14.9% in normal dogs. By BAER examination, the amplitude of the first and second waves was diminished and III-V interlatency was prolonged in 5 out of the 6 dogs (83.33%). In one out of the 6 dogs (16.67%), only the III-V interlatency was prolonged. In one dog (16.67%), somato-nervous deafness in the left ear was detected, whereas in the right ear the III-V interlatency was prolonged. MRI of the cerebellum is a reliable method for the antemortem diagnosis of CCD in American Staffordshire terriers, as is BAER examination. BAER is an objective diagnostic tool, which - along with other diagnostic modalities - can be helpful in the assessment, management and follow-up of dogs with cerebellar abiotrophy. It proved to be useful in determining the severity of neurological lesions in comparison to MRI findings, as well as in assessing the prognosis.
Mühler, Roland; Rahne, Torsten; Verhey, Jesko L
2013-01-01
Recently an optimized broad-band chirp stimulus has been proposed for the objective estimation of hearing thresholds with auditory brainstem responses (ABRs). Several studies have demonstrated that this stimulus, compensating for the travelling wave delay of the frequency components of a click stimulus at the basilar membrane, evokes larger ABR amplitudes in adults. This study analyses the amplitude of chirp-evoked ABRs recorded in infants below 48 month of age under clinical conditions and compares these results with literature data. Chirp-evoked ABR recordings in 46 infants under chloral hydrate sedation or general anaesthesia were analysed retrospectively. The amplitude of the wave V was measured as a function of the stimulus intensity. To compare ABR amplitudes across infants with different hearing losses, the stimulus intensity was readjusted to the subjects' individual physiological threshold in dB SL (sensation level). Individual wave V amplitudes were plotted against stimulus intensity and individual amplitude growth functions were calculated. To investigate the maturation of chirp-evoked ABR, data from infants below and above 18 months of age were analysed separately. Chirp-evoked ABR amplitudes in both age groups were larger than the click-evoked ABR amplitudes in young infants from the literature. Amplitudes of chirp-evoked ABR in infants above 18 months of age were not substantially smaller than those reported for normal hearing adults. Amplitudes recorded in infants below 18 months were significantly smaller than those in infants above 18 months. A significant difference between chirp-evoked ABR amplitudes recorded in sedation or under general anaesthesia was not found. The higher amplitudes of ABR elicited by a broadband chirp stimulus allow for a reduction of the recording time in young infants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H
1999-09-01
To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.
NASA Technical Reports Server (NTRS)
Burkard, R.; Jones, S.; Jones, T.
1994-01-01
Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).
Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A
2014-04-01
The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.
NASA Astrophysics Data System (ADS)
Le Prell, Colleen G.; Yagi, Masao; Kawamoto, Kohei; Beyer, Lisa A.; Atkin, Graham; Raphael, Yehoash; Dolan, David F.; Bledsoe, Sanford C.; Moody, David B.
2004-08-01
Brief cochlear excitotoxicity produces temporary neural swelling and transient deficits in auditory sensitivity; however, the consequences of long-lasting excitotoxic insult have not been tested. Chronic intra-cochlear infusion of the glutamate agonist AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) resulted in functional deficits in the sound-evoked auditory brainstem response, as well as in behavioral measures of hearing. The electrophysiological deficits were similar to those observed following acute infusion of AMPA into the cochlea; however, the concentration-response curve was significantly shifted as a consequence of the slower infusion rate used with chronic cochlear administration. As observed following acute excitotoxic insult, complete functional recovery was evident within 7 days of discontinuing the AMPA infusion. Distortion product otoacoustic emissions were not affected by chronic AMPA infusion, suggesting that trauma to outer hair cells did not contribute to AMPA-induced deficits in acoustic sensitivity. Results from the current experiment address the permanence of deficits induced by chronic (14 day) excitotoxic insult as well as deficits in psychophysical detection of longer duration acoustic signals.
Brain stem evoked response audiometry of former drug users.
Weich, Tainara Milbradt; Tochetto, Tania Maria; Seligman, Lilian
2012-10-01
Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA) of former drug user support group goers. This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1) and seven in the crack/cocaine group (G2). The subjects were further divided based on how long they had been using drugs: 1 to 5 years, 6 to 10 years, and over 15 years. They were interviewed, and assessed by pure tone audiometry, acoustic impedance tests, and BERA. No statistically significant differences were found between G1 and G2 or time of drug use in absolute latencies and interpeak intervals. However, only five of the 17 individuals had BERA results with adequate results for their ages. Marijuana and crack/cocaine may cause diffuse disorders in the brainstem and compromise the transmission of auditory stimuli regardless of how long these substances are used for.
Brown, Andrew D; Tollin, Daniel J
2016-09-21
In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.
Dewey, Rebecca Susan; Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T
2018-03-09
Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. ©Rebecca Susan Dewey, Deborah A Hall, Hannah Guest, Garreth Prendergast, Christopher J Plack, Susan T Francis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.03.2018.
Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878
Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung
2017-06-01
The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Rado-Triveño, Julia; Alen-Ayca, Jaime
2016-01-01
To determine the validity of the use of acoustic otoacoustic emissions in comparison with the evoked potentials Auditory brainstem examination (PEATC), a study was carried out with 96 children between 0 and 4 years of age that went to Instituto Nacional de Rehabilitación in Lima, Peru. The results show a cut-off point corresponding to 1 in (+): 17.67 in right ear and 16.72 in left ear, and LR (-): 0.25 in ear right and 0.24 in left ear; ROC curve with area under the right ear curve of 0.830 (p<0.001) was obtained and in left ear of 0.829 (p<0.001). According to the results of LR (+) the sensitivity is 76% in the right ear and 65% In the left ear that coincides with the conformation of the ROC curve. In conclusion, acoustic emissions would not represent an alternative sufficiently discriminatory alternative as a screening test in this population.
Prospects for Replacement of Auditory Neurons by Stem Cells
Shi, Fuxin; Edge, Albert S.B.
2013-01-01
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457
Saliu, Aminat; Adise, Shana; Xian, Sandy; Kudelska, Kamila; Rodríguez-Contreras, Adrián
2014-04-01
The functional interactions between neurons and glial cells that are important for nervous system function are presumably established during development from the activity of progenitor cells. In this study we examined proliferation of progenitor cells in the medial nucleus of the trapezoid body (MNTB) located in the rat auditory brainstem. We performed DNA synthesis labeling experiments to demonstrate changes in cell proliferation activity during postnatal stages of development. An increase in cell proliferation correlated with MNTB growth and the presence of S100β-positive astrocytes among MNTB neurons. In additional experiments we analyzed the fate of newly born cells. At perinatal ages, newly born cells colabeled with the astrocyte marker S100β in higher numbers than when cells were generated at postnatal day 6. Furthermore, we identified newly born cells that were colabeled with caspase-3 immunohistochemistry and performed comparative experiments to demonstrate that there is a natural decrease in cell proliferation activity during postnatal development in rats, mice, gerbils, and ferrets. Lastly, we found that there is a stronger decrease in MNTB cell proliferation after performing bilateral lesions of the auditory periphery in rats. Altogether, these results identify important stages in the development of astrocytes in the MNTB and provide evidence that the proliferative activity of the progenitor cells is developmentally regulated. We propose that the developmental reduction in cell proliferation may reflect coordinated signaling between the auditory brainstem and the auditory periphery. Copyright © 2013 The Authors. Wiley Periodicals, Inc.
Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John
2016-01-01
Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide exposure on ABR latency delay, suggesting an additive or multiplicative effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sturza, Julie; Silver, Monica K.; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John
2016-01-01
Background Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Methods Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Results Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant’s cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. Conclusions ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide exposure on ABR latency delay, suggesting an additive or multiplicative effect. PMID:27166702
Pudar, Goran; Vlaski, Ljiljana; Filipović, Danka; Tanackov, Ilija
2010-01-01
Problems of hearing disturbances in persons suffering from diabetes have been attracting great attention for many decades. In this study we examined the auditory function of 50 patients suffering from diabetes mellitus type 1 of different duration by analyzing results of pure-tone audiometry and brainstem auditory evoked potentials. The obtained results of measuring were compared to 30 healthy subjects from the corresponding age and gender group. The group of diabetic patients was divided according to the disease duration (I group 0-5 years; II group 6-10 years, III group over 10 years). A statistically significant increase of sensorineural hearing loss was found in the diabetics according to the duration of their disease (I group = 14.09%, II group = 21.39%, III group = 104.89%). The results of the brain stem auditory evoked potentials, the significance threshold being p = 0.05 between the controls and the diabetics at all levels of absolute latency of right and left sides, did not show significant differences in the mean values. In the case of interwave latencies, the diabetic patients were found to have a significant qualitative difference of intervals I-III and I-V on both ears in the sense of internal distribution of response. In cases of sensorineural hearing loss we found a significant connection with prolonged latencies of I wave on the right ear and of I and V waves on the left ear. In all probability, the cause of these results could be found in distinctive individuality of the organism reactions to the consequences of this disease (disturbance in the distal part of N. cochlearis). The results of research have shown the existence of a significant sensorineural hearing loss in the patients with diabetes mellitus type 1 in accordance to the disease duration. We also found qualitative changes of brainstem auditory evoked potentials in the diabetic patients in comparison to the controls as well as significant quantitative changes in regard to the presence of sensorineural hearing loss of the patients.
Visual and brainstem auditory evoked potentials in children with obesity.
Akın, Onur; Arslan, Mutluay; Akgün, Hakan; Yavuz, Süleyman Tolga; Sarı, Erkan; Taşçılar, Mehmet Emre; Ulaş, Ümit Hıdır; Yeşilkaya, Ediz; Ünay, Bülent
2016-03-01
The aim of our study is to investigate alterations in visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) in children with obesity. A total of 96 children, with a mean age of 12.1±2.0 years (range 9-17 years, 63 obese and 33 age and sex-matched control subjects) were included in the study. Laboratory tests were performed to detect insulin resistance (IR) and dyslipidemia. The latencies and amplitudes of VEP and BAEP were measured in healthy and obese subjects. The VEP P100, BAEP interpeak latency (IPL) I-III and IPL I-V averages of obese children were significantly longer than the control subjects. When the obese group was divided into two subgroups, those with IR and without IR, BAEP wave I, wave III and P100 wave latencies were found to be longer in the group with IR. A statistically significant correlation was observed between BAEP wave I latency, IPL I-V, IPL I-III and the homeostatic model assessment insulin resistance (HOMA IR) index and fasting insulin level. Our findings suggest that VEP and BAEP can be used to determine early subclinical on auditory and visual functions of obese children with insulin resistance. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Shah, Parth V; Kozin, Elliott D; Kaplan, Alyson B; Lee, Daniel J
2016-01-01
The auditory brainstem implant (ABI) is a neuroprosthetic device that provides sound sensations to individuals with profound hearing loss who are not candidates for a cochlear implant (CI) because of anatomic constraints. Herein we describe the ABI for family physicians. PubMed was searched to identify articles relevant to the ABI, as well as articles that contain outcomes data for pediatric patients (age <18 years) who have undergone ABI surgery. The ABI was originally developed for patients with neurofibromatosis type 2 (NF2) who become deaf from bilateral vestibular schwannomas. Over the past decade, indications for an ABI have expanded to adult patients without tumors (without NF2) who cannot receive a CI and children with no cochlea or cochlear nerve. Outcomes among NF2 ABI users are modest compared to cochlear implant patients, but recent studies from Europe suggest that some non-tumor adult and pediatric ABI users achieve speech perception. The ABI is a reasonable surgical option for children with profound hearing loss due to severe cochlear or cochlear nerve deformities. Continued prospective data collection from several clinical trials in the U.S. will provide greater understanding on long term outcomes that focus on speech intelligibility. © Copyright 2016 by the American Board of Family Medicine.
Ito, T; Inoue, K; Takada, M
2015-12-03
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Willis, Valerie
2018-04-01
To describe the difference in auditory function at neonatal intensive care unit (NICU) discharge between high-risk infant cases exposed to hospital construction during NICU stay and those not exposed. Noise produced by routine NICU caregiving exceeds recommended intensity. As California hospitals undergo construction to meet seismic safety regulations, vulnerable neonates are potentially exposed to even higher levels of noise. Ramifications are unknown. Retrospective data-based descriptive cohort design was used to compare high-risk infant auditory function at NICU discharge between hospital construction exposed and unexposed groups. N = 540 infant cases (243 construction exposed and 297 unexposed controls). Infant cases born and discharged from the study site NICU in the year 2010 (unexposed) and year 2015 (exposed) and received a newborn hearing screening by automated auditory brainstem evoked response (ABER) prior to discharge with results reported. Infant cases excluded: hearing screen results by ABER unavailable, potentially confounding characteristics (congenital infection, major anomalies including cleft lip and/or palate), and transferred into or out of the study site. ABER. descriptive statistics (SPSS Version 24.0), hypothesis testing, correlation, and logistic regression. The difference in auditory function at NICU discharge between high-risk infant cases exposed to hospital construction noise and those unexposed was statistically insignificant, χ 2 = 1.666, df = 4, p = .1968, 95% confidence interval [-0.635, 2.570]. More research is needed to better understand whether hospital construction exposure during NICU admission negatively affects high-risk infant auditory function. Findings may catalyze theory development, future research, and child health policy.
Evoked potential recording during echolocation in a false killer whale Pseudorca crassidens (L)
NASA Astrophysics Data System (ADS)
Supin, Alexander Ya.; Nachtigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.
2003-05-01
Auditory brainstem responses (ABRs) were recorded in a false killer whale while the animal echolocated a target. The ABR collection was triggered by echolocation clicks of the animal. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation with experimenter generated clicks showed that the first set of waves may be a response to the emitted click whereas the second one may be a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds that may differ by more than 40 dB near the animal's head. This finding indicates the presence of some mechanism of releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763
Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome
Engineer, Crystal T.; Rahebi, Kimiya C.; Borland, Michael S.; Buell, Elizabeth P.; Centanni, Tracy M.; Fink, Melyssa K.; Im, Kwok W.; Wilson, Linda G.; Kilgard, Michael P.
2015-01-01
Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676
Kim, Sei Eun; Lee, Seul Yi; Blanco, Cynthia L; Kim, Jun Hee
2014-08-20
The human fetus starts to hear and undergoes major developmental changes in the auditory system during the third trimester of pregnancy. Although there are significant data regarding development of the auditory system in rodents, changes in intrinsic properties and synaptic function of auditory neurons in developing primate brain at hearing onset are poorly understood. We performed whole-cell patch-clamp recordings of principal neurons in the medial nucleus of trapezoid body (MNTB) in preterm and term baboon brainstem slices to study the structural and functional maturation of auditory synapses. Each MNTB principal neuron received an excitatory input from a single calyx of Held terminal, and this one-to-one pattern of innervation was already formed in preterm baboons delivered at 67% of normal gestation. There was no difference in frequency or amplitude of spontaneous excitatory postsynaptic synaptic currents between preterm and term MNTB neurons. In contrast, the frequency of spontaneous GABA(A)/glycine receptor-mediated inhibitory postsynaptic synaptic currents, which were prevalent in preterm MNTB neurons, was significantly reduced in term MNTB neurons. Preterm MNTB neurons had a higher input resistance than term neurons and fired in bursts, whereas term MNTB neurons fired a single action potential in response to suprathreshold current injection. The maturation of intrinsic properties and dominance of excitatory inputs in the primate MNTB allow it to take on its mature role as a fast and reliable relay synapse. Copyright © 2014 the authors 0270-6474/14/3411399-06$15.00/0.
Auditory pathway maturational study in small for gestational age preterm infants.
