Sample records for auditory fear learning

  1. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    PubMed

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Intra-amygdala microinfusion of IL-6 impairs the auditory fear conditioning of rats via JAK/STAT activation.

    PubMed

    Hao, Yongxin; Jing, He; Bi, Qiang; Zhang, Jiaozhen; Qin, Ling; Yang, Pingting

    2014-12-15

    Though accumulating literature implicates that cytokines are involved in the pathophysiology of mental disorders, the role of interleukin-6 (IL-6) in learning and memory functions remains unresolved. The present study was undertaken to investigate the effect of IL-6 on amygdala-dependent fear learning. Adult Wistar rats were used along with the auditory fear conditioning test and pharmacological techniques. The data showed that infusions of IL-6, aimed at the amygdala, dose-dependently impaired the acquisition and extinction of conditioned fear. In addition, the results in the Western blot analysis confirmed that JAK/STAT was temporally activated-phosphorylated by the IL-6 treatment. Moreover, the rats were treated with JSI-124, a JAK/STAT3 inhibitor, prior to the IL-6 treatment showed a significant decrease in the IL-6 induced impairments of fear conditioning. Taken together, our results demonstrate that the learning behavior of rats in the auditory fear conditioning could be modulated by IL-6 via the amygdala. Furthermore, the JAK/STAT3 activation in the amygdala seemed to play a role in the IL-6 mediated behavioral alterations of rats in auditory fear learning. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    PubMed Central

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  4. Molecular mechanisms of fear learning and memory.

    PubMed

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Brain-wide maps of Fos expression during fear learning and recall.

    PubMed

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Brain-wide maps of Fos expression during fear learning and recall

    PubMed Central

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. PMID:28331016

  7. Fear Conditioning is Disrupted by Damage to the Postsubiculum

    PubMed Central

    Robinson, Siobhan; Bucci, David J.

    2011-01-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into the conditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. PMID:22076971

  8. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  9. Retrosplenial cortex is required for the retrieval of remote memory for auditory cues.

    PubMed

    Todd, Travis P; Mehlman, Max L; Keene, Christopher S; DeAngeli, Nicole E; Bucci, David J

    2016-06-01

    The restrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of the RSC to recently acquired auditory fear memories. Since neocortical regions have been implicated in the permanent storage of remote memories, we examined the contribution of the RSC to remotely acquired auditory fear memories. In Experiment 1, retrieval of a remotely acquired auditory fear memory was impaired when permanent lesions (either electrolytic or neurotoxic) were made several weeks after initial conditioning. In Experiment 2, using a chemogenetic approach, we observed impairments in the retrieval of remote memory for an auditory cue when the RSC was temporarily inactivated during testing. In Experiment 3, after injection of a retrograde tracer into the RSC, we observed labeled cells in primary and secondary auditory cortices, as well as the claustrum, indicating that the RSC receives direct projections from auditory regions. Overall our results indicate the RSC has a critical role in the retrieval of remotely acquired auditory fear memories, and we suggest this is related to the quality of the memory, with less precise memories being RSC dependent. © 2016 Todd et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Selective synaptic remodeling of amygdalocortical connections associated with fear memory.

    PubMed

    Yang, Yang; Liu, Dan-Qian; Huang, Wei; Deng, Juan; Sun, Yangang; Zuo, Yi; Poo, Mu-Ming

    2016-10-01

    Neural circuits underlying auditory fear conditioning have been extensively studied. Here we identified a previously unexplored pathway from the lateral amygdala (LA) to the auditory cortex (ACx) and found that selective silencing of this pathway using chemo- and optogenetic approaches impaired fear memory retrieval. Dual-color in vivo two-photon imaging of mouse ACx showed pathway-specific increases in the formation of LA axon boutons, dendritic spines of ACx layer 5 pyramidal cells, and putative LA-ACx synaptic pairs after auditory fear conditioning. Furthermore, joint imaging of pre- and postsynaptic structures showed that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. Together, these findings identify an amygdalocortical projection that is important to fear memory expression and is selectively modified by associative fear learning, and unravel a distinct architectural rule for synapse formation in the adult brain.

  11. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning.

    PubMed

    Butler, Christopher W; Wilson, Yvette M; Gunnersen, Jenny M; Murphy, Mark

    2015-08-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. © 2015 Butler et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval.

    PubMed

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  13. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    PubMed Central

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR. PMID:28659851

  14. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  15. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  16. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  17. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  18. Sex differences in learned fear expression and extinction involve altered gamma oscillations in medial prefrontal cortex.

    PubMed

    Fenton, Georgina E; Halliday, David M; Mason, Rob; Bredy, Timothy W; Stevenson, Carl W

    2016-11-01

    Sex differences in learned fear expression and extinction involve the medial prefrontal cortex (mPFC). We recently demonstrated that enhanced learned fear expression during auditory fear extinction and its recall is linked to persistent theta activation in the prelimbic (PL) but not infralimbic (IL) cortex of female rats. Emerging evidence indicates that gamma oscillations in mPFC are also implicated in the expression and extinction of learned fear. Therefore we re-examined our in vivo electrophysiology data and found that females showed persistent PL gamma activation during extinction and a failure of IL gamma activation during extinction recall. Altered prefrontal gamma oscillations thus accompany sex differences in learned fear expression and its extinction. These findings are relevant for understanding the neural basis of post-traumatic stress disorder, which is more prevalent in women and involves impaired extinction and mPFC dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Time Determines the Neural Circuit Underlying Associative Fear Learning

    PubMed Central

    Guimarãis, Marta; Gregório, Ana; Cruz, Andreia; Guyon, Nicolas; Moita, Marta A.

    2011-01-01

    Ultimately associative learning is a function of the temporal features and relationships between experienced stimuli. Nevertheless how time affects the neural circuit underlying this form of learning remains largely unknown. To address this issue, we used single-trial auditory trace fear conditioning and varied the length of the interval between tone and foot-shock. Through temporary inactivation of the amygdala, medial prefrontal-cortex (mPFC), and dorsal-hippocampus in rats, we tested the hypothesis that different temporal intervals between the tone and the shock influence the neuronal structures necessary for learning. With this study we provide the first experimental evidence showing that temporarily inactivating the amygdala before training impairs auditory fear learning when there is a temporal gap between the tone and the shock. Moreover, imposing a short interval (5 s) between the two stimuli also relies on the mPFC, while learning the association across a longer interval (40 s) becomes additionally dependent on a third structure, the dorsal-hippocampus. Thus, our results suggest that increasing the interval length between tone and shock leads to the involvement of an increasing number of brain areas in order for the association between the two stimuli to be acquired normally. These findings demonstrate that the temporal relationship between events is a key factor in determining the neuronal mechanisms underlying associative fear learning. PMID:22207842

  20. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    PubMed

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  1. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    PubMed

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  2. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination.

    PubMed

    Ferrara, Nicole C; Cullen, Patrick K; Pullins, Shane P; Rotondo, Elena K; Helmstetter, Fred J

    2017-09-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress. © 2017 Ferrara et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Arc expression identifies the lateral amygdala fear memory trace

    PubMed Central

    Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A

    2016-01-01

    Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982

  4. Early life programming of innate fear and fear learning in adult female rats.

    PubMed

    Stevenson, Carl W; Meredith, John P; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-03-02

    The early rearing environment can impact on emotional reactivity and learning later in life. In this study the effects of neonatal maternal separation (MS) on innate fear and fear learning were assessed in the adult female rat. Pups were subjected to MS (360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. In the first experiment, innate fear was tested in the open field. No differences between the early rearing groups were observed in unconditioned fear. In the second experiment, separate cohorts were used in a 3-day fear learning paradigm which tested the acquisition (Day 1), expression and extinction (both Day 2) of conditioning to an auditory cue; extinction recall was determined as well (Day 3). Contextual fear conditioning was also assessed prior to cue presentations on Days 2 and 3. Whereas MS attenuated the acquisition and expression of fear conditioning to the cue, H potentiated extinction learning. Cue-induced fear was reduced on Day 3, compared to Day 2, indicating that the recall of extinction learning was evident; however, no early rearing group differences in extinction recall were observed. Similarly, while contextual fear was decreased on Day 3, compared to Day 2, there were no differences between the early rearing groups on either day tested. The present findings of altered cue-conditioned fear learning, in the absence of innate fear changes, lend further support for the important role of the early rearing environment in mediating cognition in adulthood.

  5. Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues

    ERIC Educational Resources Information Center

    Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.

    2016-01-01

    The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…

  6. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory.

    PubMed

    Staib, Jennifer M; Della Valle, Rebecca; Knox, Dayan K

    2018-07-01

    In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nonassociative Learning Processes Determine Expression and Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Wotjak, Carsten T.

    2004-01-01

    Freezing to a tone following auditory fear conditioning is commonly considered as a measure of the strength of the tone-shock association. The decrease in freezing on repeated nonreinforced tone presentation following conditioning, in turn, is attributed to the formation of an inhibitory association between tone and shock that leads to a…

  9. Early-life inflammation with LPS delays fear extinction in adult rodents.

    PubMed

    Doenni, V M; Song, C M; Hill, M N; Pittman, Q J

    2017-07-01

    A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    PubMed

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  12. A role of nucleus accumbens dopamine receptors in the nucleus accumbens core, but not shell, in fear prediction error.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-08-01

    Two experiments used an associative blocking design to study the role of dopamine receptors in the nucleus accumbens shell (AcbSh) and core (AcbC) in fear prediction error. Rats in the experimental groups were trained to a visual fear-conditioned stimulus (conditional stimulus [CS]) A in Stage I, whereas rats in the control groups were not. In Stage II, all rats received compound fear conditioning of the visual CSA and an auditory CSB. Rats were later tested for their fear responses to CSB. All rats received microinjections of saline or the D1-D2 receptor antagonist cis-(z)-flupenthixol prior to Stage II. These microinjections targeted either the AcbSh (Experiment 1) or the AcbC (Experiment 2). In each experiment, Stage I fear conditioning of CSA blocked fear learning to CSB. Microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbSh (Experiment 1) had no effect on fear learning or associative blocking. In contrast, microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbC (Experiment 2) attenuated blocking and so enabled fear learning to CSB. These results identify the AcbC as the critical locus for dopamine receptor contributions to fear prediction error and the associative blocking of fear learning. (c) 2015 APA, all rights reserved).

  13. Developing Memory Reconsolidation Blockers as Novel PTSD Treatments

    DTIC Science & Technology

    2013-08-01

    corticosterone- induced enhancement of auditory fear condi- tioning. Neurobiology of Learning and Memory, 86, 249–255. Roozendaal, B., & McGaugh, J. L. (1997...rats. In Stage II, we evaluated the ability of candidate drug to reverse fear conditioning- induced synaptic enhancement in rat amygdala slices...reduced subsequent cue- induced conditioned responding, as manifest in a shorter duration of freezing. The percent reduction in percent freezing from

  14. A role for the interoceptive insular cortex in the consolidation of learned fear.

    PubMed

    Casanova, José Patricio; Madrid, Carlos; Contreras, Marco; Rodríguez, María; Vasquez, Mónica; Torrealba, Fernando

    2016-01-01

    A growing body of evidence suggests that learned fear may be related to the function of the interoceptive insular cortex. Using an auditory fear conditioning paradigm in rats, we show that the inactivation of the posterior insular cortex (pIC), the target of the interoceptive thalamus, prior to training produced a marked reduction in fear expression tested 24h later. Accordingly, post-training anisomycin infused immediately, but not 6h after, also reduced fear expression tested the following day, supporting a role for the pIC in consolidation of fear memory. The long-term (ca. a week) and reversible inactivation of the pIC with the sodium channel blocker neosaxitoxin, immediately after fear memory reactivation induced a progressive decrease in the behavioral expression of conditioned fear. In turn, we observed that fear memory reactivation is accompanied by an enhanced expression of Fos and Zif268, early genes involved in neural activity and plasticity. Taken together these data indicate that the pIC is involved in the regulation of fear memories. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.

    PubMed

    Chau, Lily S; Prakapenka, Alesia; Fleming, Stephen A; Davis, Ashley S; Galvez, Roberto

    2013-11-01

    The underlying neuronal mechanisms of learning and memory have been heavily explored using associative learning paradigms. Two of the more commonly employed learning paradigms have been contextual and delay fear conditioning. In fear conditioning, a subject learns to associate a neutral stimulus (conditioned stimulus; CS), such as a tone or the context of the room, with a fear provoking stimulus (unconditioned stimulus; US), such as a mild footshock. Utilizing these two paradigms, various analyses have elegantly demonstrated that the amygdala plays a role in both fear-related associative learning paradigms. However, the amygdala's involvement in trace fear conditioning, a forebrain-dependent fear associative learning paradigm that has been suggested to tap into higher cognitive processes, has not been closely investigated. Furthermore, to our knowledge, the specific amygdala nuclei involved with trace fear conditioning has not been examined. The present study used Arc expression as an activity marker to determine the amygdala's involvement in trace fear associative learning and to further explore involvement of specific amygdalar nuclei. Arc is an immediate early gene that has been shown to be associated with neuronal activation and is believed to be necessary for neuronal plasticity. Findings from the present study demonstrated that trace-conditioned mice, compared to backward-conditioned (stimulation-control), delay-conditioned and naïve mice, exhibited elevated amygdalar Arc expression in the basolateral (BLA) but not the central (CeA) or the lateral amygdala (LA). These findings are consistent with previous reports demonstrating that the amygdala plays a critical role in trace conditioning. Furthermore, these findings parallel studies demonstrating hippocampal-BLA activation following contextual fear conditioning, suggesting that trace fear conditioning and contextual fear conditioning may involve similar amygdala nuclei. Together, findings from this study demonstrate similarities in the pathway for trace and contextual fear conditioning, and further suggest possible underlying mechanisms for acquisition and consolidation of these two types of fear-related learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Sex differences in discriminating between cues predicting threat and safety.

    PubMed

    Day, Harriet L L; Reed, Molly M; Stevenson, Carl W

    2016-09-01

    Post-traumatic stress disorder (PTSD) is more prevalent in women than men. PTSD is characterized by overgeneralization of fear to innocuous stimuli and involves impaired inhibition of learned fear by cues that predict safety. While evidence indicates that learned fear inhibition through extinction differs in males and females, less is known about sex differences in fear discrimination and safety learning. Here we examined auditory fear discrimination in male and female rats. In Experiment 1A, rats underwent 1-3days of discrimination training consisting of one tone predicting threat (CS+; presented with footshock) and another tone predicting safety (CS-; presented alone). Females, but not males, discriminated between the CS+ and CS- after one day of training. After 2-3days of training, however, males discriminated whereas females generalized between the CS+ and CS-. In Experiment 1B, females showed enhanced anxiety-like behaviour and locomotor activity in the open field, although these results were unlikely to explain the sex differences in fear discrimination. In Experiment 2, we found no differences in shock sensitivity between males and females. In Experiment 3, males and females again discriminated and generalized, respectively, after three days of training. Moreover, fear generalization in females resulted from impaired safety learning, as shown by a retardation test. Whereas subsequent fear conditioning to the previous CS- retarded learning in males, females showed no such retardation. These results suggest that, while females show fear discrimination with limited training, they show fear generalization with extended training due to impaired safety learning. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons

    PubMed Central

    Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.

    2015-01-01

    The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746

  18. Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear.

    PubMed

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P

    2010-11-01

    Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.

  19. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    PubMed

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  20. Early life programming of fear conditioning and extinction in adult male rats.

    PubMed

    Stevenson, Carl W; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-12-28

    The early rearing environment programs corticolimbic function and neuroendocrine stress reactivity in adulthood. Although early environmental programming of innate fear has been previously examined, its impact on fear learning and memory later in life remains poorly understood. Here we examined the role of the early rearing environment in programming fear conditioning and extinction in adult male rats. Pups were subjected to maternal separation (MS; 360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. As adults, animals were tested in a 3-day fear learning and memory paradigm which assessed the acquisition, expression and extinction of fear conditioning to an auditory cue; the recall of extinction was also assessed. In addition, contextual fear was assessed prior to cued extinction and its recall. We found that the acquisition of fear conditioning to the cue was modestly impaired by MS. However, no early rearing group differences were observed in cue-induced fear expression. In contrast, both the rate of extinction and extinction recall were attenuated by H. Finally, although contextual fear was reduced after extinction to the cue, no differences in context-induced fear were observed between the early rearing groups. These results add to a growing body of evidence supporting an important role for early environmental programming of fear conditioning and extinction. They also indicate that different early rearing conditions can program varying effects on distinct fear learning and memory processes in adulthood.

  1. 2-arachidonoylglycerol signaling impairs short-term fear extinction

    PubMed Central

    Hartley, N D; Gunduz-Cinar, O; Halladay, L; Bukalo, O; Holmes, A; Patel, S

    2016-01-01

    Impairments in fear extinction are thought to be central to the psychopathology of posttraumatic stress disorder, and endocannabinoid (eCB) signaling has been strongly implicated in extinction learning. Here we utilized the monoacylglycerol lipase inhibitor JZL184 to selectively augment brain 2-AG levels combined with an auditory cue fear-conditioning paradigm to test the hypothesis that 2-AG-mediated eCB signaling modulates short-term fear extinction learning in mice. We show that systemic JZL184 impairs short-term extinction learning in a CB1 receptor-dependent manner without affecting non-specific freezing behavior or the acquisition of conditioned fear. This effect was also observed in over-conditioned mice environmentally manipulated to re-acquire fear extinction. Cumulatively, the effects of JZL184 appear to be partly due to augmentation of 2-AG signaling in the basolateral nucleus of the amygdala (BLA), as direct microinfusion of JZL184 into the BLA produced similar results. Moreover, we elucidate a short ~3-day temporal window during which 2-AG augmentation impairs extinction behavior, suggesting a preferential role for 2-AG-mediated eCB signaling in the modulation of short-term behavioral sequelae to acute traumatic stress exposure. PMID:26926885

  2. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder.

    PubMed

    Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K

    2012-01-18

    Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance-like behavior continued to be observed. In summary, our animal model provides novel information on the effects of different intensities of footshock stress, auditory-predator odor fear conditioning, and their interactions on facilitating either extinction-resistant or habituation-resistant fear-related behavior. These results lay the foundation for exciting new investigations of the hallmarks of PTSD that include the stress-induced formation and persistence of traumatic memories and sensitized fear. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    PubMed

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced consolidation as well as persistence of conditioned fear memory. In addition, rats submitted to swimming exercise over six weeks showed an improved performance in the test of auditory-cued fear memory persistence, but not in the test of contextual fear memory persistence. Moreover, no significant effect from swimming exercise was observed on consolidation of both contextual and auditory fear memory. So, our study, revealing the effect of the swimming exercise on different stages of implicit memory of tone/foot shock conditioning, contributes to and complements the current knowledge about the environmental modulation of memory process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear.

    PubMed

    Nobre, Manoel Jorge

    2013-06-13

    The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, including those emitted by prey and predators. The role of the central nucleus of the IC (CIC) in fear and anxiety has been suggested based on electrophysiological, behavioral and immunohistochemical studies. The reactivity of high-anxiety rats (HA) to diverse challenges is different from low-anxiety ones (LA). In humans and laboratory animals, pathological anxiety is often accompanied by heightened vigilance and alertness, hyperactivity of the amygdala (AM), and increased amplitude of the auditory evoked potentials (AEP) from the IC. This study aims to evaluate the influence of the inactivation of the central (CEA) and basolateral (BLA) nuclei of the amygdala, after local infusions of the full GABAA agonist muscimol (1nmol/0.2μl), on the AEP elicited in the CIC of rats tested under a learned fear state. Our results showed that both BLA and CEA inactivation change the expression of conditioned fear, in a paradigm using the context as the conditioned stimulus (CS). These changes are correlated to the innate anxiety levels of the animals. It is supposed that this shortcoming is in addition to the imbalance between the regulatory role of the top-down and bottom-up processes in the control of anxiety. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  6. Feedback from the heart: Emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality.

    PubMed

    Pfeifer, Gaby; Garfinkel, Sarah N; Gould van Praag, Cassandra D; Sahota, Kuljit; Betka, Sophie; Critchley, Hugo D

    2017-05-01

    Feedback processing is critical to trial-and-error learning. Here, we examined whether interoceptive signals concerning the state of cardiovascular arousal influence the processing of reinforcing feedback during the learning of 'emotional' face-name pairs, with subsequent effects on retrieval. Participants (N=29) engaged in a learning task of face-name pairs (fearful, neutral, happy faces). Correct and incorrect learning decisions were reinforced by auditory feedback, which was delivered either at cardiac systole (on the heartbeat, when baroreceptors signal the contraction of the heart to the brain), or at diastole (between heartbeats during baroreceptor quiescence). We discovered a cardiac influence on feedback processing that enhanced the learning of fearful faces in people with heightened interoceptive ability. Individuals with enhanced accuracy on a heartbeat counting task learned fearful face-name pairs better when feedback was given at systole than at diastole. This effect was not present for neutral and happy faces. At retrieval, we also observed related effects of personality: First, individuals scoring higher for extraversion showed poorer retrieval accuracy. These individuals additionally manifested lower resting heart rate and lower state anxiety, suggesting that attenuated levels of cardiovascular arousal in extraverts underlies poorer performance. Second, higher extraversion scores predicted higher emotional intensity ratings of fearful faces reinforced at systole. Third, individuals scoring higher for neuroticism showed higher retrieval confidence for fearful faces reinforced at diastole. Our results show that cardiac signals shape feedback processing to influence learning of fearful faces, an effect underpinned by personality differences linked to psychophysiological arousal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chronic fluoxetine dissociates contextual from auditory fear memory.

    PubMed

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Sound tuning of amygdala plasticity in auditory fear conditioning

    PubMed Central

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  9. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    PubMed

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  11. Pharmacogenetic excitation of dorsomedial prefrontal cortex restores fear prediction error.

    PubMed

    Yau, Joanna Oi-Yue; McNally, Gavan P

    2015-01-07

    Pavlovian conditioning involves encoding the predictive relationship between a conditioned stimulus (CS) and an unconditioned stimulus, so that synaptic plasticity and learning is instructed by prediction error. Here we used pharmacogenetic techniques to show a causal relation between activity of rat dorsomedial prefrontal cortex (dmPFC) neurons and fear prediction error. We expressed the excitatory hM3Dq designer receptor exclusively activated by a designer drug (DREADD) in dmPFC and isolated actions of prediction error by using an associative blocking design. Rats were trained to fear the visual CS (CSA) in stage I via pairings with footshock. Then in stage II, rats received compound presentations of visual CSA and auditory CS (CSB) with footshock. This prior fear conditioning of CSA reduced the prediction error during stage II to block fear learning to CSB. The group of rats that received AAV-hSYN-eYFP vector that was treated with clozapine-N-oxide (CNO; 3 mg/kg, i.p.) before stage II showed blocking when tested in the absence of CNO the next day. In contrast, the groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were treated with CNO before stage II training did not show blocking; learning toward CSB was restored. This restoration of prediction error and fear learning was specific to the injection of CNO because groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were injected with vehicle before stage II training did show blocking. These effects were not attributable to the DREADD manipulation enhancing learning or arousal, increasing fear memory strength or asymptotic levels of fear learning, or altering fear memory retrieval. Together, these results identify a causal role for dmPFC in a signature of adaptive behavior: using the past to predict future danger and learning from errors in these predictions. Copyright © 2015 the authors 0270-6474/15/350074-10$15.00/0.

  12. Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear.

    PubMed

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-09-19

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases.

  13. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    PubMed

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  14. Enhanced Generalization of Auditory Conditioned Fear in Juvenile Mice

    ERIC Educational Resources Information Center

    Ito, Wataru; Pan, Bing-Xing; Yang, Chao; Thakur, Siddarth; Morozov, Alexei

    2009-01-01

    Increased emotionality is a characteristic of human adolescence, but its animal models are limited. Here we report that generalization of auditory conditioned fear between a conditional stimulus (CS+) and a novel auditory stimulus is stronger in 4-5-wk-old mice (juveniles) than in their 9-10-wk-old counterparts (adults), whereas nonassociative…

  15. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    PubMed

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  16. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    PubMed

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory.

    PubMed

    Harmatz, Elia S; Stone, Lauren; Lim, Seh Hong; Lee, Graham; McGrath, Anna; Gisabella, Barbara; Peng, Xiaoyu; Kosoy, Eliza; Yao, Junmei; Liu, Elizabeth; Machado, Nuno J; Weiner, Veronica S; Slocum, Warren; Cunha, Rodrigo A; Goosens, Ki A

    2017-06-15

    There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Divergent effects of brain interleukin-1ß in mediating fever, lethargy, anorexia and conditioned fear memory.

    PubMed

    Baartman, Tamzyn L; Swanepoel, Tanya; Barrientos, Ruth M; Laburn, Helen P; Mitchell, Duncan; Harden, Lois M

    2017-05-01

    The influence of brain interleukin-1 (IL-1ß) on memory processes includes both detrimental and beneficial effects. To further explore the dynamics of brain IL-1ß in mediating learning and memory during acute sickness, we injected species-homologous rat IL-1ß (100ng/5μl) or vehicle (0.1% bovine serum albumin, 5μl) directly into the cisterna magna (i.c.m.) of male Sprague-Dawley rats. We measured, in parallel, body temperature, food intake, body mass, cage activity, as well as learning and memory using contextual fear conditioning. To investigate the effects of IL-1ß on learning and memory processes we used: (1) a retrograde experiment that involved injecting rats i.c.m. with IL-1ß immediately after training in the novel context, and (2) an anterograde experiment that involved injecting rats i.c.m. with IL-1ß two hours before training in the novel context. In addition, hypothalamic and hippocampal concentrations of IL-1β were measured at several time points following injection. Administration of IL-1ß induced fever, lethargy and anorexia for∼two-to-three days and increased the concentration of IL-1ß in the hippocampus and hypothalamus for at least eight hours. Training in the context immediately before IL-1ß administration (retrograde experiment), did not impair contextual and auditory fear memory. However, when training in the context occurred concurrently with elevated hippocampal IL-1ß levels, two hours after IL-1ß administration (anterograde experiment), contextual, but not auditory, fear memory was impaired. Our results show that there are instances where memory consolidation can occur concurrently with elevated levels of IL-1ß in the hippocampus, fever, anorexia and lethargy during acute short-term sickness. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  20. Calcineurin inhibition blocks within-, but not between-session fear extinction in mice

    PubMed Central

    Moulin, Thiago C.; Carneiro, Clarissa F. D.; Gonçalves, Marina M. C.; Junqueira, Lara S.; Amaral, Olavo B.

    2015-01-01

    Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in the initial consolidation of fear learning. With this in mind, we set to study whether CaN could have different roles in distinct components of extinction. Systemic treatment with the CaN inhibitors cyclosporin A (CsA) or FK-506, as well as i.c.v. administration of CsA, blocked within-session, but not between-session extinction or initial learning of contextual fear conditioning. Similar effects were found in multiple-session extinction of contextual fear conditioning and in auditory fear conditioning, indicating that CaN is involved in different types of short-term extinction. Meanwhile, inhibition of protein synthesis by cycloheximide (CHX) treatment did not affect within-session extinction, but disrupted fear acquisition and slightly impaired between-session extinction. Our results point to a dissociation of within- and between-session extinction of fear conditioning, with the former being more dependent on CaN activity and the latter on protein synthesis. Moreover, the modulation of within-session extinction did not affect between-session extinction, suggesting that these components are at least partially independent. PMID:25691516

  1. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  2. Differential Expression of Phosphorylated Mitogen-Activated Protein Kinase (pMAPK) in the Lateral Amygdala of Mice Selectively Bred for High and Low Fear

    DTIC Science & Technology

    2013-07-02

    amygdala induced by hippocampal formation stimulation in vivo. The Journal of neuroscience: the official journal of the Society for Neuroscience 15...6 Figure 1.3. Schematic model of the neural circuitry of Pavlovian auditory fear conditioning. Model shows how an auditory conditioned...stimulus and a nociceptive unconditioned foot shock stimulus converge in the lateral amygdala (LA) via auditory thalamus and cortex and somatosensory

  3. Acute exercise enhances the consolidation of fear extinction memory and reduces conditioned fear relapse in a sex-dependent manner.

    PubMed

    Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N

    2017-08-01

    Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.

  4. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex

    PubMed Central

    Cho, Jin-Hyung; Huang, Ben S.; Gray, Jesse M.

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  5. DNA Methyltransferase Activity is Required for Memory- Related Neural Plasticity in the Lateral Amygdala

    PubMed Central

    Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. PMID:24291571

  6. Effects of signaling inescapable shock on subsequent escape learning: implications for theories of coping and "learned helplessness".

    PubMed

    Jackson, R L; Minor, T R

    1988-10-01

    The present experiments reveal that shuttle-escape performance deficits are eliminated when exteroceptive cues are paired with inescapable shock. Experiment 1 indicated that, as in instrumental control, a signal following inescapable shock eliminated later escape performance deficits. Subsequent experiments revealed that both forward and backward pairings between signals and inescapable shock attenuated performance deficits. However, the data also suggest that the impact of these temporal relations may be modulated by qualitative aspects of the cues because the effects of these relations depended upon whether an increase or decrease in illumination (Experiment 2) or a compound auditory cue (Experiment 4) was used. Preliminary evidence suggests that the ability of illumination cues to block escape learning deficits may be related to their to reduce contextual fear (Experiment 3). The implications of these data for conceptions of instrumental control and the role of fear in the etiology of effects of inescapable shock exposure are discussed.

  7. Oxytocin receptor activation in the basolateral complex of the amygdala enhances discrimination between discrete cues and promotes configural processing of cues.

    PubMed

    Fam, Justine; Holmes, Nathan; Delaney, Andrew; Crane, James; Westbrook, R Frederick

    2018-06-14

    Oxytocin (OT) is a neuropeptide which influences the expression of social behavior and regulates its distribution according to the social context - OT is associated with increased pro-social effects in the absence of social threat and defensive aggression when threats are present. The present experiments investigated the effects of OT beyond that of social behavior by using a discriminative Pavlovian fear conditioning protocol with rats. In Experiment 1, an OT receptor agonist (TGOT) microinjected into the basolateral amygdala facilitated the discrimination between an auditory cue that signaled shock and another auditory cue that signaled the absence of shock. This TGOT-facilitated discrimination was replicated in a second experiment where the shocked and non-shocked auditory cues were accompanied by a common visual cue. Conditioned responding on probe trials of the auditory and visual elements indicated that TGOT administration produced a qualitative shift in the learning mechanisms underlying the discrimination between the two compounds. This was confirmed by comparisons between the present results and simulated predictions of elemental and configural associative learning models. Overall, the present findings demonstrate that the neuromodulatory effects of OT influence behavior outside of the social domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning.

