Sample records for auditory motion processing

  1. Auditory motion-specific mechanisms in the primate brain

    PubMed Central

    Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.

    2017-01-01

    This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038

  2. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  3. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum. PMID:25468732

  4. A selective impairment of perception of sound motion direction in peripheral space: A case study.

    PubMed

    Thaler, Lore; Paciocco, Joseph; Daley, Mark; Lesniak, Gabriella D; Purcell, David W; Fraser, J Alexander; Dutton, Gordon N; Rossit, Stephanie; Goodale, Melvyn A; Culham, Jody C

    2016-01-08

    It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  6. Evidence for auditory-visual processing specific to biological motion.

    PubMed

    Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F

    2012-01-01

    Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response.

  7. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  8. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  10. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  11. Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion

    PubMed Central

    Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-01

    The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411

  12. The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display.

    PubMed

    Wang, Qingcui; Bao, Ming; Chen, Lihan

    2014-01-01

    Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.

  13. Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

    PubMed Central

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-01-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414

  14. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    PubMed Central

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  15. Compression of auditory space during forward self-motion.

    PubMed

    Teramoto, Wataru; Sakamoto, Shuichi; Furune, Fumimasa; Gyoba, Jiro; Suzuki, Yôiti

    2012-01-01

    Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point). In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial shifts in the auditory receptive field locations driven by afferent signals from vestibular system.

  16. Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness

    PubMed Central

    Keshavarz, Behrang; Hettinger, Lawrence J.; Kennedy, Robert S.; Campos, Jennifer L.

    2014-01-01

    Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”. PMID:24983752

  17. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging

    PubMed Central

    Paltoglou, Aspasia E; Sumner, Christian J; Hall, Deborah A

    2011-01-01

    Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast. PMID:21447093

  18. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity

    PubMed Central

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities–0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking. PMID:28337137

  19. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  20. Filling-in visual motion with sounds.

    PubMed

    Väljamäe, A; Soto-Faraco, S

    2008-10-01

    Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.

  1. Psychophysical evidence for auditory motion parallax.

    PubMed

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  2. Modality-dependent effect of motion information in sensory-motor synchronised tapping.

    PubMed

    Ono, Kentaro

    2018-05-14

    Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Modulation frequency as a cue for auditory speed perception.

    PubMed

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  4. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  5. The contribution of dynamic visual cues to audiovisual speech perception.

    PubMed

    Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador

    2015-08-01

    Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Representation of particle motion in the auditory midbrain of a developing anuran.

    PubMed

    Simmons, Andrea Megela

    2015-07-01

    In bullfrog tadpoles, a "deaf period" of lessened responsiveness to the pressure component of sounds, evident during the end of the late larval period, has been identified in the auditory midbrain. But coding of underwater particle motion in the vestibular medulla remains stable over all of larval development, with no evidence of a "deaf period." Neural coding of particle motion in the auditory midbrain was assessed to determine if a "deaf period" for this mode of stimulation exists in this brain area in spite of its absence from the vestibular medulla. Recording sites throughout the developing laminar and medial principal nuclei show relatively stable thresholds to z-axis particle motion, up until the "deaf period." Thresholds then begin to increase from this point up through the rest of metamorphic climax, and significantly fewer responsive sites can be located. The representation of particle motion in the auditory midbrain is less robust during later compared to earlier larval stages, overlapping with but also extending beyond the restricted "deaf period" for pressure stimulation. The decreased functional representation of particle motion in the auditory midbrain throughout metamorphic climax may reflect ongoing neural reorganization required to mediate the transition from underwater to amphibious life.

  7. The effects of stereo disparity on the behavioural and electrophysiological correlates of perception of audio-visual motion in depth.

    PubMed

    Harrison, Neil R; Witheridge, Sian; Makin, Alexis; Wuerger, Sophie M; Pegna, Alan J; Meyer, Georg F

    2015-11-01

    Motion is represented by low-level signals, such as size-expansion in vision or loudness changes in the auditory modality. The visual and auditory signals from the same object or event may be integrated and facilitate detection. We explored behavioural and electrophysiological correlates of congruent and incongruent audio-visual depth motion in conditions where auditory level changes, visual expansion, and visual disparity cues were manipulated. In Experiment 1 participants discriminated auditory motion direction whilst viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., difference between incongruent and congruent conditions) was larger for visual 3D cues compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants detected an infrequent deviant sound. Our main finding was that audio-visual congruity was affected by retinal disparity at an early processing stage (135-160ms) over occipito-parietal scalp. Topographic analyses suggested that similar brain networks were activated for the 2D and 3D congruity effects, but that cortical responses were stronger in the 3D condition. Differences between congruent and incongruent conditions were observed between 140-200ms, 220-280ms, and 350-500ms after stimulus onset. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory.

    PubMed

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  9. Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task

    PubMed Central

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L.

    2016-01-01

    Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e., optic flow) and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e., engine, tire, and wind sounds). Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion. PMID:27199829

  10. Comparable mechanisms of working memory interference by auditory and visual motion in youth and aging

    PubMed Central

    Mishra, Jyoti; Zanto, Theodore; Nilakantan, Aneesha; Gazzaley, Adam

    2013-01-01

    Intrasensory interference during visual working memory (WM) maintenance by object stimuli (such as faces and scenes), has been shown to negatively impact WM performance, with greater detrimental impacts of interference observed in aging. Here we assessed age-related impacts by intrasensory WM interference from lower-level stimulus features such as visual and auditory motion stimuli. We consistently found that interference in the form of ignored distractions and secondary task i nterruptions presented during a WM maintenance period, degraded memory accuracy in both the visual and auditory domain. However, in contrast to prior studies assessing WM for visual object stimuli, feature-based interference effects were not observed to be significantly greater in older adults. Analyses of neural oscillations in the alpha frequency band further revealed preserved mechanisms of interference processing in terms of post-stimulus alpha suppression, which was observed maximally for secondary task interruptions in visual and auditory modalities in both younger and older adults. These results suggest that age-related sensitivity of WM to interference may be limited to complex object stimuli, at least at low WM loads. PMID:23791629

  11. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    PubMed

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated motion, resulting in highly contiguous discharge profiles for overlapping stimuli. This finding indicates that responses of PL-SOC units to time-varying IPD reflect only instantaneous IPD with no additional influence of dynamic stimulus attributes. Thus the neuronal representation of auditory spatial information undergoes a major transformation as interaural delay is initially processed in the SOC and subsequently reprocessed in IC. The finding that motion sensitivity in IC emerges from motion-insensitive input suggests that information about change of position is crucial to spatial processing at higher levels of the auditory system.