Angrisani, Rosanna Giaffredo; Diniz, Edna Maria Albuquerque; Guinsburg, Ruth; Ferraro, Alexandre Archanjo; Azevedo, Marisa Frasson de; Matas, Carla Gentile
2014-01-01
To follow up the maturation of the auditory pathway in preterm infants small for gestational age (SGA), through the study of absolute and interpeak latencies of auditory brainstem response (ABR) in the first six months of age. This multicentric prospective cross-sectional and longitudinal study assessed 76 newborn infants, 35 SGA and 41 appropriate for gestational age (AGA), born between 33 and 36 weeks in the first evaluation. The ABR was carried out in three moments (neonatal period, three months and six months). Twenty-nine SGA and 33 AGA (62 infants), between 51 and 54 weeks (corrected age), returned for the second evaluation. In the third evaluation, 49 infants (23 SGA and 26 AGA), with age range from 63 to 65 weeks (corrected age), were assessed. The bilateral presence of Transient Evoked Otoacoustic Emissions and normal tympanogram were inclusion criteria. It was found interaural symmetry in both groups. The comparison between the two groups throughout the three periods studied showed no significant differences in the ABR parameters, except for the latencies of wave III in the period between three and six months. As for the maturation with tone burst 0.5 and 1 kHz, it was found that the groups did not differ. The findings suggest that, in the premature infants, the maturational process of the auditory pathway occurs in a similar rate for SGA and AGA. These results also suggest that prematurity is a more relevant factor for the maturation of the auditory pathway than birth weight.
Melcher, J R; Guinan, J J; Knudson, I M; Kiang, N Y
1996-04-01
Brainstem regions involved in generating the brainstem auditory evoked potential (BAEP) were identified by examining the effects of lesions on the click-evoked BAEP in cats. An excitotoxin, kainic acid, was injected into various parts of the cochlear nucleus (CN) or into the superior olivary complex (SOC). The locations of the resulting lesions were correlated with the changes produced in the various extrema of the BAEP waveforms. The results indicate that: (1) the earliest BAEP extrema (P1, N1 (recorded between vertex and the earbar ipsilateral to the stimulus) and P1a, P1b, (vertex to contralateral earbar)) are generated by cells with somata peripheral to the CN; (2) P2 is primarily generated by posterior anteroventral CN (AVCNp) and anterior posteroventral CN (PVCNa) cells; (3) SOC, anterior anteroventral CN (AVCNa), AVCNp, and PVCNa cells are involved in generating P3; (4) AVCNa cells are the main CN cells involved in P4, N4, and P5 generation; (5) both ipsilateral and contralateral SOC cells have a role in generating monaurally evoked P4 and P5; and (6) P5 is generated by cells with characteristic frequencies below 10 kHz. From (2) and (4), it is clear that P2 and P4-P5 are generated by cells in distinct, parallel pathways.
Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.
Hage, Steffen R
2018-03-20
Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.
Plyler, Erin; Harkrider, Ashley W
2013-01-01
A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Clinical report. Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis. American Academy of Audiology.
High-frequency tone burst-evoked ABR latency-intensity functions.
Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I
1993-01-01
High-frequency tone burst stimuli (8, 10, 12, and 14 kHz) have been developed and demonstrated to provide reliable and valid auditory brainstem responses (ABRs) in normal-hearing subjects. In this study, latency-intensity functions (LIFs) were determined using these stimuli in 14 normal-hearing individuals. Significant shifts in response latency occurred as a function of stimulus intensity for all tone burst frequencies. For each 10 dB shift in intensity, latency shifts for waves I and V were statistically significant except for one isolated instance. LIF slopes were comparable between frequencies, ranging from 0.020 to 0.030 msec/dB. These normal LIFs for high-frequency tone burst-evoked ABRs suggest the degree of response latency change that might be expected from, for example, progressive hearing loss due to ototoxic insult, although these phenomena may not be directly related.
Musical training during early childhood enhances the neural encoding of speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina
2012-01-01
For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child’s access to a target signal in noise. Given adult musicians’ perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and subcortical processing of speech in noise and related cognitive abilities in musician and nonmusician children that were matched for a variety of overarching factors. Outcomes reveal that musicians’ advantages for processing speech in noise are present during pivotal developmental years. Supported by correlations between auditory working memory and attention and auditory brainstem response properties, we propose that musicians’ perceptual and neural enhancements are driven in a top-down manner by strengthened cognitive abilities with training. Our results may be considered by professionals involved in the remediation of language-based learning deficits, which are often characterized by poor speech perception in noise. PMID:23102977
Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs.
Maruyama, Jun; Yamagata, Takahiko; Ulfendahl, Mats; Bredberg, Göran; Altschuler, Richard A; Miller, Josef M
2007-02-01
Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent degeneration of deafferented CNVIII spiral ganglion cells (SGCs) in deafened guinea pigs. Following destruction of sensory cells, guinea pigs were treated immediately with Trolox (a water soluble vitamin E analogue)+ascorbic acid (vitamin C) administered either locally, directly in the inner ear, or systemically. Electrical auditory brainstem response (EABR) thresholds were recorded to assess nerve function and showed a large increase following deafness. In treated animals EABR thresholds decreased and surviving SGCs were increased significantly compared to untreated animals. These results indicate that a change in oxidative state following deafferentation plays a role in nerve cell death and antioxidant therapy may rescue SGCs from deafferentation-induced degeneration.
[Issues Related to Screening and Caring for Newborns With Hearing Impairments].
Liou, Mei-Show; Tsao, Ying
2016-12-01
The critical period for auditory development in humans begins at around the 20th gestational week and continues until 3 years of age. Both genetic and environmental factors are known to cause impaired hearing. Without early identification and intervention, hearing-impaired children face a high risk of experiencing significant difficulties with speech and language development, social behavior, and emotional functioning. Two types of commonly used hearing screening technologies include transient evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (aABR). aABR is considered to have high sensitivity and specificity, to have a relatively low referral rate, and to generate a relatively low rate of false-positive results in identifying newborn hearing impairment. The present paper outlines the psychosocial issues that are commonly experienced by parents of hearing-impaired children. Parents and other family members may benefit from medical, financial, social, and education supports in order to facilitate their adjustment to this challenging situation. The relevant literature is reviewed and recommendations for improving care for this population are provided.
Amin, Sanjiv B; Wang, Hongyue; Laroia, Nirupama; Orlando, Mark
2016-01-01
Objective To evaluate if unbound bilirubin is a better predictor of auditory neuropathy spectrum disorder (ANSD) than total serum bilirubin (TSB) or the bilirubin albumin molar ratio (BAMR) in late preterm and term neonates with severe jaundice (TSB ≥ 20 mg/dL or TSB that met exchange transfusion criteria). Study design Infants ≥ 34 weeks gestational age with severe jaundice during the first two weeks of life were eligible for the prospective observational study. A comprehensive auditory evaluation was performed within 72 hours of peak TSB. ANSD was defined as absent or abnormal auditory brainstem evoked response waveform morphology at 80 decibel click intensity in the presence of normal outer hair cell function. TSB, serum albumin, and unbound bilirubin were measured using the colorimetric, bromocresol green, and modified peroxidase method, respectively. Results Five of 44 infants developed ANSD. By logistic regression, peak unbound bilirubin but not peak TSB or peak BAMR was associated with ANSD (odds ratio 4.6, 95% CI: 1.6-13.5, p = 0.002). On comparing receiver operating characteristic curves, the area under the curve (AUC) for unbound bilirubin (0.92) was significantly greater (p = 0.04) compared with the AUC for TSB (0.50) or BAMR (0.62). Conclusions Unbound bilirubin is a more sensitive and specific predictor of ANSD than TSB or BAMR in late preterm and term infants with severe jaundice. PMID:26952116
Effects of prematurity on language acquisition and auditory maturation: a systematic review.