    PubMed

    Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I

    2018-01-17

    In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2009-11-01

    Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.

  10. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero

    PubMed Central

    Banerjee, Anwesha; Engineer, Crystal T.; Sauls, Bethany L.; Morales, Anna A.; Kilgard, Michael P.; Ploski, Jonathan E.

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning. PMID:25429264

  11. Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.

    PubMed

    Thrasher, Cat; LoBue, Vanessa

    2016-02-01

    In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear

    PubMed Central

    Rodriguez-Romaguera, Jose; Do Monte, Fabricio H. M.; Quirk, Gregory J.

    2012-01-01

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD. PMID:22586125

  13. Dual Functions of Perirhinal Cortex in Fear Conditioning

    PubMed Central

    Kent, Brianne A.; Brown, Thomas H.

    2012-01-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning. PMID:22903623

  14. Bihippocampal damage with emotional dysfunction: impaired auditory recognition of fear.

    PubMed

    Ghika-Schmid, F; Ghika, J; Vuilleumier, P; Assal, G; Vuadens, P; Scherer, K; Maeder, P; Uske, A; Bogousslavsky, J

    1997-01-01

    A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.

  15. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  16. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy

    PubMed Central

    Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142

  17. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear

    PubMed Central

    Meyer, Retsina M.; Burgos-Robles, Anthony; Liu, Elizabeth; Correia, Susana S.; Goosens, Ki A.

    2014-01-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is not a clear relationship between the levels of these hormones and stress-associated mental illnesses such as post-traumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin releasing factor (CRF) or corticosterone. Repeated intra-amygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was increased by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and growth hormone in maladaptive changes following prolonged stress. PMID:24126924

  18. Effects of hearing aids in the balance, quality of life and fear to fall in elderly people with sensorineural hearing loss

    PubMed Central

    Lacerda, Clara Fonseca; Silva, Luciana Oliveira e; de Tavares Canto, Roberto Sérgio; Cheik, Nadia Carla

    2012-01-01

    Summary Introduction: The aging process provokes structural modifications and functional to it greets, compromising the postural control and central processing. Studies have boarded the necessity to identify to the harmful factors of risk to aged the auditory health and security in stricken aged by auditory deficits and with alterations of balance. Objective: To evaluate the effect of auditory prosthesis in the quality of life, the balance and the fear of fall in aged with bilateral auditory loss. Method: Carried through clinical and experimental study with 56 aged ones with sensorineural auditory loss, submitted to the use of auditory prosthesis of individual sonorous amplification (AASI). The aged ones had answered to the questionnaires of quality of life Short Form Health Survey (SF-36), Falls Efficacy International Scale- (FES-I) and the test of Berg Balance Scale (BBS). After 4 months, the aged ones that they adapted to the use of the AASI had been reevaluated. Results: It had 50% of adaptation of the aged ones to the AASI. It was observed that the masculine sex had greater difficulty in adapting to the auditory device and that the variable age, degree of loss, presence of humming and vertigo had not intervened with the adaptation to auditory prosthesis. It had improvement of the quality of life in the dominance of the State General Health (EGS) and Functional Capacity (CF) and of the humming, as well as the increase of the auto-confidence after adaptation of auditory prosthesis. Conclusion: The use of auditory prosthesis provided the improvement of the domains of the quality of life, what it reflected consequently in one better auto-confidence and in the long run in the reduction of the fear of fall in aged with sensorineural auditory loss. PMID:25991930

  19. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  20. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  1. β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit.

    PubMed

    Giustino, Thomas F; Seemann, Jocelyn R; Acca, Gillian M; Goode, Travis D; Fitzgerald, Paul J; Maren, Stephen

    2017-12-01

    Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.

  2. Input from the Medial Geniculate Nucleus Modulates Amygdala Encoding of Fear Memory Discrimination

    ERIC Educational Resources Information Center

    Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J.

    2017-01-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…

  3. Compound Stimulus Extinction Reduces Spontaneous Recovery in Humans

    ERIC Educational Resources Information Center

    Coelho, Cesar A. O.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.

    2015-01-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately…

  4. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism.

    PubMed

    Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone; Herrmann, Martin J

    2016-06-01

    Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  5. Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction

    PubMed Central

    Kim, Hyung-Su; Cho, Hye-Yeon; Augustine, George J; Han, Jin-Hee

    2016-01-01

    Evidence from rodent and human studies has identified the ventromedial prefrontal cortex, specifically the infralimbic cortex (IL), as a critical brain structure in the extinction of conditioned fear. However, how IL activity controls fear expression at the time of extinction memory retrieval is unclear and controversial. To address this issue, we used optogenetics to precisely manipulate the activity of genetically targeted cells and to examine the real-time contribution of IL activity to expression of auditory-conditioned fear extinction in mice. We found that inactivation of IL, but not prelimbic cortex, impaired extinction retrieval. Conversely, photostimulation of IL excitatory neurons robustly enhanced the inhibition of fear expression after extinction, but not before extinction. Moreover, this effect was specific to the conditioned stimulus (CS): IL activity had no effect on expression of fear in response to the conditioned context after auditory fear extinction. Thus, in contrast to the expectation from a generally held view, artificial activation of IL produced no significant effect on expression of non-extinguished conditioned fear. Therefore, our data provide compelling evidence that IL activity is critical for expression of fear extinction and establish a causal role for IL activity in controlling fear expression in a CS-specific manner after extinction. PMID:26354044

  6. Neural Systems Involved in Fear and Anxiety Measured with Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Davis, Michael

    2006-01-01

    A good deal is now known about the neural circuitry involved in how conditioned fear can augment a simple reflex (fear-potentiated startle). This involves visual or auditory as well as shock pathways that project via the thalamus and perirhinal or insular cortex to the basolateral amygdala (BLA). The BLA projects to the central (CeA) and medial…

  7. Medial Prefrontal Cortex Activation Facilitates Re-Extinction of Fear in Rats

    ERIC Educational Resources Information Center

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training.…

  8. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  9. Context and Auditory Fear are Differentially Regulated by HDAC3 Activity in the Lateral and Basal Subnuclei of the Amygdala

    PubMed Central

    Kwapis, Janine L; Alaghband, Yasaman; López, Alberto J; White, André O; Campbell, Rianne R; Dang, Richard T; Rhee, Diane; Tran, Ashley V; Carl, Allison E; Matheos, Dina P; Wood, Marcelo A

    2017-01-01

    Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit. PMID:27924874

  10. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure.

    PubMed

    Burgos-Robles, Anthony; Vidal-Gonzalez, Ivan; Quirk, Gregory J

    2009-07-01

    During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.

  11. Atypical mismatch negativity to distressful voices associated with conduct disorder symptoms.

    PubMed

    Hung, An-Yi; Ahveninen, Jyrki; Cheng, Yawei

    2013-09-01

    Although a general consensus holds that emotional reactivity in youth with conduct disorder (CD) symptoms arises as one of the main causes of successive aggression, it remains to be determined whether automatic emotional processing is altered in this population. We measured auditory event-related potentials (ERP) in 20 young offenders and 20 controls, screened for DSM-IV criteria of CD and evaluated using the youth version of Hare Psychopathy Checklist (PCL:YV), State-Trait Anxiety Inventory (STAI) and Barrett Impulsiveness Scale (BIS-11). In an oddball design, sadly or fearfully spoken 'deviant' syllables were randomly presented within a train of emotionally neutral 'standard' syllables. In young offenders meeting with CD criteria, the ERP component mismatch negativity (MMN), presumed to reflect preattentive auditory change detection, was significantly stronger for fearful than sad syllables. No MMN differences for fearful versus sad syllables were observed in controls. Analyses of nonvocal deviants, matched spectrally with the fearful and sad sounds, supported our interpretation that the MMN abnormalities in juvenile offenders were related to the emotional content of sounds, instead of purely acoustic factors. Further, in the young offenders with CD symptoms, strong MMN amplitudes to fearful syllables were associated with high impulsive tendencies (PCL:YV, Factor 2). Higher trait and state anxiety, assessed by STAI, were positively correlated with P3a amplitudes to fearful and sad syllables, respectively. The differences in group-interaction MMN/P3a patterns to emotional syllables and nonvocal sounds could be speculated to suggest that there is a distinct processing route for preattentive processing of species-specific emotional information in human auditory cortices. Our results suggest that youths with CD symptoms may process distressful voices in an atypical fashion already at the preattentive level. This auditory processing abnormality correlated with increased impulsivity and anxiety. Our results may help to shed light on the neural mechanisms of aggression. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  12. Post-conditioning experience with acute or chronic inflammatory pain reduces contextual fear conditioning in the rat

    PubMed Central

    Johnston, Ian N.; Maier, Steven F.; Rudy, Jerry W.; Watkins, Linda R.

    2017-01-01

    There is evidence that pain can impact cognitive function in people. The present study evaluated whether Pavlovian fear conditioning in rats would be reduced if conditioning were followed by persistent inflammatory pain induced by a subcutaneous injection of dilute formalin or complete Freund's adjuvant (CFA) on the dorsal lumbar surface of the back. Formalin-induced pain specifically impaired contextual fear conditioning but not auditory cue conditioning (Experiment 1A). Moreover, formalin pain only impaired contextual fear conditioning if it was initiated within 1 h of conditioning and did not have a significant effect if initiated 2, 8 or 32 h after (Experiments 1A and 1B). Experiment 2 showed that formalin pain initiated after a session of context pre-exposure reduced the ability of that pre-exposure to facilitate contextual fear when the rat was limited to a brief exposure to the context during conditioning. Similar impairments in context- but not CS-fear conditioning were also observed if the rats received an immediate post-conditioning injection with CFA (Experiment 3). Finally, we confirmed that formalin and CFA injected s.c. on the back induced pain-indicative behaviours, hyperalgesia and allodynia with a similar timecourse to intraplantar injections (Experiment 4). These results suggest that persistent pain impairs learning in a hippocampus-dependent task, and may disrupt processes that encode experiences into long-term memory. PMID:21920390

  13. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  14. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  16. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context

    PubMed Central

    Goode, Travis D.; Kim, Janice J.

    2015-01-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context (“dangerous” context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context (“ambiguous” context) or in a third novel context (“safe” context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context—in place of the unsignaled shock context—did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. PMID:25691517

  18. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context.

    PubMed

    Goode, Travis D; Kim, Janice J; Maren, Stephen

    2015-03-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context--in place of the unsignaled shock context--did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. © 2015 Goode et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression

    PubMed Central

    Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J.; Schoevers, Robert A.; Klein, Hans C.

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects. PMID:28910337

  20. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression.

    PubMed

    van Buel, Erin M; Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J; Schoevers, Robert A; Klein, Hans C; Pryce, Christopher R; Eisel, Ulrich Lm

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects.

  1. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    PubMed

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-04

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  2. The Timing of Multiple Retrieval Events Can Alter GluR1 Phosphorylation and the Requirement for Protein Synthesis in Fear Memory Reconsolidation

    ERIC Educational Resources Information Center

    Jarome, Timothy J.; Kwapis, Janine L.; Werner, Craig T.; Parsons, Ryan G.; Gafford, Georgette M.; Helmstetter, Fred J.

    2012-01-01

    Numerous studies have indicated that maintaining a fear memory after retrieval requires de novo protein synthesis. However, no study to date has examined how the temporal dynamics of repeated retrieval events affect this protein synthesis requirement. The present study varied the timing of a second retrieval of an established auditory fear memory…

  3. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood.

    PubMed

    Chocyk, Agnieszka; Przyborowska, Aleksandra; Makuch, Wioletta; Majcher-Maślanka, Iwona; Dudys, Dorota; Wędzony, Krzysztof

    2014-05-01

    Adolescence is a developmental period characterized by extensive morphological and functional remodeling of the brain. The processes of brain maturation during this period may unmask malfunctions that originate earlier in life as a consequence of early-life stress (ELS). This is associated with the emergence of many psychopathologies during adolescence, particularly affective spectrum disorders. In the present study, we applied a maternal separation (MS) procedure (3h/day, on postnatal days 1-14) as a model of ELS to examine its effects on the acquisition, expression and extinction of fear memories in adolescent rats. Additionally, we studied the persistence of these memories into adulthood. We found that MS decreased the expression of both contextual (CFC) and auditory (AFC) fear conditioning in adolescent rats. Besides, MS had no impact on the acquisition of extinction learning. During the recall of extinction MS animals both, those previously subjected and not subjected to the extinction session, exhibited equally low levels of freezing. In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Minocycline attenuates interferon-α-induced impairments in rat fear extinction.

    PubMed

    Bi, Qiang; Shi, Lijuan; Yang, Pingting; Wang, Jianing; Qin, Ling

    2016-06-30

    Extinction of conditioned fear is an important brain function for animals to adapt to a new environment. Accumulating evidence suggests that innate immune cytokines are involved in the pathology of psychotic disorders. However, the involvement of cytokines in fear dysregulation remains less investigated. In the present study, we investigated how interferon (IFN)-α disrupts the extinction of conditioned fear and propose an approach to rescue IFN-α-induced neurologic impairment. We used a rat model of auditory fear conditioning to study the effect of IFN-α on the fear memory process. IFN-α was infused directly into the amygdala of rats and examined the rats' behavioral response (freezing) to fear-conditioned stimuli. Immunohistochemical staining was used to examine the glia activity status of glia in the amygdala. The levels of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the amygdala were measured by enzyme-linked immunosorbent assay. We also administrated minocycline, a microglial activation inhibitor, before the IFN-α infusion to testify the possibility to reverse the IFN-α-induced effects. Infusing the amygdala with IFN-α impaired the extinction of conditioned fear in rats and activated microglia and astrocytes in the amygdala. Administering minocycline prevented IFN-α from impairing fear extinction. The immunohistochemical and biochemical results show that minocycline inhibited IFN-α-induced microglial activation and reduced IL-1β and TNF-α production. Our findings suggest that IFN-α disrupts the extinction of auditory fear by activating glia in the amygdala and provides direction for clinical studies of novel treatments to modulate the innate immune system in patients with psychotic disorders.

  5. A Diet Enriched with Curcumin Impairs Newly Acquired and Reactivated Fear Memories

    PubMed Central

    Monsey, Melissa S; Gerhard, Danielle M; Boyle, Lara M; Briones, Miguel A; Seligsohn, Ma'ayan; Schafe, Glenn E

    2015-01-01

    Curcumin, a yellow-pigment compound found in the popular Indian spice turmeric (Curcuma longa), has been extensively investigated for its anti-inflammatory, chemopreventative, and antidepressant properties. Here, we examined the efficacy of dietary curcumin at impairing the consolidation and reconsolidation of a Pavlovian fear memory, a widely studied animal model of traumatic memory formation in posttraumatic stress disorder (PTSD). We show that a diet enriched with 1.5% curcumin prevents the training-related elevation in the expression of the immediate early genes (IEGs) Arc/Arg3.1 and Egr-1 in the lateral amygdala (LA) and impairs the ‘consolidation' of an auditory Pavlovian fear memory; short-term memory (STM) is intact, whereas long-term memory (LTM) is significantly impaired. Next, we show that dietary curcumin impairs the ‘reconsolidation' of a recently formed auditory Pavlovian fear memory; fear memory retrieval (reactivation) and postreactivation (PR)-STM are intact, whereas PR-LTM is significantly impaired. Additional experiments revealed that dietary curcumin is also effective at impairing the reconsolidation of an older, well-consolidated fear memory. Furthermore, we observed that fear memories that fail to reconsolidate under the influence of dietary curcumin are impaired in an enduring manner; unlike extinguished fear memories, they are not subject to reinstatement or renewal. Collectively, our findings indicate that a diet enriched with curcumin is capable of impairing fear memory consolidation and reconsolidation processes, findings that may have important clinical implications for the treatment of disorders such as PTSD that are characterized by unusually strong and persistently reactivated fear memories. PMID:25430781

  6. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    PubMed

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for memory consolidation during long-term memory formation. Our results thus provide an idea about how nucleosome remodeling can be regulated during long-term memory formation and contributes to the permanent storage of associative fear memory in the lateral amygdala, which is relevant to fear and anxiety-related mental disorders. Copyright © 2017 the authors 0270-6474/17/373686-12$15.00/0.

  7. Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats.

    PubMed

    Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M

    2011-01-01

    Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    PubMed

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  9. Chronic treatment with fluoxetine prevents the return of extinguished auditory-cued conditioned fear.

    PubMed

    Deschaux, Olivier; Spennato, Guillaume; Moreau, Jean-Luc; Garcia, René

    2011-05-01

    We have recently shown that post-extinction exposure of rats to a sub-threshold reminder shock can reactivate extinguished context-related freezing and found that chronic treatment with fluoxetine before fear extinction prevents this phenomenon. In the present study, we examined whether these findings would be confirmed with auditory fear conditioning. Rats were initially submitted to a session of five tone-shock pairings with either a 0.7- or 0.1-mA shock and underwent, 3 days later, a session of 20 tone-alone trials. At the beginning of this latter session, we observed cue-conditioned freezing in rats that received the strong, but not the weak, shock. At the end, both groups (strong and weak shocks) displayed similar low levels of freezing, indicating fear extinction in rats exposed to the strong shock. These rats exhibited again high levels of cue-evoked freezing when exposed to three tone-shock pairings with 0.1-mA shock. This reemergence of cue-conditioned fear was completely abolished by chronic (over a 21-day period) fluoxetine treatment which spared, when administered before the initial fear conditioning, the original tone-shock association. These data extend our previous findings and suggest that chronic fluoxetine treatment favor extinction memory by dampening the reactivation of the original tone-shock association.

  10. Prefrontal consolidation supports the attainment of fear memory accuracy

    PubMed Central

    Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.

    2014-01-01

    The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive. PMID:25031365

  11. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.

    PubMed

    Ji, Jinzhao; Maren, Stephen

    2008-12-12

    Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.

  12. The role of omega-3 on modulation of cognitive deficiency induced by REM sleep deprivation in rats.

    PubMed

    Nasehi, Mohammad; Nezhad, Seyed Moslem Mousavi; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-06-02

    Prolonged sleep deprivation causes cognitive deficits. In rats, for instance, sleep deprivation weakens spatial learning and long-term potentiation (LTP). We examined the effects of omega-3 on cognitive deficiency induced by REM sleep deprivation (RSD). For this purpose, we used a fear conditioning paradigm, forced swim test (FST) apparatus, and hot plate test. Intravenously omega-3 injection was performed during 3 consecutive days. Rats trained in the fear conditioning apparatus after 24 hours. During conditioning, animals were received foot shocks, either alone or paired with a sound. Sleep deprivation paradigm was carried out in which REM sleep was completely prevented and non-REM sleep was intensely declined for 24 hours. Then, context-dependent retention, anxiety behaviors, and hot plate tests were done. Auditory-dependent retention, anxiety behaviors, and FST were carried out 24 hours later. 24 hours of RSD impaired cognitive function, however intravenously administration of omega-3 improved (0.25, 0.5 and 1 mg/kg) context- or auditory-dependent memory, induced anxiolytic (1 mg/kg), antidepressant (1.25 mg/kg), and anti-nociceptive (0.25 mg/kg) effects. The results revealed that RSD interferes with the neural systems underlying cognitive functions and supports the involvement of omega-3 in the modulation of cognitive functions. Copyright © 2018. Published by Elsevier B.V.

  13. Deafness to Fear in Boys with Psychopathic Tendencies

    ERIC Educational Resources Information Center

    Blair, R. J. R.; Budhani, S.; Colledge, E.; Scott, S.

    2005-01-01

    The processing of the emotional signals of others is fundamental for normal socialization and interaction. Reduced responsiveness to the expressions of sadness and fear has been implicated in the development of psychopathy (Blair, 1995). The current study investigates the ability of boys with psychopathic tendencies to process auditory affect…

  14. High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response.

    PubMed

    Wang, Hongbo; Xing, Xiaoli; Liang, Jing; Bai, Yunjing; Lui, Zhengkui; Zheng, Xigeng

    2014-09-01

    Exposure therapy is widely used to treat anxiety disorders, including posttraumatic stress disorder (PTSD). However, preventing the return of fear is still a major challenge after this behavioral treatment. An increasing number of studies suggest that high-dose glucocorticoid treatment immediately after trauma can alleviate the symptoms of PTSD in humans. Unknown is whether high-dose glucocorticoid treatment following fear conditioning suppresses the return of fear. In the present study, a typical fear renewal paradigm (AAB) was used, in which the fear response to an auditory cue can be restored in a novel context (context B) when both training and extinction occur in the same context (context A). We trained rats for auditory fear conditioning and administered corticosterone (CORT; 5 and 25mg/kg, i.p.) or vehicle with different delays (1 and 24h). Forty-eight hours after drug injection, extinction was conducted with no drug in the training context, followed by a test of tone-induced freezing behavior in the same (AAA) or a shifted (AAB) context. Both immediate and delayed administration of high-dose CORT after fear conditioning reduced fear renewal. To examine the anxiolytic effect of CORT, independent rats were trained for cued or contextual fear conditioning, followed by an injection of CORT (5 and 25mg/kg, i.p.) or vehicle at a 1 or 24h delay. One week later, anxiety-like behavior was assessed in the elevated plus maze (EPM) before and after fear expression. We found that high-dose CORT decreased anxiety-like behavior without changing tone- or context-induced freezing. These findings indicate that a single high-dose CORT administration given after fear conditioning may selectively suppress fear renewal by reducing anxiety-like behavior and not by altering the consolidation, retrieval, or extinction of fear memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Fear Processing in Dental Phobia during Crossmodal Symptom Provocation: An fMRI Study

    PubMed Central

    Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2014-01-01

    While previous studies successfully identified the core neural substrates of the animal subtype of specific phobia, only few and inconsistent research is available for dental phobia. These findings might partly relate to the fact that, typically, visual stimuli were employed. The current study aimed to investigate the influence of stimulus modality on neural fear processing in dental phobia. Thirteen dental phobics (DP) and thirteen healthy controls (HC) attended a block-design functional magnetic resonance imaging (fMRI) symptom provocation paradigm encompassing both visual and auditory stimuli. Drill sounds and matched neutral sinus tones served as auditory stimuli and dentist scenes and matched neutral videos as visual stimuli. Group comparisons showed increased activation in the insula, anterior cingulate cortex, orbitofrontal cortex, and thalamus in DP compared to HC during auditory but not visual stimulation. On the contrary, no differential autonomic reactions were observed in DP. Present results are largely comparable to brain areas identified in animal phobia, but also point towards a potential downregulation of autonomic outflow by neural fear circuits in this disorder. Findings enlarge our knowledge about neural correlates of dental phobia and may help to understand the neural underpinnings of the clinical and physiological characteristics of the disorder. PMID:24738049

  16. Opioid receptors regulate blocking and overexpectation of fear learning in conditioned suppression.

    PubMed

    Arico, Carolyn; McNally, Gavan P

    2014-04-01

    Endogenous opioids play an important role in prediction error during fear learning. However, the evidence for this role has been obtained almost exclusively using the species-specific defense response of freezing as the measure of learned fear. It is unknown whether opioid receptors regulate predictive fear learning when other measures of learned fear are used. Here, we used conditioned suppression as the measure of learned fear to assess the role of opioid receptors in fear learning. Experiment 1a studied associative blocking of fear learning. Rats in an experimental group received conditioned stimulus A (CSA) + training in Stage I and conditioned stimulus A and B (CSAB) + training in Stage II, whereas rats in a control group received only CSAB + training in Stage II. The prior fear conditioning of CSA blocked fear learning to conditioned stimulus B (CSB) in the experimental group. In Experiment 1b, naloxone (4 mg/kg) administered before Stage II prevented this blocking, thereby enabling normal fear learning to CSB. Experiment 2a studied overexpectation of fear. Rats received CSA + training and CSB + training in Stage I, and then rats in the experimental group received CSAB + training in Stage II whereas control rats did not. The Stage II compound training of CSAB reduced fear to CSA and CSB on test. In Experiment 2b, naloxone (4 mg/kg) administered before Stage II prevented this overexpectation. These results show that opioid receptors regulate Pavlovian fear learning, augmenting learning in response to positive prediction error and impairing learning in response to negative prediction error, when fear is assessed via conditioned suppression. These effects are identical to those observed when freezing is used as the measure of learned fear. These findings show that the role for opioid receptors in regulating fear learning extends across multiple measures of learned fear.

  17. Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia

    PubMed Central

    Huang, Lianyan; Hayes, Scott; Yang, Guang

    2016-01-01

    Anesthetic agents are often administered in the neonatal period, a time of rapid brain development and synaptogenesis. Mounting evidence suggests that anesthetics can disrupt neurocognitive development, particularly in cases of multiple or prolonged anesthetic exposure. Previous studies have shown that administering multiple doses of ketamine-xylazine (KX) anesthesia to neonatal mice can induce long-term changes to synaptic plasticity in the cortex, but the effect on neurocognitive function remains unclear. In this study, we exposed neonatal mice to single dose and multiple doses of KX anesthesia in the neonatal period (postnatal days 7, 9, 11), and conducted a series of behavioral tests in young adulthood (1 month of age). Mice receiving multiple doses of KX anesthesia showed deficits in novel object recognition, sociability, preference for social novelty and contextual fear response, but no effect on auditory-cued fear response. Single dose of KX anesthesia had no effect on these behaviors except for contextual fear response. We also observed that multiple exposures to KX anesthesia were associated with decreased CaMKII phosphorylation, which is known to play a role in synapse development and long-term potentiation, likely contributing to learning impairment. PMID:27622724

  18. Prefrontal consolidation supports the attainment of fear memory accuracy.

    PubMed

    Vieira, Philip A; Lovelace, Jonathan W; Corches, Alex; Rashid, Asim J; Josselyn, Sheena A; Korzus, Edward

    2014-08-01

    The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive. © 2014 Vieira et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    PubMed

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  20. Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne

    2016-12-01

    It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons

    PubMed Central

    Mika, Agnieszka; Bouchet, Courtney A.; Bunker, Preston; Hellwinkel, Justin E.; Spence, Katie G.; Day, Heidi E.W.; Campeau, Serge; Fleshner, Monika

    2015-01-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male, F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1 week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID:26454156

  2. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    PubMed

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    PubMed

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  5. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis

    PubMed Central

    Acca, Gillian M.; Mathew, Abel S.; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-01-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. PMID:28104355

  6. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  7. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  8. The influence of personality on neural mechanisms of observational fear and reward learning

    PubMed Central

    Hooker, Christine I.; Verosky, Sara C.; Miyakawa, Asako; Knight, Robert T.; D’Esposito, Mark

    2012-01-01

    Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning. PMID:18573512

  9. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    PubMed

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  10. Stimulus fear relevance and the speed, magnitude, and robustness of vicariously learned fear.

    PubMed

    Dunne, Güler; Reynolds, Gemma; Askew, Chris

    2017-08-01

    Superior learning for fear-relevant stimuli is typically indicated in the laboratory by faster acquisition of fear responses, greater learned fear, and enhanced resistance to extinction. Three experiments investigated the speed, magnitude, and robustness of UK children's (6-10 years; N = 290; 122 boys, 168 girls) vicariously learned fear responses for three types of stimuli. In two experiments, children were presented with pictures of novel animals (Australian marsupials) and flowers (fear-irrelevant stimuli) alone (control) or together with faces expressing fear or happiness. To determine learning speed the number of stimulus-face pairings seen by children was varied (1, 10, or 30 trials). Robustness of learning was examined via repeated extinction procedures over 3 weeks. A third experiment compared the magnitude and robustness of vicarious fear learning for snakes and marsupials. Significant increases in fear responses were found for snakes, marsupials and flowers. There was no indication that vicarious learning for marsupials was faster than for flowers. Moreover, vicariously learned fear was neither greater nor more robust for snakes compared to marsupials, or for marsupials compared to flowers. These findings suggest that for this age group stimulus fear relevance may have little influence on vicarious fear learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Learning to fear a second-order stimulus following vicarious learning.

    PubMed

    Reynolds, Gemma; Field, Andy P; Askew, Chris

    2017-04-01

    Vicarious fear learning refers to the acquisition of fear via observation of the fearful responses of others. The present study aims to extend current knowledge by exploring whether second-order vicarious fear learning can be demonstrated in children. That is, whether vicariously learnt fear responses for one stimulus can be elicited in a second stimulus associated with that initial stimulus. Results demonstrated that children's (5-11 years) fear responses for marsupials and caterpillars increased when they were seen with fearful faces compared to no faces. Additionally, the results indicated a second-order effect in which fear-related learning occurred for other animals seen together with the fear-paired animal, even though the animals were never observed with fearful faces themselves. Overall, the findings indicate that for children in this age group vicariously learnt fear-related responses for one stimulus can subsequently be observed for a second stimulus without it being experienced in a fear-related vicarious learning event. These findings may help to explain why some individuals do not recall involvement of a traumatic learning episode in the development of their fear of a specific stimulus.