  12. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  13. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    NASA Astrophysics Data System (ADS)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  14. Auditory and motion metaphors have different scalp distributions: an ERP study

    PubMed Central

    Schmidt-Snoek, Gwenda L.; Drew, Ashley R.; Barile, Elizabeth C.; Agauas, Stephen J.

    2015-01-01

    While many links have been established between sensory-motor words used literally (kick the ball) and sensory-motor regions of the brain, it is less clear whether metaphorically used words (kick the habit) also show such signs of “embodiment.” Additionally, not much is known about the timing or nature of the connection between language and sensory-motor neural processing. We used stimuli divided into three figurativeness conditions—literal, metaphor, and anomalous—and two modality conditions—auditory (Her limousine was a privileged snort) and motion (The editorial was a brass-knuckle punch). The conditions were matched on a large number of potentially confounding factors including cloze probability. The electroencephalographic response to the final word of each sentence was measured at 64 electrode sites on the scalp of 22 participants and event-related potentials (ERPs) calculated. Analysis revealed greater amplitudes for metaphorical than literal sentences in both 350–500 ms and 500–650 ms timeframes. Results supported the possibility of different neural substrates for motion and auditory sentences. Greater differences for motion sentences were seen in the left posterior and left central electrode sites than elsewhere on the scalp. These findings are consistent with a sensory-motor neural categorization of language and with the integration of modal and amodal information during the N400 and P600 timeframes. PMID:25821433

  15. An Expanded Role for the Dorsal Auditory Pathway in Sensorimotor Control and Integration

    PubMed Central

    Rauschecker, Josef P.

    2010-01-01

    The dual-pathway model of auditory cortical processing assumes that two largely segregated processing streams originating in the lateral belt subserve the two main functions of hearing: identification of auditory “objects”, including speech; and localization of sounds in space (Rauschecker and Tian, 2000). Evidence has accumulated, chiefly from work in humans and nonhuman primates, that an antero-ventral pathway supports the former function, whereas a postero-dorsal stream supports the latter, i.e. processing of space and motion-in-space. In addition, the postero-dorsal stream has also been postulated to subserve some functions of speech and language in humans. A recent review (Rauschecker and Scott, 2009) has proposed the possibility that both functions of the postero-dorsal pathway can be subsumed under the same structural forward model: an efference copy sent from prefrontal and premotor cortex provides the basis for “optimal state estimation” in the inferior parietal lobe and in sensory areas of the posterior auditory cortex. The current article corroborates this model by adding and discussing recent evidence. PMID:20850511

  16. Acoustic facilitation of object movement detection during self-motion

    PubMed Central

    Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.

    2011-01-01

    In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050

  17. Babies in traffic: infant vocalizations and listener sex modulate auditory motion perception.

    PubMed

    Neuhoff, John G; Hamilton, Grace R; Gittleson, Amanda L; Mejia, Adolfo

    2014-04-01

    Infant vocalizations and "looming sounds" are classes of environmental stimuli that are critically important to survival but can have dramatically different emotional valences. Here, we simultaneously presented listeners with a stationary infant vocalization and a 3D virtual looming tone for which listeners made auditory time-to-arrival judgments. Negatively valenced infant cries produced more cautious (anticipatory) estimates of auditory arrival time of the tone over a no-vocalization control. Positively valenced laughs had the opposite effect, and across all conditions, men showed smaller anticipatory biases than women. In Experiment 2, vocalization-matched vocoded noise stimuli did not influence concurrent auditory time-to-arrival estimates compared with a control condition. In Experiment 3, listeners estimated the egocentric distance of a looming tone that stopped before arriving. For distant stopping points, women estimated the stopping point as closer when the tone was presented with an infant cry than when it was presented with a laugh. For near stopping points, women showed no differential effect of vocalization type. Men did not show differential effects of vocalization type at either distance. Our results support the idea that both the sex of the listener and the emotional valence of infant vocalizations can influence auditory motion perception and can modulate motor responses to other behaviorally relevant environmental sounds. We also find support for previous work that shows sex differences in emotion processing are diminished under conditions of higher stress.

  18. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  19. Sex, acceleration, brain imaging, and rhesus monkeys: Converging evidence for an evolutionary bias for looming auditory motion

    NASA Astrophysics Data System (ADS)

    Neuhoff, John G.

    2003-04-01

    Increasing acoustic intensity is a primary cue to looming auditory motion. Perceptual overestimation of increasing intensity could provide an evolutionary selective advantage by specifying that an approaching sound source is closer than actual, thus affording advanced warning and more time than expected to prepare for the arrival of the source. Here, multiple lines of converging evidence for this evolutionary hypothesis are presented. First, it is shown that intensity change specifying accelerating source approach changes in loudness more than equivalent intensity change specifying decelerating source approach. Second, consistent with evolutionary hunter-gatherer theories of sex-specific spatial abilities, it is shown that females have a significantly larger bias for rising intensity than males. Third, using functional magnetic resonance imaging in conjunction with approaching and receding auditory motion, it is shown that approaching sources preferentially activate a specific neural network responsible for attention allocation, motor planning, and translating perception into action. Finally, it is shown that rhesus monkeys also exhibit a rising intensity bias by orienting longer to looming tones than to receding tones. Together these results illustrate an adaptive perceptual bias that has evolved because it provides a selective advantage in processing looming acoustic sources. [Work supported by NSF and CDC.

  20. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    PubMed

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  1. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    PubMed Central

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  2. Human brain regions involved in recognizing environmental sounds.

    PubMed

    Lewis, James W; Wightman, Frederic L; Brefczynski, Julie A; Phinney, Raymond E; Binder, Jeffrey R; DeYoe, Edgar A

    2004-09-01

    To identify the brain regions preferentially involved in environmental sound recognition (comprising portions of a putative auditory 'what' pathway), we collected functional imaging data while listeners attended to a wide range of sounds, including those produced by tools, animals, liquids and dropped objects. These recognizable sounds, in contrast to unrecognizable, temporally reversed control sounds, evoked activity in a distributed network of brain regions previously associated with semantic processing, located predominantly in the left hemisphere, but also included strong bilateral activity in posterior portions of the middle temporal gyri (pMTG). Comparisons with earlier studies suggest that these bilateral pMTG foci partially overlap cortex implicated in high-level visual processing of complex biological motion and recognition of tools and other artifacts. We propose that the pMTG foci process multimodal (or supramodal) information about objects and object-associated motion, and that this may represent 'action' knowledge that can be recruited for purposes of recognition of familiar environmental sound-sources. These data also provide a functional and anatomical explanation for the symptoms of pure auditory agnosia for environmental sounds reported in human lesion studies.