Rechia, Inaê Costa; Oliveira, Luciéle Dias; Crestani, Anelise Henrich; Biaggio, Eliara Pinto Vieira; Souza, Ana Paula Ramos de
2016-01-01
To verify which damages prematurity causes to hearing and language. We used the decriptors language/linguagem, hearing/audição, prematurity/prematuridade in databases LILACS, MEDLINE, Cochrane Library and Scielo. randomized controlled trials, non-randomized intervention studies and descriptive studies (cross-sectional, cohort, case-control projects). The articles were assessed independently by two authors according to the selection criteria. Twenty-six studies were selected, of which seven were published in Brazil and 19 in international literature. Nineteen studies comparing full-term and preterm infants. Two of the studies made comparisons between premature infants small for gestational age and appropriate for gestational age. In four studies, the sample consisted of children with extreme prematurity, while other studies have been conducted in children with severe and moderate prematurity. To assess hearing, these studies used otoacoustic emissions, brainstem evoked potentials, tympanometry, auditory steady-state response and visual reinforcement audiometry. For language assessment, most of the articles used the Bayley Scale of Infant and Toddler Development. Most studies reviewed observed that prematurity is directly or indirectly related to the acquisition of auditory and language abilities early in life. Thus, it could be seen that prematurity, as well as aspects related to it (gestational age, low weight at birth and complications at birth), affect maturation of the central auditory pathway and may cause negative effects on language acquisition.
Pryor, G T; Rebert, C S
1992-01-01
Solvent mixtures are ubiquitous in industrialized environments and are used frequently for recreational purposes. Toluene and hexane are common components of many solvent mixtures and have characteristic, but different, neurotoxic consequences. Interestingly, Takeuchi et al., (1981) reported that toluene attenuated the peripheral neuropathy caused by n-hexane, possibly by blocking its metabolism to 2,5-hexanedione (Perbellini, et al., 1982). To confirm such effects at higher concentrations and to examine effects on the central nervous system (CNS), four groups of 12 rats each were exposed to air, toluene (1200 ppm), hexane (4000 ppm), or a mixture of toluene (1200 ppm) and hexane (4,000 ppm) 14 hr/day for 9 weeks. A battery of behavioral and electrophysiologic tests was used to assess the functional consequences of their exposures. The battery consisted of measures of grip strength, locomotor gait and landing splay, sensory sensitivities during conditioned avoidance performance, the action potential of the ventral caudal nerve, and the brainstem auditory evoked response. Measures of peripheral nervous system functions (e.g., grip strength and conduction velocity) showed interactive effects like those reported by Takeuchi et al. Toluene greatly reduced the neuropathy caused by hexane. Hexane-induced abnormalities in central components of the brainstem response were much less reduced in the presence of toluene. There was no reciprocal action of hexane on the motor syndrome and hearing loss caused by toluene.
Panahi, Rasool; Jafari, Zahra; Sheibanizade, Abdoreza; Salehi, Masoud; Esteghamati, Abdoreza; Hasani, Sara
2013-01-01
Introduction: Neonatal hyperbilirubinemia is one of the most important factors affecting the auditory system and can cause sensorineural hearing loss. This study investigated the relationship between behavioral hearing thresholds in children with a history of jaundice and the maximum level of bilirubin concentration in the blood. Materials and Methods: This study was performed on 18 children with a mean age of 5.6 years and with a history of neonatal hyperbilirubinemia. Behavioral hearing thresholds, transient evoked emissions and brainstem evoked responses were evaluated in all children. Results: Six children (33.3%) had normal hearing thresholds and the remaining (66.7%) had some degree of hearing loss. There was no significant relationship (r=-0.28, P=0.09) between the mean total bilirubin levels and behavioral hearing thresholds in all samples. A transient evoked emission was seen only in children with normal hearing thresholds however in eight cases brainstem evoked responses had not detected. Conclusion: Increased blood levels of bilirubin at the neonatal period were potentially one of the causes of hearing loss. There was a lack of a direct relationship between neonatal bilirubin levels and the average hearing thresholds which emphasizes on the necessity of monitoring the various amounts of bilirubin levels. PMID:24303432
Don, Manuel; Elberling, Claus; Maloff, Erin
2009-02-01
The Stacked ABR (auditory brainstem response) attempts at the output of the auditory periphery to compensate for the temporal dispersion of neural activation caused by the cochlear traveling wave in response to click stimulation. Compensation can also be made at the input by using a chirp stimulus. It has been demonstrated that the Stacked ABR is sensitive to small tumors that are often missed by standard ABR latency measures. Because a chirp stimulus requires only a single data acquisition run whereas the Stacked ABR requires six, we try to evaluate some indirect evidence justifying the use of a chirp for small tumor detection. We compared the sensitivity and specificity of different Stacked ABRs formed by aligning the derived-band ABRs according to (1) the individual's peak latencies, (2) the group mean latencies, and (3) the modeled latencies used to develop a chirp. For tumor detection with a chosen sensitivity of 95%, a relatively high specificity of 85% may be achieved with a chirp. It appears worthwhile to explore the actual use of a chirp because significantly shorter test and analysis times might be possible.
Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J
2006-09-01
Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.
Yang, Dong; Zhou, Huifang; Zhang, Jianning; Liu, Li
2015-06-01
The vascular endothelial growth factor (VEGF)-mediated mechanism of endothelial progenitor cell (EPC) mobilization, migration, and differentiation may occur in response to noise-induced acoustic trauma of the cochlea, leading to the protection of cochlear function. The purpose of this study was to analyze changes in the cochlear vessel under an intensive noise environment. Sixty male Sprague-Dawley rats were randomly divided into six groups. Acoustic trauma was induced by 120 dB SPL white noise for 4 h. Auditory function was evaluated by the auditory brainstem response threshold. Morphological changes of the cochleae, the expression of VEGF, and the circulation of EPCs in the peripheral blood were studied by immunohistochemistry, Western blotting analysis, scanning electron microscopy, and flow cytometry. Vascular recovery of the cochlea began after noise exposure. The change in the number of EPCs was consistent with the expression of VEGF at different time points after noise exposure. We propose that VEGF evokes specific permeable and chemotactic effects on the vascular endothelial cells. These effects can mobilize EPCs into the peripheral blood, leading the EPCs to target damaged sites and to exert a neoangiogenic effect.
Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.
NASA Astrophysics Data System (ADS)
Hunter, Chyren
The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin in the ventral and lateral nuclei of the trapezoid body (MVPO and LVPO). Bilateral projections from the nucleus reticularis pontis oralis (RPOo), to the VLL were also identified as glycinergic. This projection may link motor output systems to ascending auditory input, generating the auditory behavioral responses seen with glycine antagonism in animal models of myoclonus and seizure.
Topdag, M; Iseri, M; Gelenli, E; Yardimoglu, M; Yazir, Y; Ulubil, S A; Topdag, D O; Ustundag, E
2012-11-01
This study aimed to contribute to the literature on the prevention and treatment of ototoxicity due to various drugs and chemicals. This study compared the histological effects of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity, in 36 rats. Dexamethasone and memantine had significant effects on the stria vascularis, organ of Corti and spiral ganglion (p < 0.05). Although piracetam decreased the apoptosis rate, this effect was not statistically significant (p > 0.05). Dexamethasone and memantine were found superior to piracetam in reducing apoptosis due to cisplatin ototoxicity. Further studies of this subject are needed, incorporating electron microscopy and auditory brainstem response testing.
Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome
Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.
2013-01-01
22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619
Hearing loss in a mouse model of 22q11.2 Deletion Syndrome.
Fuchs, Jennifer C; Zinnamon, Fhatarah A; Taylor, Ruth R; Ivins, Sarah; Scambler, Peter J; Forge, Andrew; Tucker, Abigail S; Linden, Jennifer F
2013-01-01
22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.
Skjönsberg, Asa; Herrlin, Petra; Duan, Maoli; Johnson, Ann-Christin; Ulfendahl, Mats
2005-01-01
A new strain of waltzing guinea pigs arose spontaneously in a guinea pig breeding facility in Germany in 1996. In addition to obvious vestibular dysfunction, the waltzing animals appear deaf already at birth. Histological analysis revealed that the waltzers lack an open scala media due to the collapse of Reissner's membrane onto the surface of the hearing organ. Subsequent breeding has shown that this strain has a recessive mode of inheritance. The homozygotes are deaf and display a waltzing behaviour throughout their lives while the heterozygotes show no significant signs of inner ear injury despite being carriers of this specific mutated gene of hearing impairment. However, the heterozygous animals offer the opportunity to study how hereditary factors interact with auditory stress. In the present study, the susceptibility of the carriers to noise was investigated. Auditory brainstem responses were obtained prior to and after noise exposure (4 kHz, 110 dB, 6 h). The carriers were significantly less affected by the noise as compared to control animals. This difference was still significant at 4 weeks following noise exposure. It is suggested that the heterozygous animals have an endogenous resistance to auditory stress. Copyright (c) 2005 S. Karger AG, Basel.