  12. Encoding of Fear Memory in High and Low Fear Mice

    DTIC Science & Technology

    2013-11-18

    82.  Maren S, Fanselow MS. 1995. Synaptic plasticity in the basolateral amygdala  induced  by  hippocampal formation  stimulation  in vivo. The Journal of...sensory stimulus with something fear- inducing ) exhibit fear memory at or below the level of low fear mice following MEK inhibition. These findings...psychology 75:671‐82  23.  Bordi F, LeDoux J. 1992. Sensory tuning beyond the sensory system: an initial analysis of  auditory  response properties of

  13. Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats

    PubMed Central

    McHugh, Stephen B; Marques-Smith, Andre; Li, Jennifer; Rawlins, J N P; Lowry, John; Conway, Michael; Gilmour, Gary; Tricklebank, Mark; Bannerman, David M

    2013-01-01

    Lesion and electrophysiological studies in rodents have identified the amygdala and hippocampus (HPC) as key structures for Pavlovian fear conditioning, but human functional neuroimaging studies have not consistently found activation of these structures. This could be because hemodynamic responses cannot detect the sparse neuronal activity proposed to underlie conditioned fear. Alternatively, differences in experimental design or fear levels could account for the discrepant findings between rodents and humans. To help distinguish between these alternatives, we used tissue oxygen amperometry to record hemodynamic responses from the basolateral amygdala (BLA), dorsal HPC (dHPC) and ventral HPC (vHPC) in freely-moving rats during the acquisition and extinction of conditioned fear. To enable specific comparison with human studies we used a discriminative paradigm, with one auditory cue [conditioned stimulus (CS)+] that was always followed by footshock, and another auditory cue (CS−) that was never followed by footshock. BLA tissue oxygen signals were significantly higher during CS+ than CS− trials during training and early extinction. In contrast, they were lower during CS+ than CS− trials by the end of extinction. dHPC and vHPC tissue oxygen signals were significantly lower during CS+ than CS− trials throughout extinction. Thus, hemodynamic signals in the amygdala and HPC can detect the different patterns of neuronal activity evoked by threatening vs. neutral stimuli during fear conditioning. Discrepant neuroimaging findings may be due to differences in experimental design and/or fear levels evoked in participants. Our methodology offers a way to improve translation between rodent models and human neuroimaging. PMID:23173719

  14. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    PubMed

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Outline for Remediation of Problem Areas for Children with Learning Disabilities. Revised. = Bosquejo para la Correccion de Areas Problematicas para Ninos con Impedimientos del Aprendizaje.

    ERIC Educational Resources Information Center

    Bornstein, Joan L.

    The booklet outlines ways to help children with learning disabilities in specific subject areas. Characteristic behavior and remedial exercises are listed for seven areas of auditory problems: auditory reception, auditory association, auditory discrimination, auditory figure ground, auditory closure and sound blending, auditory memory, and grammar…

  16. Inhibition of Vicariously Learned Fear in Children Using Positive Modeling and Prior Exposure

    PubMed Central

    2015-01-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions—psychoeducation, factual information, or no information (control)—prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions—positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)—before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. PMID:26653136

  17. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    PubMed

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  18. Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.

    PubMed

    Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek

    2017-02-01

    The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    PubMed

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  20. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  1. Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace.

    PubMed

    Holehonnur, Roopashri; Phensy, Aarron J; Kim, Lily J; Milivojevic, Milica; Vuong, Dat; Daison, Delvin K; Alex, Saira; Tiner, Michael; Jones, Lauren E; Kroener, Sven; Ploski, Jonathan E

    2016-09-07

    Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating. Copyright © 2016 the authors 0270-6474/16/369490-15$15.00/0.

  2. Disrupted Prediction Error Links Excessive Amygdala Activation to Excessive Fear.

    PubMed

    Sengupta, Auntora; Winters, Bryony; Bagley, Elena E; McNally, Gavan P

    2016-01-13

    Basolateral amygdala (BLA) is critical for fear learning, and its heightened activation is widely thought to underpin a variety of anxiety disorders. Here we used chemogenetic techniques in rats to study the consequences of heightened BLA activation for fear learning and memory, and to specifically identify a mechanism linking increased activity of BLA glutamatergic neurons to aberrant fear. We expressed the excitatory hM3Dq DREADD in rat BLA glutamatergic neurons and showed that CNO acted selectively to increase their activity, depolarizing these neurons and increasing their firing rates. This chemogenetic excitation of BLA glutamatergic neurons had no effect on the acquisition of simple fear learning, regardless of whether this learning led to a weak or strong fear memory. However, in an associative blocking task, chemogenetic excitation of BLA glutamatergic neurons yielded significant learning to a blocked conditioned stimulus, which otherwise should not have been learned about. Moreover, in an overexpectation task, chemogenetic manipulation of BLA glutamatergic neurons prevented use of negative prediction error to reduce fear learning, leading to significant impairments in fear inhibition. These effects were not attributable to the chemogenetic manipulation enhancing arousal, increasing asymptotic levels of fear learning or fear memory consolidation. Instead, chemogenetic excitation of BLA glutamatergic neurons disrupted use of prediction error to regulate fear learning. Several neuropsychiatric disorders are characterized by heightened activation of the amygdala. This heightened activation has been hypothesized to underlie increased emotional reactivity, fear over generalization, and deficits in fear inhibition. Yet the mechanisms linking heightened amygdala activation to heightened emotional learning are elusive. Here we combined chemogenetic excitation of rat basolateral amygdala glutamatergic neurons with a variety of behavioral approaches to show that, although simple fear learning is unaffected, the use of prediction error to regulate this learning is profoundly disrupted, leading to formation of inappropriate fear associations and impaired fear inhibition. Copyright © 2016 the authors 0270-6474/16/360385-11$15.00/0.

  3. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis.

    PubMed

    Acca, Gillian M; Mathew, Abel S; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-03-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.

    PubMed

    Arico, Carolyn; Bagley, Elena E; Carrive, Pascal; Assareh, Neda; McNally, Gavan P

    2017-10-01

    The midbrain periaqueductal gray (PAG) has been implicated in the generation and transmission of a prediction error signal that instructs amygdala-based fear and extinction learning. However, the PAG also plays a key role in the expression of conditioned fear responses. The evidence for a role of the PAG in fear learning and extinction learning has been obtained almost exclusively using PAG-dependent fear responses. It is less clear whether the PAG regulates fear learning when other measures of learned fear are used. Here we combined a chemogenetic approach, permitting excitation or inhibition of neurons in the ventrolateral PAG (VLPAG), with conditioned suppression as the measure of learned fear to assess the role of VLPAG in the acquisition and extinction of fear learning. We show that chemogenetic excitation of VLPAG (with some encroachment on lateral PAG [LPAG]) impairs acquisition of fear and, conversely, chemogenetic inhibition impairs extinction of fear. These effects on fear and extinction learning were specific to the combination of DREADD expression and injection of CNO because they were observed relative to both eYFP controls injected with CNO as well as DREADD expressing controls injected with vehicle. Taken together, these results show that activity of L/VLPAG neurons regulates both the acquisition and extinction of Pavlovian fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Vicarious Learning and Reduction of Fear in Children via Adult and Child Models.

    PubMed

    Dunne, Güler; Askew, Chris

    2017-06-01

    Children can learn to fear stimuli vicariously, by observing adults' or peers' responses to them. Given that much of school-age children's time is typically spent with their peers, it is important to establish whether fear learning from peers is as effective or robust as learning from adults, and also whether peers can be successful positive models for reducing fear. During a vicarious fear learning procedure, children (6 to 10 years; N = 60) were shown images of novel animals together with images of adult or peer faces expressing fear. Later they saw their fear-paired animal again together with positive emotional adult or peer faces. Children's fear beliefs and avoidance for the animals increased following vicarious fear learning and decreased following positive vicarious counterconditioning. There was little evidence of differences in learning from adults and peers, demonstrating that for this age group peer models are effective models for both fear acquisition and reduction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    ERIC Educational Resources Information Center

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  7. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  8. Food and water deprivation disrupts latent inhibition with an auditory fear conditioning procedure.

    PubMed

    De la Casa, Luis G

    2013-11-01

    Latent inhibition (LI), operationally defined as the reduced conditioned response to a stimulus that has been preexposed before conditioning, seems to be determined by the interaction of different processes that includes attentional, associative, memory, motivational, and emotional factors. In this paper we focused on the role of deprivation level on LI intensity using an auditory fear conditioning procedure with rats. LI was observed when the animals were non-deprived, but it was disrupted when the rats were water- or food-deprived. We propose that deprivation induced an increase in attention to the to-be-CS, and, as a result, LI was disrupted in deprived animals. The implications of the results for the current interpretations of LI are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The effect of left frontal transcranial direct-current stimulation on propranolol-induced fear memory acquisition and consolidation deficits.

    PubMed

    Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-07-28

    Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Auditory-Visual Speech Integration by Adults with and without Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Norrix, Linda W.; Plante, Elena; Vance, Rebecca

    2006-01-01

    Auditory and auditory-visual (AV) speech perception skills were examined in adults with and without language-learning disabilities (LLD). The AV stimuli consisted of congruent consonant-vowel syllables (auditory and visual syllables matched in terms of syllable being produced) and incongruent McGurk syllables (auditory syllable differed from…

  11. Is the Role of External Feedback in Auditory Skill Learning Age Dependent?

    PubMed

    Zaltz, Yael; Roth, Daphne Ari-Even; Kishon-Rabin, Liat

    2017-12-20

    The purpose of this study is to investigate the role of external feedback in auditory perceptual learning of school-age children as compared with that of adults. Forty-eight children (7-9 years of age) and 64 adults (20-35 years of age) conducted a training session using an auditory frequency discrimination (difference limen for frequency) task, with external feedback (EF) provided for half of them. Data supported the following findings: (a) Children learned the difference limen for frequency task only when EF was provided. (b) The ability of the children to benefit from EF was associated with better cognitive skills. (c) Adults showed significant learning whether EF was provided or not. (d) In children, within-session learning following training was dependent on the provision of feedback, whereas between-sessions learning occurred irrespective of feedback. EF was found beneficial for auditory skill learning of 7-9-year-old children but not for young adults. The data support the supervised Hebbian model for auditory skill learning, suggesting combined bottom-up internal neural feedback controlled by top-down monitoring. In the case of immature executive functions, EF enhanced auditory skill learning. This study has implications for the design of training protocols in the auditory modality for different age groups, as well as for special populations.

  12. Tickling during adolescence alters fear-related and cognitive behaviors in rats after prolonged isolation.

    PubMed

    Hori, Miyo; Yamada, Kazuo; Ohnishi, Junji; Sakamoto, Shigeko; Furuie, Hiroki; Murakami, Kazuo; Ichitani, Yukio

    2014-05-28

    Social interactions during adolescence are important especially for neuronal development and behavior. We recently showed that positive emotions induced by repeated tickling could modulate fear-related behaviors and sympatho-adrenal stress responses. In the present study, we examined whether tickling during early to late adolescence stage could reverse stress vulnerability induced by socially isolated rearing. Ninety-five male Fischer rats were reared under different conditions from postnatal day (PND) 21 to 53: group-housed (three rats/cage), isolated-nontickled (one rat/cage) and isolated-tickled (received tickling stimulation for 5min a day). Auditory fear conditioning was then performed on the rats at PND 54. Isolated-tickled rats exhibited significantly lower freezing compared with group-housed rats in the first retention test performed 48h after conditioning and compared with isolated-nontickled rats in the second retention test performed 96h after conditioning. Moreover, group-housed and isolated-tickled rats tended to show a significant decrease in freezing responses in the second retention test; however, isolated-nontickled rats did not. In the Morris water maze task that was trained in adulthood (PND 88), but not in adolescence (PND 56), isolated-nontickled rats showed slower decrease of escape latency compared to group-housed rats; however, tickling treatment significantly improved this deficit. These results suggest that tickling stimulation can alleviate the detrimental effects of isolated rearing during adolescence on fear responses and spatial learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2009-01-01

    Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the rate at which these are learned about. These experiments used a serial compound conditioning design to determine the roles of basolateral amygdala (BLA) NMDA receptors and ventrolateral midbrain periaqueductal gray (vlPAG) mu-opioid receptors (MOR) in predictive fear learning. Rats received a three-stage design, which arranged for both positive and negative prediction errors producing bidirectional changes in fear learning within the same subjects during the test stage. Intra-BLA infusion of the NR2B receptor antagonist Ifenprodil prevented all learning. In contrast, intra-vlPAG infusion of the MOR antagonist CTAP enhanced learning in response to positive predictive error but impaired learning in response to negative predictive error--a pattern similar to Hebbian learning and an indication that fear learning had been divorced from predictive error. These findings identify complementary but dissociable roles for amygdala NMDA receptors and vlPAG MOR in temporal-difference predictive fear learning.

  14. Does fear extinction in the laboratory predict outcomes of exposure therapy? A treatment analog study.

    PubMed

    Forcadell, Eduard; Torrents-Rodas, David; Vervliet, Bram; Leiva, David; Tortella-Feliu, Miquel; Fullana, Miquel A

    2017-11-01

    Fear extinction models have a key role in our understanding of anxiety disorders and their treatment with exposure therapy. Here, we tested whether individual differences in fear extinction learning and fear extinction recall in the laboratory were associated with the outcomes of an exposure therapy analog (ETA). Fifty adults with fear of spiders participated in a two-day fear-learning paradigm assessing fear extinction learning and fear extinction recall, and then underwent a brief ETA. Correlational analyses indicated that enhanced extinction learning was associated with better ETA outcome. Our results partially support the idea that individual differences in fear extinction learning may be associated with exposure therapy outcome, but suggest that further research in this area is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cellular and oscillatory substrates of fear extinction learning.

    PubMed

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  16. Cellular and Oscillatory Substrates of Fear Extinction Learning

    PubMed Central

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G.

    2018-01-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a novel combination of chemogenetics, activity-based neuronal-ensemble labeling, and in vivo electrophysiology, we found that fear extinction learning confers parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) with a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6–12 Hz oscillation and a fear-associated 3–6 Hz oscillation within the BLA. Loss of this competition increases a 3–6 Hz oscillatory signature, with BLA→mPFC directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV-interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning. PMID:28967909

  17. Contextual and Auditory Fear Conditioning Continue to Emerge during the Periweaning Period in Rats

    PubMed Central

    Burman, Michael A.; Erickson, Kristen J.; Deal, Alex L.; Jacobson, Rose E.

    2014-01-01

    Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23–24) than explicitly cued fear conditioning (postnatal day 15–17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit. PMID:24977415

  18. Contribution of Auditory Learning Style to Students’ Mathematical Connection Ability

    NASA Astrophysics Data System (ADS)

    Karlimah; Risfiani, F.

    2017-09-01

    This paper presents the results of the research on the relation of mathematical concept with mathematics, other subjects, and with everyday life. This research reveals study result of the students who had auditory learning style and correlates it with their ability of mathematical connection. In this research, the researchers used a combination model or sequential exploratory design method, which is the use of qualitative and quantitative research methods in sequence. The result proves that giving learning facilities which are not suitable for the class whose students have the auditory learning style results in the barely sufficient math connection ability. The average mathematical connection ability of the auditory students was initially in the medium level of qualification. Then, the improvement in the form of the varied learning that suited the auditory learning style still showed the average ability of mathematical connection in medium level of qualification. Nevertheless, there was increase in the frequency of students in the medium level of qualification and decrease in the very low and low level of qualification. This suggests that the learning facilities, which are appropriate for the student’s auditory learning style, contribute well enough to the students’ mathematical connection ability. Therefore, the mathematics learning for students who have an auditory learning style should consist of particular activity that is understanding the concepts of mathematics and their relations.

  19. A NMDA Receptor Antagonist, MK-801 Impairs Consolidating Extinction of Auditory Conditioned Fear Responses in a Pavlovian Model

    PubMed Central

    Wang, Zheng-Hong; Rao, Zhi-Ren; Wu, Sheng-Xi; Li, Yun-Qing; Wang, Wen

    2009-01-01

    Background In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR) is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. Methods/Main Findings The effects of immediate (beginning at 10 min after the conditioning) and delayed (beginning at 24 h after conditioning) extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20th day after extinction) depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p.) injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM) task. Conclusions/Significance Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is very important for memory, our data added experimental evidence to the concept that the extinction of conditioned fear responses is a procedure of initiating and consolidating new memory other than simply “erasing” the fear memory. PMID:19855841

  20. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    PubMed

    Liu, Jun-Li; Li, Min; Dang, Xiao-Rong; Wang, Zheng-Hong; Rao, Zhi-Ren; Wu, Sheng-Xi; Li, Yun-Qing; Wang, Wen

    2009-10-26

    In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR) is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. The effects of immediate (beginning at 10 min after the conditioning) and delayed (beginning at 24 h after conditioning) extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th) day after extinction) depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p.) injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM) task. Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is very important for memory, our data added experimental evidence to the concept that the extinction of conditioned fear responses is a procedure of initiating and consolidating new memory other than simply "erasing" the fear memory.

  1. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

    PubMed

    Sengupta, Auntora; McNally, Gavan P

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  2. Comparing Electric Shock and a Fearful Screaming Face as Unconditioned Stimuli for Fear Learning

    PubMed Central

    Glenn, Catherine R.; Lieberman, Lynne; Hajcak, Greg

    2012-01-01

    The potency of an unconditioned stimulus (UCS) can impact the degree of fear learning. One of the most common and effective UCSs is an electric shock, which is inappropriate for certain populations (e.g., children). To address this need, a novel fear learning paradigm was recently developed that uses a fearful female face and scream as the UCS. The present study directly compared the efficacy of the screaming female UCS and a traditional shock UCS in two fear learning paradigms. Thirty-six young adults completed two fear learning tasks and a measure of trait anxiety; fear learning was indexed with fear-potentiated startle (FPS) and self-reported fear ratings. Results indicated comparable FPS across the two tasks. However, larger overall startle responses were exhibited in the shock task, and participants rated the shock UCS and overall task as more aversive than the screaming female. In addition, trait anxiety was only related to FPS in the fear learning task that employed a shock as the UCS. Taken together, results indicate that, although both UCS paradigms can be used for fear conditioning (i.e., to produce differences between CS+ and CS−), the shock UCS paradigm is more aversive and potentially more sensitive to individual differences in anxiety. PMID:23007035

  3. The Role of Age and Executive Function in Auditory Category Learning

    PubMed Central

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  4. Individual differences in learning predict the return of fear.

    PubMed

    Gershman, Samuel J; Hartley, Catherine A

    2015-09-01

    Using a laboratory analogue of learned fear (Pavlovian fear conditioning), we show that there is substantial heterogeneity across individuals in spontaneous recovery of fear following extinction training. We propose that this heterogeneity might stem from qualitative individual differences in the nature of extinction learning. Whereas some individuals tend to form a new memory during extinction, leaving their fear memory intact, others update the original threat association with new safety information, effectively unlearning the fear memory. We formalize this account in a computational model of fear learning and show that individuals who, according to the model, are more likely to form new extinction memories tend to show greater spontaneous recovery compared to individuals who appear to only update a single memory. This qualitative variation in fear and extinction learning may have important implications for understanding vulnerability and resilience to fear-related psychiatric disorders.

  5. Fear and disgust in women: Differentiation of cardiovascular regulation patterns.

    PubMed

    Comtesse, Hannah; Stemmler, Gerhard

    2017-02-01

    Both fear and disgust facilitate avoidance of threat. From a functional view, however, cardiovascular responses to fear and disgust should differ as they prepare for appropriate behavior to protect from injury and infection, respectively. Therefore, we examined the cardiovascular responses to fear and contamination-related disgust in comparison to an emotionally neutral state induced with auditory scripts and film clips in female participants. Ten emotion and motivation self-reports and ninecardiovascular response factors derived from 23 cardiovascular variables served as dependent variables. Self-reports confirmed the specific induction of fear and disgust. In addition, fear and disgust differed in their cardiovascular response patterning. For fear, we observed specific increases in factors indicating vasoconstriction and cardiac pump function. For disgust, we found specific increases in vagal cardiac control and decreases in myocardial contractility. These findings provide support for the cardiovascular specificity of fear and disgust and are discussed in terms of a basic emotions approach. Copyright © 2016. Published by Elsevier B.V.

  6. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    PubMed

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of different excitatory and inhibitory mechanisms and to distinct spatiotemporal metrics of map activation to represent a sound. The described non-auditory firing and modulations of auditory responses suggest that auditory cortex, by collecting all necessary information, functions as a "semantic processor" deducing the task-specific meaning of sounds by learning. © 2010. Published by Elsevier B.V.

  7. Statistical learning and auditory processing in children with music training: An ERP study.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  9. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2015-01-01

    Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.

  10. Complementary Roles for Amygdala and Periaqueductal Gray in Temporal-Difference Fear Learning

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2009-01-01

    Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the…

  11. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    PubMed

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  12. Cannabinoid modulation of zebrafish fear learning and its functional analysis investigated by c-Fos expression.

    PubMed

    Ruhl, Tim; Zeymer, Malou; von der Emde, Gerhard

    2017-02-01

    It has been shown that zebrafish fear learning proceeds in the same way as reported for rodents. However, in zebrafish fear learning it is possible to substitute the use of electric shocks as unconditioned stimulus and utilize the inborn fear responses to the alarm substance Schreckstoff, instead. The skin extract Schreckstoff elicits typical fear reactions such as preferred bottom dwelling, swimming in a tighter shoal, erratic movements and freezing. This natural fear behavior can be transferred from Schreckstoff to any other sensory stimulus by associative conditioning (fear learning). We presented Schreckstoff simultaneously with a red light stimulus and tested the effectiveness of fear learning during memory retrieval. The two brain regions known to be relevant for learning in zebrafish are the medial and the lateral pallium of the dorsal telencephalon, both containing rich expressions of the endocannabinoid receptor CB1. To test the influence of the zebrafish endocannabinoid system on fear acquisition learning, an experimental group of ten fish was pretreated with the CB1 receptor agonist THC (Δ 9 -tetrahydrocannabinol; 100nM for 1h). We found that CB1 activation significantly inhibited acquisition of fear learning, possibly by impairing stimulus encoding processes in pallial areas. This was supported by analyzes of c-Fos expression in the brains of experimental animals. Schreckstoff exposure during fear acquisition learning and memory retrieval during red light presentation increased the number of labelled cells in pallial structures, but in no other brain region investigated (e.g. striatum, thalamus, and habenula). THC administration before fear conditioning significantly decreased c-Fos expression in these structures to a level similar to the control group without Schreckstoff experience, suggesting that Schreckstoff induced fear learning requires brain circuits restricted mainly to pallial regions of the dorsal telencephalon. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Auditory, visual, and auditory-visual perception of emotions by individuals with cochlear implants, hearing AIDS, and normal hearing.

    PubMed

    Most, Tova; Aviner, Chen

    2009-01-01

    This study evaluated the benefits of cochlear implant (CI) with regard to emotion perception of participants differing in their age of implantation, in comparison to hearing aid users and adolescents with normal hearing (NH). Emotion perception was examined by having the participants identify happiness, anger, surprise, sadness, fear, and disgust. The emotional content was placed upon the same neutral sentence. The stimuli were presented in auditory, visual, and combined auditory-visual modes. The results revealed better auditory identification by the participants with NH in comparison to all groups of participants with hearing loss (HL). No differences were found among the groups with HL in each of the 3 modes. Although auditory-visual perception was better than visual-only perception for the participants with NH, no such differentiation was found among the participants with HL. The results question the efficiency of some currently used CIs in providing the acoustic cues required to identify the speaker's emotional state.

  14. Modulation of Auditory Cortex Response to Pitch Variation Following Training with Microtonal Melodies

    PubMed Central

    Zatorre, Robert J.; Delhommeau, Karine; Zarate, Jean Mary

    2012-01-01

    We tested changes in cortical functional response to auditory patterns in a configural learning paradigm. We trained 10 human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music) and measured covariation in blood oxygenation signal to increasing pitch interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature that was trained. A psychophysical staircase procedure with feedback was used for training over a 2-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch interval size, such that those who had a higher sensitivity to pitch interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities. PMID:23227019

  15. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    PubMed Central

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594

  16. Post-retrieval extinction in adolescence prevents return of juvenile fear

    PubMed Central

    Jones, Carolyn E.

    2016-01-01

    Traumatic experiences early in life can contribute to the development of mood and anxiety disorders that manifest during adolescence and young adulthood. In young rats exposed to acute fear or stress, alterations in neural development can lead to enduring behavioral abnormalities. Here, we used a modified extinction intervention (retrieval+extinction) during late adolescence (post-natal day 45 [p45]), in rats, to target auditory Pavlovian fear associations acquired as juveniles (p17 and p25). The effects of adolescent intervention were examined by assessing freezing as adults during both fear reacquisition and social transmission of fear from a cagemate. Rats underwent testing or training at three time points across development: juvenile (p17 or p25), adolescent (p45), and adult (p100). Retrieval+extinction during late adolescence prevented social reinstatement and recovery over time of fears initially acquired as juveniles (p17 and p25, respectively). Adolescence was the only time point tested here where retrieval+extinction prevented fear recall of associations acquired 20+ days earlier. PMID:27634147

  17. Contextual fear conditioning depresses infralimbic excitability.

    PubMed

    Soler-Cedeño, Omar; Cruz, Emmanuel; Criado-Marrero, Marangelie; Porter, James T

    2016-04-01

    Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Auditory access, language access, and implicit sequence learning in deaf children.

    PubMed

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  19. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  20. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. The Effect of Disgust and Fear Modeling on Children’s Disgust and Fear for Animals

    PubMed Central

    2014-01-01

    Disgust is a protective emotion associated with certain types of animal fears. Given that a primary function of disgust is to protect against harm, increasing children’s disgust-related beliefs for animals may affect how threatening they think animals are and their avoidance of them. One way that children’s disgust beliefs for animals might change is via vicarious learning: by observing others responding to the animal with disgust. In Experiment 1, children (ages 7–10 years) were presented with images of novel animals together with adult faces expressing disgust. Children’s fear beliefs and avoidance preferences increased for these disgust-paired animals compared with unpaired control animals. Experiment 2 used the same procedure and compared disgust vicarious learning with vicarious learning with fear faces. Children’s fear beliefs and avoidance preferences for animals again increased as a result of disgust vicarious learning, and animals seen with disgust or fear faces were also rated more disgusting than control animals. The relationship between increased fear beliefs and avoidance preferences for animals was mediated by disgust for the animals. The experiments demonstrate that children can learn to believe that animals are disgusting and threatening after observing an adult responding with disgust toward them. The findings also suggest a bidirectional relationship between fear and disgust with fear-related vicarious learning leading to increased disgust for animals and disgust-related vicarious learning leading to increased fear and avoidance. PMID:24955571

  2. Teaching for Different Learning Styles.

    ERIC Educational Resources Information Center

    Cropper, Carolyn

    1994-01-01

    This study examined learning styles in 137 high ability fourth-grade students. All students were administered two learning styles inventories. Characteristics of students with the following learning styles are summarized: auditory language, visual language, auditory numerical, visual numerical, tactile concrete, individual learning, group…

  3. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms

    PubMed Central

    Seo, Dong-oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F.

    2015-01-01

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult neurogenesis supports fear learning through two distinct mechanisms: it supports the ability to learn associations between traumatic events (unconditioned stimuli) and predictors (conditioned stimuli) while also buffering against nonassociative, anxiogenic effects of a traumatic experience. As a result, arrest of neurogenesis can enhance or impair learned fear depending on intensity of the traumatic experience and the extent to which it recruits associative versus nonassociative learning. PMID:26269640

  4. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  5. Worrying affects associative fear learning: a startle fear conditioning study.

    PubMed

    Gazendam, Femke J; Kindt, Merel

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  6. Neuroimaging of Fear-Associated Learning

    PubMed Central

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  7. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    PubMed

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  8. Elevated depressive symptoms enhance reflexive but not reflective auditory category learning.

    PubMed

    Maddox, W Todd; Chandrasekaran, Bharath; Smayda, Kirsten; Yi, Han-Gyol; Koslov, Seth; Beevers, Christopher G

    2014-09-01

    In vision an extensive literature supports the existence of competitive dual-processing systems of category learning that are grounded in neuroscience and are partially-dissociable. The reflective system is prefrontally-mediated and uses working memory and executive attention to develop and test rules for classifying in an explicit fashion. The reflexive system is striatally-mediated and operates by implicitly associating perception with actions that lead to reinforcement. Although categorization is fundamental to auditory processing, little is known about the learning systems that mediate auditory categorization and even less is known about the effects of individual difference in the relative efficiency of the two learning systems. Previous studies have shown that individuals with elevated depressive symptoms show deficits in reflective processing. We exploit this finding to test critical predictions of the dual-learning systems model in audition. Specifically, we examine the extent to which the two systems are dissociable and competitive. We predicted that elevated depressive symptoms would lead to reflective-optimal learning deficits but reflexive-optimal learning advantages. Because natural speech category learning is reflexive in nature, we made the prediction that elevated depressive symptoms would lead to superior speech learning. In support of our predictions, individuals with elevated depressive symptoms showed a deficit in reflective-optimal auditory category learning, but an advantage in reflexive-optimal auditory category learning. In addition, individuals with elevated depressive symptoms showed an advantage in learning a non-native speech category structure. Computational modeling suggested that the elevated depressive symptom advantage was due to faster, more accurate, and more frequent use of reflexive category learning strategies in individuals with elevated depressive symptoms. The implications of this work for dual-process approach to auditory learning and depression are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Elevated Depressive Symptoms Enhance Reflexive but not Reflective Auditory Category Learning

    PubMed Central

    Maddox, W. Todd; Chandrasekaran, Bharath; Smayda, Kirsten; Yi, Han-Gyol; Koslov, Seth; Beevers, Christopher G.

    2014-01-01

    In vision an extensive literature supports the existence of competitive dual-processing systems of category learning that are grounded in neuroscience and are partially-dissociable. The reflective system is prefrontally-mediated and uses working memory and executive attention to develop and test rules for classifying in an explicit fashion. The reflexive system is striatally-mediated and operates by implicitly associating perception with actions that lead to reinforcement. Although categorization is fundamental to auditory processing, little is known about the learning systems that mediate auditory categorization and even less is known about the effects of individual difference in the relative efficiency of the two learning systems. Previous studies have shown that individuals with elevated depressive symptoms show deficits in reflective processing. We exploit this finding to test critical predictions of the dual-learning systems model in audition. Specifically, we examine the extent to which the two systems are dissociable and competitive. We predicted that elevated depressive symptoms would lead to reflective-optimal learning deficits but reflexive-optimal learning advantages. Because natural speech category learning is reflexive in nature, we made the prediction that elevated depressive symptoms would lead to superior speech learning. In support of our predictions, individuals with elevated depressive symptoms showed a deficit in reflective-optimal auditory category learning, but an advantage in reflexive-optimal auditory category learning. In addition, individuals with elevated depressive symptoms showed an advantage in learning a non-native speech category structure. Computational modeling suggested that the elevated depressive symptom advantage was due to faster, more accurate, and more frequent use of reflexive category learning strategies in individuals with elevated depressive symptoms. The implications of this work for dual-process approach to auditory learning and depression are discussed. PMID:25041936

  10. Persistent Prelimbic Cortex Activity Contributes to Enhanced Learned Fear Expression in Females

    ERIC Educational Resources Information Center

    Fenton, Georgina E.; Pollard, Amelia K.; Halliday, David M.; Mason, Rob; Bredy, Timothy W.; Stevenson, Carl W.