  3. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    PubMed

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.

  4. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    PubMed

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  5. Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    PubMed Central

    Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909

  6. Biologically inspired computation and learning in Sensorimotor Systems

    NASA Astrophysics Data System (ADS)

    Lee, Daniel D.; Seung, H. S.

    2001-11-01

    Networking systems presently lack the ability to intelligently process the rich multimedia content of the data traffic they carry. Endowing artificial systems with the ability to adapt to changing conditions requires algorithms that can rapidly learn from examples. We demonstrate the application of such learning algorithms on an inexpensive quadruped robot constructed to perform simple sensorimotor tasks. The robot learns to track a particular object by discovering the salient visual and auditory cues unique to that object. The system uses a convolutional neural network that automatically combines color, luminance, motion, and auditory information. The weights of the networks are adjusted using feedback from a teacher to reflect the reliability of the various input channels in the surrounding environment. Additionally, the robot is able to compensate for its own motion by adapting the parameters of a vestibular ocular reflex system.

  7. Neurobehavioral Mechanisms of Temporal Processing Deficits In Parkinson’s Disease

    DTIC Science & Technology

    2011-01-01

    Foam padding was used to limit head motion. Auditory stimuli were delivered binaurally through a headphone that together with earplugs attenuated...core timer.’ Specifically, by the striatal beat frequency (SBF) model, Figure 5. Percent signal change in regions showing abnormal activation OFF

  8. Effects of attention and laterality on motion and orientation discrimination in deaf signers.

    PubMed

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2013-06-01

    Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.

  9. [Conversion of sound into auditory nerve action potentials].

    PubMed

    Encke, J; Kreh, J; Völk, F; Hemmert, W

    2016-11-01

    Outer hair cells play a major role in the hearing process: they amplify the motion of the basilar membrane up to a 1000-fold and at the same time sharpen the excitation patterns. These patterns are converted by inner hair cells into action potentials of the auditory nerve. Outer hair cells are delicate structures and easily damaged, e. g., by overexposure to noise. Hearing aids can amplify the amplitude of the excitation patterns, but they cannot restore their degraded frequency selectivity. Noise overexposure also leads to delayed degeneration of auditory nerve fibers, particularly those with low a spontaneous rate, which are important for the coding of sound in noise. However, this loss cannot be diagnosed by pure-tone audiometry.

  10. Contextual effects on preattentive processing of sound motion as revealed by spatial MMN.

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I

    2015-04-01

    The magnitude of spatial distance between sound stimuli is critically important for their preattentive discrimination, yet the effect of stimulus context on auditory motion processing is not clear. This study investigated the effects of acoustical change and stimulus context on preattentive spatial change detection. Auditory event-related potentials (ERPs) were recorded for stationary midline noises and two patterns of sound motion produced by linear or abrupt changes of interaural time differences. Each of the three types of stimuli was used as standard or deviant in different blocks. Context effects on mismatch negativity (MMN) elicited by stationary and moving sound stimuli were investigated by reversing the role of standard and deviant stimuli, while the acoustical stimulus parameters were kept the same. That is, MMN amplitudes were calculated by subtracting ERPs to identical stimuli presented as standard in one block and deviant in another block. In contrast, effects of acoustical change on MMN amplitudes were calculated by subtracting ERPs of standards and deviants presented within the same block. Preattentive discrimination of moving and stationary sounds indexed by MMN was strongly dependent on the stimulus context. Higher MMNs were produced in oddball configurations where deviance represented increments of the sound velocity, as compared to configurations with velocity decrements. The effect of standard-deviant reversal was more pronounced with the abrupt sound displacement than with gradual sound motion. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.

  12. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  13. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  14. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia.

    PubMed

    Gori, Simone; Seitz, Aaron R; Ronconi, Luca; Franceschini, Sandro; Facoetti, Andrea

    2016-10-17

    Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Fast transfer of crossmodal time interval training.

    PubMed

    Chen, Lihan; Zhou, Xiaolin

    2014-06-01

    Sub-second time perception is essential for many important sensory and perceptual tasks including speech perception, motion perception, motor coordination, and crossmodal interaction. This study investigates to what extent the ability to discriminate sub-second time intervals acquired in one sensory modality can be transferred to another modality. To this end, we used perceptual classification of visual Ternus display (Ternus in Psychol Forsch 7:81-136, 1926) to implicitly measure participants' interval perception in pre- and posttests and implemented an intra- or crossmodal sub-second interval discrimination training protocol in between the tests. The Ternus display elicited either an "element motion" or a "group motion" percept, depending on the inter-stimulus interval between the two visual frames. The training protocol required participants to explicitly compare the interval length between a pair of visual, auditory, or tactile stimuli with a standard interval or to implicitly perceive the length of visual, auditory, or tactile intervals by completing a non-temporal task (discrimination of auditory pitch or tactile intensity). Results showed that after fast explicit training of interval discrimination (about 15 min), participants improved their ability to categorize the visual apparent motion in Ternus displays, although the training benefits were mild for visual timing training. However, the benefits were absent for implicit interval training protocols. This finding suggests that the timing ability in one modality can be rapidly acquired and used to improve timing-related performance in another modality and that there may exist a central clock for sub-second temporal processing, although modality-specific perceptual properties may constrain the functioning of this clock.

  16. The Effects of Various Fidelity Factors on Simulated Helicopter Hover

    DTIC Science & Technology

    1981-01-01

    18 VISUAL DISPLAY ....... ....................... ... 20 §. AUDITORY CUES ........... ........................ 23 • SHIP MOTION MODEL...and DiCarlo, 1974), the evaluation of visual, auditory , and motion cues for helicopter simulation (Parrish, Houck, and Martin, 1977), and the...supply the cue. As the tilt should be supplied subliminally , a forward/aft translation must be used to cue the acceleration’s onset. If only rotation

  17. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.

  18. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  19. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  20. Probing sensorimotor integration during musical performance.