Feng, B; Jiang, S; Yang, W; Han, D; Zhang, S
2001-02-01
To define the effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in guinea pigs. The animals involved in the study were exposed to 8 Hz infrasound at 135dB SPL for 90 minutes in a reverberant chamber. The sinusoidal pendular test (SPT), auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were respectively detected pre-exposure and at 0(within 2 hrs), 2 and 5 day after exposure. The ultrastructures of the inner ear were observed by scanning electron microscopy. The slow-phase velocity and the frequency of the vestibular nystagmus elicited by sinusoidal pendular test (SPT) declined slightly following infrasound exposure, but the changes were not significant (P > 0.05). No differences in the ABR thresholds, the latencies and the interval peak latencies of I, III, V waves were found between the normal and the experimental groups, and among experimental groups. The amplitudes of DPOAE at any frequency declined remarkably in all experimental groups. The ultrastructures of the inner ear were damaged to different extent. Infrasound could transiently depress the excitability of the vestibular end-organs, decrease the function of OHC in the organ of Corti and cause damage to the inner ear of guinea pigs.
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Newborn Hearing Screening and Early Diagnostic in the NICU
Colella-Santos, Maria Francisca; Hein, Thaís Antonelli Diniz; de Souza, Gabriele Libano; do Amaral, Maria Isabel Ramos; Casali, Raquel Leme
2014-01-01
The aim was to describe the outcome of neonatal hearing screening (NHS) and audiological diagnosis in neonates in the NICU. The sample was divided into Group I: neonates who underwent NHS in one step and Group II: neonates who underwent a test and retest NHS. NHS procedure was automated auditory brainstem response. NHS was performed in 82.1% of surviving neonates. For GI, referral rate was 18.6% and false-positive was 62.2% (normal hearing in the diagnostic stage). In GII, with retest, referral rate dropped to 4.1% and false-positive to 12.5%. Sensorineural hearing loss was found in 13.2% of infants and conductive in 26.4% of cases. There was one case of auditory neuropathy spectrum (1.9%). Dropout rate in whole process was 21.7% for GI and 24.03% for GII. We concluded that it was not possible to perform universal NHS in the studied sample or, in many cases, to apply it within the first month of life. Retest reduced failure and false-positive rate and did not increase evasion, indicating that it is a recommendable step in NHS programs in the NICU. The incidence of hearing loss was 2.9%, considering sensorineural hearing loss (0.91%), conductive (1.83%) and auditory neuropathy spectrum (0.19%). PMID:24999481
Reynolds, Jason; Rogers, Amber; Medellin, Eduardo; Guzman, Jonathan A; Watcha, Mehernoor F
2016-03-01
Dexmedetomidine is increasingly used by various routes for pediatric sedation. However, there are few randomized controlled trials comparing the efficacy of dexmedetomidine to other commonly used sedatives. To compare the efficacy of sedation with intranasal dexmedetomidine to oral chloral hydrate for auditory brainstem response (ABR) testing. In this double-blind, double-dummy study, children undergoing ABR testing were randomized to receive intranasal dexmedetomidine 3 mcg · kg(-1) plus oral placebo (Group IN DEX) or oral chloral hydrate 50 mg · kg(-1) plus intranasal saline placebo (Group CH). We recorded demographic data, times from sedative administration to start and completion of testing, quality of sedation, occurrence of predefined adverse events, discharge times, and return to baseline activity on the day of testing. Testing completion rates with a single dose of medication were higher in the IN DEX group (89% vs 66% for CH, odds ratio with 95% confidence intervals 4.04 [1.3-12.6], P = 0.018). The median [95% CI)] time to successful testing start was shorter (25 [20-29] min vs 30 [20-49] min for IN DEX and CH, respectively, log rank test P = 0.02) and the proportion of children whose parents reported a return to baseline activity on the day of testing was greater for the IN DEX than the CH group (89% vs 64%, OR [95% CI] 4.71 [1.34-16.6], P = 0.02). There were no major adverse events in either group and no significant differences in the incidence of minor events. Intranasal dexmedetomidine is an effective alternative to oral chloral hydrate sedation for ABR testing, with the advantages of a higher incidence of testing completion with a single dose, shorter time to desired sedation level, and with significantly more patients reported to return to baseline activity on the same day. © 2016 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Azmitia, E. C.; Saccomano, Z. T.; Alzoobaee, M. F.; Boldrini, M.; Whitaker-Azmitia, P. M.
2016-01-01
In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was…
Morgan, Simeon J; Paolini, Antonio G
2012-06-06
Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.
Amin, Sanjiv B; Wang, Hongyue; Laroia, Nirupama; Orlando, Mark
2016-06-01
This study evaluates whether unbound bilirubin is a better predictor of auditory neuropathy spectrum disorder (ANSD) than total serum bilirubin (TSB) or the bilirubin:albumin molar ratio (BAMR) in late preterm and term neonates with severe jaundice (TSB ≥20 mg/dL or TSB that met exchange transfusion criteria). Infants ≥34 weeks' gestation with severe jaundice during the first 2 weeks of life were eligible for the prospective observational study. A comprehensive auditory evaluation was performed within 72 hours of peak TSB. ANSD was defined as absent or abnormal auditory brainstem evoked response waveform morphology at 80-decibel click intensity in the presence of normal outer hair cell function. TSB, serum albumin, and unbound bilirubin were measured using the colorimetric, bromocresol green, and modified peroxidase method, respectively. Five of 44 infants developed ANSD. By logistic regression, peak unbound bilirubin but not peak TSB or peak BAMR was associated with ANSD (OR, 4.6; 95% CI, 1.6-13.5; P = .002). On comparing receiver operating characteristic curves, the area under the curve for unbound bilirubin (0.92) was significantly greater (P = .04) compared with the area under the curve for TSB (0.50) or BAMR (0.62). Unbound bilirubin is a more sensitive and specific predictor of ANSD than TSB or BAMR in late preterm and term infants with severe jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.
Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M
1991-06-01
An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.
Cortical evoked potentials to an auditory illusion: binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-08-01
To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.
Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-01-01
Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993
Sensory coding and cognitive processing of sound in Veterans with blast exposure
Bressler, Scott; Goldberg, Hannah; Shinn-Cunningham, Barbara
2017-01-01
Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or “hidden”) in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or “zig-zagging”) of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study participants also suffered from post-traumatic disorder (PTSD), follow-up studies are required to tease apart the contributions of PTSD and blast-induced injury on cognitive performance. PMID:27815131
Pratt, H; Zaaroor, M; Bleich, N; Starr, A
1991-06-01
Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.
Felix, Richard A; Magnusson, Anna K
2016-10-15
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca 2+ -impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E
2017-01-01
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973
Astragaloside IV inhibits apoptotic cell death in the guinea pig cochlea exposed to impulse noise.
Xiong, Min; He, Qinglian; Lai, Huangwen; Wang, Jian
2012-05-01
The results suggest that the beneficial effect of astragaloside IV on impulse noise-induced hearing loss may be due to its ability to inhibit reactive oxygen species (ROS) and prevent apoptosis. Astragaloside IV is the major active constituent of Astragalus membranaceus, which has been widely used for the treatment of diseases in China for its antioxidant properties. ROS and apoptosis are involved in damage induced by impulse noise trauma. We aimed to investigate if the beneficial effects of astragaloside IV on cochlea exposed to impulse noise are associated with the inhibition of ROS and the decrease in apoptosis. 4-Hydroxynonenal (HNE) was used as the marker of ROS. Active-caspase-3 (cas-3) served as a marker for apoptosis. 4HNE and cas-3 were determined immunohistochemically. Guinea pigs in the experimental group were administered astragaloside IV intragastrically. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) 72 h before and after exposure to impulse noise. The results showed that astragaloside IV significantly reduced ABR deficits, and decreased the expression of ROS and cas-3.
Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine
2017-11-07
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Acquired hearing loss and brain plasticity.