    2014-01-01

    Anxiety disorders, such as post-traumatic stress, are more prevalent in women and are characterized by impaired inhibition of learned fear and medial prefrontal cortex (mPFC) dysfunction. Here we examined sex differences in fear extinction and mPFC activity in rats. Females showed more learned fear expression during extinction and its recall, but…

  11. Fear conditioning to subliminal fear relevant and non fear relevant stimuli.

    PubMed

    Lipp, Ottmar V; Kempnich, Clare; Jee, Sang Hoon; Arnold, Derek H

    2014-01-01

    A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.

  12. A common neural network differentially mediates direct and social fear learning.

    PubMed

    Lindström, Björn; Haaker, Jan; Olsson, Andreas

    2018-02-15

    Across species, fears often spread between individuals through social learning. Yet, little is known about the neural and computational mechanisms underlying social learning. Addressing this question, we compared social and direct (Pavlovian) fear learning showing that they showed indistinguishable behavioral effects, and involved the same cross-modal (self/other) aversive learning network, centered on the amygdala, the anterior insula (AI), and the anterior cingulate cortex (ACC). Crucially, the information flow within this network differed between social and direct fear learning. Dynamic causal modeling combined with reinforcement learning modeling revealed that the amygdala and AI provided input to this network during direct and social learning, respectively. Furthermore, the AI gated learning signals based on surprise (associability), which were conveyed to the ACC, in both learning modalities. Our findings provide insights into the mechanisms underlying social fear learning, with implications for understanding common psychological dysfunctions, such as phobias and other anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Rate of initial recovery and subsequent radar monitoring performance following a simulated emergency involving startle.

    DOT National Transportation Integrated Search

    1983-09-01

    The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...

  14. Caloric restriction enhances fear extinction learning in mice.

    PubMed

    Riddle, Megan C; McKenna, Morgan C; Yoon, Yone J; Pattwell, Siobhan S; Santos, Patricia Mae G; Casey, B J; Glatt, Charles E

    2013-05-01

    Fear extinction learning, the ability to reassess a learned cue of danger as safe when it no longer predicts aversive events, is often dysregulated in anxiety disorders. Selective serotonin reuptake inhibitors (SSRI's) enhance neural plasticity and their ability to enhance fear extinction learning may explain their anxiolytic properties. Caloric restriction (CR) has SSRI-like effects on neural plasticity and anxiety-related behavior. We implemented CR in mice to determine its effects on conditioned-fear responses. Wild type and serotonin transporter (SERT) knockout mice underwent CR for 7 days leading to significant weight loss. Mice were then tested for cued fear learning and anxiety-related behavior. CR markedly enhanced fear extinction learning and its retention in adolescent female mice, and adults of both sexes. These effects of CR were absent in SERT knockout mice. Moreover, CR phenocopied behavioral and molecular effects of chronic fluoxetine, but there was no additive effect of CR in fluoxetine-treated mice. These results demonstrate that CR enhances fear extinction learning through a SERT-dependent mechanism. These results may have implications for eating disorders such as anorexia nervosa (AN), in which there is a high prevalence of anxiety before the onset of dietary restriction and support proposals that in AN, CR is a motivated effort to control dysregulated fear responses and elevated anxiety.

  15. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    PubMed

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  16. Developmental regulation of fear learning and anxiety behavior by endocannabinoids

    PubMed Central

    Lee, Tiffany T.-Y.; Hill, Matthew N.; Lee, Francis S.

    2015-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that endocannabinoid signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the endocannabinoid system and discuss clinical and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the endocannabinoid system in the central nervous system, and models of pharmacological augmentation of endocannabinoid signaling during development in the context of fear learning and anxiety. PMID:26419643

  17. Enhancing exposure therapy for anxiety disorders with glucocorticoids: from basic mechanisms of emotional learning to clinical applications.

    PubMed

    Bentz, Dorothée; Michael, Tanja; de Quervain, Dominique J-F; Wilhelm, Frank H

    2010-03-01

    Current neurophysiological and psychological accounts view exposure therapy as the clinical analog of extinction learning that results in persistent modifications of the fear memory involved in the pathogenesis, symptomatology, and maintenance of anxiety disorders. Evidence from studies in animals and humans indicate that glucocorticoids have the potential to facilitate the processes that underlie extinction learning during exposure therapy. Particularly, glucocorticoids can restrict retrieval of previous aversive learning episodes and enhance consolidation of memory traces relating to non-fearful responding in feared situations. Thus, glucocorticoid treatment especially in combination with exposure therapy might be a promising approach to optimize treatment of anxiety disorders. This review examines the processes involved in aversive conditioning, fear learning and fear extinction, and how glucocorticoids might enhance restructuring of fear memories during therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Posterior insular cortex is necessary for conditioned inhibition of fear

    PubMed Central

    Foilb, Allison R.; Flyer-Adams, Johanna G.; Maier, Steven F.; Christianson, John P.

    2016-01-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS− fear discrimination conditioning over 5 days in rats leads the CS− to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscmiol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. PMID:27523750

  19. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning

    PubMed Central

    Keifer, Orion P.; Hurt, Robert C.; Ressler, Kerry J.

    2015-01-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. PMID:26328883

  20. Nothing is safe: Intolerance of uncertainty is associated with compromised fear extinction learning.

    PubMed

    Morriss, Jayne; Christakou, Anastasia; van Reekum, Carien M

    2016-12-01

    Extinction-resistant fear is considered to be a central feature of pathological anxiety. Here we sought to determine if individual differences in Intolerance of Uncertainty (IU), a potential risk factor for anxiety disorders, underlies compromised fear extinction. We tested this hypothesis by recording electrodermal activity in 38 healthy participants during fear acquisition and extinction. We assessed the temporality of fear extinction, by examining early and late extinction learning. During early extinction, low IU was associated with larger skin conductance responses to learned threat vs. safety cues, whereas high IU was associated with skin conductance responding to both threat and safety cues, but no cue discrimination. During late extinction, low IU showed no difference in skin conductance between learned threat and safety cues, whilst high IU predicted continued fear expression to learned threat, indexed by larger skin conductance to threat vs. safety cues. These findings suggest a critical role of uncertainty-based mechanisms in the maintenance of learned fear. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    ERIC Educational Resources Information Center

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  3. Networks of phobic fear: Functional connectivity shifts in two subtypes of specific phobia.

    PubMed

    Stefanescu, Maria R; Endres, Ralph J; Hilbert, Kevin; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2018-01-01

    Anxiety disorders can be conceptualized by an abnormal interplay of emotion-processing brain circuits; however, knowledge of brain connectivity measures in specific phobia is still limited. To explore functional interactions within selected fear-circuitry structures (anterior cingulate cortex (ACC), amygdala, insula), we re-examined three task-based fMRI studies using a symptom provocation approach (n=94 subjects in total) on two different phobia subtypes (animal subtype as represented by snake phobia (SP) and blood-injection-injury subtype as represented by dental phobia (DP)), and a non-phobic healthy control group (HC). Functional connectivity (FC) analyses detected a negative coupling between the amygdala and the ACC in HC for both classes of phobic stimuli, while SP and DP lacked this inhibitory relationship during visual stimulus presentation. However, a negative FC between the insula and the amygdala was observed in DP during visual symptom provocation, which reversed to a positive FC under auditory symptom provocation pointing to effects depending on stimulus modality in DP. SP showed significantly higher FC towards snake-anxiety eliciting stimuli than HC on an average measure of FC, while DP showed a similar pattern under auditory stimulation only. These findings altogether indicate FC shifts during symptom provocation in specific phobia possibly reflecting impaired emotion regulation processes within fear-circuitry networks. FC hence could represent a prime target for neuroscience-informed augmentation strategies when treating pathological forms of fear. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    PubMed

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  5. Vicarious extinction learning during reconsolidation neutralizes fear memory.

    PubMed

    Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel

    2017-05-01

    Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  7. Do Learners Fear More than Fear Itself: The Role of Fear in Law Students Educational Experiences

    ERIC Educational Resources Information Center

    Perrin, Jeffrey; O'Neil, Jennifer; Grimes, Ashley; Bryson, Laura

    2014-01-01

    While previous research has examined the various relationships between fear and learning in K-12 academic settings, the relationship is surprisingly unexplored amongst law students. Using a descriptive qualitative approach, we examine the role fear plays in law students' learning experiences. Through a series of semi-structured interviews a few…

  8. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

    PubMed Central

    Holschneider, Daniel P.; Wang, Zhuo; Pang, Raina D.

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture. PMID:24966831

  9. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study.

    PubMed

    Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.

  10. Auditory processing disorders, verbal disfluency, and learning difficulties: a case study.

    PubMed

    Jutras, Benoît; Lagacé, Josée; Lavigne, Annik; Boissonneault, Andrée; Lavoie, Charlen

    2007-01-01

    This case study reports the findings of auditory behavioral and electrophysiological measures performed on a graduate student (identified as LN) presenting verbal disfluency and learning difficulties. Results of behavioral audiological testing documented the presence of auditory processing disorders, particularly temporal processing and binaural integration. Electrophysiological test results, including middle latency, late latency and cognitive potentials, revealed that LN's central auditory system processes acoustic stimuli differently to a reference group with normal hearing.

  11. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  12. Immunization against social fear learning.

    PubMed

    Golkar, Armita; Olsson, Andreas

    2016-06-01

    Social fear learning offers an efficient way to transmit information about potential threats; little is known, however, about the learning processes that counteract the social transmission of fear. In three separate experiments, we found that safety information transmitted from another individual (i.e., demonstrator) during preexposure prevented subsequent observational fear learning (Experiments 1-3), and this effect was maintained in a new context involving direct threat confrontation (Experiment 3). This protection from observational fear learning was specific to conditions in which information about both safety and danger was transmitted from the same demonstrator (Experiments 2-3) and was unaffected by increasing the number of the safety demonstrators (Experiment 3). Collectively, these findings demonstrate that observational preexposure can limit social transmission of fear. Future research is needed to better understand the conditions under which such effects generalize across individual demonstrators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Utilising reinforcement learning to develop strategies for driving auditory neural implants.

    PubMed

    Lee, Geoffrey W; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G

    2016-08-01

    In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  14. Fear learning and memory across adolescent development Hormones and Behavior Special Issue: Puberty and Adolescence

    PubMed Central

    Pattwell, Siobhan S.; Lee, Francis S.; Casey, B.J.

    2013-01-01

    Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40 percent of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective. PMID:23998679

  15. Fear learning and memory across adolescent development: Hormones and Behavior Special Issue: Puberty and Adolescence.

    PubMed

    Pattwell, Siobhan S; Lee, Francis S; Casey, B J

    2013-07-01

    Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40% of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    PubMed

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.

  17. Developmental regulation of fear learning and anxiety behavior by endocannabinoids.

    PubMed

    Lee, T T-Y; Hill, M N; Lee, F S

    2016-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Relationships between Visual and Auditory Perceptual Skills and Comprehension in Students with Learning Disabilities.

    ERIC Educational Resources Information Center

    Weaver, Phyllis A.; Rosner, Jerome

    1979-01-01

    Scores of 25 learning disabled students (aged 9 to 13) were compared on five tests: a visual-perceptual test (Coloured Progressive Matrices); an auditory-perceptual test (Auditory Motor Placement); a listening and reading comprehension test (Durrell Listening-Reading Series); and a word recognition test (Word Recognition subtest, Diagnostic…

  19. Effect of FM Auditory Trainers on Attending Behaviors of Learning-Disabled Children.

    ERIC Educational Resources Information Center

    Blake, Ruth; And Others

    1991-01-01

    This study investigated the effect of FM (frequency modulation) auditory trainer use on attending behaviors of 36 students (ages 5-10) with learning disabilities. Children wearing the auditory trainers scored better than control students on eye contact, having body turned toward sound source, and absence of extraneous body movement and vocal…

  20. Comparison of Auditory/Visual and Visual/Motor Practice on the Spelling Accuracy of Learning Disabled Children.

    ERIC Educational Resources Information Center

    Aleman, Cheryl; And Others

    1990-01-01

    Compares auditory/visual practice to visual/motor practice in spelling with seven elementary school learning-disabled students enrolled in a resource room setting. Finds that the auditory/visual practice was superior to the visual/motor practice on the weekly spelling performance for all seven students. (MG)

  1. Individual Differences in Discriminatory Fear Learning under Conditions of Ambiguity: A Vulnerability Factor for Anxiety Disorders?

    PubMed Central

    Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Boddez, Yannick; Kindt, Merel; Beckers, Tom

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learning. We hypothesized that heightened trait anxiety would be related to a deficit in discriminatory fear learning. Participants gave US-expectancy ratings as an index for the threat value of individual CSs following blocking and protection-from-overshadowing training. The difference in threat value at test between the protected-from-overshadowing conditioned stimulus (CS) and the blocked CS was negatively correlated with scores on a self-report tension-stress scale that approximates facets of generalized anxiety disorder (GAD), the Depression Anxiety Stress Scale-Stress (DASS-S), but not with other individual difference variables. In addition, a behavioral test showed that only participants scoring high on the DASS-S avoided the protected-from-overshadowing CS. This observed deficit in discriminatory fear learning for participants with high levels of tension-stress might be an underlying mechanism for fear overgeneralization in diffuse anxiety disorders such as GAD. PMID:23755030

  2. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant declinemore » on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.« less

  3. Posterior insular cortex is necessary for conditioned inhibition of fear.

    PubMed

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Technologies That Capitalize on Study Skills with Learning Style Strengths

    ERIC Educational Resources Information Center

    Howell, Dusti D.

    2008-01-01

    This article addresses the tools available in the rapidly changing digital learning environment and offers a variety of approaches for how they can assist students with visual, auditory, or kinesthetic learning strengths. Teachers can use visual, auditory, and kinesthetic assessment tests to identify learning preferences and then recommend…

  5. Perceptual Learning Style and Learning Proficiency: A Test of the Hypothesis

    ERIC Educational Resources Information Center

    Kratzig, Gregory P.; Arbuthnott, Katherine D.

    2006-01-01

    Given the potential importance of using modality preference with instruction, the authors tested whether learning style preference correlated with memory performance in each of 3 sensory modalities: visual, auditory, and kinesthetic. In Study 1, participants completed objective measures of pictorial, auditory, and tactile learning and learning…

  6. Relations between social-perceptual ability in multi- and unisensory contexts, autonomic reactivity, and social functioning in individuals with Williams syndrome

    PubMed Central

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Arnold, Andrew J.; Woo-VonHoogenstyn, Nicholas; Bellugi, Ursula

    2015-01-01

    Compromised social-perceptual ability has been proposed to contribute to social dysfunction in neurodevelopmental disorders. While such impairments have been identified in Williams syndrome (WS), little is known about emotion processing in auditory and multisensory contexts. Employing a multidimensional approach, individuals with WS and typical development (TD) were tested for emotion identification across fearful, happy, and angry multisensory and unisensory face and voice stimuli. Autonomic responses were monitored in response to unimodal emotion. The WS group was administered an inventory of social functioning. Behaviorally, individuals with WS relative to TD demonstrated impaired processing of unimodal vocalizations and emotionally incongruent audiovisual compounds, reflecting a generalized deficit in social-auditory processing in WS. The TD group outperformed their counterparts with WS in identifying negative (fearful and angry) emotion, with similar between-group performance with happy stimuli. Mirroring this pattern, electrodermal activity (EDA) responses to the emotional content of the stimuli indicated that whereas those with WS showed the highest arousal to happy, and lowest arousal to fearful stimuli, the TD participants demonstrated the contrasting pattern. In WS, more normal social functioning was related to higher autonomic arousal to facial expressions. Implications for underlying neural architecture and emotional functions are discussed. PMID:26002754

  7. Emotional recognition from dynamic facial, vocal and musical expressions following traumatic brain injury.

    PubMed

    Drapeau, Joanie; Gosselin, Nathalie; Peretz, Isabelle; McKerral, Michelle

    2017-01-01

    To assess emotion recognition from dynamic facial, vocal and musical expressions in sub-groups of adults with traumatic brain injuries (TBI) of different severities and identify possible common underlying mechanisms across domains. Forty-one adults participated in this study: 10 with moderate-severe TBI, nine with complicated mild TBI, 11 with uncomplicated mild TBI and 11 healthy controls, who were administered experimental (emotional recognition, valence-arousal) and control tasks (emotional and structural discrimination) for each domain. Recognition of fearful faces was significantly impaired in moderate-severe and in complicated mild TBI sub-groups, as compared to those with uncomplicated mild TBI and controls. Effect sizes were medium-large. Participants with lower GCS scores performed more poorly when recognizing fearful dynamic facial expressions. Emotion recognition from auditory domains was preserved following TBI, irrespective of severity. All groups performed equally on control tasks, indicating no perceptual disorders. Although emotional recognition from vocal and musical expressions was preserved, no correlation was found across auditory domains. This preliminary study may contribute to improving comprehension of emotional recognition following TBI. Future studies of larger samples could usefully include measures of functional impacts of recognition deficits for fearful facial expressions. These could help refine interventions for emotional recognition following a brain injury.

  8. AX+, BX- Discrimination Learning in the Fear-Potentiated Startle Paradigm: Possible Relevance to Inhibitory Fear Learning in Extinction

    ERIC Educational Resources Information Center

    Myers, Karyn M.; Davis, Michael

    2004-01-01

    The neural mechanisms of fear suppression most commonly are studied through the use of extinction, a behavioral procedure in which a feared stimulus (i.e., one previously paired with shock) is nonreinforced repeatedly, leading to a reduction or elimination of the fear response. Although extinction is perhaps the most convenient index of fear…

  9. Physical fitness modulates incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise.

    PubMed

    Daikoku, Tatsuya; Takahashi, Yuji; Futagami, Hiroko; Tarumoto, Nagayoshi; Yasuda, Hideki

    2017-02-01

    In real-world auditory environments, humans are exposed to overlapping auditory information such as those made by human voices and musical instruments even during routine physical activities such as walking and cycling. The present study investigated how concurrent physical exercise affects performance of incidental and intentional learning of overlapping auditory streams, and whether physical fitness modulates the performances of learning. Participants were grouped with 11 participants with lower and higher fitness each, based on their Vo 2 max value. They were presented simultaneous auditory sequences with a distinct statistical regularity each other (i.e. statistical learning), while they were pedaling on the bike and seating on a bike at rest. In experiment 1, they were instructed to attend to one of the two sequences and ignore to the other sequence. In experiment 2, they were instructed to attend to both of the two sequences. After exposure to the sequences, learning effects were evaluated by familiarity test. In the experiment 1, performance of statistical learning of ignored sequences during concurrent pedaling could be higher in the participants with high than low physical fitness, whereas in attended sequence, there was no significant difference in performance of statistical learning between high than low physical fitness. Furthermore, there was no significant effect of physical fitness on learning while resting. In the experiment 2, the both participants with high and low physical fitness could perform intentional statistical learning of two simultaneous sequences in the both exercise and rest sessions. The improvement in physical fitness might facilitate incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise.

  10. Neurobiology of fear and specific phobias.

    PubMed

    Garcia, René

    2017-09-01

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively. © 2017 Garcia; Published by Cold Spring Harbor Laboratory Press.

  11. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning.

    PubMed

    Keifer, Orion P; Hurt, Robert C; Ressler, Kerry J; Marvar, Paul J

    2015-09-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.

  12. Auditory-vocal mirroring in songbirds.

    PubMed

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  13. Recognition and production of emotions in children with cochlear implants.

    PubMed

    Mildner, Vesna; Koska, Tena

    2014-01-01

    The aim of this study was to examine auditory recognition and vocal production of emotions in three prelingually bilaterally profoundly deaf children aged 6-7 who received cochlear implants before age 2, and compare them with age-matched normally hearing children. No consistent advantage was found for the normally hearing participants. In both groups, sadness was recognized best and disgust was the most difficult. Confusion matrices among other emotions (anger, happiness, and fear) showed that children with and without hearing impairment may rely on different cues. Both groups of children showed that perception is superior to production. Normally hearing children were more successful in the production of sadness, happiness, and fear, but not anger or disgust. The data set is too small to draw any definite conclusions, but it seems that a combination of early implantation and regular auditory-oral-based therapy enables children with cochlear implants to process and produce emotional content comparable with children with normal hearing.

  14. Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia

    PubMed Central

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia

    2009-01-01

    Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187

  15. Attentional Control and Fear Extinction in Subclinical Fear: An Exploratory Study

    PubMed Central

    Forcadell, Eduard; Torrents-Rodas, David; Treen, Devi; Fullana, Miquel A.; Tortella-Feliu, Miquel

    2017-01-01

    Attentional control (AC) and fear extinction learning are known to be involved in pathological anxiety. In this study we explored whether individual differences in non-emotional AC were associated with individual differences in the magnitude and gradient of fear extinction (learning and recall). In 50 individuals with fear of spiders, we collected measures of non-emotional AC by means of self-report and by assessing the functioning of the major attention networks (executive control, orienting, and alerting). The participants then underwent a paradigm assessing fear extinction learning and extinction recall. The two components of the orienting network functioning (costs and benefits) were significantly associated with fear extinction gradient over and above the effects of trait anxiety. Specifically, participants with enhanced orienting costs (i.e., difficulties in disengaging attention from cues not relevant for the task) showed faster extinction learning, while those with enhanced orienting benefits (i.e., attention facilitated by valid cues) exhibited faster extinction recall as measured by fear-potentiated startle and Unconditioned Stimulus expectancies, respectively. Our findings suggest that, in non-emotional conditions, the orienting component of attention may be predictive of fear extinction. They also show that the use of fear extinction gradients and the exploration of individual differences in non-emotional AC (using performance-based measures of attentional network functioning) can provide a better understanding of individual differences in fear learning. Our findings also may help to understand differences in exposure therapy outcomes. PMID:29018384

  16. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition

    PubMed Central

    Chau, Lily S.; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities. PMID:23087626

  17. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition.

    PubMed

    Chau, Lily S; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  18. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    PubMed

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How Administration of the Beta-Blocker Propranolol Before Extinction can Prevent the Return of Fear

    PubMed Central

    Kroes, Marijn C W; Tona, Klodiana-Daphne; den Ouden, Hanneke E M; Vogel, Susanne; van Wingen, Guido A; Fernández, Guillén

    2016-01-01

    Combining beta-blockers with exposure therapy has been advocated to reduce fear, yet experimental studies combining beta-blockers with memory reactivation have had contradictory results. We explored how beta-blockade might affect the course of safety learning and the subsequent return of fear in a double-blind placebo-controlled functional magnetic resonance imaging study in humans (N=46). A single dose of propranolol before extinction learning caused a loss of conditioned fear responses, and prevented the subsequent return of fear and decreased explicit memory for the fearful events in the absence of drug. Fear-related neural responses were persistently attenuated in the dorsal medial prefrontal cortex (dmPFC), increased in the hippocampus 24 h later, and correlated with individual behavioral indices of fear. Prediction error-related responses in the ventral striatum persisted during beta-blockade. We suggest that this pattern of results is most consistent with a model where beta-blockade can prevent the return of fear by (i) reducing retrieval of fear memory, via the dmPFC and (ii) increasing contextual safety learning, via the hippocampus. Our findings suggest that retrieval of fear memory and contextual safety learning form potential mnemonic target mechanisms to optimize exposure-based therapy with beta-blockers. PMID:26462618

  20. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  1. Social Fear Learning: from Animal Models to Human Function.

    PubMed

    Debiec, Jacek; Olsson, Andreas

    2017-07-01

    Learning about potential threats is critical for survival. Learned fear responses are acquired either through direct experiences or indirectly through social transmission. Social fear learning (SFL), also known as vicarious fear learning, is a paradigm successfully used for studying the transmission of threat information between individuals. Animal and human studies have begun to elucidate the behavioral, neural and molecular mechanisms of SFL. Recent research suggests that social learning mechanisms underlie a wide range of adaptive and maladaptive phenomena, from supporting flexible avoidance in dynamic environments to intergenerational transmission of trauma and anxiety disorders. This review discusses recent advances in SFL studies and their implications for basic, social and clinical sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Generalization of Fear to Respiratory Sensations.

    PubMed

    Schroijen, Mathias; Pappens, Meike; Schruers, Koen; Van den Bergh, Omer; Vervliet, Bram; Van Diest, Ilse

    2015-09-01

    Interoceptive fear conditioning (IFC), fear generalization and a lack of safety learning have all been hypothesized to play a role in the pathogenesis of panic disorder, but have never been examined in a single paradigm. The present study aims to investigate whether healthy participants (N=43) can learn both fear and safety to an interoceptive sensation, and whether such learning generalizes to other, similar sensations. Two intensities of inspiratory breathing impairment (induced by two pressure threshold loads of 6 and 25 cm H2O) served as interoceptive conditional stimuli (CSs) in a differential conditioning paradigm. An inspiratory occlusion was used as the unconditioned stimulus (US). Generalization was tested 24h after conditioning, using four generalization stimuli with intensities in-between CS+ and CS- (GSs: 8-10.5-14-18.5 cm H2O). Measures included US-expectancy, startle blink EMG responses, electrodermal activity and respiration. Perceptual discrimination of interoceptive CSs and GSs was explored with a discrimination task prior to acquisition and after generalization. Results indicate that differential fear learning was established for US-expectancy ratings. The group with a low intensity CS+ and a high intensity CS- showed the typical pattern of differential fear responding and a similarity-based generalization gradient. In contrast, the high intensity CS+ and low intensity CS- group showed impaired differential learning and complete generalization of fear. Our findings suggest that interoceptive fear learning and generalization are modulated by stimulus intensity and that the occurrence of discriminatory learning is closely related to fear generalization. Copyright © 2015. Published by Elsevier Ltd.

  3. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    PubMed

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning

    PubMed Central

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H.R.; Schmidt, Marc

    2015-01-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. PMID:23603062

  5. A Perceptuo-Cognitive-Motor Approach to the Special Child.

    ERIC Educational Resources Information Center

    Kornblum, Rena Beth

    A movement therapist reviews ways in which a perceptuo-cognitive approach can help handicapped children in learning and in social adjustment. She identifies specific auditory problems (hearing loss, sound-ground confusion, auditory discrimination, auditory localization, auditory memory, auditory sequencing), visual problems (visual acuity,…

  6. The role of nucleus accumbens shell in learning about neutral versus excitatory stimuli during Pavlovian fear conditioning.

    PubMed

    Bradfield, Laura A; McNally, Gavan P

    2010-07-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning about the neutral conditioned stimulus (CS) in Stage II. These results add to a growing body of evidence indicating an important role for the ventral striatum in fear-learning. They suggest that the ventral striatum and AcbSh, in particular, directs learning toward or away from a CS as a consequence of how well that CS predicts the shock unconditioned stimulus (US). AcbSh is required to reduce the processing of established predictors, thereby permitting neutral or less predictive stimuli to be learned about.

  7. Auditory Processing, Linguistic Prosody Awareness, and Word Reading in Mandarin-Speaking Children Learning English

    ERIC Educational Resources Information Center

    Chung, Wei-Lun; Jarmulowicz, Linda; Bidelman, Gavin M.

    2017-01-01

    This study examined language-specific links among auditory processing, linguistic prosody awareness, and Mandarin (L1) and English (L2) word reading in 61 Mandarin-speaking, English-learning children. Three auditory discrimination abilities were measured: pitch contour, pitch interval, and rise time (rate of intensity change at tone onset).…

  8. Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

    PubMed Central

    Sangha, Susan

    2015-01-01

    Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838

  9. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  10. [The Manifestation of the Anxiety during Fear Conditioning in Wistar Rats].

    PubMed

    Pavlova, I V; Rysakova, M P

    2015-01-01

    In order to identify the correlation between anxiety and conditioned fear, the behavior of the same male Wistar rats was compared in three anxiety tests (open field, light-dark box and elevated plus-maze) and in Pavlovian auditory fear conditioning paradigm using correlation, factor and variance analyses. The correlation between anxiety/bravery and locomotion indexes in different tests was not revealed. Positive correlations between grooming, urinations and defecations, rearing in three tests were revealed. These data suggest that animals reacted to various tests differently, resulting, apparently in the emergence of different anxiety levels, specific for each test. Vegetative reactions, inclination to exploration and substituting behavior were more stable characteristics of rats. Anxiety behavior in elevated plus-maze correlated to freezing response to context after fear conditioning, while high-anxiety rats had higher level of freezing to context than low-anxiety rats. The higher freezing response to sound after fear conditioning was found in rats with middle locomotor activity in open field. Conditioned fear to the context and to the sound was associated with different forms of rat anxiety during different tests.

  11. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    PubMed Central

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  12. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.

  13. Relations among hypnagogic and hypnopompic experiences associated with sleep paralysis.

    PubMed

    Cheyne, J A; Newby-Clark, I R; Rueffer, S D

    1999-12-01

    The Waterloo Sleep Experiences Scale was developed to assess the prevalence of sleep paralysis and a variety of associated hypnagogic and hypnopompic hallucinoid experiences: sensed presence, felt pressure, floating sensations, auditory and visual hallucinations, and fear. Consistent with results of recent surveys, almost 30% of 870 university students reported at least one experience of sleep paralysis. Approximately three-quarters of those also reported at least one hallucinoid experience, and slightly more than 10% experienced three or more. Fear was positively associated with hallucinoid experiences, most clearly with sensed presence. Regression analyses lend support to the hypothesis that sensed presence and fear are primitive associates of sleep paralysis and contribute to the elaboration of further hallucinoid experiences, especially those involving visual experiences.

  14. Landau-Kleffner Syndrome

    MedlinePlus

    ... difficult to diagnose and may be misdiagnosed as autism, pervasive developmental disorder, hearing impairment, learning disability, auditory/ ... difficult to diagnose and may be misdiagnosed as autism, pervasive developmental disorder, hearing impairment, learning disability, auditory/ ...