    PubMed

    Furuya, Shinichi; Furukawa, Yuta; Uehara, Kazumasa; Oku, Takanori

    2018-03-10

    An integration of afferent sensory information from the visual, auditory, and proprioceptive systems into execution and update of motor programs plays crucial roles in control and acquisition of skillful sequential movements in musical performance. However, conventional behavioral and neurophysiological techniques that have been applied to study simplistic motor behaviors limit elucidating online sensorimotor integration processes underlying skillful musical performance. Here, we propose two novel techniques that were developed to investigate the roles of auditory and proprioceptive feedback in piano performance. First, a closed-loop noninvasive brain stimulation system that consists of transcranial magnetic stimulation, a motion sensor, and a microcomputer enabled to assess time-varying cortical processes subserving auditory-motor integration during piano playing. Second, a force-field system capable of manipulating the weight of a piano key allowed for characterizing movement adaptation based on the feedback obtained, which can shed light on the formation of an internal representation of the piano. Results of neurophysiological and psychophysics experiments provided evidence validating these systems as effective means for disentangling computational and neural processes of sensorimotor integration in musical performance. © 2018 New York Academy of Sciences.

  1. Static length changes of cochlear outer hair cells can tune low-frequency hearing

    PubMed Central

    Ciganović, Nikola; Warren, Rebecca L.; Keçeli, Batu; Jacob, Stefan

    2018-01-01

    The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ’s motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings. PMID:29351276

  2. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  3. Effects of Attention and Laterality on Motion and Orientation Discrimination in Deaf Signers

    ERIC Educational Resources Information Center

    Bosworth, Rain G.; Petrich, Jennifer A. F.; Dobkins, Karen R.

    2013-01-01

    Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left…

  4. The Effect of Auditory and Visual Motion Picture Descriptive Modalities in Teaching Perceptual-Motor Skills Used in the Grading of Cereal Grains.

    ERIC Educational Resources Information Center

    Hannemann, James William

    This study was designed to discover whether a student learns to imitate the skills demonstrated in a motion picture more accurately when the supportive descriptive terminology is presented in an auditory (spoken) form or in a visual (captions) form. A six-minute color 16mm film was produced--"Determining the Test Weight per Bushel of Yellow Corn".…

  5. Time-instant sampling based encoding of time-varying acoustic spectrum

    NASA Astrophysics Data System (ADS)

    Sharma, Neeraj Kumar

    2015-12-01

    The inner ear has been shown to characterize an acoustic stimuli by transducing fluid motion in the inner ear to mechanical bending of stereocilia on the inner hair cells (IHCs). The excitation motion/energy transferred to an IHC is dependent on the frequency spectrum of the acoustic stimuli, and the spatial location of the IHC along the length of the basilar membrane (BM). Subsequently, the afferent auditory nerve fiber (ANF) bundle samples the encoded waveform in the IHCs by synapsing with them. In this work we focus on sampling of information by afferent ANFs from the IHCs, and show computationally that sampling at specific time instants is sufficient for decoding of time-varying acoustic spectrum embedded in the acoustic stimuli. The approach is based on sampling the signal at its zero-crossings and higher-order derivative zero-crossings. We show results of the approach on time-varying acoustic spectrum estimation from cricket call signal recording. The framework gives a time-domain and non-spatial processing perspective to auditory signal processing. The approach works on the full band signal, and is devoid of modeling any bandpass filtering mimicking the BM action. Instead, we motivate the approach from the perspective of event-triggered sampling by afferent ANFs on the stimuli encoded in the IHCs. Though the approach gives acoustic spectrum estimation but it is shallow on its complete understanding for plausible bio-mechanical replication with current mammalian auditory mechanics insights.

  6. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  7. Integration and segregation in auditory streaming

    NASA Astrophysics Data System (ADS)

    Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty

    2005-12-01

    We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.

  8. Modulation of isochronous movements in a flexible environment: links between motion and auditory experience.

    PubMed

    Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego

    2014-06-01

    The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.

  9. Integration of auditory and kinesthetic information in motion: alterations in Parkinson's disease.

    PubMed

    Sabaté, Magdalena; Llanos, Catalina; Rodríguez, Manuel

    2008-07-01

    The main aim in this work was to study the interaction between auditory and kinesthetic stimuli and its influence on motion control. The study was performed on healthy subjects and patients with Parkinson's disease (PD). Thirty-five right-handed volunteers (young, PD, and age-matched healthy participants, and PD-patients) were studied with three different motor tasks (slow cyclic movements, fast cyclic movements, and slow continuous movements) and under the action of kinesthetic stimuli and sounds at different beat rates. The action of kinesthesia was evaluated by comparing real movements with virtual movements (movements imaged but not executed). The fast cyclic task was accelerated by kinesthetic but not by auditory stimuli. The slow cyclic task changed with the beat rate of sounds but not with kinesthetic stimuli. The slow continuous task showed an integrated response to both sensorial modalities. These data show that the influence of the multisensory integration on motion changes with the motor task and that some motor patterns are modulated by the simultaneous action of auditory and kinesthetic information, a cross-modal integration that was different in PD-patients. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  10. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    PubMed

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  11. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality

    PubMed Central

    Tata, Matthew S.

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518

  12. Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I

    2016-10-01

    The current MMN study investigates whether brain lateralization during automatic discrimination of sound stimuli moving at different velocities is consistent with one of the three models of asymmetry: the right-hemispheric dominance model, the contralateral dominance model, or the neglect model. Auditory event-related potentials (ERPs) were recorded for three patterns of sound motion produced by linear or abrupt changes of interaural time differences. The slow motion (450deg/s) was used as standard, and the fast motion (620deg/s) and the abrupt sound shift served as deviants in the oddball blocks. All stimuli had the same onset/offset spatial positions. We compared the effects of the recording side (left, right) and of the direction of sound displacement (ipsi- or contralateral with reference to the side of recording) on the ERPs and mismatch negativity (MMN). Our results indicated different patterns of asymmetry for the ERPs and MMN responses. The ERPs showed a velocity-independent right-hemispheric dominance that emerged at the descending limb of N1 wave (at around 120-160ms) and could be related to overall context of the preattentive spatial perception. The MMNs elicited in the left hemisphere (at around 230-270ms) exhibited a contralateral dominance, whereas the right-hemispheric MMNs were insensitive to the direction of sound displacement. These differences in contralaterality between MMN responses produced by the left and the right hemisphere favour the neglect model of the preattentive motion processing indexed by MMN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  14. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    PubMed

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  15. Auditory perception of a human walker.

    PubMed

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  16. Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.