Eggermont, Jos J
2017-01-01
Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.
Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G
2009-02-25
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.
Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway.
Yao, Justin D; Bremen, Peter; Middlebrooks, John C
2015-12-09
Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex. Copyright © 2015 Yao et al.
Singer, Wibke; Zuccotti, Annalisa; Jaumann, Mirko; Lee, Sze Chim; Panford-Walsh, Rama; Xiong, Hao; Zimmermann, Ulrike; Franz, Christoph; Geisler, Hyun-Soon; Köpschall, Iris; Rohbock, Karin; Varakina, Ksenya; Verpoorten, Sandrine; Reinbothe, Thomas; Schimmang, Thomas; Rüttiger, Lukas; Knipper, Marlies
2013-02-01
Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.
Karim, M R; Atoji, Y
2016-02-01
Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds. © 2015 Blackwell Verlag GmbH.
A Circuit for Motor Cortical Modulation of Auditory Cortical Activity
Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan
2013-01-01
Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287
Hearing loss and the central auditory system: Implications for hearing aids
NASA Astrophysics Data System (ADS)
Frisina, Robert D.
2003-04-01
Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.
Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, is a metabolite of carbon disulfide, is produced by the combustion of organic material, and is found occurring in nature. COS was included in a Toxic Substances Control Act request f...
The Research Laboratory of Electronics Progress Report Number 132: January 1-December 31, 1989
1990-01-01
between Binaural Hearing and Brainstem Auditory Evoked Potentials in Humans...fem- tosecond excitation pulses. This gives rise to the characteristic " beating " pattern which contains sum and difference frequencies. The "spike...vibrational modes whose through a simple optical network consisting simultaneous oscillations yield the " beating " of only two lenses, two gratings
Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input
Brown, M. Christian; Lee, Daniel J.; Benson, Thane E.
2013-01-01
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes. PMID:23602963
Familiar auditory sensory training in chronic traumatic brain injury: a case study.
Sullivan, Emily Galassi; Guernon, Ann; Blabas, Brett; Herrold, Amy A; Pape, Theresa L-B
2018-04-01
The evaluation and treatment for patients with prolonged periods of seriously impaired consciousness following traumatic brain injury (TBI), such as a vegetative or minimally conscious state, poses considerable challenges, particularly in the chronic phases of recovery. This blinded crossover study explored the effects of familiar auditory sensory training (FAST) compared with a sham stimulation in a patient seven years post severe TBI. Baseline data were collected over 4 weeks to account for variability in status with neurobehavioral measures, including the Disorders of Consciousness scale (DOCS), Coma Near Coma scale (CNC), and Consciousness Screening Algorithm. Pre-stimulation neurophysiological assessments were completed as well, namely Brainstem Auditory Evoked Potentials (BAEP) and Somatosensory Evoked Potentials (SSEP). Results revealed that a significant improvement in the DOCS neurobehavioral findings after FAST, which was not maintained during the sham. BAEP findings also improved with maintenance of these improvements following sham stimulation as evidenced by repeat testing. The results emphasize the importance for continued evaluation and treatment of individuals in chronic states of seriously impaired consciousness with a variety of tools. Further study of auditory stimulation as a passive treatment paradigm for this population is warranted. Implications for Rehabilitation Clinicians should be equipped with treatment options to enhance neurobehavioral improvements when traditional treatment methods fail to deliver or maintain functional behavioral changes. Routine assessment is crucial to detect subtle changes in neurobehavioral function even in chronic states of disordered consciousness and determine potential preserved cognitive abilities that may not be evident due to unreliable motor responses given motoric impairments. Familiar Auditory Stimulation Training (FAST) is an ideal passive stimulation that can be supplied by families, allied health clinicians and nursing staff of all levels.
Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares
2016-04-01
Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to -2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use.
Mismatch negativity to acoustical illusion of beat: how and where the change detection takes place?
Chakalov, Ivan; Paraskevopoulos, Evangelos; Wollbrink, Andreas; Pantev, Christo
2014-10-15
In case of binaural presentation of two tones with slightly different frequencies the structures of brainstem can no longer follow the interaural time differences (ITD) resulting in an illusionary perception of beat corresponding to frequency difference between the two prime tones. Hence, the beat-frequency does not exist in the prime tones presented to either ear. This study used binaural beats to explore the nature of acoustic deviance detection in humans by means of magnetoencephalography (MEG). Recent research suggests that the auditory change detection is a multistage process. To test this, we employed 26 Hz-binaural beats in a classical oddball paradigm. However, the prime tones (250 Hz and 276 Hz) were switched between the ears in the case of the deviant-beat. Consequently, when the deviant is presented, the cochleae and auditory nerves receive a "new afferent", although the standards and the deviants are heard identical (26 Hz-beats). This allowed us to explore the contribution of auditory periphery to change detection process, and furthermore, to evaluate its influence on beats-related auditory steady-state responses (ASSRs). LORETA-source current density estimates of the evoked fields in a typical mismatch negativity time-window (MMN) and the subsequent difference-ASSRs were determined and compared. The results revealed an MMN generated by a complex neural network including the right parietal lobe and the left middle frontal gyrus. Furthermore, difference-ASSR was generated in the paracentral gyrus. Additionally, psychophysical measures showed no perceptual difference between the standard- and deviant-beats when isolated by noise. These results suggest that the auditory periphery has an important contribution to novelty detection already at sub-cortical level. Overall, the present findings support the notion of hierarchically organized acoustic novelty detection system. Copyright © 2014 Elsevier Inc. All rights reserved.
Hormone replacement therapy diminishes hearing in peri-menopausal mice.
Price, Katharine; Zhu, Xiaoxia; Guimaraes, Patricia F; Vasilyeva, Olga N; Frisina, Robert D
2009-06-01
We recently discovered that progestin in hormone replacement therapy (HRT) for post-menopausal women has detrimental effects on the ear and central auditory system [Guimaraes, P., Frisina, S.T., Mapes, F., Tadros, S.F., Frisina, D.R., Frisina, R.D., 2006. Progestin negatively affects hearing in aged women. Proc. Natl. Acad. Sci. - PNAS 103, 14246-14249]. To start determining the generality and neural bases of these human findings, the present study examined the effects of combination HRT (estrogen+progestin) and estrogen alone on hearing in peri-menopausal mice. Specifically, auditory brainstem responses (ABRs-sensitivity of the auditory system) and distortion-product otoacoustic emissions (DPOAEs-cochlear outer hair cell system) were employed. Middle age female CBA mice received either a time-release, subcutaneous implanted pellet of estrogen+progestin, estrogen alone, or placebo. Longitudinal comparisons of ABR threshold data obtained at 4 months of treatment revealed statistically significant declines in auditory sensitivity over time for the combined estrogen+progestin treatment group, with the estrogen only group revealing milder changes at 3, 6 and 32 kHz. DPOAE testing revealed statistically significant differences for the estrogen+progestin treatment group in the high and middle frequency ranges (15-29 and 30-45 kHz) after as early as 2 months of treatment (p<0.01 and p<0.001, respectively). Statistically significant changes were also seen at 4 months of treatment across all frequencies for the combined HRT group. These data suggest that estrogen+progestin HRT therapy of 4 months duration impairs outer hair cell functioning and overall auditory sensitivity. These findings indicate that estrogen+progestin HRT may actually accelerate age-related hearing loss, relative to estrogen monotherapy; findings that are consistent with the clinical hearing loss observed in aging women that have taken combination HRT.
Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares
2015-01-01
Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to −2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use. PMID:27096026
Vandana, V P; Bindu, Parayil Sankaran; Sonam, Kothari; Govindaraj, Periyasamy; Taly, Arun B; Gayathri, Narayanappa; Chiplunkar, Shwetha; Govindaraju, Chikkanna; Arvinda, H R; Nagappa, Madhu; Sinha, Sanjib; Thangaraj, Kumarasamy
2016-09-01
Reports of audiological manifestations in specific subgroups of mitochondrial disorders are limited. This study aims to describe the audiological findings in patients with MELAS syndrome and m.3243A>G mutation. Audiological evaluation was carried out in eight patients with confirmed MELAS syndrome and m.3243A>G mutation. The evaluation included a complete neurological evaluation, pure tone audiometry (n=8), otoacoustic emissions (n=8) and brainstem evoked response audiometry (n=6), magnetic resonance imaging (n=8) and muscle biospy (n=6). Eight patients (Age range: 5-45 years; M:F-1:3) including six children and two adults underwent formal audiological evaluation. Five patients had hearing loss; of these two had "subclinical hearing loss", one had moderate and two had severe hearing loss. The abnormalities included abnormal audiometry (n=5), otoacoustic emission testing (n=7) and absent brainstem auditory evoked responses (n=1). The findings were suggestive of cochlear involvement in four and retrocochlear in one. This study shows that hearing loss of both cochlear and retrocochlear origin occurs in patients with MELAS and may be subclinical. Early referrals for audiological evaluation is warranted to recognize the subclinical hearing loss in these patients. The therapeutic implications include early interventions in the form of hearing aids, cochlear implants and cautioning the physicians for avoidance of aminoglycosides. Copyright © 2016 Elsevier B.V. All rights reserved.
Evolutionary trends in directional hearing
Carr, Catherine E.; Christensen-Dalsgaard, Jakob
2016-01-01
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850
Metabotropic glutamate receptors in auditory processing
Lu, Yong
2014-01-01
As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898
He, Shuman; McFayden, Tyler C; Shahsavarani, Bahar S; Teagle, Holly F B; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A
This study aimed to (1) establish the feasibility of measuring the electrically evoked auditory change complex (eACC) in response to temporal gaps in children with cochlear nerve deficiency (CND) who are using cochlear implants (CIs) and/or auditory brainstem implants (ABIs); and (2) explore the association between neural encoding of, and perceptual sensitivity to, temporal gaps in these patients. Study participants included 5 children (S1 to S5) ranging in age from 3.8 to 8.2 years (mean: 6.3 years) at the time of testing. All subjects were unilaterally implanted with a Nucleus 24M ABI due to CND. For each subject, two or more stimulating electrodes of the ABI were tested. S2, S3, and S5 previously received a CI in the contralateral ear. For these 3 subjects, at least two stimulating electrodes of their CIs were also tested. For electrophysiological measures, the stimulus was an 800-msec biphasic pulse train delivered to individual electrodes at the maximum comfortable level (C level). The electrically evoked responses, including the onset response and the eACC, were measured for two stimulation conditions. In the standard condition, the 800-msec pulse train was delivered uninterrupted to individual stimulating electrodes. In the gapped condition, a temporal gap was inserted into the pulse train after 400 msec of stimulation. Gap durations tested in this study ranged from 2 up to 128 msec. The shortest gap that could reliably evoke the eACC was defined as the objective gap detection threshold (GDT). For behavioral GDT measures, the stimulus was a 500-msec biphasic pulse train presented at the C level. The behavioral GDT was measured for individual stimulating electrodes using a one-interval, two-alternative forced-choice procedure. The eACCs to temporal gaps were recorded successfully in all subjects for at least one stimulating electrode using either the ABI or the CI. Objective GDTs showed intersubject variations, as well as variations across stimulating electrodes of the ABI or the CI within each subject. Behavioral GDTs were measured for one ABI electrode in S2 and for multiple ABI and CI electrodes in S5. All other subjects could not complete the task. S5 showed smaller behavioral GDTs for CI electrodes than those measured for ABI electrodes. One CI and two ABI electrodes in S5 showed comparable objective and behavioral GDTs. In contrast, one CI and two ABI electrodes in S5 and one ABI electrode in S2 showed measurable behavioral GDTs but no identifiable eACCs. The eACCs to temporal gaps were recorded in children with CND using either ABIs or CIs. Both objective and behavioral GDTs showed inter- and intrasubject variations. Consistency between results of eACC recordings and psychophysical measures of GDT was observed for some but not all ABI or CI electrodes in these subjects.
NASA Astrophysics Data System (ADS)
Pollak, George D.
2003-10-01
While bats are best known for their abilities to orient and capture prey via echolocation, they are also highly social animals who use a rich repertoire of species-specific sounds for social communication. This talk explores how communication signals are progressively transformed and represented in the ascending auditory system. One principal transformation that distinguishes the inferior colliculus from lower nuclei is a change from processing that emphasizes response homogeneity among the neuronal population in each lower nucleus, to one that emphasizes heterogeneity and selectivity in the inferior colliculus. Collicular neurons are selective in that each neuron fails to respond to some, or even all calls, even though those calls have energy that encroaches upon their excitatory response regions, and are heterogeneous since each collicular neuron responds to a different subset of calls. The transformation from homogeneity to heterogeneity may largely be a consequence of the difference in the ways that the various excitatory and inhibitory inputs distribute along frequency contours in lower nuclei compared to the inferior colliculus. One important consequence is that those features endow the population in the inferior colliculus with the ability to respond to any signal with a unique and pronounced spatiotemporal pattern of activity. [Work supported by NIH Grant No. DC 00268.
Tarantino, V; Stura, M; Raspino, M; Conrad, E; Porcu, A
1989-01-01
In order to study the changes which occur in phase of the click stimulus and its relation to the stimulus repetition rate on the auditory brainstem response (ABR) as a function of age, the Authors recorded the ABR from the scalp's surface of 10 newborns and 40 infants, 3 months, 6 months, 1 year and 3 years old as well as from 10 normal adults. The stimulus was a square wave of 0.1 msec duration and 90 dBHL level. The stimulus equipment was calibrated twice under visual inspection to ensure that the C and R clicks resulted in an initial membrane deflection toward and from the ear drum respectively. No significant differences could be found for the latencies and amplitude in the C-R comparison. However, the mean values of the complete group of test subjects showed most intraindividual stability for the conventional click stimulation. The latency of the ABR with excitation of the cochlea seemed to be mainly determined by the internal oscillation sequence in the cochlea and not by the stimulus polarity. The amplitudes and latencies of the ABR components tend to decrease when the stimulus rate increases and the age decreases. The importance of the stimulus characteristics is discussed and some suggestions for clinical use of ABR are made.
Fitting neuron models to spike trains.
Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.
Mandalà, Marco; Giannuzzi, Annalisa; Astore, Serena; Trabalzini, Franco; Nuti, Daniele
2013-07-01
We evaluated the incidence and characteristics of hyperventilation-induced nystagmus (HVN) in 49 patients with gadolinium-enhanced magnetic resonance imaging evidence of vestibular schwannoma and 53 patients with idiopathic unilateral sensorineural hearing loss and normal radiological findings. The sensitivity and specificity of the hyperventilation test were compared with other audio-vestibular diagnostic tests (bedside examination of eye movements, caloric test, auditory brainstem responses) in the two groups of patients. The hyperventilation test scored the highest diagnostic efficiency (sensitivity 65.3 %; specificity 98.1 %) of the four tests in the differential diagnosis of vestibular schwannoma and idiopathic unilateral sensorineural hearing loss. Small tumors with a normal caloric response or caloric paresis were associated with ipsilateral HVN and larger tumors and severe caloric deficits with contralateral HVN. These results confirm that the hyperventilation test is a useful diagnostic test for predicting vestibular schwannoma in patients with unilateral sensorineural hearing loss.
Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.
2016-01-01
Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263
Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.
Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal
2007-02-01
Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.
Blast-Induced Tinnitus and Hearing Loss in Rats: Behavioral and Imaging Assays
Mao, Johnny C.; Pace, Edward; Pierozynski, Paige; Kou, Zhifeng; Shen, Yimin; VandeVord, Pamela; Haacke, E. Mark; Zhang, Xueguo
2012-01-01
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound pressure level (SPL). The results demonstrated that the blast exposure induced early onset of tinnitus and central hearing impairment at a broad frequency range. The induced tinnitus and central hearing impairment tended to shift towards high frequencies over time. Hearing threshold measured with auditory brainstem responses also showed an immediate elevation followed by recovery on day 14, coinciding with behaviorally-measured results. Diffusion tensor magnetic resonance imaging results demonstrated significant damage and compensatory plastic changes to certain auditory brain regions, with the majority of changes occurring in the inferior colliculus and medial geniculate body. No significant microstructural changes found in the corpus callosum indicates that the currently adopted blast exposure mainly exerts effects through the auditory pathways rather than through direct impact onto the brain parenchyma. The results showed that this animal model is appropriate for investigation of the mechanisms underlying blast-induced tinnitus, hearing loss, and related TBI. Continued investigation along these lines will help identify pathology with injury/recovery patterns, aiding development of effective treatment strategies. PMID:21933015
Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.
Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C; Cao, Guo Zhong; Shen, I Y; Hume, Clifford R
2015-12-01
Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. © The Author(s) 2015.
Auditory sensitivity in settlement-stage larvae of coral reef fishes
NASA Astrophysics Data System (ADS)
Wright, K. J.; Higgs, D. M.; Cato, D. H.; Leis, J. M.
2010-03-01
The larval phase of most species of coral reef fishes is spent away from the reef in the pelagic environment. At the time of settlement, these larvae need to locate a reef, and recent research indicates that sound emanating from reefs may act as a cue to guide them. Here, the auditory abilities of settlement-stage larvae of four species of coral reef fishes (families Pomacentridae, Lutjanidae and Serranidae) and similar-sized individuals of two pelagic species (Carangidae) were tested using an electrophysiological technique, auditory brainstem response (ABR). Five of the six species heard frequencies in the 100-2,000 Hz range, whilst one carangid species did not detect frequencies higher than 800 Hz. The audiograms of the six species were of similar shape, with best hearing at lower frequencies between 100 and 300 Hz. Strong within-species differences were found in hearing sensitivity both among the coral reef species and among the pelagic species. Larvae of the coral reef species had significantly more sensitive hearing than the larvae of the pelagic species. The results suggest that settlement-stage larval reef fishes may be able to detect reef sounds at distances of a few 100 m. If true hearing thresholds are lower than ABR estimates, as indicated in some comparisons of ABR and behavioural methods, the detection distances would be much larger.
Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J; Campbell, Luke J; Cho, Jin-Ho; O'Leary, Stephen J; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Jang, Jeong Hun; Choi, Hongsoo
2015-07-31
We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.
Noguchi, Yoshihiro; Takahashi, Masatoki; Ito, Taku; Fujikawa, Taro; Kawashima, Yoshiyuki; Kitamura, Ken
2016-10-01
To assess possible delayed recovery of the maximum speech discrimination score (SDS) when the audiometric threshold ceases to change. We retrospectively examined 20 patients with idiopathic sudden sensorineural hearing loss (ISSNHL) (gender: 9 males and 11 females, age: 24-71 years). The findings of pure-tone average (PTA), maximum SDS, auditory brainstem responses (ABRs), and tinnitus handicap inventory (THI) were compared among the three periods of 1-3 months, 6-8 months, and 11-13 months after ISSNHL onset. No significant differences were noted in PTA, whereas an increase of greater than or equal to 10% in maximum SDS was recognized in 9 patients (45%) from the period of 1-3 months to the period of 11-13 months. Four of the 9 patients showed 20% or more recovery of maximum SDS. No significant differences were observed in the interpeak latency difference between waves I and V and the interaural latency difference of wave V in ABRs, whereas an improvement in the THI grade was recognized in 11 patients (55%) from the period of 1-3 months to the period of 11-13 months. The present study suggested the incidence of maximum SDS restoration over 1 year after ISSNHL onset. These findings may be because of the effects of auditory plasticity via the central auditory pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ahadi, Mohsen; Pourbakht, Akram; Jafari, Amir Homayoun; Shirjian, Zahra; Jafarpisheh, Amir Salar
2014-06-01
To investigate the influence of gender on subcortical representation of speech acoustic parameters where simultaneously presented to both ears. Two-channel speech-evoked auditory brainstem responses were obtained in 25 female and 23 male normal hearing young adults by using binaural presentation of the 40 ms synthetic consonant-vowel/da/, and the encoding of the fast and slow elements of speech stimuli at subcortical level were compared in the temporal and spectral domains between the sexes using independent sample, two tailed t-test. Highly detectable responses were established in both groups. Analysis in the time domain revealed earlier and larger Fast-onset-responses in females but there was no gender related difference in sustained segment and offset of the response. Interpeak intervals between Frequency Following Response peaks were also invariant to sex. Based on shorter onset responses in females, composite onset measures were also sex dependent. Analysis in the spectral domain showed more robust and better representation of fundamental frequency as well as the first formant and high frequency components of first formant in females than in males. Anatomical, biological and biochemical distinctions between females and males could alter the neural encoding of the acoustic cues of speech stimuli at subcortical level. Females have an advantage in binaural processing of the slow and fast elements of speech. This could be a physiological evidence for better identification of speaker and emotional tone of voice, as well as better perceiving the phonetic information of speech in women. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hu, Ning; Du, Xiaoping; Li, Wei; West, Matthew B.; Choi, Chul-Hee; Floyd, Robert; Kopke, Richard D.
2017-01-01
Oxidative stress is considered a major cause of the structural and functional changes associated with auditory pathologies induced by exposure to acute acoustic trauma AAT). In the present study, we examined the otoprotective effects of 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), a nitrone-based free radical trap, on the physiological and cellular changes in the auditory system of chinchilla following a six-hour exposure to 4 kHz octave band noise at 105 dB SPL. HPN-07 has been shown to suppress oxidative stress in biological models of a variety of disorders. Our results show that administration of HPN-07 beginning four hours after acoustic trauma accelerated and enhanced auditory/cochlear functional recovery, as measured by auditory brainstem responses (ABR), distortion product otoacoustic emissions (DPOAE), compound action potentials (CAP), and cochlear microphonics (CM). The normally tight correlation between the endocochlear potential (EP) and evoked potentials of CAP and CM were persistently disrupted after noise trauma in untreated animals but returned to homeostatic conditions in HPN-07 treated animals. Histological analyses revealed several therapeutic advantages associated with HPN-07 treatment following AAT, including reductions in inner and outer hair cell loss; reductions in AAT-induced loss of calretinin-positive afferent nerve fibers in the spiral lamina; and reductions in fibrocyte loss within the spiral ligament. These findings support the conclusion that early intervention with HPN-07 following an AAT efficiently blocks the propagative ototoxic effects of oxidative stress, thereby preserving the homeostatic and functional integrity of the cochlea. PMID:28832600
Wei, Yan; Fu, Yong; Liu, Shaosheng; Xia, Guihua; Pan, Song
2013-01-01
The purposes of the current study were to assess the feasibility of post-auricular microinjection of lentiviruses carrying enhanced green fluorescent protein (EGFP) into the scala media through cochleostomies in rats, determine the expression of viral gene in the cochlea, and record the post-operative changes in the number and auditory function of cochlear hair cells (HCs). Healthy rats were randomly divided into two groups. The left ears of the animals in group I were injected with lentivirus carrying EGFP (n=10) via scala media lateral wall cochleostomies, and the left ears of the animals in group II were similarly injected with artificial endolymph (n=10). Prior to and 30 days post-injection, auditory function was assessed with click-auditory brainstem response (ABR) testing, EGFP expression was determined with cochlear frozen sections under fluorescence microscopy, and survival of HCs was estimated based on whole mount preparations. Thirty days after surgery, click-ABR testing revealed that there were significant differences in the auditory function, EGFP expression, and survival of HCs in the left ears before and after surgery in the same rats from each group. In group I, EGFP was noted in the strial marginal cells of the scala media, the organ of Corti, spiral nerves, and spiral ganglion cells. Lentiviruses were successfully introduced into the scala media through cochleostomies in rats, and the EGFP reporter gene was efficiently expressed in the organ of Corti, spiral nerves, and spiral ganglion cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Because of the amount of carbonyl sulfide (COS) emissions and the lack of toxicological data, COS was listed in the Clean Air Act of 1990 as a Hazardous Air Pollutant. In 1999 COS was nominated by the US EPA to the National Toxicology Program for additional toxicological investig...
Wang, Yuan; Karten, Harvey J.
2010-01-01
The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing. PMID:20148439