  15. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  16. The Influence of Personality on Neural Mechanisms of Observational Fear and Reward Learning

    ERIC Educational Resources Information Center

    Hooker, Christine I.; Verosky, Sara C.; Miyakawa, Asako; Knight, Robert T.; D'Esposito, Mark

    2008-01-01

    Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion.…

  17. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  18. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds.

    PubMed

    Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke

    2017-01-01

    Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.

  19. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds

    PubMed Central

    2017-01-01

    Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797

  20. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala

    PubMed Central

    Maren, Stephen

    2014-01-01

    Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. PMID:25312830

  1. Combined effects of complex magnetic fields and agmatine for contextual fear learning deficits in rats.

    PubMed

    McKay, B E; Persinger, M A

    2003-04-18

    Acute post-training exposures to weak intensity theta-burst stimulation (TBS) patterned complex magnetic fields attenuated the magnitude of conditioned fear learning for contextual stimuli. A similar learning impairment was evoked in a linear and dose-dependent manner by pre-conditioning injections of the polyamine agmatine. The present study examined the hypothesis that whole-body applications of the TBS complex magnetic field pattern when co-administered with systemic agmatine treatment may combine to evoke impairments in contextual fear learning. Within minutes of 4 mg/kg agmatine injections, male Wistar rats were fear conditioned to contextual stimuli and immediately exposed for 30 min to the TBS patterned complex magnetic field or to sham conditions. TBS patterned complex magnetic field treatment was found to linearly summate with the contextual fear learning impairment evoked by agmatine treatment alone. Furthermore, we report for sham-treated rats, but not rats exposed to the synthetic magnetic field pattern, that the magnitude of learned fear decreased and the amount of variability in learning increased, as the K-index (a measure of change in intensity of the time-varying ambient geomagnetic field) increased during the 3-hr intervals over which conditioning and testing sessions were conducted.

  2. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    PubMed

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies. SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  4. Patterns of Auditory Perception Skills in Children with Learning Disabilities: A Computer-Assisted Approach.

    ERIC Educational Resources Information Center

    Pressman, E.; And Others

    1986-01-01

    The auditory receptive language skills of 40 learning disabled (LD) and 40 non-disabled boys (all 7 - 11 years old) were assessed via computerized versions of subtests of the Goldman-Fristoe-Woodcock Auditory Skills Test Battery. The computerized assessment correctly identified 92.5% of the LD group and 65% of the normal control children. (DB)

  5. Is the Role of External Feedback in Auditory Skill Learning Age Dependent?

    ERIC Educational Resources Information Center

    Zaltz, Yael; Roth, Daphne Ari-Even; Kishon-Rabin, Liat

    2017-01-01

    Purpose: The purpose of this study is to investigate the role of external feedback in auditory perceptual learning of school-age children as compared with that of adults. Method: Forty-eight children (7-9 years of age) and 64 adults (20-35 years of age) conducted a training session using an auditory frequency discrimination (difference limen for…

  6. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    PubMed

    Burghardt, N S; Bauer, E P

    2013-09-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Emotional Intelligence among Auditory, Reading, and Kinesthetic Learning Styles of Elementary School Students in Ambon-Indonesia

    ERIC Educational Resources Information Center

    Leasa, Marleny; Corebima, Aloysius D.; Ibrohim; Suwono, Hadi

    2017-01-01

    Students have unique ways in managing the information in their learning process. VARK learning styles associated with memory are considered to have an effect on emotional intelligence. This quasi-experimental research was conducted to compare the emotional intelligence among the students having auditory, reading, and kinesthetic learning styles in…

  8. Visual and Auditory Learning Processes in Normal Children and Children with Specific Learning Disabilities. Final Report.

    ERIC Educational Resources Information Center

    McGrady, Harold J.; Olson, Don A.

    To describe and compare the psychosensory functioning of normal children and children with specific learning disabilities, 62 learning disabled and 68 normal children were studied. Each child was given a battery of thirteen subtests on an automated psychosensory system representing various combinations of auditory and visual intra- and…

  9. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    PubMed

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  10. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520

  11. Fear in the Classroom: An Examination of Teachers' Use of Fear Appeals and Students' Learning Outcomes

    ERIC Educational Resources Information Center

    Sprinkle, Rose; Hunt, Stephen; Simonds, Cheri; Comadena, Mark

    2006-01-01

    This study examined the impact of teachers' use of fear appeals and efficacy statements on student affective learning, motivation, likelihood of taking a course with the instructor, and likelihood of visiting with the instructor for help. The results suggest that fear and efficacy interact to more positively influence students' perceptions of…

  12. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. LAMP: 100+ Systematic Exercise Lessons for Developing Linguistic Auditory Memory Patterns in Beginning Readers.

    ERIC Educational Resources Information Center

    Valett, Robert E.

    Research findings on auditory sequencing and auditory blending and fusion, auditory-visual integration, and language patterns are presented in support of the Linguistic Auditory Memory Patterns (LAMP) program. LAMP consists of 100 developmental lessons for young students with learning disabilities or language problems. The lessons are included in…

  14. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    PubMed

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback. Furthermore, independent of the training group, a significant spatial pre-post difference was found in the event-related component P200 ( P = .04).

  15. Learning styles of medical students - implications in education.

    PubMed

    Buşan, Alina-Mihaela

    2014-01-01

    The term "learning style" refers to the fact that each person has a different way of accumulating knowledge. While some prefer listening to learn better, others need to write or they only need to read the text or see a picture to later remember. According to Fleming and Mills the learning styles can be classified in Visual, Auditory and Kinesthetic. There is no evidence that teaching according to the learning style can help a person, yet this cannot be ignored. In this study, a number of 230 medical students were questioned in order to determine their learning style. We determined that 73% of the students prefer one learning style, 22% prefer to learn using equally two learning style, while the rest prefer three learning styles. According to this study the distribution of the learning styles is as following: 33% visual, 26% auditory, 14% kinesthetic, 12% visual and auditory styles equally, 6% visual and kinesthetic, 4% auditory and kinesthetic and 5% all three styles. 32 % of the students that participated at this study are from UMF Craiova, 32% from UMF Carol Davila, 11% University of Medicine T Popa, Iasi, 9% UMF Cluj Iulius Hatieganu. The way medical students learn is different from the general population. This is why it is important when teaching to considerate how the students learn in order to facilitate the learning.

  16. Learning Styles of Medical Students - Implications in Education

    PubMed Central

    BUŞAN, ALINA-MIHAELA

    2014-01-01

    Background: The term “learning style” refers to the fact that each person has a different way of accumulating knowledge. While some prefer listening to learn better, others need to write or they only need to read the text or see a picture to later remember. According to Fleming and Mills the learning styles can be classified in Visual, Auditory and Kinesthetic. There is no evidence that teaching according to the learning style can help a person, yet this cannot be ignored. Subjects and methods: In this study, a number of 230 medical students were questioned in order to determine their learning style. Results: We determined that 73% of the students prefer one learning style, 22% prefer to learn using equally two learning style, while the rest prefer three learning styles. According to this study the distribution of the learning styles is as following: 33% visual, 26% auditory, 14% kinesthetic, 12% visual and auditory styles equally, 6% visual and kinesthetic, 4% auditory and kinesthetic and 5% all three styles. 32 % of the students that participated at this study are from UMF Craiova, 32% from UMF Carol Davila, 11% University of Medicine T Popa, Iasi, 9% UMF Cluj Iulius Hatieganu. Discussions: The way medical students learn is different from the general population. This is why it is important when teaching to considerate how the students learn in order to facilitate the learning PMID:25729590

  17. Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception

    PubMed Central

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  18. Sensory Processing of Backward-Masking Signals in Children with Language-Learning Impairment as Assessed with the Auditory Brainstem Response.

    ERIC Educational Resources Information Center

    Marler, Jeffrey A.; Champlin, Craig A.

    2005-01-01

    The purpose of this study was to examine the possible contribution of sensory mechanisms to an auditory processing deficit shown by some children with language-learning impairment (LLI). Auditory brainstem responses (ABRs) were measured from 2 groups of school-aged (8-10 years) children. One group consisted of 10 children with LLI, and the other…

  19. A Comparison of Visual and Auditory Processing Tests on the Woodcock-Johnson Tests of Cognitive Ability, Revised and the Learning Efficiency Test-II.

    ERIC Educational Resources Information Center

    Bolen, L. M.; Kimball, D. J.; Hall, C. W.; Webster, R. E.

    1997-01-01

    Compares the visual and auditory processing factors of the Woodcock Johnson Tests of Cognitive Ability, Revised (WJR COG) and the visual and auditory memory factors of the Learning Efficiency Test, II (LET-II) among 120 college students. Results indicate two significant performance differences between the WJR COG and LET-II. (RJM)

  20. Frontal brain electrical activity (EEG) and heart rate in response to affective infant-directed (ID) speech in 9-month-old infants.

    PubMed

    Santesso, Diane L; Schmidt, Louis A; Trainor, Laurel J

    2007-10-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy.

  1. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    PubMed

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning.

    PubMed

    Shepard, Kathryn N; Chong, Kelly K; Liu, Robert C

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups' postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.

  3. D-cycloserine enhances generalization of fear extinction in children.

    PubMed

    Byrne, Simon P; Rapee, Ronald M; Richardson, Rick; Malhi, Gin S; Jones, Michael; Hudson, Jennifer L

    2015-06-01

    For exposure therapy to be successful, it is essential that fear extinction learning extends beyond the treatment setting. D-cycloserine (DCS) may facilitate treatment gains by increasing generalization of extinction learning, however, its effects have not been tested in children. We examined whether DCS enhanced generalization of fear extinction learning across different stimuli and contexts among children with specific phobias. The study was a double-blind placebo-controlled randomized controlled trial among dog or spider phobic children aged 6-14. Participants ingested either 50 mg of DCS (n = 18) or placebo (n = 17) before receiving a single prolonged exposure session to their feared stimulus. Return of fear was examined 1 week later to a different stimulus (a different dog or spider), presented in both the original treatment context and an alternate context. Avoidance and fear were measured with Behavior Approach Tests (BATs), where the child was asked to increase proximity to the stimulus while reporting their fear level. There were no differences in BAT performance between groups during the exposure session or when a new stimulus was later presented in the treatment context. However, when the new stimulus was presented in a different context, relative to placebo, the DCS group showed less avoidance (P = .03) and less increase in fear (P = .04) with moderate effect sizes. DCS enabled children to better retain their fear extinction learning. This new learning generalized to different stimuli and contexts. © 2015 Wiley Periodicals, Inc.

  4. IMPAIRED FEAR EXTINCTION ASSOCIATED WITH PTSD INCREASES WITH HOURS-SINCE-WAKING.

    PubMed

    Zuj, Daniel V; Palmer, Matthew A; Hsu, Chia-Ming K; Nicholson, Emma L; Cushing, Pippa J; Gray, Kate E; Felmingham, Kim L

    2016-03-01

    Prior research has demonstrated that time-of-day may play an important role in the extinction of conditioned fear, with extinction better learned earlier in the day rather than later. Impaired fear extinction memory is widely considered a key mechanism of posttraumatic stress disorder (PTSD). The relationship between fear extinction and PTSD symptoms may be moderated by hours-since-waking. In the present experiment, we examined whether hours-since-waking would moderate fear extinction learning ability in a clinical PTSD sample (n = 15), compared to trauma-exposed (n = 33) and nonexposed controls (n = 22). Participants completed a standardized differential fear conditioning and extinction paradigm, providing skin conductance response measures to quantify conditioned responding. Mixed-model analysis of variance revealed a PTSD-specific impairment in extinction learning ability in the late extinction phase. A moderation analysis showed that hours-since-waking was a significant moderator of the relationship between impaired late extinction and PTSD symptoms. Specifically, we found that participants with higher PTSD symptoms demonstrated poorer fear extinction learning ability as they were awake for longer. The results of the current study add to a growing literature indicating deficits in fear extinction learning in PTSD samples, compared to trauma-exposed and nonexposed controls. These results support previous findings that fear extinction is impaired later in the day, and extends this to a clinical sample, suggesting that exposure-therapy may be optimized by scheduling sessions in the morning. © 2016 Wiley Periodicals, Inc.

  5. The development of interactive multimedia based on auditory, intellectually, repetition in repetition algorithm learning to increase learning outcome

    NASA Astrophysics Data System (ADS)

    Munir; Sutarno, H.; Aisyah, N. S.

    2018-05-01

    This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.

  6. A role for descending auditory cortical projections in songbird vocal learning

    PubMed Central

    Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S

    2014-01-01

    Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934

  7. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    PubMed

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  8. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    PubMed Central

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  9. Comparing Auditory-Only and Audiovisual Word Learning for Children with Hearing Loss.

    PubMed

    McDaniel, Jena; Camarata, Stephen; Yoder, Paul

    2018-05-15

    Although reducing visual input to emphasize auditory cues is a common practice in pediatric auditory (re)habilitation, the extant literature offers minimal empirical evidence for whether unisensory auditory-only (AO) or multisensory audiovisual (AV) input is more beneficial to children with hearing loss for developing spoken language skills. Using an adapted alternating treatments single case research design, we evaluated the effectiveness and efficiency of a receptive word learning intervention with and without access to visual speechreading cues. Four preschool children with prelingual hearing loss participated. Based on probes without visual cues, three participants demonstrated strong evidence for learning in the AO and AV conditions relative to a control (no-teaching) condition. No participants demonstrated a differential rate of learning between AO and AV conditions. Neither an inhibitory effect predicted by a unisensory theory nor a beneficial effect predicted by a multisensory theory for providing visual cues was identified. Clinical implications are discussed.

  10. Identification of a motor to auditory pathway important for vocal learning

    PubMed Central

    Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard

    2017-01-01

    Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672

  11. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-04-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.

  13. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  14. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  15. The Auditory Verbal Learning Test (Rey AVLT): An Arabic Version

    ERIC Educational Resources Information Center

    Sharoni, Varda; Natur, Nazeh

    2014-01-01

    The goals of this study were to adapt the Rey Auditory Verbal Learning Test (AVLT) into Arabic, to compare recall functioning among age groups (6:0 to 17:11), and to compare gender differences on various memory dimensions (immediate and delayed recall, learning rate, recognition, proactive interferences, and retroactive interferences). This…

  16. Ecologically relevant neurobehavioral assessment of the development of threat learning

    PubMed Central

    Mouly, Anne-Marie

    2016-01-01

    As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor–shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10–15 d old), pups have access to both networks: odor–shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat. PMID:27634146

  17. Ecologically relevant neurobehavioral assessment of the development of threat learning.

    PubMed

    Boulanger Bertolus, Julie; Mouly, Anne-Marie; Sullivan, Regina M

    2016-10-01

    As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat. © 2016 Boulanger Bertolus et al.; Published by Cold Spring Harbor Laboratory Press.

  18. From resilience to vulnerability: mechanistic insights into the effects of stress on transitions in critical period plasticity.

    PubMed

    Callaghan, Bridget L; Graham, Bronwyn M; Li, Stella; Richardson, Rick

    2013-01-01

    While early experiences are proposed to be important for the emergence of anxiety and other mental health problems, there is little empirical research examining the impact of such experiences on the development of emotional learning. Of the research that has been performed in this area, however, a complex picture has emerged in which the maturation of emotion circuits is influenced by the early experiences of the animal. For example, under typical laboratory rearing conditions infant rats rapidly forget learned fear associations (infantile amnesia) and express a form of extinction learning which is relapse-resistant (i.e., extinction in infant rats may be due to fear erasure). In contrast, adult rats exhibit very long-lasting memories of past learned fear associations, and express a form of extinction learning that is relapse-prone (i.e., the fear returns in a number of situations). However, when rats are reared under stressful conditions then they exhibit adult-like fear retention and extinction behaviors at an earlier stage of development (i.e., good retention of learned fear and relapse-prone extinction learning). In other words, under typical rearing conditions infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing fear learning appears to make those infants more vulnerable to the later development of anxiety. While the effects of different experiences on infant rats' fear retention and extinction are becoming better documented, the mechanisms which mediate the early transition seen following stress remain unclear. Here we suggest that rearing stress may lead to an early maturation of the molecular and cellular signals shown to be involved in the closure of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons, development of perineuronal nets), and speculate that these signals could be manipulated in adulthood to reopen infant forms of emotional learning (i.e., those that favor resilience).

  19. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    PubMed

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  20. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    PubMed

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  2. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  3. Fear Conditioning Selectively Disrupts Noradrenergic Facilitation of GABAergic Inhibition in the Basolateral Amygdala

    PubMed Central

    Skelly, M. J.; Ariwodola, O. J.; Weiner, J. L.

    2016-01-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1- and β3-AR agonists (1μM A61603 and 10μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. PMID:27720769

  4. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala.

    PubMed

    Skelly, M J; Ariwodola, O J; Weiner, J L

    2017-02-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  6. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    ERIC Educational Resources Information Center

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  7. A "Fear" Studies Perspective and Critique: Analyzing English and Stengel's Progressive Study of Fear and Learning in "Education Theory." Technical Paper No. 37

    ERIC Educational Resources Information Center

    Fisher, R. Michael

    2011-01-01

    The author critiques the progressive approach of two contemporary educational philosophers (English and Stengel) on the topic of fear and learning. Using a postmodern integral approach, this article examines the tendency of reductionism, individualism, and psychologism as part of a hegemonic liberalism and modernism in discourses on fear and…

  8. Incidental category learning and cognitive load in a multisensory environment across childhood.

    PubMed

    Broadbent, H J; Osborne, T; Rea, M; Peng, A; Mareschal, D; Kirkham, N Z

    2018-06-01

    Multisensory information has been shown to facilitate learning (Bahrick & Lickliter, 2000; Broadbent, White, Mareschal, & Kirkham, 2017; Jordan & Baker, 2011; Shams & Seitz, 2008). However, although research has examined the modulating effect of unisensory and multisensory distractors on multisensory processing, the extent to which a concurrent unisensory or multisensory cognitive load task would interfere with or support multisensory learning remains unclear. This study examined the role of concurrent task modality on incidental category learning in 6- to 10-year-olds. Participants were engaged in a multisensory learning task while also performing either a unisensory (visual or auditory only) or multisensory (audiovisual) concurrent task (CT). We found that engaging in an auditory CT led to poorer performance on incidental category learning compared with an audiovisual or visual CT, across groups. In 6-year-olds, category test performance was at chance in the auditory-only CT condition, suggesting auditory concurrent tasks may interfere with learning in younger children, but the addition of visual information may serve to focus attention. These findings provide novel insight into the use of multisensory concurrent information on incidental learning. Implications for the deployment of multisensory learning tasks within education across development and developmental changes in modality dominance and ability to switch flexibly across modalities are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    PubMed

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.

  10. Different Verbal Learning Strategies in Autism Spectrum Disorder: Evidence from the Rey Auditory Verbal Learning Test

    ERIC Educational Resources Information Center

    Bowler, Dermot M.; Limoges, Elyse; Mottron, Laurent

    2009-01-01

    The Rey Auditory Verbal Learning Test, which requires the free recall of the same list of 15 unrelated words over 5 trials, was administered to 21 high-functioning adolescents and adults with autism spectrum disorder (ASD) and 21 matched typical individuals. The groups showed similar overall levels of free recall, rates of learning over trials and…

  11. Rapid Remission of Conditioned Fear Expression with Extinction Training Paired with Vagus Nerve Stimulation

    PubMed Central

    Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.

    2012-01-01

    Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749

  12. Effects of sleep on memory for conditioned fear and fear extinction

    PubMed Central

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  13. Effects of sleep on memory for conditioned fear and fear extinction.

    PubMed

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  14. Mathematical disposition of junior high school students viewed from learning styles

    NASA Astrophysics Data System (ADS)

    Putra, Arief Karunia; Budiyono, Slamet, Isnandar

    2017-08-01

    The relevance of this study is the growth of character values for students in Indonesia. Mathematics is a subject that builds the character values for students. It can be seen from the students' confidence in answering mathematics problems, their persistent and resilience in mathematics task. In addition, students have a curiosity in mathematics and appreciate the usefulness of mathematics. In mathematics, it is called a mathematical disposition. One of the factors that can affect students' mathematical disposition is learning style. Each student has a dominant learning style. Three of the most popular ones are visual, auditory, and kinesthetic. The most important uses of learning styles is that it makes it easy for teachers to incorporate them into their teaching. The purpose of this study was to determine which one that gives better mathematical dispositions among students with learning styles of visual, auditory, or kinesthetic. The subjects were 150 students in Sleman regency. Data obtained through questionnaires. Based on data analysis that has been done with benchmark assessment method, it can be concluded that students with visual learning style has a mathematical disposition better than students with auditory and kinesthetic learning styles, while students with kinesthetic learning style has a mathematical disposition better than students with auditory learning style. These results can be used as a reference for students with individual learning styles to improve the mathematical positive disposition in the learning process of mathematics.

  15. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    PubMed

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modeling the Development of Audiovisual Cue Integration in Speech Perception

    PubMed Central

    Getz, Laura M.; Nordeen, Elke R.; Vrabic, Sarah C.; Toscano, Joseph C.

    2017-01-01

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues. PMID:28335558

  17. Modeling the Development of Audiovisual Cue Integration in Speech Perception.

    PubMed

    Getz, Laura M; Nordeen, Elke R; Vrabic, Sarah C; Toscano, Joseph C

    2017-03-21

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues.

  18. GABAergic interneurons: The orchestra or the conductor in fear learning and memory?

    PubMed

    Lucas, Elizabeth K; Clem, Roger L

    2017-12-02

    Fear conditioning is a form of associative learning that is fundamental to survival and involves potentiation of activity in excitatory projection neurons (PNs). Current models stipulate that the mechanisms underlying this process involve plasticity of PN synapses, which exhibit strengthening in response to fear conditioning. However, excitatory PNs are extensively modulated by a diverse array of GABAergic interneurons whose contributions to acquisition, storage, and expression of fear memory remain poorly understood. Here we review emerging evidence that genetically-defined interneurons play important subtype-specific roles in processing of fear-related stimuli and that these dynamics shape PN firing through both inhibition and disinhibition. Furthermore, interneurons exhibit structural, molecular, and electrophysiological evidence of fear learning-induced synaptic plasticity. These studies warrant discarding the notion of interneurons as passive bystanders in long-term memory. Copyright © 2017. Published by Elsevier Inc.

  19. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning

    PubMed Central

    Shepard, Kathryn N.; Chong, Kelly K.

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning. PMID:27957529

  20. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning.

    PubMed

    Edagawa, Kouki; Kawasaki, Masahiro

    2017-02-22

    Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.

  1. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  2. Synaptic plasticity associated with a memory engram in the basolateral amygdala.

    PubMed

    Nonaka, Ayako; Toyoda, Takeshi; Miura, Yuki; Hitora-Imamura, Natsuko; Naka, Masamitsu; Eguchi, Megumi; Yamaguchi, Shun; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi

    2014-07-09

    Synaptic plasticity is a cellular mechanism putatively underlying learning and memory. However, it is unclear whether learning induces synaptic modification globally or only in a subset of neurons in associated brain regions. In this study, we genetically identified neurons activated during contextual fear learning and separately recorded synaptic efficacy from recruited and nonrecruited neurons in the mouse basolateral amygdala (BLA). We found that the fear learning induces presynaptic potentiation, which was reflected by an increase in the miniature EPSC frequency and by a decrease in the paired-pulse ratio. Changes occurred only in the cortical synapses targeting the BLA neurons that were recruited into the fear memory trace. Furthermore, we found that fear learning reorganizes the neuronal ensemble responsive to the conditioning context in conjunction with the synaptic plasticity. In particular, the neuronal activity during learning was associated with the neuronal recruitment into the context-responsive ensemble. These findings suggest that synaptic plasticity in a subset of BLA neurons contributes to fear memory expression through ensemble reorganization. Copyright © 2014 the authors 0270-6474/14/349305-05$15.00/0.

  3. Fears and Phobias

    MedlinePlus

    ... a strong swimmer might have a fear of deep water. In this case, the fear is helpful because it cautions the person to stay safe. Someone could overcome this fear by learning how to swim safely. A fear can be ...

  4. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    ERIC Educational Resources Information Center

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  5. Influence of Syllable Structure on L2 Auditory Word Learning

    ERIC Educational Resources Information Center

    Hamada, Megumi; Goya, Hideki

    2015-01-01

    This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a…

  6. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning-Implications for Renewal Research.

    PubMed

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  7. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  8. The effect of ketamine on the consolidation and extinction of contextual fear memory

    PubMed Central

    Thomas, Kerrie L; Hall, Jeremy

    2018-01-01

    Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia. PMID:29338491

  9. Differential Involvement of the Medial Prefrontal Cortex across Variants of Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.

    2017-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…

  10. What Predicts Fear of School Violence among U.S. Adolescents?

    ERIC Educational Resources Information Center

    Akiba, Motoko

    2010-01-01

    Background/Context: Ensuring a safe learning environment for every student at school is a major responsibility of educators, school administrators, and policy makers in our society. Students' fear associated with school violence affects their school attendance, learning motivation, and academic achievement. Although predictors of adults' fear of…

  11. Learning enhances intrinsic excitability in a subset of lateral amygdala neurons

    PubMed Central

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little attention. Fear conditioning was combined with intracellular recordings to investigate the effects of learning on the intrinsic excitability of lateral amygdala (LA) neurons. To assess time-dependent changes, brain slices were prepared either immediately or 24-h post-conditioning. Fear conditioning significantly enhanced excitability of LA neurons, as evidenced by both decreased afterhyperpolarization (AHP) and increased neuronal firing. These changes were time-dependent such that reduced AHPs were evident at both time points whereas increased neuronal firing was only observed at the later (24-h) time point. Moreover, these changes occurred within a subset (32%) of LA neurons. Previous work also demonstrated that learning-related changes in synaptic plasticity are also evident in less than one-third of amygdala neurons, suggesting that the neurons undergoing intrinsic plasticity may be critical for fear memory. These data may be clinically relevant as enhanced LA excitability following fear learning could influence future amygdala-dependent behaviors. PMID:24554670

  12. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  13. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear.

    PubMed

    Hermans, Erno J; Kanen, Jonathan W; Tambini, Arielle; Fernández, Guillén; Davachi, Lila; Phelps, Elizabeth A

    2017-05-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Profiles of Types of Central Auditory Processing Disorders in Children with Learning Disabilities.

    ERIC Educational Resources Information Center

    Musiek, Frank E.; And Others

    1985-01-01

    The article profiles five cases of children (8-17 years old) with learning disabilities and auditory processing problems. Possible correlations between the presumed etiology and the unique audiological pattern on the central test battery are analyzed. (Author/CL)

  15. Multimodal processing of emotional information in 9-month-old infants I: emotional faces and voices.

    PubMed

    Otte, R A; Donkers, F C L; Braeken, M A K A; Van den Bergh, B R H

    2015-04-01

    Making sense of emotions manifesting in human voice is an important social skill which is influenced by emotions in other modalities, such as that of the corresponding face. Although processing emotional information from voices and faces simultaneously has been studied in adults, little is known about the neural mechanisms underlying the development of this ability in infancy. Here we investigated multimodal processing of fearful and happy face/voice pairs using event-related potential (ERP) measures in a group of 84 9-month-olds. Infants were presented with emotional vocalisations (fearful/happy) preceded by the same or a different facial expression (fearful/happy). The ERP data revealed that the processing of emotional information appearing in human voice was modulated by the emotional expression appearing on the corresponding face: Infants responded with larger auditory ERPs after fearful compared to happy facial primes. This finding suggests that infants dedicate more processing capacities to potentially threatening than to non-threatening stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Selective early-acquired fear memories undergo temporary suppression during adolescence

    PubMed Central

    Pattwell, Siobhan S.; Bath, Kevin G.; Casey, B. J.; Ninan, Ipe; Lee, Francis S.

    2011-01-01

    Highly conserved neural circuitry between rodents and humans has allowed for in-depth characterization of behavioral and molecular processes associated with emotional learning and memory. Despite increased prevalence of affective disorders in adolescent humans, few studies have characterized how associative-emotional learning changes during the transition through adolescence or identified mechanisms underlying such changes. By examining fear conditioning in mice, as they transitioned into and out of adolescence, we found that a suppression of contextual fear occurs during adolescence. Although contextual fear memories were not expressed during early adolescence, they could be retrieved and expressed as the mice transitioned out of adolescence. This temporary suppression of contextual fear was associated with blunted synaptic activity in the basal amygdala and decreased PI3K and MAPK signaling in the hippocampus. These findings reveal a unique form of brain plasticity in fear learning during early adolescence and may prove informative for understanding endogenous mechanisms to suppress unwanted fear memories. PMID:21220344

  17. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning

    PubMed Central

    Auchter, Allison M.; Shumake, Jason; Gonzalez-Lima, Francisco; Monfils, Marie H.

    2017-01-01

    Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction. PMID:28397861

  18. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.

    PubMed

    Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian

    2018-04-18

    Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    PubMed

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    PubMed Central

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  1. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    ERIC Educational Resources Information Center

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  2. Associative learning versus fear habituation as predictors of long-term extinction retention.

    PubMed

    Brown, Lily A; LeBeau, Richard T; Chat, Ka Yi; Craske, Michelle G

    2017-06-01

    Violation of unconditioned stimulus (US) expectancy during extinction training may enhance associative learning and result in improved long-term extinction retention compared to within-session habituation. This experiment examines variation in US expectancy (i.e., expectancy violation) as a predictor of long-term extinction retention. It also examines within-session habituation of fear-potentiated startle (electromyography, EMG) and fear of conditioned stimuli (CS) throughout extinction training as predictors of extinction retention. Participants (n = 63) underwent fear conditioning, extinction and retention and provided continuous ratings of US expectancy and EMG, as well as CS fear ratings before and after each phase. Variation in US expectancy throughout extinction and habituation of EMG and fear was entered into a regression as predictors of retention and reinstatement of levels of expectancy and fear. Greater variation in US expectancy throughout extinction training was significantly predictive of enhanced extinction performance measured at retention test, although not after reinstatement test. Slope of EMG and CS fear during extinction did not predict retention of extinction. Within-session habituation of EMG and self-reported fear is not sufficient for long-term retention of extinction learning, and models emphasizing expectation violation may result in enhanced outcomes.

  3. Simultaneous acquisition of multiple auditory-motor transformations in speech

    PubMed Central

    Rochet-Capellan, Amelie; Ostry, David J.