    PubMed

    Chang, Acer Y C; Kanai, Ryota; Seth, Anil K

    2015-01-01

    Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cortical activity patterns predict speech discrimination ability

    PubMed Central

    Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P

    2010-01-01

    Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123

  18. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  19. Being Moved by the Self and Others: Influence of Empathy on Self-Motion Perception

    PubMed Central

    Lopez, Christophe; Falconer, Caroline J.; Mast, Fred W.

    2013-01-01

    Background The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. Methodology/Principal Findings We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. Conclusions/Significance The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a “vestibular mirror neuron system”. PMID:23326302

  20. Individual differences in visual motion perception and neurotransmitter concentrations in the human brain.

    PubMed

    Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M

    2017-02-19

    Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  1. Interaction of Perceptual Grouping and Crossmodal Temporal Capture in Tactile Apparent-Motion

    PubMed Central

    Chen, Lihan; Shi, Zhuanghua; Müller, Hermann J.

    2011-01-01

    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can “capture” visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left- or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from −75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs—one short (75 ms), one long (325 ms)—were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects. PMID:21383834

  2. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  3. Perceptual Distortions in Pitch and Time Reveal Active Prediction and Support for an Auditory Pitch-Motion Hypothesis

    PubMed Central

    Henry, Molly J.; McAuley, J. Devin

    2013-01-01

    A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners’ judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception. PMID:23936462

  4. Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.

    PubMed

    Henry, Molly J; McAuley, J Devin

    2013-01-01

    A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.

  5. Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task

    ERIC Educational Resources Information Center

    Keller, Peter E.; Dalla Bella, Simone; Koch, Iring

    2010-01-01

    The role of anticipatory auditory imagery in music-like sequential action was investigated by examining timing accuracy and kinematics using a motion capture system. Musicians responded to metronomic pacing signals by producing three unpaced taps on three vertically aligned keys at the given tempo. Taps triggered tones in two out of three blocked…

  6. Pilot Errors Involving Head-Up Displays (HUDs), Helmet-Mounted Displays (HMDs), and Night Vision Goggles (NVGs)

    DTIC Science & Technology

    1992-01-01

    results in stimulation of spatial-motion-location visual processes, which are known to take precedence over any other sensor or cognitive stimuli. In...or version he is flying. This was initially an observation that stimulated the birth of the human-factors engineering discipline during World War H...collisions with the surface, the pilot needs inputs to sensory channels other than the focal visual system. Properly designed auditory and

  7. Auditory compensation for head rotation is incomplete.

    PubMed

    Freeman, Tom C A; Culling, John F; Akeroyd, Michael A; Brimijoin, W Owen

    2017-02-01

    Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception, and vestibular information. These "extraretinal signals" compensate for self-movement, converting image motion into head-centered coordinates, although not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the "movement gain" relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence, listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement and one concerning statistical optimization that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Can you hear me yet? An intracranial investigation of speech and non-speech audiovisual interactions in human cortex.

    PubMed

    Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob

    In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.

  9. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  10. Enhanced auditory spatial localization in blind echolocators.

    PubMed

    Vercillo, Tiziana; Milne, Jennifer L; Gori, Monica; Goodale, Melvyn A

    2015-01-01

    Echolocation is the extraordinary ability to represent the external environment by using reflected sound waves from self-generated auditory pulses. Blind human expert echolocators show extremely precise spatial acuity and high accuracy in determining the shape and motion of objects by using echoes. In the current study, we investigated whether or not the use of echolocation would improve the representation of auditory space, which is severely compromised in congenitally blind individuals (Gori et al., 2014). The performance of three blind expert echolocators was compared to that of 6 blind non-echolocators and 11 sighted participants. Two tasks were performed: (1) a space bisection task in which participants judged whether the second of a sequence of three sounds was closer in space to the first or the third sound and (2) a minimum audible angle task in which participants reported which of two sounds presented successively was located more to the right. The blind non-echolocating group showed a severe impairment only in the space bisection task compared to the sighted group. Remarkably, the three blind expert echolocators performed both spatial tasks with similar or even better precision and accuracy than the sighted group. These results suggest that echolocation may improve the general sense of auditory space, most likely through a process of sensory calibration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Procedures for central auditory processing screening in schoolchildren.

    PubMed

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that allow the selection of as many hearing skills as possible, validated by comparison with the battery of tests used in the diagnosis. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  13. Does dynamic information about the speaker's face contribute to semantic speech processing? ERP evidence.

    PubMed

    Hernández-Gutiérrez, David; Abdel Rahman, Rasha; Martín-Loeches, Manuel; Muñoz, Francisco; Schacht, Annekathrin; Sommer, Werner

    2018-07-01

    Face-to-face interactions characterize communication in social contexts. These situations are typically multimodal, requiring the integration of linguistic auditory input with facial information from the speaker. In particular, eye gaze and visual speech provide the listener with social and linguistic information, respectively. Despite the importance of this context for an ecological study of language, research on audiovisual integration has mainly focused on the phonological level, leaving aside effects on semantic comprehension. Here we used event-related potentials (ERPs) to investigate the influence of facial dynamic information on semantic processing of connected speech. Participants were presented with either a video or a still picture of the speaker, concomitant to auditory sentences. Along three experiments, we manipulated the presence or absence of the speaker's dynamic facial features (mouth and eyes) and compared the amplitudes of the semantic N400 elicited by unexpected words. Contrary to our predictions, the N400 was not modulated by dynamic facial information; therefore, semantic processing seems to be unaffected by the speaker's gaze and visual speech. Even though, during the processing of expected words, dynamic faces elicited a long-lasting late posterior positivity compared to the static condition. This effect was significantly reduced when the mouth of the speaker was covered. Our findings may indicate an increase of attentional processing to richer communicative contexts. The present findings also demonstrate that in natural communicative face-to-face encounters, perceiving the face of a speaker in motion provides supplementary information that is taken into account by the listener, especially when auditory comprehension is non-demanding. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Spatial Attention and Audiovisual Interactions in Apparent Motion

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Soto-Faraco, Salvador; Spence, Charles

    2007-01-01

    In this study, the authors combined the cross-modal dynamic capture task (involving the horizontal apparent movement of visual and auditory stimuli) with spatial cuing in the vertical dimension to investigate the role of spatial attention in cross-modal interactions during motion perception. Spatial attention was manipulated endogenously, either…

  15. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    PubMed

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  16. Soundscapes and the sense of hearing of fishes.

    PubMed

    Fay, Richard

    2009-03-01

    Underwater soundscapes have probably played an important role in the adaptation of ears and auditory systems of fishes throughout evolutionary time, and for all species. These sounds probably contain important information about the environment and about most objects and events that confront the receiving fish so that appropriate behavior is possible. For example, the sounds from reefs appear to be used by at least some fishes for their orientation and migration. These sorts of environmental sounds should be considered much like "acoustic daylight," that continuously bathes all environments and contain information that all organisms can potentially use to form a sort of image of the environment. At present, however, we are generally ignorant of the nature of ambient sound fields impinging on fishes, and the adaptive value of processing these fields to resolve the multiple sources of sound. Our field has focused almost exclusively on the adaptive value of processing species-specific communication sounds, and has not considered the informational value of ambient "noise." Since all fishes can detect and process acoustic particle motion, including the directional characteristics of this motion, underwater sound fields are potentially more complex and information-rich than terrestrial acoustic environments. The capacities of one fish species (goldfish) to receive and make use of such sound source information have been demonstrated (sound source segregation and auditory scene analysis), and it is suggested that all vertebrate species have this capacity. A call is made to better understand underwater soundscapes, and the associated behaviors they determine in fishes. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.

  17. Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers.

    PubMed

    Nava, Elena; Grassi, Massimo; Turati, Chiara

    2016-01-01

    Interest in crossmodal correspondences has recently seen a renaissance thanks to numerous studies in human adults. Yet, still very little is known about crossmodal correspondences in children, particularly in sensory pairings other than audition and vision. In the current study, we investigated whether 4-5-year-old children match auditory pitch to the spatial motion of visual objects (audio-visual condition). In addition, we investigated whether this correspondence extends to touch, i.e., whether children also match auditory pitch to the spatial motion of touch (audio-tactile condition) and the spatial motion of visual objects to touch (visuo-tactile condition). In two experiments, two different groups of children were asked to indicate which of two stimuli fitted best with a centrally located third stimulus (Experiment 1), or to report whether two presented stimuli fitted together well (Experiment 2). We found sensitivity to the congruency of all of the sensory pairings only in Experiment 2, suggesting that only under specific circumstances can these correspondences be observed. Our results suggest that pitch-height correspondences for audio-visual and audio-tactile combinations may still be weak in preschool children, and speculate that this could be due to immature linguistic and auditory cues that are still developing at age five.

  18. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome

    PubMed Central

    Go, Tohshin; Mitani, Asako

    2009-01-01

    Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation. PMID:19851517

  19. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome.

    PubMed

    Go, Tohshin; Mitani, Asako

    2009-01-01

    Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation.

  20. Auditory Processing of Older Adults with Probable Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Edwards, Jerri D.; Lister, Jennifer J.; Elias, Maya N.; Tetlow, Amber M.; Sardina, Angela L.; Sadeq, Nasreen A.; Brandino, Amanda D.; Bush, Aryn L. Harrison

    2017-01-01

    Purpose: Studies suggest that deficits in auditory processing predict cognitive decline and dementia, but those studies included limited measures of auditory processing. The purpose of this study was to compare older adults with and without probable mild cognitive impairment (MCI) across two domains of auditory processing (auditory performance in…

  1. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  2. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  3. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.

    PubMed

    Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao

    2017-10-01

    Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants

    PubMed Central

    Kopp, Franziska; Dietrich, Claudia

    2013-01-01

    Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071

  5. Therapeutic riding followed by rhythmic auditory stimulation to improve balance and gait in a subject with orthopedic pathologies.

    PubMed

    Ungermann, Cathryn M; Gras, Laura Z

    2011-12-01

    The study objectives were to investigate the effect of therapeutic riding with a subject who had an orthopedic diagnosis. This is a single-subject case report. The study was conducted at an equestrian facility with an indoor riding arena. The subject was a 59-year-old woman with grade I spondylolisthesis at L4/L5 and multilevel lumbar spinal stenosis in central and foraminal canals. The subject had an anterior cervical fusion of C3-C7. The subject has been ambulating with a straight cane due to her history of frequent falls. Gait, agility, strength, range of motion, and balance testing were performed. The subject had impairments of bilateral lower extremities with an ataxic gait pattern and was at risk for continued falls according to the balance measures. The intervention comprised therapeutic riding sessions 3 times a week for 20 minutes for 4 weeks. Each riding session was immediately followed by a 10-minute independent walking program with a metronome for rhythmic auditory stimulation. The outcome measures were as follows: Manual muscle testing and range of motion of the lower extremities, Gait Speed Test, Dynamic Gait Index, Four-Square Step Test, Chair Stand Test, Single Leg Stance. Improvements were seen in lower extremity strength and range of motion and balance. The subject improved on balance scores, placing her out of the risk for falls category. Therapeutic riding followed by rhythmic auditory stimulation improved lower extremity range of motion, strength, and balance with this subject.

  6. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  7. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.

    PubMed

    Nam, Hui; Guinan, John J

    2017-12-14

    Recent cochlear mechanical measurements show that active processes increase the motion response of the reticular lamina (RL) at frequencies more than an octave below the local characteristic frequency (CF) for CFs above 5 kHz. A possible correlate is that in high-CF (>5 kHz) auditory-nerve (AN) fibers, responses to frequencies 1-3 octaves below CF ("tail" frequencies) can be inhibited by medial olivocochlear (MOC) efferents. These results indicate that active processes enhance the sensitivity of tail-frequency RL and AN responses. Perhaps related is that some apical low-CF AN fibers have tuning-curve (TC) "side-lobe" response areas at frequencies above and below the TC-tip that are MOC inhibited. We hypothesized that the tail and side-lobe responses are enhanced by the same active mechanisms as CF cochlear amplification. If responses to CF, tail-frequency, and TC-side-lobe tones are all enhanced by prestin motility controlled by outer-hair-cell (OHC) transmembrane voltage, then they should depend on OHC stereocilia position in the same way. To test this, we cyclically changed the OHC-stereocilia mechano-electric-transduction (MET) operating point with low-frequency "bias" tones (BTs) and increased the BT level until the BT caused quasi-static OHC MET saturation that reduced or "suppressed" the gain of OHC active processes. While measuring cat AN-fiber responses, 50 Hz BT level series, 70-120 dB SPL, were run alone and with CF tones, or 2.5 kHz tail-frequency tones, or side-lobe tones. BT-tone-alone responses were used to exclude BT sound levels that produced AN responses that might obscure BT suppression. Data were analyzed to show the BT phase that suppressed the tone responses at the lowest sound level. We found that AN responses to CF, tail-frequency, and side-lobe tones were suppressed at the same BT phase in almost all cases. The data are consistent with the enhancement of responses to CF, tail-frequency, and side-lobe tones all being due to the same OHC-stereocilia MET-dependent active process. Thus, OHC active processes enhance AN responses at frequencies outside of the cochlear-amplified TC-tip region in both high- and low-frequency cochlear regions. The data are consistent with the AN response enhancements being due to enhanced RL motion that drives IHC-stereocilia deflection by traditional RL-TM shear and/or by changing the RL-TM gap. Since tail-frequency basilar membrane (BM) motion is not actively enhanced, the tail-frequency IHC drive is from a vibrational mode little present on the BM, not a "second filter" of BM motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Finite-element model of the active organ of Corti