    2011-01-01

    The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534

  4. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain.

    PubMed

    Zaman, Jonas; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Wiech, Katja; Van Diest, Ilse

    2015-04-01

    Recent neuropsychological theories emphasize the influence of maladaptive learning and memory processes on pain perception. However, the precise relationship between these processes as well as the underlying mechanisms remain poorly understood; especially the role of perceptual discrimination and its modulation by associative fear learning has received little attention so far. Experimental work with exteroceptive stimuli consistently points to effects of fear learning on perceptual discrimination acuity. In addition, clinical observations have revealed that in individuals with chronic pain perceptual discrimination is impaired, and that tactile discrimination training reduces pain. Based on these findings, we present a theoretical model of which the central tenet is that associative fear learning contributes to the development of chronic pain through impaired interoceptive and proprioceptive discrimination acuity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    PubMed

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In Search for Boundary Conditions of Reconsolidation: A Failure of Fear Memory Interference

    PubMed Central

    Schroyens, Natalie; Beckers, Tom; Kindt, Merel

    2017-01-01

    The presentation of a fear memory cue can result in mere memory retrieval, destabilization of the reactivated memory trace, or the formation of an extinction memory. The interaction between the degree of novelty during reactivation and previous learning conditions is thought to determine the outcome of a reactivation session. This study aimed to evaluate whether contextual novelty can prevent cue-induced destabilization and disruption of a fear memory acquired by non-asymptotic learning. To this end, fear memory was reactivated in a novel context or in the original context of learning, and fear memory reactivation was followed by the administration of propranolol, an amnestic drug. Remarkably, fear memory was not impaired by post-reactivation propranolol administration or extinction training under the usual conditions used in our lab, irrespective of the reactivation context. These unexpected findings are discussed in the light of our current experimental parameters and alleged boundary conditions on memory destabilization. PMID:28469565

  7. Extinction after fear memory reactivation fails to eliminate renewal in rats.

    PubMed

    Goode, Travis D; Holloway-Erickson, Crystal M; Maren, Stephen

    2017-07-01

    Retrieving fear memories just prior to extinction has been reported to effectively erase fear memories and prevent fear relapse. The current study examined whether the type of retrieval procedure influences the ability of extinction to impair fear renewal, a form of relapse in which responding to a conditional stimulus (CS) returns outside of the extinction context. Rats first underwent Pavlovian fear conditioning with an auditory CS and footshock unconditional stimulus (US); freezing behavior served as the index of conditioned fear. Twenty-four hours later, the rats underwent a retrieval-extinction procedure. Specifically, 1h prior to extinction (45 CS-alone trials; 44 for rats receiving a CS reminder), fear memory was retrieved by either a single exposure to the CS alone, the US alone, a CS paired with the US, or exposure to the conditioning context itself. Over the next few days, conditional freezing to the extinguished CS was tested in the extinction and conditioning context in that order (i.e., an ABBA design). In the extinction context, rats that received a CS+US trial before extinction exhibited higher levels of conditional freezing than animals in all other groups, which did not differ from one another. In the renewal context, all groups showed renewal, and none of the reactivation procedures reduced renewal relative to a control group that did not receive a reactivation procedure prior to extinction. These data suggest retrieval-extinction procedures may have limited efficacy in preventing fear renewal. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Inhibition of Fear by Learned Safety Signals: minisymposium review

    PubMed Central

    Fernando, Anushka B. P.; Kazama, Andy M.; Jovanovic, Tanja; Ostroff, Linnaea E.; Sangha, Susan

    2012-01-01

    Safety signals are learned cues that predict the non-occurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to utilize safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning and expression in rodents, non-human primates and humans. PMID:23055481

  9. Effect of Vicarious Fear Learning on Children’s Heart Rate Responses and Attentional Bias for Novel Animals

    PubMed Central

    2014-01-01

    Research with children has shown that vicarious learning can result in changes to 2 of Lang’s (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang’s final response system) and attentional bias. The study used Askew and Field’s (2007) vicarious learning procedure and demonstrated fear-related increases in children’s cognitive, behavioral, and physiological responses. Cognitive and behavioral changes were retested 1 week and 1 month later, and remained elevated. In addition, a visual search task demonstrated that fear-related vicarious learning creates an attentional bias for novel animals, which is moderated by increases in fear beliefs during learning. The findings demonstrate that vicarious learning leads to lasting changes in all 3 of Lang’s anxiety response systems and is sufficient to create attentional bias to threat in children. PMID:25151521

  10. Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex

    ERIC Educational Resources Information Center

    Kudoh, Masaharu; Shibuki, Katsuei

    2006-01-01

    We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…

  11. A Latent Consolidation Phase in Auditory Identification Learning: Time in the Awake State Is Sufficient

    ERIC Educational Resources Information Center

    Roth, Daphne Ari-Even; Kishon-Rabin, Liat; Hildesheimer, Minka; Karni, Avi

    2005-01-01

    Large gains in performance, evolving hours after practice has terminated, were reported in a number of visual and some motor learning tasks, as well as recently in an auditory nonverbal discrimination task. It was proposed that these gains reflect a latent phase of experience-triggered memory consolidation in human skill learning. It is not clear,…

  12. The Effects of Attentional Engagement on Route Learning Performance in a Virtual Environment: An Aging Study

    PubMed Central

    Hartmeyer, Steffen; Grzeschik, Ramona; Wolbers, Thomas; Wiener, Jan M.

    2017-01-01

    Route learning is a common navigation task affected by cognitive aging. Here we present a novel experimental paradigm to investigate whether age-related declines in executive control of attention contributes to route learning deficits. A young and an older participant group was repeatedly presented with a route through a virtual maze comprised of 12 decision points (DP) and non-decision points (non-DP). To investigate attentional engagement with the route learning task, participants had to respond to auditory probes at both DP and non-DP. Route knowledge was assessed by showing participants screenshots or landmarks from DPs and non-DPs and asking them to indicate the movement direction required to continue the route. Results demonstrate better performance for DPs than for non-DPs and slower responses to auditory probes at DPs compared to non-DPs. As expected we found slower route learning and slower responses to the auditory probes in the older participant group. Interestingly, differences in response times to the auditory probes between DPs and non-DPs can predict the success of route learning in both age groups and may explain slower knowledge acquisition in the older participant group. PMID:28775689

  13. Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear

    PubMed Central

    Pape, Hans-Christian; Pare, Denis

    2009-01-01

    The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190

  14. Evidence for recovery of fear following immediate extinction in rats and humans

    PubMed Central

    Schiller, Daniela; Cain, Christopher K.; Curley, Nina G.; Schwartz, Jennifer S.; Stern, Sarah A.; LeDoux, Joseph E.; Phelps, Elizabeth A.

    2008-01-01

    Fear responses can be eliminated through extinction, a procedure involving the presentation of fear-eliciting stimuli without aversive outcomes. Extinction is believed to be mediated by new inhibitory learning that acts to suppress fear expression without erasing the original memory trace. This hypothesis is supported mainly by behavioral data demonstrating that fear can recover following extinction. However, a recent report by Myers and coworkers suggests that extinction conducted immediately after fear learning may erase or prevent the consolidation of the fear memory trace. Since extinction is a major component of nearly all behavioral therapies for human fear disorders, this finding supports the notion that therapeutic intervention beginning very soon after a traumatic event will be more efficacious. Given the importance of this issue, and the controversy regarding immediate versus delayed therapeutic interventions, we examined two fear recovery phenomena in both rats and humans: spontaneous recovery (SR) and reinstatement. We found evidence for SR and reinstatement in both rats and humans even when extinction was conducted immediately after fear learning. Thus, our data do not support the hypothesis that immediate extinction erases the original memory trace, nor do they suggest that a close temporal proximity of therapeutic intervention to the traumatic event might be advantageous. PMID:18509113

  15. Matching Teaching and Learning Styles.

    ERIC Educational Resources Information Center

    Caudill, Gil

    1998-01-01

    Outlines three basic learning modalities--auditory, visual, and tactile--and notes that technology can help incorporate multiple modalities within each lesson, to meet the needs of most students. Discusses the importance in multiple modality teaching of effectively assessing students. Presents visual, auditory and tactile activity suggestions.…

  16. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  17. Auditory Middle Latency Response and Phonological Awareness in Students with Learning Disabilities

    PubMed Central

    Romero, Ana Carla Leite; Funayama, Carolina Araújo Rodrigues; Capellini, Simone Aparecida; Frizzo, Ana Claudia Figueiredo

    2015-01-01

    Introduction Behavioral tests of auditory processing have been applied in schools and highlight the association between phonological awareness abilities and auditory processing, confirming that low performance on phonological awareness tests may be due to low performance on auditory processing tests. Objective To characterize the auditory middle latency response and the phonological awareness tests and to investigate correlations between responses in a group of children with learning disorders. Methods The study included 25 students with learning disabilities. Phonological awareness and auditory middle latency response were tested with electrodes placed on the left and right hemispheres. The correlation between the measurements was performed using the Spearman rank correlation coefficient. Results There is some correlation between the tests, especially between the Pa component and syllabic awareness, where moderate negative correlation is observed. Conclusion In this study, when phonological awareness subtests were performed, specifically phonemic awareness, the students showed a low score for the age group, although for the objective examination, prolonged Pa latency in the contralateral via was observed. Negative weak to moderate correlation for Pa wave latency was observed, as was positive weak correlation for Na-Pa amplitude. PMID:26491479

  18. Analysis of the critical thinking process of junior high school students in solving geometric problems by utilizing the v-a-k learning styles model

    NASA Astrophysics Data System (ADS)

    Hananto, R. B.; Kusmayadi, T. A.; Riyadi

    2018-05-01

    The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.

  19. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    PubMed

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  20. Visual abilities are important for auditory-only speech recognition: evidence from autism spectrum disorder.

    PubMed

    Schelinski, Stefanie; Riedel, Philipp; von Kriegstein, Katharina

    2014-12-01

    In auditory-only conditions, for example when we listen to someone on the phone, it is essential to fast and accurately recognize what is said (speech recognition). Previous studies have shown that speech recognition performance in auditory-only conditions is better if the speaker is known not only by voice, but also by face. Here, we tested the hypothesis that such an improvement in auditory-only speech recognition depends on the ability to lip-read. To test this we recruited a group of adults with autism spectrum disorder (ASD), a condition associated with difficulties in lip-reading, and typically developed controls. All participants were trained to identify six speakers by name and voice. Three speakers were learned by a video showing their face and three others were learned in a matched control condition without face. After training, participants performed an auditory-only speech recognition test that consisted of sentences spoken by the trained speakers. As a control condition, the test also included speaker identity recognition on the same auditory material. The results showed that, in the control group, performance in speech recognition was improved for speakers known by face in comparison to speakers learned in the matched control condition without face. The ASD group lacked such a performance benefit. For the ASD group auditory-only speech recognition was even worse for speakers known by face compared to speakers not known by face. In speaker identity recognition, the ASD group performed worse than the control group independent of whether the speakers were learned with or without face. Two additional visual experiments showed that the ASD group performed worse in lip-reading whereas face identity recognition was within the normal range. The findings support the view that auditory-only communication involves specific visual mechanisms. Further, they indicate that in ASD, speaker-specific dynamic visual information is not available to optimize auditory-only speech recognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Local inhibition modulates learning-dependent song encoding in the songbird auditory cortex

    PubMed Central

    Thompson, Jason V.; Jeanne, James M.

    2013-01-01

    Changes in inhibition during development are well documented, but the role of inhibition in adult learning-related plasticity is not understood. In songbirds, vocal recognition learning alters the neural representation of songs across the auditory forebrain, including the caudomedial nidopallium (NCM), a region analogous to mammalian secondary auditory cortices. Here, we block local inhibition with the iontophoretic application of gabazine, while simultaneously measuring song-evoked spiking activity in NCM of European starlings trained to recognize sets of conspecific songs. We find that local inhibition differentially suppresses the responses to learned and unfamiliar songs and enhances spike-rate differences between learned categories of songs. These learning-dependent response patterns emerge, in part, through inhibitory modulation of selectivity for song components and the masking of responses to specific acoustic features without altering spectrotemporal tuning. The results describe a novel form of inhibitory modulation of the encoding of learned categories and demonstrate that inhibition plays a central role in shaping the responses of neurons to learned, natural signals. PMID:23155175

  2. Experience-dependent modification of a central amygdala fear circuit

    PubMed Central

    Li, Haohong; Penzo, Mario A.; Taniguchi, Hiroki; Kopec, Charles D.; Huang, Z. Josh; Li, Bo

    2013-01-01

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how CeA contributes to the learning and expression of fear is unclear. Here we show in mice that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). This experience-dependent plasticity is cell-specific, bidirectional, and expressed presynaptically by inputs from the lateral amygdala. In particular, preventing synaptic potentiation onto somatostatin-positive neurons impairs fear memory formation. Furthermore, activation of these neurons is necessary for fear memory recall and sufficient to drive fear responses. Our findings support a model in which the fear conditioning-induced synaptic modifications in CeL favor the activation of somatostatin-positive neurons, which inhibit CeL output thereby disinhibiting the medial subdivision of CeA and releasing fear expression. PMID:23354330

  3. EGR-1 Expression in Catecholamine-synthesizing Neurons Reflects Auditory Learning and Correlates with Responses in Auditory Processing Areas.

    PubMed

    Dai, Jennifer B; Chen, Yining; Sakata, Jon T

    2018-05-21

    Distinguishing between familiar and unfamiliar individuals is an important task that shapes the expression of social behavior. As such, identifying the neural populations involved in processing and learning the sensory attributes of individuals is important for understanding mechanisms of behavior. Catecholamine-synthesizing neurons have been implicated in sensory processing, but relatively little is known about their contribution to auditory learning and processing across various vertebrate taxa. Here we investigated the extent to which immediate early gene expression in catecholaminergic circuitry reflects information about the familiarity of social signals and predicts immediate early gene expression in sensory processing areas in songbirds. We found that male zebra finches readily learned to differentiate between familiar and unfamiliar acoustic signals ('songs') and that playback of familiar songs led to fewer catecholaminergic neurons in the locus coeruleus (but not in the ventral tegmental area, substantia nigra, or periaqueductal gray) expressing the immediate early gene, EGR-1, than playback of unfamiliar songs. The pattern of EGR-1 expression in the locus coeruleus was similar to that observed in two auditory processing areas implicated in auditory learning and memory, namely the caudomedial nidopallium (NCM) and the caudal medial mesopallium (CMM), suggesting a contribution of catecholamines to sensory processing. Consistent with this, the pattern of catecholaminergic innervation onto auditory neurons co-varied with the degree to which song playback affected the relative intensity of EGR-1 expression. Together, our data support the contention that catecholamines like norepinephrine contribute to social recognition and the processing of social information. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia.

    PubMed

    Gill, Kathryn M; Miller, Sarah A; Grace, Anthony A

    2018-05-01

    The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    PubMed

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  6. Auditory and visual sequence learning in humans and monkeys using an artificial grammar learning paradigm.

    PubMed

    Milne, Alice E; Petkov, Christopher I; Wilson, Benjamin

    2017-07-05

    Language flexibly supports the human ability to communicate using different sensory modalities, such as writing and reading in the visual modality and speaking and listening in the auditory domain. Although it has been argued that nonhuman primate communication abilities are inherently multisensory, direct behavioural comparisons between human and nonhuman primates are scant. Artificial grammar learning (AGL) tasks and statistical learning experiments can be used to emulate ordering relationships between words in a sentence. However, previous comparative work using such paradigms has primarily investigated sequence learning within a single sensory modality. We used an AGL paradigm to evaluate how humans and macaque monkeys learn and respond to identically structured sequences of either auditory or visual stimuli. In the auditory and visual experiments, we found that both species were sensitive to the ordering relationships between elements in the sequences. Moreover, the humans and monkeys produced largely similar response patterns to the visual and auditory sequences, indicating that the sequences are processed in comparable ways across the sensory modalities. These results provide evidence that human sequence processing abilities stem from an evolutionarily conserved capacity that appears to operate comparably across the sensory modalities in both human and nonhuman primates. The findings set the stage for future neurobiological studies to investigate the multisensory nature of these sequencing operations in nonhuman primates and how they compare to related processes in humans. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task

    PubMed Central

    Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536

  8. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    PubMed

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Contingency learning in human fear conditioning involves the ventral striatum.

    PubMed

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  10. Recognizing Student Fear: The Elephant in the Classroom

    ERIC Educational Resources Information Center

    Bledsoe, T. Scott; Baskin, Janice J.

    2014-01-01

    Understanding fear, its causes, and its impact on students can be important for educators who seek ways to help students manage their fears. This paper explores common types of student fears such as performance-based anxiety, fear of failure, fear of being laughed at, and cultural components of fear that impact learning. The cognitive, emotional,…

  11. Does a child's fear of needles decrease through a learning event with needles?

    PubMed

    Kajikawa, Natsuki; Maeno, Takami; Maeno, Tetsuhiro

    2014-09-01

    Most children have a fear of needles. Suitable preparation can decrease the pain and fear of needles in hospitals; however, few have examined how such preparation affects healthy children. This study examined whether learning with needles decreases fear of needles and changes motivation to get vaccinations in school-age children and the possible association between fear of needles and motivation toward vaccinations. This study included children participating in the "Let's Be Doctors" event, which was held in 4 child centers in Tsukuba city, Ibaraki, Japan. In this event, children learned about injections and how a vaccine works, and injected a vaccine (water) into skin (sponge) using a real syringe and imitation needle. Data were collected just before and after the event by anonymous self-assessment questionnaires that used a 4-point Likert scale to assess fear of needles, motivation to get vaccinations, recommendation of vaccinations, and fear toward doctors among the children. Answers were divided into two categories for statistical analysis. In total, 194 children participated in the event and 191 children answered the questionnaire (response rate 98.5%). We analyzed 180 subjects, comprising 79 boys (43.9%) and 94 girls (52.2%), mean age of 8.1 ± 1.0 years. The number of children reporting a fear of needles decreased from 69 (38.3%) before the event to 51 (28.3%) after the event, and those unwilling to get vaccinations decreased from 48 (26.7%) to 27 (15.0%). Children who reported fear of needles before the event were more unwilling to get vaccinations than those with no fear of needles (36 [52.2%] vs. 12 [10.8%]), while after the event the number of needle-fearing children unwilling to get vaccinations decreased to 19 (27.5%). Children's fear of needles and unwillingness to get vaccinations were decreased after experiencing a learning event with needles. The fear of needles is associated with a negative motivation to get vaccinations in children.

  12. Nicotinic Receptors in the Dorsal and Ventral Hippocampus Differentially Modulate Contextual Fear Conditioning

    PubMed Central

    Kenney, Justin W.; Raybuck, Jonathan D.; Gould, Thomas J.

    2012-01-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning. PMID:22271264

  13. Developmental changes in automatic rule-learning mechanisms across early childhood.

    PubMed

    Mueller, Jutta L; Friederici, Angela D; Männel, Claudia

    2018-06-27

    Infants' ability to learn complex linguistic regularities from early on has been revealed by electrophysiological studies indicating that 3-month-olds, but not adults, can automatically detect non-adjacent dependencies between syllables. While different ERP responses in adults and infants suggest that both linguistic rule learning and its link to basic auditory processing undergo developmental changes, systematic investigations of the developmental trajectories are scarce. In the present study, we assessed 2- and 4-year-olds' ERP indicators of pitch discrimination and linguistic rule learning in a syllable-based oddball design. To test for the relation between auditory discrimination and rule learning, ERP responses to pitch changes were used as predictor for potential linguistic rule-learning effects. Results revealed that 2-year-olds, but not 4-year-olds, showed ERP markers of rule learning. Although, 2-year-olds' rule learning was not dependent on differences in pitch perception, 4-year-old children demonstrated a dependency, such that those children who showed more pronounced responses to pitch changes still showed an effect of rule learning. These results narrow down the developmental decline of the ability for automatic linguistic rule learning to the age between 2 and 4 years, and, moreover, point towards a strong modification of this change by auditory processes. At an age when the ability of automatic linguistic rule learning phases out, rule learning can still be observed in children with enhanced auditory responses. The observed interrelations are plausible causes for age-of-acquisition effects and inter-individual differences in language learning. © 2018 John Wiley & Sons Ltd.

  14. The effects of varying contextual demands on age-related positive gaze preferences.

    PubMed

    Noh, Soo Rim; Isaacowitz, Derek M

    2015-06-01

    Despite many studies on the age-related positivity effect and its role in visual attention, discrepancies remain regarding whether full attention is required for age-related differences to emerge. The present study took a new approach to this question by varying the contextual demands of emotion processing. This was done by adding perceptual distractions, such as visual and auditory noise, that could disrupt attentional control. Younger and older participants viewed pairs of happy-neutral and fearful-neutral faces while their eye movements were recorded. Facial stimuli were shown either without noise, embedded in a background of visual noise (low, medium, or high), or with simultaneous auditory babble. Older adults showed positive gaze preferences, looking toward happy faces and away from fearful faces; however, their gaze preferences tended to be influenced by the level of visual noise. Specifically, the tendency to look away from fearful faces was not present in conditions with low and medium levels of visual noise but was present when there were high levels of visual noise. It is important to note, however, that in the high-visual-noise condition, external cues were present to facilitate the processing of emotional information. In addition, older adults' positive gaze preferences disappeared or were reduced when they first viewed emotional faces within a distracting context. The current results indicate that positive gaze preferences may be less likely to occur in distracting contexts that disrupt control of visual attention. (c) 2015 APA, all rights reserved.

  15. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  16. Biased Intensity Judgements of Visceral Sensations After Learning to Fear Visceral Stimuli: A Drift Diffusion Approach.

    PubMed

    Zaman, Jonas; Madden, Victoria J; Iven, Julie; Wiech, Katja; Weltens, Nathalie; Ly, Huynh Giao; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse

    2017-10-01

    A growing body of research has identified fear of visceral sensations as a potential mechanism in the development and maintenance of visceral pain disorders. However, the extent to which such learned fear affects visceroception remains unclear. To address this question, we used a differential fear conditioning paradigm with nonpainful esophageal balloon distensions of 2 different intensities as conditioning stimuli (CSs). The experiment comprised of preacquisition, acquisition, and postacquisition phases during which participants categorized the CSs with respect to their intensity. The CS+ was always followed by a painful electrical stimulus (unconditioned stimulus) during the acquisition phase and in 60% of the trials during postacquisition. The second stimulus (CS-) was never associated with pain. Analyses of galvanic skin and startle eyeblink responses as physiological markers of successful conditioning showed increased fear responses to the CS+ compared with the CS-, but only in the group with the low-intensity stimulus as CS+. Computational modeling of response times and response accuracies revealed that differential fear learning affected perceptual decision-making about the intensities of visceral sensations such that sensations were more likely to be categorized as more intense. These results suggest that associative learning might indeed contribute to visceral hypersensitivity in functional gastrointestinal disorders. This study shows that associative fear learning biases intensity judgements of visceral sensations toward perceiving such sensations as more intense. Learning-induced alterations in visceroception might therefore contribute to the development or maintenance of visceral pain. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention.

    PubMed

    van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E

    2016-01-01

    Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.

  18. The central amygdala circuits in fear regulation

    NASA Astrophysics Data System (ADS)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  19. Altered Pain Perception and Fear-Learning Deficits in Subjects With Posttraumatic Stress Disorder.

    PubMed

    Jenewein, Josef; Erni, Jeannine; Moergeli, Hanspeter; Grillon, Christian; Schumacher, Sonja; Mueller-Pfeiffer, Christoph; Hassanpour, Katayun; Seiler, Annina; Wittmann, Lutz; Schnyder, Ulrich; Hasler, Gregor

    2016-12-01

    There is growing evidence that fear-learning abnormalities are involved in the development of posttraumatic stress disorder (PTSD) and chronic pain. More than 50% of PTSD patients suffer from chronic pain. This study aimed to examine the role of fear-learning deficits in the link between pain perception and PTSD. We included 19 subjects with PTSD and 21 age- and sex-matched healthy control subjects in a fear-conditioning experiment. The conditioned stimulus (CS) consisted of visual signs flashed upon a screen in front of each subject. The unconditioned stimulus was either a low or high temperature impulse delivered through a thermal contact thermode on the subjects' hand. A designation of 'CS-' was assigned to CS always followed by nonpainful low-temperature stimuli; a designation of 'CS+' was given to CS that were randomly followed by either a low or a more painful high temperature. Skin conductance was used as a physiological marker of fear. In healthy control subjects, CS+ induced more fear than CS-, and a low-temperature stimulus induced less subjective pain after CS- than after CS+. PTSD subjects failed to demonstrate such adaptive conditioning. Fear ratings after CS presentation were significantly higher in the PTSD group than in the control group. There were significant interaction effects between group and the type of CS on fear and pain ratings. Fear-learning deficits are a potentially promising, specific psychopathological factor in altered pain perception associated with PTSD. Deficits in safety learning may increase fear and, consequently, pain sensations. These findings may contribute to elucidating the pathogenesis behind the highly prevalent comorbidity that exists between PTSD and pain disorders, and to developing new treatments. This study provides new insights into the pathogenesis of chronic pain in patients with PTSD. The findings may help to develop new treatment strategies for this highly prevalent comorbidity in PTSD. Copyright © 2016 American Pain Society. All rights reserved.

  20. Masking Level Difference Response Norms from Learning Disabled Individuals.

    ERIC Educational Resources Information Center

    Waryas, Paul A.; Battin, R. Ray

    1985-01-01

    The study presents normative data on Masking Level Difference (an improvement of the auditory processing of interaural time/intensity differences between signals and masking noises) for 90 learning disabled persons (4-35 years old). It was concluded that the MLD may quickly screen for auditory processing problems. (CL)

  1. Learned Helplessness and "Fear of Success" in College Women.

    ERIC Educational Resources Information Center

    Ris, Martin D.; Woods, Donald J.

    1983-01-01

    Examines anagram performance of 90 high, medium, and low fear-of-success (FOS) women, after the subjects had experienced conditions within the traditional triadic learned helplessness design. Concluded that increased attention should be given to personality variables within the learned helplessness paradigm. (CMG)

  2. A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice.

    PubMed

    Young, Matthew B; Howell, Leonard L; Hopkins, Lauren; Moshfegh, Cassandra; Yu, Zhe; Clubb, Lauren; Seidenberg, Jessica; Park, Jeanie; Swiercz, Adam P; Marvar, Paul J

    2018-05-17

    Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    PubMed

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.

  4. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    PubMed

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  5. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.

    PubMed

    Nasser, Helen M; McNally, Gavan P

    2013-03-19

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.

  6. The effects of speech output technology in the learning of graphic symbols.

    PubMed Central

    Schlosser, R W; Belfiore, P J; Nigam, R; Blischak, D; Hetzroni, O

    1995-01-01

    The effects of auditory stimuli in the form of synthetic speech output on the learning of graphic symbols were evaluated. Three adults with severe to profound mental retardation and communication impairments were taught to point to lexigrams when presented with words under two conditions. In the first condition, participants used a voice output communication aid to receive synthetic speech as antecedent and consequent stimuli. In the second condition, with a nonelectronic communications board, participants did not receive synthetic speech. A parallel treatments design was used to evaluate the effects of the synthetic speech output as an added component of the augmentative and alternative communication system. The 3 participants reached criterion when not provided with the auditory stimuli. Although 2 participants also reached criterion when not provided with the auditory stimuli, the addition of auditory stimuli resulted in more efficient learning and a decreased error rate. Maintenance results, however, indicated no differences between conditions. Finding suggest that auditory stimuli in the form of synthetic speech contribute to the efficient acquisition of graphic communication symbols. PMID:14743828

  7. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels.

    PubMed

    Shi, Yan-Wei; Fan, Bu-Fang; Xue, Li; Wen, Jia-Ling; Zhao, Hu

    2017-01-01

    The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N -methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.

  8. Learning of grammar-like visual sequences by adults with and without language-learning disabilities.

    PubMed

    Aguilar, Jessica M; Plante, Elena

    2014-08-01

    Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. In Study 1, adults with normal language (NL) or language-learning disability (LLD) were familiarized with the visual artificial grammar and then tested using items that conformed or deviated from the grammar. In Study 2, a 2nd sample of adults with NL and LLD were presented auditory word pairs with weak semantic associations (e.g., groom + clean) along with the visual learning task. Participants were instructed to attend to visual sequences and to ignore the auditory stimuli. Incidental encoding of these words would indicate reduced attention to the primary task. In Studies 1 and 2, both groups demonstrated learning and generalization of the artificial grammar. In Study 2, neither the NL nor the LLD group appeared to encode the words presented during the learning phase. The results argue against a general deficit in statistical learning for individuals with LLD and demonstrate that both NL and LLD learners can ignore extraneous auditory stimuli during visual learning.

  9. Reduced Consolidation, Reinstatement, and Renewal of Conditioned Fear Memory by Repetitive Treatment of Radix Polygalae in Mice

    PubMed Central

    Shin, Jung-Won; Park, Hyunwoo; Cho, Yoonju; Lee, Suck; Yoon, Jiwon; Maeng, Sungho

    2017-01-01

    The therapeutic goal for the treatment of posttraumatic stress disorder (PTSD) is to promote extinction and to prevent the relapse of fearful memories. Research has identified pharmacological treatments that may regulate the formation and extinction of fear memories, but not many reagents that block the relapse of extinguished fear are known. Radix Polygalae (RP) is an Asian herb used for sedation, and its ingredients have anxiolytic and antidepressant properties. As various neurological effects have been identified, we tested whether RP affects the relapse of fear. Freezing in response to a conditioned context and cues was used to measure the effects of RP in mice. In cohort 1 (n = 30), consolidation, extinction, and reinstatement were tested during the course of 18 days of treatment. In cohort 2 (n = 30), consolidation, extinction, and renewal were tested during 10 days of treatment. The consolidation, extinction, reinstatement, and possibly the renewal of context-induced freezing were inhibited due to the administration of RP in animal subjects. However, the effects of RP on the freezing responses of subjects elicited by conditioned auditory cues were less obvious. Because it effectively suppresses the consolidation of fear memories, RP may be used for primary and secondary prevention of symptoms in PTSD patients. Additionally, because it effectively suppresses the reinstatement and renewal of fear memories, RP may be applied for the prevention of fear relapse in PTSD patients who have undergone exposure therapy. PMID:28620325

  10. Effects of hand gestures on auditory learning of second-language vowel length contrasts.

    PubMed

    Hirata, Yukari; Kelly, Spencer D; Huang, Jessica; Manansala, Michael

    2014-12-01

    Research has shown that hand gestures affect comprehension and production of speech at semantic, syntactic, and pragmatic levels for both native language and second language (L2). This study investigated a relatively less explored question: Do hand gestures influence auditory learning of an L2 at the segmental phonology level? To examine auditory learning of phonemic vowel length contrasts in Japanese, 88 native English-speaking participants took an auditory test before and after one of the following 4 types of training in which they (a) observed an instructor in a video speaking Japanese words while she made syllabic-rhythm hand gesture, (b) produced this gesture with the instructor, (c) observed the instructor speaking those words and her moraic-rhythm hand gesture, or (d) produced the moraic-rhythm gesture with the instructor. All of the training types yielded similar auditory improvement in identifying vowel length contrast. However, observing the syllabic-rhythm hand gesture yielded the most balanced improvement between word-initial and word-final vowels and between slow and fast speaking rates. The overall effect of hand gesture on learning of segmental phonology is limited. Implications for theories of hand gesture are discussed in terms of the role it plays at different linguistic levels.

  11. Perceptual Learning and Auditory Training in Cochlear Implant Recipients

    PubMed Central

    Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant (CI) recipients. Recent studies have shown that most implant recipients at least partially adapt to these new patterns via passive, daily-listening experiences. Gradually introducing a speech processor parameter (eg, the degree of spectral mismatch) may provide for more complete and less stressful adaptation. Although the implant device restores hearing sensation and the continued use of the implant provides some degree of adaptation, active auditory rehabilitation may be necessary to maximize the benefit of implantation for CI recipients. Currently, there are scant resources for auditory rehabilitation for adult, postlingually deafened CI recipients. We recently developed a computer-assisted speech-training program to provide the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts among speech stimuli, provides auditory and visual feedback, and incorporates progressive training techniques, thereby maintaining recipients’ interest during the auditory training exercises. Our recent studies demonstrate the effectiveness of targeted auditory training in improving CI recipients’ speech and music perception. Provided with an inexpensive and effective auditory training program, CI recipients may find the motivation and momentum to get the most from the implant device. PMID:17709574

  12. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    PubMed

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-09

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  14. Influence of syllable structure on L2 auditory word learning.

    PubMed

    Hamada, Megumi; Goya, Hideki

    2015-04-01

    This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a closed-syllable structure and consonant clusters. Two groups of college students (Japanese group, N = 22; and native speakers of English, N = 21) learned paired English pseudowords and pictures. The pseudoword types differed in terms of the syllable structure and consonant clusters (congruent vs. incongruent) and the position of consonant clusters (coda vs. onset). Recall accuracy was higher for the pseudowords in the congruent type and the pseudowords with the coda-consonant clusters. The syllable structure effect was obtained from both participant groups, disconfirming the hypothesized cross-linguistic influence on L2 auditory word learning.

  15. Cholinergic signaling controls conditioned-fear behaviors and enhances plasticity of cortical-amygdala circuits

    PubMed Central

    Jiang, Li; Kundu, Srikanya; Lederman, James D.; López-Hernández, Gretchen Y.; Ballinger, Elizabeth C.; Wang, Shaohua; Talmage, David A.; Role, Lorna W.

    2016-01-01

    Summary We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photo-stimulation of endogenous cholinergic input: (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs); (2) enhances glutamatergic synaptic transmission in the BLA and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  16. Learning to avoid spiders: fear predicts performance, not competence.

    PubMed

    Luo, Xijia; Becker, Eni S; Rinck, Mike

    2018-01-05

    We used an immersive virtual environment to examine avoidance learning in spider-fearful participants. In 3 experiments, participants were asked to repeatedly lift one of 3 virtual boxes, under which either a toy car or a spider appeared and then approached the participant. Participants were not told that the probability of encountering a spider differed across boxes. When the difference was large (Exps. 1 and 2), spider-fearfuls learned to avoid spiders by lifting the few-spiders-box more often and the many-spiders-box less often than non-fearful controls did. However, they hardly managed to do so when the probability differences were small (Exp. 3), and they did not escape from threat more quickly (Exp. 2). In contrast to the observed performance differences, spider-fearfuls and non-fearfuls showed equal competence, that is comparable post-experimental knowledge about the probability to encounter spiders under the 3 boxes. The limitations and implications of the present study are discussed.

  17. Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring

    PubMed Central

    Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.

    2015-01-01

    The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766

  18. Anatomical Substrates of Visual and Auditory Miniature Second-language Learning

    PubMed Central

    Newman-Norlund, Roger D.; Frey, Scott H.; Petitto, Laura-Ann; Grafton, Scott T.

    2007-01-01

    Longitudinal changes in brain activity during second language (L2) acquisition of a miniature finite-state grammar, named Wernickese, were identified with functional magnetic resonance imaging (fMRI). Participants learned either a visual sign language form or an auditory-verbal form to equivalent proficiency levels. Brain activity during sentence comprehension while hearing/viewing stimuli was assessed at low, medium, and high levels of proficiency in three separate fMRI sessions. Activation in the left inferior frontal gyrus (Broca’s area) correlated positively with improving L2 proficiency, whereas activity in the right-hemisphere (RH) homologue was negatively correlated for both auditory and visual forms of the language. Activity in sequence learning areas including the premotor cortex and putamen also correlated with L2 proficiency. Modality-specific differences in the blood oxygenation level-dependent signal accompanying L2 acquisition were localized to the planum temporale (PT). Participants learning the auditory form exhibited decreasing reliance on bilateral PT sites across sessions. In the visual form, bilateral PT sites increased in activity between Session 1 and Session 2, then decreased in left PT activity from Session 2 to Session 3. Comparison of L2 laterality (as compared to L1 laterality) in auditory and visual groups failed to demonstrate greater RH lateralization for the visual versus auditory L2. These data establish a common role for Broca’s area in language acquisition irrespective of the perceptual form of the language and suggest that L2s are processed similar to first languages even when learned after the ‘‘critical period.’’ The right frontal cortex was not preferentially recruited by visual language after accounting for phonetic/structural complexity and performance. PMID:17129186

  19. Anxiety symptoms and children's eye gaze during fear learning.

    PubMed

    Michalska, Kalina J; Machlin, Laura; Moroney, Elizabeth; Lowet, Daniel S; Hettema, John M; Roberson-Nay, Roxann; Averbeck, Bruno B; Brotman, Melissa A; Nelson, Eric E; Leibenluft, Ellen; Pine, Daniel S

    2017-11-01

    The eye region of the face is particularly relevant for decoding threat-related signals, such as fear. However, it is unclear if gaze patterns to the eyes can be influenced by fear learning. Previous studies examining gaze patterns in adults find an association between anxiety and eye gaze avoidance, although no studies to date examine how associations between anxiety symptoms and eye-viewing patterns manifest in children. The current study examined the effects of learning and trait anxiety on eye gaze using a face-based fear conditioning task developed for use in children. Participants were 82 youth from a general population sample of twins (aged 9-13 years), exhibiting a range of anxiety symptoms. Participants underwent a fear conditioning paradigm where the conditioned stimuli (CS+) were two neutral faces, one of which was randomly selected to be paired with an aversive scream. Eye tracking, physiological, and subjective data were acquired. Children and parents reported their child's anxiety using the Screen for Child Anxiety Related Emotional Disorders. Conditioning influenced eye gaze patterns in that children looked longer and more frequently to the eye region of the CS+ than CS- face; this effect was present only during fear acquisition, not at baseline or extinction. Furthermore, consistent with past work in adults, anxiety symptoms were associated with eye gaze avoidance. Finally, gaze duration to the eye region mediated the effect of anxious traits on self-reported fear during acquisition. Anxiety symptoms in children relate to face-viewing strategies deployed in the context of a fear learning experiment. This relationship may inform attempts to understand the relationship between pediatric anxiety symptoms and learning. © 2017 Association for Child and Adolescent Mental Health.

  20. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    PubMed

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  1. Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*

    PubMed Central

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-01-01

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741

  2. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    PubMed

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  3. Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    PubMed Central

    Maiya, Rajani; Kharazia, Viktor; Lasek, Amy W.; Heberlein, Ulrike

    2012-01-01

    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear. PMID:22509321

  4. Social Modulation of Associative Fear Learning by Pheromone Communication

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  5. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  6. Musical learning in children and adults with Williams syndrome.

    PubMed

    Lense, M; Dykens, E

    2013-09-01

    There is recent interest in using music making as an empirically supported intervention for various neurodevelopmental disorders due to music's engagement of perceptual-motor mapping processes. However, little is known about music learning in populations with developmental disabilities. Williams syndrome (WS) is a neurodevelopmental genetic disorder whose characteristic auditory strengths and visual-spatial weaknesses map onto the processes used to learn to play a musical instrument. We identified correlates of novel musical instrument learning in WS by teaching 46 children and adults (7-49 years) with WS to play the Appalachian dulcimer. Obtained dulcimer skill was associated with prior musical abilities (r = 0.634, P < 0.001) and visual-motor integration abilities (r = 0.487, P = 0.001), but not age, gender, IQ, handedness, auditory sensitivities or musical interest/emotionality. Use of auditory learning strategies, but not visual or instructional strategies, predicted greater dulcimer skill beyond individual musical and visual-motor integration abilities (β = 0.285, sr(2) = 0.06, P = 0.019). These findings map onto behavioural and emerging neural evidence for greater auditory-motor mapping processes in WS. Results suggest that explicit awareness of task-specific learning approaches is important when learning a new skill. Implications for using music with populations with syndrome-specific strengths and weakness will be discussed. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.

  7. An analysis of mathematical connection ability based on student learning style on visualization auditory kinesthetic (VAK) learning model with self-assessment

    NASA Astrophysics Data System (ADS)

    Apipah, S.; Kartono; Isnarto

    2018-03-01

    This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.

  8. Measures of Working Memory, Sequence Learning, and Speech Recognition in the Elderly.

    ERIC Educational Resources Information Center

    Humes, Larry E.; Floyd, Shari S.

    2005-01-01

    This study describes the measurement of 2 cognitive functions, working-memory capacity and sequence learning, in 2 groups of listeners: young adults with normal hearing and elderly adults with impaired hearing. The measurement of these 2 cognitive abilities with a unique, nonverbal technique capable of auditory, visual, and auditory-visual…

  9. Auditory Learning Using a Portable Real-Time Vocoder: Preliminary Findings

    ERIC Educational Resources Information Center

    Casserly, Elizabeth D.; Pisoni, David B.

    2015-01-01

    Purpose: Although traditional study of auditory training has been in controlled laboratory settings, interest has been increasing in more interactive options. The authors examine whether such interactive training can result in short-term perceptual learning, and the range of perceptual skills it impacts. Method: Experiments 1 (N = 37) and 2 (N =…

  10. Perceptual and academic patterns of learning-disabled/gifted students.

    PubMed

    Waldron, K A; Saphire, D G

    1992-04-01

    This research explored ways gifted children with learning disabilities perceive and recall auditory and visual input and apply this information to reading, mathematics, and spelling. 24 learning-disabled/gifted children and a matched control group of normally achieving gifted students were tested for oral reading, word recognition and analysis, listening comprehension, and spelling. In mathematics, they were tested for numeration, mental and written computation, word problems, and numerical reasoning. To explore perception and memory skills, students were administered formal tests of visual and auditory memory as well as auditory discrimination of sounds. Their responses to reading and to mathematical computations were further considered for evidence of problems in visual discrimination, visual sequencing, and visual spatial areas. Analyses indicated that these learning-disabled/gifted students were significantly weaker than controls in their decoding skills, in spelling, and in most areas of mathematics. They were also significantly weaker in auditory discrimination and memory, and in visual discrimination, sequencing, and spatial abilities. Conclusions are that these underlying perceptual and memory deficits may be related to students' academic problems.

  11. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    PubMed

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  12. Word learning in deaf children with cochlear implants: effects of early auditory experience.

    PubMed

    Houston, Derek M; Stewart, Jessica; Moberly, Aaron; Hollich, George; Miyamoto, Richard T

    2012-05-01

    Word-learning skills were tested in normal-hearing 12- to 40-month-olds and in deaf 22- to 40-month-olds 12 to 18 months after cochlear implantation. Using the Intermodal Preferential Looking Paradigm (IPLP), children were tested for their ability to learn two novel-word/novel-object pairings. Normal-hearing children demonstrated learning on this task at approximately 18 months of age and older. For deaf children, performance on this task was significantly correlated with early auditory experience: Children whose cochlear implants were switched on by 14 months of age or who had relatively more hearing before implantation demonstrated learning in this task, but later implanted profoundly deaf children did not. Performance on this task also correlated with later measures of vocabulary size. Taken together, these findings suggest that early auditory experience facilitates word learning and that the IPLP may be useful for identifying children who may be at high risk for poor vocabulary development. © 2012 Blackwell Publishing Ltd.

  13. Word learning in deaf children with cochlear implants: effects of early auditory experience

    PubMed Central

    Houston, Derek M.; Stewart, Jessica; Moberly, Aaron; Hollich, George; Miyamoto, Richard T.

    2013-01-01

    Word-learning skills were tested in normal-hearing 12- to 40-month-olds and in deaf 22- to 40-month-olds 12 to 18 months after cochlear implantation. Using the Intermodal Preferential Looking Paradigm (IPLP), children were tested for their ability to learn two novel-word/novel-object pairings. Normal-hearing children demonstrated learning on this task at approximately 18 months of age and older. For deaf children, performance on this task was significantly correlated with early auditory experience: Children whose cochlear implants were switched on by 14 months of age or who had relatively more hearing before implantation demonstrated learning in this task, but later implanted profoundly deaf children did not. Performance on this task also correlated with later measures of vocabulary size. Taken together, these findings suggest that early auditory experience facilitates word learning and that the IPLP may be useful for identifying children who may be at high risk for poor vocabulary development. PMID:22490184

  14. Primary Auditory Cortex Regulates Threat Memory Specificity

    ERIC Educational Resources Information Center

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  15. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  16. Sensitive periods in fear learning and memory.

    PubMed

    King, Elizabeth C; Pattwell, Siobhan S; Glatt, Charles E; Lee, Francis S

    2014-01-01

    Adolescence represents a uniquely sensitive developmental stage in the transition from childhood to adulthood. During this transition, neuronal circuits are particularly susceptible to modification by experience. In addition, adolescence is a stage in which the incidence of anxiety disorders peaks in humans and over 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. While postnatal critical periods of plasticity for primary sensory processes, such as in the visual system are well established, less is known about potential critical or sensitive periods for fear learning and memory. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence. We also review the literature on the non-linear development of GABAergic neurotransmission, a key regulator of critical period plasticity. We provide a model that may inform improved treatment strategies for children and adolescents with fear-related disorders.

  17. Sensitive periods in fear learning and memory

    PubMed Central

    King, Elizabeth C.; Pattwell, Siobhan S.; Glatt, Charles E.; Lee, Francis S.

    2015-01-01

    Adolescence represents a uniquely sensitive developmental stage in the transition from childhood to adulthood. During this transition, neuronal circuits are particularly susceptible to modification by experience. In addition, adolescence is a stage in which the incidence of anxiety disorders peaks in humans and over 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. While postnatal critical periods of plasticity for primary sensory processes, such as in the visual system are well established, less is known about potential critical or sensitive periods for fear learning and memory. Here, we review the nonlinear developmental aspects of fear learning and memory during a transition period into and out of adolescence. We also review the literature on the non-linear development of GABAergic neurotransmission, a key regulator of critical period plasticity. We provide a model that may inform improved treatment strategies for children and adolescents with fear-related disorders. PMID:23611461

  18. Nonlinear Developmental trajectory of fear learning and memory

    PubMed Central

    King, Elizabeth C.; Pattwell, Siobhan S.; Sun, Alice; Glatt, Charles E.; Lee, Francis S.

    2013-01-01

    The transition into and out of adolescence represents a unique developmental period during which neuronal circuits are particularly susceptible to modification by experience. Adolescence is associated with an increased incidence of anxiety disorders in humans,1–3 and an estimated 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents.4,5 Conserved neural circuitry between rodents and humans has facilitated neurodevelopmental studies of behavioral and molecular processes associated with fear learning and memory, which lie at the heart of many anxiety disorders. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence and provide a discussion of the molecular mechanisms that may underlie these alterations in behavior. We provide a model that may help to inform novel treatment strategies for children and adolescents with fear-related disorders. PMID:24176014

  19. Auditory middle latency response in children with learning difficulties.

    PubMed

    Frizzo, Ana Claudia Figueiredo; Issac, Myriam Lima; Pontes-Fernandes, Angela Cristina; Menezes, Pedro de Lemos; Funayama, Carolina Araújo Rodrigues

    2012-07-01

     This is an objective laboratory assessment of the central auditory systems of children with learning disabilities.  To examine and determine the properties of the components of the Auditory Middle Latency Response in a sample of children with learning disabilities.  This was a prospective, cross-sectional cohort study with quantitative, descriptive, and exploratory outcomes. We included 50 children aged 8-13 years of both genders with and without learning disorders. Those with disorders of known organic, environmental, or genetic causes were excluded.  The Na, Pa, and Nb waves were identified in all subjects. The ranges of the latency component values were as follows: Na = 9.8-32.3 ms, Pa = 19.0-51.4 ms, Nb = 30.0-64.3 ms (learning disorders group) and Na = 13.2-29.6 ms, Pa = 21.8-42.8 ms, Nb = 28.4-65.8 ms (healthy group). The values of the Na-Pa amplitude ranged from 0.3 to 6.8 ìV (learning disorders group) or 0.2-3.6 ìV (learning disorders group). Upon analysis, the functional characteristics of the groups were distinct: the left hemisphere Nb latency was longer in the study group than in the control group. Peculiarities of the electrophysiological measures were observed in the children with learning disorders. This study has provided information on the Auditory Middle Latency Response and can serve as a reference for other clinical and experimental studies in children with these disorders.

  20. Neural network retuning and neural predictors of learning success associated with cello training.

    PubMed

    Wollman, Indiana; Penhune, Virginia; Segado, Melanie; Carpentier, Thibaut; Zatorre, Robert J

    2018-06-26

    The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio-motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio-motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory-motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio-motor learning.

  1. Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning.

    PubMed

    de Hoz, Livia; Gierej, Dorota; Lioudyno, Victoria; Jaworski, Jacek; Blazejczyk, Magda; Cruces-Solís, Hugo; Beroun, Anna; Lebitko, Tomasz; Nikolaev, Tomasz; Knapska, Ewelina; Nelken, Israel; Kaczmarek, Leszek

    2018-05-01

    The behavioral changes that comprise operant learning are associated with plasticity in early sensory cortices as well as with modulation of gene expression, but the connection between the behavioral, electrophysiological, and molecular changes is only partially understood. We specifically manipulated c-Fos expression, a hallmark of learning-induced synaptic plasticity, in auditory cortex of adult mice using a novel approach based on RNA interference. Locally blocking c-Fos expression caused a specific behavioral deficit in a sound discrimination task, in parallel with decreased cortical experience-dependent plasticity, without affecting baseline excitability or basic auditory processing. Thus, c-Fos-dependent experience-dependent cortical plasticity is necessary for frequency discrimination in an operant behavioral task. Our results connect behavioral, molecular and physiological changes and demonstrate a role of c-Fos in experience-dependent plasticity and learning.

  2. Sleep Deprivation Disrupts Recall of Conditioned Fear Extinction.

    PubMed

    Straus, Laura D; Acheson, Dean T; Risbrough, Victoria B; Drummond, Sean P A

    2017-03-01

    Learned fear is crucial in the development and maintenance of posttraumatic stress disorder (PTSD) and other anxiety disorders, and extinction of learned fear is necessary for response to exposure-based treatments. In humans, research suggests disrupted sleep impairs consolidation of extinction, though no studies have examined this experimentally using total sleep deprivation. Seventy-one healthy controls underwent a paradigm to acquire conditioned fear to a visual cue. Twenty-four hours after fear conditioning, participants underwent extinction learning. Twenty-four hours after extinction learning, participants underwent extinction recall. Participants were randomized to three groups: 1) well-rested throughout testing ("normal sleep"; n = 21); 2) 36 hours total sleep deprivation before extinction learning ("pre-extinction deprivation"; n = 25); or 3) 36 hours total sleep deprivation after extinction learning and before extinction recall ("post-extinction deprivation"; n = 25). The groups were compared on blink EMG reactivity to the condition stimulus during extinction learning and recall. There were no differences among the three groups during extinction learning. During extinction recall, the pre-extinction deprivation group demonstrated significantly less extinction recall than the normal sleep group. There was no significant difference between the normal sleep and post-extinction deprivation group during extinction recall. Results indicated sleep deprivation prior to extinction training significantly disrupts extinction recall. These findings suggest that (1) sleep deprivation in the immediate aftermath of trauma could be a potential contributor to PTSD development and maintenance via interference with natural extinction processes and (2) management of sleep symptoms should be considered during extinction-based therapy.

  3. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    PubMed Central

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  4. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    PubMed

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  5. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    PubMed

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  6. The Fear Factor: How It Affects Students Learning to Program in a Tertiary Environment

    ERIC Educational Resources Information Center

    Rogerson, Christine; Scott, Elsje

    2010-01-01

    This paper examines how students' experiences of learning to program are affected by feelings of fear, using a phenomenological approach to elicit rich descriptions of personal experiences from the narratives of final year undergraduate students. In the course of reviewing current work concerning learning or teaching programming, certain focal…

  7. Generalization of Pain-Related Fear Based on Conceptual Knowledge.

    PubMed

    Meulders, Ann; Vandael, Kristof; Vlaeyen, Johan W S

    2017-05-01

    Increasing evidence suggests that pain-related fear is key to the transition from acute to chronic pain. Previous research has shown that perceptual similarity with a pain-associated movement fosters the generalization of fear to novel movements. Perceptual generalization of pain-related fear is adaptive as it enables individuals to extrapolate the threat value of one movement to another without the necessity to learn anew. However, excessive spreading of fear to safe movements may become maladaptive and may lead to sustained anxiety, dysfunctional avoidance behaviors, and severe disability. A hallmark of human cognition is the ability to extract conceptual knowledge from a learning episode as well. Although this conceptual pathway may be important to understand fear generalization in chronic pain, research on this topic is lacking. We investigated acquisition and generalization of concept-based pain-related fear. During acquisition, unique exemplars of one action category (CS+; e.g., opening boxes) were followed by pain, whereas exemplars of another action category (CS-; e.g., closing boxes) were not. Subsequently, spreading of pain-related fear to novel exemplars of both action categories was tested. Participants learned to expect the pain to occur and reported more pain-related fear to the exemplars of the CS+ category compared with those of the CS- category. During generalization, fear and expectancy generalized to novel exemplars of the CS+ category, but not to the CS- category. This pattern was not corroborated in the eyeblink startle measures. This is the first study that demonstrates that pain-related fear can be acquired and generalized based on conceptual knowledge. Copyright © 2016. Published by Elsevier Ltd.

  8. Fear acquisition and liking of out-group and in-group members: Learning bias or attention?

    PubMed

    Koenig, Stephan; Nauroth, Peter; Lucke, Sara; Lachnit, Harald; Gollwitzer, Mario; Uengoer, Metin

    2017-10-01

    The present study explores the notion of an out-group fear learning bias that is characterized by facilitated fear acquisition toward harm-doing out-group members. Participants were conditioned with two in-group and two out-group faces as conditioned stimuli. During acquisition, one in-group and one out-group face was paired with an aversive shock whereas the other in-group and out-group face was presented without shock. Psychophysiological measures of fear conditioning (skin conductance and pupil size) and explicit and implicit liking exhibited increased differential responding to out-group faces compared to in-group faces. However, the results did not clearly indicate that harm-doing out-group members were more readily associated with fear than harm-doing in-group members. In contrast, the out-group face not paired with shock decreased conditioned fear and disliking at least to the same extent that the shock-associated out-group face increased these measures. Based on these results, we suggest an account of the out-group fear learning bias that relates to an attentional bias to process in-group information. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Learning Auditory Discrimination with Computer-Assisted Instruction: A Comparison of Two Different Performance Objectives.

    ERIC Educational Resources Information Center

    Steinhaus, Kurt A.

    A 12-week study of two groups of 14 college freshmen music majors was conducted to determine which group demonstrated greater achievement in learning auditory discrimination using computer-assisted instruction (CAI). The method employed was a pre-/post-test experimental design using subjects randomly assigned to a control group or an experimental…

  10. The Effects of Sound-Field Amplification on Children with Hearing Impairment and Other Diagnoses in Preschool and Primary Classes

    ERIC Educational Resources Information Center

    Furno, Lois Ehrler

    2012-01-01

    Effective learning occurs in auditory environments. Background noise is inherent to classrooms with recommended levels 15 decibels softer than instruction, which is rarely achieved. Learning is diminished by interference to the auditory reception of information, especially for students who are hard of hearing other diagnoses. Sound-field…

  11. The Development of Visual and Auditory Selective Attention Using the Central-Incidental Paradigm.

    ERIC Educational Resources Information Center

    Conroy, Robert L.; Weener, Paul

    Analogous auditory and visual central-incidental learning tasks were administered to 24 students from each of the second, fourth, and sixth grades. The visual tasks served as another modification of Hagen's central-incidental learning paradigm, with the interpretation that focal attention processes continue to develop until the age of 12 or 13…

  12. Auditory Training for Experienced and Inexperienced Second-Language Learners: Native French Speakers Learning English Vowels

    ERIC Educational Resources Information Center

    Iverson, Paul; Pinet, Melanie; Evans, Bronwen G.

    2012-01-01

    This study examined whether high-variability auditory training on natural speech can benefit experienced second-language English speakers who already are exposed to natural variability in their daily use of English. The subjects were native French speakers who had learned English in school; experienced listeners were tested in England and the less…

  13. The paraventricular thalamus controls a central amygdala fear circuit.

    PubMed

    Penzo, Mario A; Robert, Vincent; Tucciarone, Jason; De Bundel, Dimitri; Wang, Minghui; Van Aelst, Linda; Darvas, Martin; Parada, Luis F; Palmiter, Richard D; He, Miao; Huang, Z Josh; Li, Bo

    2015-03-26

    Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.

  14. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    ERIC Educational Resources Information Center

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  15. Skills for Academic Improvement: A Guide for How-to-Study Counselors.

    DTIC Science & Technology

    1982-06-01

    auditory neurological system beyond the car. Auditory perception consists of essentially eight components, which are: 1. Auditory attention ...34daydreaming" or difficulty following lectures in different classes may be an indication of problems with auditory attention . 2. Sound localization...says. The counselor must listen not only attentively to what the cadet says, but must learn to listen perceptively for what the cadet really means. The

  16. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    PubMed Central

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  17. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Auditory Signal Processing in Communication: Perception and Performance of Vocal Sounds

    PubMed Central

    Prather, Jonathan F.

    2013-01-01

    Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. PMID:23827717

  19. The ventromedial hypothalamus mediates predator fear memory

    PubMed Central

    Silva, Bianca A.; Mattucci, Camilla; Kryzwkowski, Piotr; Cuozzo, Rachel; Carbonari, Laura; Gross, Cornelius T.

    2016-01-01

    The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ depending on the nature of the threat, with separate pathways identified for predator, conspecific, and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predator. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in VMHdm is required for both the acquisition and recall of predator fear memory, while that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear. PMID:26991018

  20. Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction.

    PubMed

    Santini, Edwin; Sepulveda-Orengo, Marian; Porter, James T

    2012-08-01

    There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K(+) channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K(+) channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders.

  1. Muscarinic Receptors Modulate the Intrinsic Excitability of Infralimbic Neurons and Consolidation of Fear Extinction

    PubMed Central

    Santini, Edwin; Sepulveda-Orengo, Marian; Porter, James T

    2012-01-01

    There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K+ channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K+ channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders. PMID:22510723

  2. Impaired Auditory and Contextual Fear Conditioning in Soman-Exposed Rats

    DTIC Science & Technology

    2011-01-01

    include the piriform cortex, amygdala, thalamus and hippocampus (Carpentier et al., 1990; Petras , 1994; Shih et al., 2003). Often the resulting... Martin M, Shah R, Bertchume A, Colvin J, Dong H. Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsy...Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG. Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse

  3. Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine.

    PubMed

    Madruga, Clarice; Xavier, Léder L; Achaval, Matilde; Sanvitto, Gilberto L; Lucion, Aldo B

    2006-01-30

    This study aimed at identifying the effects of neonatal handling (H) and maternal separation (MS) on two paradigms of fear, learned and innate, and on the tyrosine hydroxylase (TH) immunoreactive cells in adult life. Wistar rats were daily handled with a brief maternal separation, maternal separated for 3 h or left undisturbed during the first 10 days of life. Behavioural responses in the open-field (innate fear) and conditioned fear (learned fear) were evaluated. Moreover, a semi-quantitative analysis of TH immunoreactivity in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) was performed using optical densitometry and confirmed by planar measurements of neuronal density. Early handling decreased behaviour responses of innate and learned fear in adult life, while maternal separation had no significant long-lasting effect on these responses compared to the non-handled group. The behavioural effects of early handling could not be explained by changes in the density of midbrain dopaminergic cells, which were not affected by handling or maternal separation.

  4. Autophagy Enhances Memory Erasure through Synaptic Destabilization.

    PubMed

    Shehata, Mohammad; Abdou, Kareem; Choko, Kiriko; Matsuo, Mina; Nishizono, Hirofumi; Inokuchi, Kaoru

    2018-04-11

    There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders. Copyright © 2018 the authors 0270-6474/18/383809-14$15.00/0.

  5. Auditory Discrimination Learning: Role of Working Memory.

    PubMed

    Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.