    PubMed Central

    Elliott, Stephen J.; Baumgart, Johannes

    2016-01-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  9. Hair cells in motion: Imaging the organ of Corti

    NASA Astrophysics Data System (ADS)

    Mountain, David C.; Karavitaki, K. Domenica

    2003-10-01

    The mammalian cochlea contains two types of sensory cells, inner hair cells (IHCs) and outer hair cells (OHCs). The IHCs provide the vast majority of the synaptic input to the auditory nerve while the OHCs express a unique motor protein, prestin, and appear to participate in an electromechanical feedback loop that amplifies the motion of the organ of Corti (OC). To study this amplification process we have employed stroboscopic video microscopy to quantify the motion of various elements of the OC. Extracellular electrical stimulation was used to excite OHC motility and a computer-controlled high-intensity light-emitting diode (LED) is used to illuminate the organ OC in an excised cochlear preparation. Motion is measured by extracting small regions of interest (ROIs) from the images and cross-correlating the ROIs taken during electrical stimulation with a reference image from the same ROIs taken with no stimulation. The observed motion is quite complex with several vibration modes observed. One of the major findings is that there appears to be oscillatory fluid flow within the tunnel of Corti suggesting that the OHC contractions are pumping fluid longitudinally within the organ. [Work funded by NIDCD.

  10. Implementation of Motion Simulation Software and Visual-Auditory Electronics for Use in a Low Gravity Robotic Testbed

    NASA Technical Reports Server (NTRS)

    Martin, William Campbell

    2011-01-01

    The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.

  11. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition

    PubMed Central

    McLachlan, Neil M.; Wilson, Sarah J.

    2017-01-01

    The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850

  12. Perception of Animacy from the Motion of a Single Sound Object.

    PubMed

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-02-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.

  13. Strategy Choice Mediates the Link between Auditory Processing and Spelling

    PubMed Central

    Kwong, Tru E.; Brachman, Kyle J.

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities. PMID:25198787

  14. Strategy choice mediates the link between auditory processing and spelling.

    PubMed

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  15. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    PubMed

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an auditory diagnosis is made for this population.

  16. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  17. [Auditory processing evaluation in children born preterm].

    PubMed

    Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo

    2011-01-01

    To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.

  18. Mechanical Excitation of IHC Stereocilia: An Attempt to Fit Together Diverse Evidence

    NASA Astrophysics Data System (ADS)

    Guinan, John J.

    2011-11-01

    The output of the cochlea is controlled by the bending of inner-hair-cell (IHC) stereocilia, but the mechanisms that produce this bending are poorly understood. Relevant evidence comes from several sources: measurements of cochlear motion from in-vitro and live preparations, as well as inferences about cochlear motions from responses of auditory-nerve fibers. The common conception that IHC excitation is due to shearing between the reticular lamina (RL) and the tectorial membrane (TM) does not explain the data. A hypothesis is presented that fits many of the observations into a coherent picture of how IHCs are excited. The key new concept is that stretching of outer-hair-cell (OHC) stereocilia (defined broadly) changes the RL-TM gap and produces fluid flow within the gap that bends the IHC stereocilia. Changes in the RL-TM gap and the resulting bending of IHC stereocilia provide a mechanism by which OHC active processes can enhance cochlear output without a corresponding enhancement of basilar-membrane motion.

  19. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038

  20. Multiple vibration modes within the organ of Corti revealed by high-resolution, outer-hair-cell-driven micromechanical motions at acoustic frequencies

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. Domenica; Guinan, John J.; Mountain, David C.

    2018-05-01

    Electrically-evoked outer-hair-cell-driven micromechanical motions within the organ of Corti were visualized and quantified using a video stroboscopy system. The resulting radial motions exhibited phase transitions along the radial direction, characteristic of a system that can exhibit multiple modes of vibration. We argue that the interaction of these modes would shape the input to the inner hair cell hair bundles and resulting auditory-nerve response patterns.

  1. Auditory Processing of Amplitude Envelope Rise Time in Adults Diagnosed with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Pasquini, Elisabeth S.; Corriveau, Kathleen H.; Goswami, Usha

    2007-01-01

    Studies of basic (nonspeech) auditory processing in adults thought to have developmental dyslexia have yielded a variety of data. Yet there has been little consensus regarding the explanatory value of auditory processing in accounting for reading difficulties. Recently, however, a number of studies of basic auditory processing in children with…

  2. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    PubMed

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  3. Auditory Processing Disorder in Children

    MedlinePlus

    ... News & Events NIDCD News Inside NIDCD Newsletter Shareable Images ... Info » Hearing, Ear Infections, and Deafness Auditory Processing Disorder Auditory processing disorder (APD) describes a condition ...

  4. New rules for visual selection: Isolating procedural attention.

    PubMed

    Ramamurthy, Mahalakshmi; Blaser, Erik

    2017-02-01

    High performance in well-practiced, everyday tasks-driving, sports, gaming-suggests a kind of procedural attention that can allocate processing resources to behaviorally relevant information in an unsupervised manner. Here we show that training can lead to a new, automatic attentional selection rule that operates in the absence of bottom-up, salience-driven triggers and willful top-down selection. Taking advantage of the fact that attention modulates motion aftereffects, observers were presented with a bivectorial display with overlapping, iso-salient red and green dot fields moving to the right and left, respectively, while distracted by a demanding auditory two-back memory task. Before training, since the motion vectors canceled each other out, no net motion aftereffect (MAE) was found. However, after 3 days (0.5 hr/day) of training, during which observers practiced selectively attending to the red, rightward field, a significant net MAE was observed-even when top-down selection was again distracted. Further experiments showed that these results were not due to perceptual learning, and that the new rule targeted the motion, and not the color of the target dot field, and global, not local, motion signals; thus, the new rule was: "select the rightward field." This study builds on recent work on selection history-driven and reward-driven biases, but uses a novel paradigm where the allocation of visual processing resources are measured passively, offline, and when the observer's ability to execute top-down selection is defeated.