  6. Unconscious improvement in foreign language learning using mismatch negativity neurofeedback: A preliminary study.

    PubMed

    Chang, Ming; Iizuka, Hiroyuki; Kashioka, Hideki; Naruse, Yasushi; Furukawa, Masahiro; Ando, Hideyuki; Maeda, Taro

    2017-01-01

    When people learn foreign languages, they find it difficult to perceive speech sounds that are nonexistent in their native language, and extensive training is consequently necessary. Our previous studies have shown that by using neurofeedback based on the mismatch negativity event-related brain potential, participants could unconsciously achieve learning in the auditory discrimination of pure tones that could not be consciously discriminated without the neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective for helping someone to perceive new speech sounds in foreign language learning. We developed a task for training native Japanese speakers to discriminate between 'l' and 'r' sounds in English, as they usually cannot discriminate between these two sounds. Without participants attending to auditory stimuli or being aware of the nature of the experiment, neurofeedback training helped them to achieve significant improvement in unconscious auditory discrimination and recognition of the target words 'light' and 'right'. There was also improvement in the recognition of other words containing 'l' and 'r' (e.g., 'blight' and 'bright'), even though these words had not been presented during training. This method could be used to facilitate foreign language learning and can be extended to other fields of auditory and clinical research and even other senses.

  7. Unconscious improvement in foreign language learning using mismatch negativity neurofeedback: A preliminary study

    PubMed Central

    Iizuka, Hiroyuki; Kashioka, Hideki; Naruse, Yasushi; Furukawa, Masahiro; Ando, Hideyuki; Maeda, Taro

    2017-01-01

    When people learn foreign languages, they find it difficult to perceive speech sounds that are nonexistent in their native language, and extensive training is consequently necessary. Our previous studies have shown that by using neurofeedback based on the mismatch negativity event-related brain potential, participants could unconsciously achieve learning in the auditory discrimination of pure tones that could not be consciously discriminated without the neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective for helping someone to perceive new speech sounds in foreign language learning. We developed a task for training native Japanese speakers to discriminate between ‘l’ and ‘r’ sounds in English, as they usually cannot discriminate between these two sounds. Without participants attending to auditory stimuli or being aware of the nature of the experiment, neurofeedback training helped them to achieve significant improvement in unconscious auditory discrimination and recognition of the target words ‘light’ and ‘right’. There was also improvement in the recognition of other words containing ‘l’ and ‘r’ (e.g., ‘blight’ and ‘bright’), even though these words had not been presented during training. This method could be used to facilitate foreign language learning and can be extended to other fields of auditory and clinical research and even other senses. PMID:28617861

  8. Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    PubMed Central

    Młynarski, Wiktor

    2014-01-01

    To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform—Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment. PMID:24639644

  9. Auditory Discrimination Learning: Role of Working Memory

    PubMed Central

    Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068

  10. Tuning Shifts of the Auditory System By Corticocortical and Corticofugal Projections and Conditioning

    PubMed Central

    Suga, Nobuo

    2011-01-01

    The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and non-lemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation -- comparable to repetitive tonal stimulation -- of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a “differential” gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning. PMID:22155273

  11. Sound localization by echolocating bats

    NASA Astrophysics Data System (ADS)

    Aytekin, Murat

    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs.

  12. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.

  13. Neuroscientific evidence for defensive avoidance of fear appeals

    PubMed Central

    Kessels, Loes T E; Ruiter, Robert A C; Wouters, Liesbeth; Jansma, Bernadette M

    2014-01-01

    Previous studies indicate that people respond defensively to threatening health information, especially when the information challenges self-relevant goals. The authors investigated whether reduced acceptance of self-relevant health risk information is already visible in early attention allocation processes. In two experimental studies, participants were watching high- and low-threat health commercials, and at the same time had to pay attention to specific odd auditory stimuli in a sequence of frequent auditory stimuli (odd ball paradigm). The amount of attention allocation was measured by recording event-related brain potentials (i.e., P300 ERPs) and reaction times. Smokers showed larger P300 amplitudes in response to the auditory targets while watching high-threat instead of low-threat anti-smoking commercials. In contrast, non-smokers showed smaller P300 amplitudes during watching high as opposed to low threat anti-smoking commercials. In conclusion, the findings provide further neuroscientific support for the hypothesis that threatening health information causes more avoidance responses among those for whom the health threat is self-relevant. PMID:24811878

  14. Learning style-based teaching harvests a superior comprehension of respiratory physiology.

    PubMed

    Anbarasi, M; Rajkumar, G; Krishnakumar, S; Rajendran, P; Venkatesan, R; Dinesh, T; Mohan, J; Venkidusamy, S

    2015-09-01

    Students entering medical college generally show vast diversity in their school education. It becomes the responsibility of teachers to motivate students and meet the needs of all diversities. One such measure is teaching students in their own preferred learning style. The present study was aimed to incorporate a learning style-based teaching-learning program for medical students and to reveal its significance and utility. Learning styles of students were assessed online using the visual-auditory-kinesthetic (VAK) learning style self-assessment questionnaire. When respiratory physiology was taught, students were divided into three groups, namely, visual (n = 34), auditory (n = 44), and kinesthetic (n = 28), based on their learning style. A fourth group (the traditional group; n = 40) was formed by choosing students randomly from the above three groups. Visual, auditory, and kinesthetic groups were taught following the appropriate teaching-learning strategies. The traditional group was taught via the routine didactic lecture method. The effectiveness of this intervention was evaluated by a pretest and two posttests, posttest 1 immediately after the intervention and posttest 2 after a month. In posttest 1, one-way ANOVA showed a significant statistical difference (P=0.005). Post hoc analysis showed significance between the kinesthetic group and traditional group (P=0.002). One-way ANOVA showed a significant difference in posttest 2 scores (P < 0.0001). Post hoc analysis showed significance between the three learning style-based groups compared with the traditional group [visual vs. traditional groups (p=0.002), auditory vs. traditional groups (p=0.03), and Kinesthetic vs. traditional groups (p=0.001)]. This study emphasizes that teaching methods tailored to students' style of learning definitely improve their understanding, performance, and retrieval of the subject. Copyright © 2015 The American Physiological Society.

  15. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan

    PubMed Central

    White, Erin J.; Hutka, Stefanie A.; Williams, Lynne J.; Moreno, Sylvain

    2013-01-01

    Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language (L2) and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying auditory learning and plasticity at different points in development. Drawing on research in language development and music training, this review examines not only what we learn and when we learn it, but also how learning occurs at different ages. First, we discuss differences in the mechanism of learning and plasticity during and after a sensitive period by examining how language exposure versus training forms language-specific phonetic representations in infants and adult L2 learners, respectively. Second, we examine the impact of musical training that begins at different ages on behavioral and neural indices of auditory and motor processing as well as sensorimotor integration. Third, we examine the extent to which childhood training in one auditory domain can enhance processing in another domain via the transfer of learning between shared neuro-cognitive systems. Specifically, we review evidence for a potential bi-directional transfer of skills between music and language by examining how speaking a tonal language may enhance music processing and, conversely, how early music training can enhance language processing. We conclude with a discussion of the role of attention in auditory learning for learning during and after sensitive periods and outline avenues of future research. PMID:24312022

  16. Histone Modifications around Individual BDNF Gene Promoters in Prefrontal Cortex Are Associated with Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Wu, Hao; Crego, Cortney; Zellhoefer, Jessica; Sun, Yi E.; Barad, Mark

    2007-01-01

    Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore,…

  17. Neonatal Odor-Shock Conditioning Alters the Neural Network Involved in Odor Fear Learning at Adulthood

    ERIC Educational Resources Information Center

    Sevelinges, Yannick; Sullivan, Regina M.; Messaoudi, Belkacem; Mouly, Anne-Marie

    2008-01-01

    Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely…

  18. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    ERIC Educational Resources Information Center

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  19. The Diagnosis and Management of Auditory Processing Disorder

    ERIC Educational Resources Information Center

    Moore, David R.

    2011-01-01

    Purpose: To provide a personal perspective on auditory processing disorder (APD), with reference to the recent clinical forum on APD and the needs of clinical speech-language pathologists and audiologists. Method: The Medical Research Council-Institute of Hearing Research (MRC-IHR) has been engaged in research into APD and auditory learning for 8…

  20. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults

    PubMed Central

    Schiele, Miriam A.; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen

    2016-01-01

    ABSTRACT Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc. Dev Psychobiol 58: 471–481, 2016. PMID:26798984

  1. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  2. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling.

    PubMed

    Huang, Chiung-Chun; Chou, Dylan; Yeh, Che-Ming; Hsu, Kuei-Sen

    2016-02-01

    Fear memory-encoding thalamic input synapses to the lateral amygdala (T-LA) exhibit dynamic efficacy changes that are tightly correlated with fear memory strength. Previous studies have shown that auditory fear conditioning involves strengthening of synaptic strength, and conversely, fear extinction training leads to T-LA synaptic weakening and occlusion of long-term depression (LTD) induction. These findings suggest that the mechanisms governing LTD at T-LA synapses may determine the behavioral outcomes of extinction training. Here, we explored this hypothesis by implementing food deprivation (FD) stress in mice to determine its effects on fear extinction and LTD induction at T-LA synapses. We found that FD increased plasma acylated ghrelin levels and enhanced fear extinction and its retention. Augmentation of fear extinction by FD was blocked by pretreatment with growth hormone secretagogue receptor type-1a antagonist D-Lys(3)-GHRP-6, suggesting an involvement of ghrelin signaling. Confirming previous findings, two distinct forms of LTD coexist at thalamic inputs to LA pyramidal neurons that can be induced by low-frequency stimulation (LFS) or paired-pulse LFS (PP-LFS) paired with postsynaptic depolarization, respectively. Unexpectedly, we found that FD impaired the induction of PP-LFS- and group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG)-induced LTD, but not LFS-induced LTD. Ghrelin mimicked the effects of FD to impair the induction of PP-LFS- and DHPG-induced LTD at T-LA synapses, which were blocked by co-application of D-Lys(3)-GHRP-6. The sensitivity of synaptic transmission to 1-naphthyl acetyl spermine was not altered by either FD or ghrelin treatment. These results highlight distinct features of fear extinction and LTD at T-LA synapses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    PubMed

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  4. Effect of Acute Swim Stress on Plasma Corticosterone and Brain Monoamine Levels in Bidirectionally Selected DxH Recombinant Inbred Mouse Strains Differing in Fear Recall and Extinction

    PubMed Central

    Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz

    2015-01-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886

  5. Increased anxiety but normal fear and safety learning in orexin-deficient mice.

    PubMed

    Khalil, Radwa; Fendt, Markus

    2017-03-01

    The loss of orexin neurons in humans leads to the disease narcolepsy, characterized by daytime sleepiness and cataplexy. Recent data suggest that orexin is also involved in emotional processing. The goal of the present study was to evaluate fear and safety learning as well as unconditioned fear (anxiety) in orexin-deficient animals. Orexin-deficient mice are an established animal model used to investigate the neuropathology and potential treatments for narcolepsy. Here, we present novel data showing that orexin-deficient mice express increased anxiety in the open field, light-dark box test and carnivore odor-induced avoidance, but are normal in fear and safety learning. These findings suggest an important role of orexin in brain areas involved in anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Morphine prevents the development of stress-enhanced fear learning.

    PubMed

    Szczytkowski-Thomson, Jennifer L; Lebonville, Christina L; Lysle, Donald T

    2013-01-01

    The current study investigates the pharmacotherapeutic use of morphine as a preventative treatment for stress-enhanced fear learning, an animal model that closely mimics symptoms of post-traumatic stress disorder (PTSD). PTSD is a chronic and debilitating anxiety disorder characterized by exaggerated fear and/or anxiety that may develop as a result of exposure to a traumatic event. In this model, rats are exposed to a severe stressor (15 foot shocks) in one environment (Context A) and then subsequently exposed to a milder form of the same stressor (single foot shock) in a different environment (Context B). Animals that did not receive prior shock treatment exhibit fear responsiveness to Context B in line with the severity of the single shock given in this context. Animals that had received prior shock treatment in Context A exhibit an exaggerated learned fear response to Context B. Furthermore, animals receiving a single dose of morphine immediately following the severe stressor in Context A continue to show an enhanced fear response in Context B. However, animals receiving repeated morphine administration (three injections) after exposure to the severe stressor in Context A or a single dose of morphine at 48 h after the severe stressor no longer exhibit an enhancement in fear learning to Context B. These results are consistent with clinical studies suggesting that morphine treatment following a severe stressor may be useful in preventing or reducing the severity of PTSD in at-risk populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.

    PubMed

    Ross, Bernhard; Barat, Masihullah; Fujioka, Takako

    2017-06-14

    Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association modifies subsequent perception. Our study demonstrated the immediate effects of sound-making experience on perception using magnetoencephalographic recordings, as reflected in the increased auditory evoked P2 wave, increased responsiveness of β oscillations, and enhanced connectivity between auditory and sensorimotor cortices. The importance of motor learning was underscored as the changes were much smaller in a control group using a key press to generate the sounds instead of learning to play the musical instrument. The results support the rapid integration of a feedforward model during perception and provide a neurophysiological basis for the application of music making in motor rehabilitation training. Copyright © 2017 the authors 0270-6474/17/375948-12$15.00/0.

  8. Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats.

    PubMed

    Kirry, Adam J; Herbst, Matthew R; Poirier, Sarah E; Maskeri, Michelle M; Rothwell, Amy C; Twining, Robert C; Gilmartin, Marieke R

    2018-05-01

    A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    PubMed

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  10. EXEL; Experience for Children in Learning. Parent-Directed Activities to Develop: Oral Expression, Visual Discrimination, Auditory Discrimination, Motor Coordination.

    ERIC Educational Resources Information Center

    Behrmann, Polly; Millman, Joan

    The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…

  11. How Does the Linguistic Distance between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances during Verbal Memory Examination

    ERIC Educational Resources Information Center

    Taha, Haitham

    2017-01-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and…

  12. A Study of the Role of Central Auditory Processing in Learning Disabilities: A Prospectus Submitted to the Department of Speech.

    ERIC Educational Resources Information Center

    Murray, Hugh

    Proposed is a study to evaluate the auditory systems of learning disabled (LD) students with a new audiological, diagnostic, stimulus apparatus which is capable of objectively measuring the interaction of the binaural aspects of hearing. The author points out problems with LD definitions that exclude neurological disorders. The detection of…

  13. The Effect of Auditory Integration Training on the Working Memory of Adults with Different Learning Preferences

    ERIC Educational Resources Information Center

    Ryan, Tamara E.

    2014-01-01

    The purpose of this study was to determine the effects of auditory integration training (AIT) on a component of the executive function of working memory; specifically, to determine if learning preferences might have an interaction with AIT to increase the outcome for some learners. The question asked by this quantitative pretest posttest design is…

  14. The time course of location-avoidance learning in fear of spiders.

    PubMed

    Rinck, Mike; Koene, Marieke; Telli, Sibel; Moerman-van den Brink, Wiltine; Verhoeven, Barbara; Becker, Eni S

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the participants were exposed to virtual spiders. Unbeknown to the participants, only two of four museum rooms contained spiders, allowing for avoidance learning. Indeed, the more SF the participants were, the faster they learned to avoid the rooms that contained spiders (Experiment. 1), and within the first six trials, high fearfuls already developed a preference for starting their search task in rooms without spiders (Experiment 2). These results illustrate the time course of avoidance learning in SFs, and they speak to the usefulness of IVEs in fundamental anxiety research.

  15. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types

    PubMed Central

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination. PMID:26895286

  16. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types.

    PubMed

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential "guidance effect" between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.

  17. Auditory middle latency response in children with learning difficulties

    PubMed Central

    Frizzo, Ana Claudia Figueiredo; Issac, Myriam Lima; Pontes-Fernandes, Angela Cristina; Menezes, Pedro de Lemos; Funayama, Carolina Araújo Rodrigues

    2012-01-01

    Summary Introduction: This is an objective laboratory assessment of the central auditory systems of children with learning disabilities. Aim: To examine and determine the properties of the components of the Auditory Middle Latency Response in a sample of children with learning disabilities. Methods: This was a prospective, cross-sectional cohort study with quantitative, descriptive, and exploratory outcomes. We included 50 children aged 8–13 years of both genders with and without learning disorders. Those with disorders of known organic, environmental, or genetic causes were excluded. Results and Conclusions: The Na, Pa, and Nb waves were identified in all subjects. The ranges of the latency component values were as follows: Na = 9.8–32.3 ms, Pa = 19.0–51.4 ms, Nb = 30.0–64.3 ms (learning disorders group) and Na = 13.2–29.6 ms, Pa = 21.8–42.8 ms, Nb = 28.4–65.8 ms (healthy group). The values of the Na-Pa amplitude ranged from 0.3 to 6.8 ìV (learning disorders group) or 0.2–3.6 ìV (learning disorders group). Upon analysis, the functional characteristics of the groups were distinct: the left hemisphere Nb latency was longer in the study group than in the control group. Peculiarities of the electrophysiological measures were observed in the children with learning disorders. This study has provided information on the Auditory Middle Latency Response and can serve as a reference for other clinical and experimental studies in children with these disorders. PMID:25991954

  18. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  19. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  20. Types of Learning Problems

    MedlinePlus

    ... Dyscalculia is defined as difficulty performing mathematical calculations. Math is problematic for many students, but dyscalculia may prevent a teenager from grasping even basic math concepts. Auditory Memory and Processing Disabilities Auditory memory ...

  1. Can experimentally induced positive affect attenuate generalization of fear of movement-related pain?

    PubMed

    Geschwind, Nicole; Meulders, Michel; Peters, Madelon L; Vlaeyen, Johan W S; Meulders, Ann

    2015-03-01

    Recent experimental data show that associative learning processes are involved not only in the acquisition but also in the spreading of pain-related fear. Clinical studies suggest involvement of positive affect in resilience against chronic pain. Surprisingly, the role of positive affect in associative learning in general, and in fear generalization in particular, has received scant attention. In a voluntary movement paradigm, in which one arm movement (reinforced conditioned stimulus [CS+]) was followed by a painful stimulus and another was not (unreinforced conditioned stimulus [CS-]), we tested generalization of fear inhibition in response to 5 novel but related generalization movements (GSs; within-subjects) after either a positive affect induction or a control exercise (Group = between-subjects) in healthy participants (N = 50). The GSs' similarity with the original CS+ movement and CS- movement varied. Fear learning was assessed via verbal ratings. Results indicated that there was an interaction between the increase in positive affect and the linear generalization gradient. Stronger increases in positive affect were associated with steeper generalization curves because of relatively lower pain-unconditioned stimulus expectancy and less fear of stimuli more similar to the CS-. There was no Group by Stimulus interaction. Results thus suggest that positive affect may enhance safety learning through promoting generalization from known safe movements to novel yet related movements. Improved safety learning may be a central mechanism underlying the association between positive affect and increased resilience against chronic pain. We investigated the extent to which positive affect influences the generalization (ie, spreading) of pain-related fear inhibition in response to situations similar to the original, pain-eliciting situation. Results suggest that increasing positive affect in the acute pain stage may limit the spreading of pain-related fear, thereby potentially inhibiting transition to chronic pain conditions. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Implicit sequence learning in deaf children with cochlear implants.

    PubMed

    Conway, Christopher M; Pisoni, David B; Anaya, Esperanza M; Karpicke, Jennifer; Henning, Shirley C

    2011-01-01

    Deaf children with cochlear implants (CIs) represent an intriguing opportunity to study neurocognitive plasticity and reorganization when sound is introduced following a period of auditory deprivation early in development. Although it is common to consider deafness as affecting hearing alone, it may be the case that auditory deprivation leads to more global changes in neurocognitive function. In this paper, we investigate implicit sequence learning abilities in deaf children with CIs using a novel task that measured learning through improvement to immediate serial recall for statistically consistent visual sequences. The results demonstrated two key findings. First, the deaf children with CIs showed disturbances in their visual sequence learning abilities relative to the typically developing normal-hearing children. Second, sequence learning was significantly correlated with a standardized measure of language outcome in the CI children. These findings suggest that a period of auditory deprivation has secondary effects related to general sequencing deficits, and that disturbances in sequence learning may at least partially explain why some deaf children still struggle with language following cochlear implantation. © 2010 Blackwell Publishing Ltd.

  3. The prelimbic cortex directs attention toward predictive cues during fear learning.

    PubMed

    Sharpe, Melissa J; Killcross, Simon

    2015-06-01

    The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when competition from contextual cues is low, we found that PL inactivation resulted in animals expressing fear toward irrelevant discrete cues; an effect selective to inactivation during the learning phase and not during retrieval. These data demonstrate that the prelimbic cortex modulates attention toward cues to preferentially direct fear responding on the basis of their predictive value. © 2015 Sharpe and Killcross; Published by Cold Spring Harbor Laboratory Press.

  4. Early experience shapes vocal neural coding and perception in songbirds

    PubMed Central

    Woolley, Sarah M. N.

    2012-01-01

    Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657

  5. Fear Conditioning in an Abdominal Pain Model: Neural Responses during Associative Learning and Extinction in Healthy Subjects

    PubMed Central

    Kattoor, Joswin; Gizewski, Elke R.; Kotsis, Vassilios; Benson, Sven; Gramsch, Carolin; Theysohn, Nina; Maderwald, Stefan; Forsting, Michael; Schedlowski, Manfred; Elsenbruch, Sigrid

    2013-01-01

    Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement. In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS−) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness. Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS− was observed. In the reinstatement phase, a tendency for parahippocampal activation was found. Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain. PMID:23468832

  6. Learning and Judgment Can Be Affected by Predisposed Fearfulness in Laying Hens

    PubMed Central

    de Haas, Elske N.; Lee, Caroline; Rodenburg, T. Bas

    2017-01-01

    High fearfulness could disrupt learning and likely affects judgment in animals, especially when it is part of an animals’ personality, i.e., trait anxiety. Here, we tested whether high fearfulness affects discrimination learning and judgment bias (JB) in laying hens. Based on the response to an open field at 5 weeks of age, birds were categorized as fearful (FC) by showing no walking or vocalizing or non-fearful (NFC) by showing walking and vocalizing. At adult age, birds (n = 24) were trained in a go–go task to discriminate two cues (white or black) with a small or large reward. Birds that reached training criteria were exposed to three unrewarded ambiguous cues (25, 50, and 75% black) to assess JB. Task acquisition took longer for FC birds than for NFC birds, due to a left side bias, and more sessions were needed to unlearn this side bias. Changes in trial setup increased response latencies for FC birds but not for NFC birds. A larger number of FC birds than NFC birds chose optimistically in the last ambiguous trial (25% black). FC birds had a longer latency to choose in the ambiguous trial (75% black) compared to NFC birds. Prior choice in ambiguous trials and a preceding large or small trial affected latencies and choices for both types of birds. Our study showed that fearfulness was associated with differences in discrimination learning ability and JB. It appeared that FC birds used a rigid response strategy during early learning phases by choosing a specific side repeatedly irrespective of success. FC birds were more affected by changes in the setup of the trials in comparison to NFC birds. We speculate that FC birds are more sensitive to changes in environmental cues and reward expectancy. These factors could explain how high fearfulness affects learning. PMID:28798918

  7. Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening

    PubMed Central

    Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.

    2013-01-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 differently colored lamps (CS+), but not a third color (CS−), within the computer image of a room (conditioning context). One CS+ (CS+E) but not the other (CS+U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 hr (within AM or PM), 12 hr (morning-to-evening or evening-to-morning) or 24 hr (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p=.002). Collapsing across CS+ type, there was smaller morning differential SCR at both extinction recall (p=.003) and fear renewal (p=.005). Morning extinction recall showed better generalization from the CS+E to CS+U with the response to the CS+U significantly larger than to the CS+E only in the evening (p=.028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicting better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769

  8. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Neurogenetic Approaches to Stress and Fear in Humans as Pathophysiological Mechanisms for Posttraumatic Stress Disorder.

    PubMed

    Nees, Frauke; Witt, Stephanie H; Flor, Herta

    2018-05-15

    In this review article, genetic variation associated with brain responses related to acute and chronic stress reactivity and fear learning in humans is presented as an important mechanism underlying posttraumatic stress disorder. We report that genes related to the regulation of the hypothalamic-pituitary-adrenal axis, as well as genes that modulate serotonergic, dopaminergic, and neuropeptidergic functions or plasticity, play a role in this context. The strong overlap of the genetic targets involved in stress and fear learning suggests that a dimensional and mechanistic model of the development of posttraumatic stress disorder based on these constructs is promising. Genome-wide genetic analyses on fear and stress mechanisms are scarce. So far, reliable replication is still lacking for most of the molecular genetic findings, and the proportion of explained variance is rather small. Further analysis of neurogenetic stress and fear learning needs to integrate data from animal and human studies. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory

    PubMed Central

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-01-01

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons. PMID:25988357

  11. Testing neurophysiological markers related to fear-potentiated startle.

    PubMed

    Seligowski, Antonia V; Bondy, Erin; Singleton, Paris; Orcutt, Holly K; Ressler, Kerry J; Auerbach, Randy P

    2018-06-11

    Fear-potentiated startle (FPS) paradigms provide insight into fear learning mechanisms that contribute to impairment among individuals with posttraumatic stress symptoms (PTSS). Electrophysiology also has provided insight into these mechanisms through the examination of event-related potentials (ERPs) such as the P100 and LPP. It remains unclear, however, whether the P100 and LPP may be related to fear learning processes within the FPS paradigm. To this end, we tested differences in ERP amplitudes for conditioned stimuli associated (CS+) and not associated (CS-) with an aversive unconditioned stimulus (US) during fear acquisition. Participants included 54 female undergraduate students (mean age = 20.26). The FPS response was measured via electromyography of the orbicularis oculi muscle. EEG data were collected during the FPS paradigm. While the difference between CS+ and CS- P100 amplitude was not significant, LPP amplitudes were significantly enhanced following the CS+ relative to CS-. Furthermore, the LPP difference wave (CS+ minus CS-) was associated with FPS scores for the CS- during the later portion of fear acquisition. These findings suggest that conditioned stimuli may have altered emotional encoding (LPP) during the FPS paradigm. Thus, the LPP may be a promising neurophysiological marker that is related to fear learning processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure.

    PubMed

    van Rooij, Sanne J H; Cross, Dorthie; Stevens, Jennifer S; Vance, L Alexander; Kim, Ye Ji; Bradley, Bekh; Tottenham, Nim; Jovanovic, Tanja

    2017-02-01

    Parental availability influences fear expression and learning across species, but the effect of maternal buffering on fear learning in humans is unknown. Here we investigated the effect of maternal availability during fear conditioning in a group of children (ages 8-10) and adolescents (ages 11-13) from a low-income population with a range of trauma exposure. Acoustic startle response data were collected to measure fear-potentiated startle (FPS) in 104 participants. A total of 62 participants were tested with the mother available and 42 when the mother was not in the testing room. We observed that maternal availability during fear conditioning interacted with age to affect FPS discrimination between CS+ and CS-. In line with previous findings suggesting an absence of maternal buffering in adolescents, fear discrimination was affected by maternal availability only in children. Second, we observed that the effect of maternal buffering on FPS discrimination in children was not influenced by maternally reported warmth. In conclusion, we demonstrated that maternal availability improved discrimination in children, regardless of the quality of the relationship. Adolescents discriminated irrespective of maternal status, suggesting that childhood may be a sensitive period for environmental influences on key processes such as learning of danger and safety signals.

  13. Fear Generalization and Anxiety: Behavioral and Neural Mechanisms.

    PubMed

    Dunsmoor, Joseph E; Paz, Rony

    2015-09-01

    Fear can be an adaptive emotion that helps defend against potential danger. Classical conditioning models elegantly describe how animals learn which stimuli in the environment signal danger, but understanding how this learning is generalized to other stimuli that resemble aspects of a learned threat remains a challenge. Critically, the overgeneralization of fear to harmless stimuli or situations is a burden to daily life and characteristic of posttraumatic stress disorder and other anxiety disorders. Here, we review emerging evidence on behavioral and neural mechanisms of generalization of emotional learning with the goal of encouraging further research on generalization in anxiety disorders. We begin by placing research on fear generalization in a rich historical context of stimulus generalization dating back to Pavlov, which lays the foundation for theoretical and experimental approaches used today. We then transition to contemporary behavioral and neurobiological research on generalization of emotional learning in humans and nonhuman animals and discuss the factors that promote generalization on the one hand from discrimination on the other hand. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    PubMed

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    PubMed Central

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  16. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts.

    PubMed

    McDonald, Robert J; Balog, R J; Lee, Justin Q; Stuart, Emily E; Carrels, Brianna B; Hong, Nancy S

    2018-10-01

    The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Aversive Learning Modulates Cortical Representations of Object Categories

    PubMed Central

    Dunsmoor, Joseph E.; Kragel, Philip A.; Martin, Alex; LaBar, Kevin S.

    2014-01-01

    Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli. PMID:23709642

  18. The key role of extinction learning in anxiety disorders: behavioral strategies to enhance exposure-based treatments.

    PubMed

    Pittig, Andre; van den Berg, Linda; Vervliet, Bram

    2016-01-01

    Extinction learning is a major mechanism for fear reduction by means of exposure. Current research targets innovative strategies to enhance fear extinction and thereby optimize exposure-based treatments for anxiety disorders. This selective review updates novel behavioral strategies that may provide cutting-edge clinical implications. Recent studies provide further support for two types of enhancement strategies. Procedural enhancement strategies implemented during extinction training translate to how exposure exercises may be conducted to optimize fear extinction. These strategies mostly focus on a maximized violation of dysfunctional threat expectancies and on reducing context and stimulus specificity of extinction learning. Flanking enhancement strategies target periods before and after extinction training and inform optimal preparation and post-processing of exposure exercises. These flanking strategies focus on the enhancement of learning in general, memory (re-)consolidation, and memory retrieval. Behavioral strategies to enhance fear extinction may provide powerful clinical applications to further maximize the efficacy of exposure-based interventions. However, future replications, mechanistic examinations, and translational studies are warranted to verify long-term effects and naturalistic utility. Future directions also comprise the interplay of optimized fear extinction with (avoidance) behavior and motivational antecedents of exposure.

  19. NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

    PubMed

    Gao, Meng; Lengersdorf, Daniel; Stüttgen, Maik C; Güntürkün, Onur

    2018-05-02

    Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Auditory experience controls the maturation of song discrimination and sexual response in Drosophila

    PubMed Central

    Li, Xiaodong; Ishimoto, Hiroshi

    2018-01-01

    In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects. PMID:29555017

Top