  5. [Low level auditory skills compared to writing skills in school children attending third and fourth grade: evidence for the rapid auditory processing deficit theory?].

    PubMed

    Ptok, M; Meisen, R

    2008-01-01

    The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.

  6. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    PubMed

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-07-02

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Auditory Hair Cell Centrioles Undergo Confined Brownian Motion Throughout the Developmental Migration of the Kinocilium

    PubMed Central

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-01-01

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles’ confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. PMID:23823223

  9. Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study.

    PubMed

    Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J

    2007-07-01

    In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.

  10. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  11. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  12. Reduced auditory processing capacity during vocalization in children with Selective Mutism.

    PubMed

    Arie, Miri; Henkin, Yael; Lamy, Dominique; Tetin-Schneider, Simona; Apter, Alan; Sadeh, Avi; Bar-Haim, Yair

    2007-02-01

    Because abnormal Auditory Efferent Activity (AEA) is associated with auditory distortions during vocalization, we tested whether auditory processing is impaired during vocalization in children with Selective Mutism (SM). Participants were children with SM and abnormal AEA, children with SM and normal AEA, and normally speaking controls, who had to detect aurally presented target words embedded within word lists under two conditions: silence (single task), and while vocalizing (dual task). To ascertain specificity of auditory-vocal deficit, effects of concurrent vocalizing were also examined during a visual task. Children with SM and abnormal AEA showed impaired auditory processing during vocalization relative to children with SM and normal AEA, and relative to control children. This impairment is specific to the auditory modality and does not reflect difficulties in dual task per se. The data extends previous findings suggesting that deficient auditory processing is involved in speech selectivity in SM.

  13. Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne

    2016-12-01

    It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  15. Auditory-musical processing in autism spectrum disorders: a review of behavioral and brain imaging studies.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L

    2012-04-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.

  16. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    ERIC Educational Resources Information Center

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  17. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654

  18. The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude envelope cues.

    PubMed

    Chuen, Lorraine; Schutz, Michael

    2016-07-01

    An observer's inference that multimodal signals originate from a common underlying source facilitates cross-modal binding. This 'unity assumption' causes asynchronous auditory and visual speech streams to seem simultaneous (Vatakis & Spence, Perception & Psychophysics, 69(5), 744-756, 2007). Subsequent tests of non-speech stimuli such as musical and impact events found no evidence for the unity assumption, suggesting the effect is speech-specific (Vatakis & Spence, Acta Psychologica, 127(1), 12-23, 2008). However, the role of amplitude envelope (the changes in energy of a sound over time) was not previously appreciated within this paradigm. Here, we explore whether previous findings suggesting speech-specificity of the unity assumption were confounded by similarities in the amplitude envelopes of the contrasted auditory stimuli. Experiment 1 used natural events with clearly differentiated envelopes: single notes played on either a cello (bowing motion) or marimba (striking motion). Participants performed an un-speeded temporal order judgments task; viewing audio-visually matched (e.g., marimba auditory with marimba video) and mismatched (e.g., cello auditory with marimba video) versions of stimuli at various stimulus onset asynchronies, and were required to indicate which modality was presented first. As predicted, participants were less sensitive to temporal order in matched conditions, demonstrating that the unity assumption can facilitate the perception of synchrony outside of speech stimuli. Results from Experiments 2 and 3 revealed that when spectral information was removed from the original auditory stimuli, amplitude envelope alone could not facilitate the influence of audiovisual unity. We propose that both amplitude envelope and spectral acoustic cues affect the percept of audiovisual unity, working in concert to help an observer determine when to integrate across modalities.

  19. An initial investigation into the validity of a computer-based auditory processing assessment (Feather Squadron).

    PubMed

    Barker, Matthew D; Purdy, Suzanne C

    2016-01-01

    This research investigates a novel method for identifying and measuring school-aged children with poor auditory processing through a tablet computer. Feasibility and test-retest reliability are investigated by examining the percentage of Group 1 participants able to complete the tasks and developmental effects on performance. Concurrent validity was investigated against traditional tests of auditory processing using Group 2. There were 847 students aged 5 to 13 years in group 1, and 46 aged 5 to 14 years in group 2. Some tasks could not be completed by the youngest participants. Significant correlations were found between results of most auditory processing areas assessed by the Feather Squadron test and traditional auditory processing tests. Test-retest comparisons indicated good reliability for most of the Feather Squadron assessments and some of the traditional tests. The results indicate the Feather Squadron assessment is a time-efficient, feasible, concurrently valid, and reliable approach for measuring auditory processing in school-aged children. Clinically, this may be a useful option for audiologists when performing auditory processing assessments as it is a relatively fast, engaging, and easy way to assess auditory processing abilities. Research is needed to investigate further the construct validity of this new assessment by examining the association between performance on Feather Squadron and objective evoked potential, lesion studies, and/or functional imaging measures of auditory function.

  20. Deficits in auditory processing contribute to impairments in vocal affect recognition in autism spectrum disorders: A MEG study.

    PubMed

    Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David

    2015-11-01

    The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).

  1. Self-motion Perception Training: Thresholds Improve in the Light but not in the Dark

    PubMed Central

    Hartmann, Matthias; Furrer, Sarah; Herzog, Michael H.; Merfeld, Daniel M.; Mast, Fred W.

    2014-01-01

    We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform, and asked to indicate the direction of motion. A total of eleven participants underwent 3360 practice trials, distributed over twelve (Experiment 1) or six days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness. PMID:23392475

  2. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    PubMed

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Musical Experience, Sensorineural Auditory Processing, and Reading Subskills in Adults.

    PubMed

    Tichko, Parker; Skoe, Erika

    2018-04-27

    Developmental research suggests that sensorineural auditory processing, reading subskills (e.g., phonological awareness and rapid naming), and musical experience are related during early periods of reading development. Interestingly, recent work suggests that these relations may extend into adulthood, with indices of sensorineural auditory processing relating to global reading ability. However, it is largely unknown whether sensorineural auditory processing relates to specific reading subskills, such as phonological awareness and rapid naming, as well as musical experience in mature readers. To address this question, we recorded electrophysiological responses to a repeating click (auditory stimulus) in a sample of adult readers. We then investigated relations between electrophysiological responses to sound, reading subskills, and musical experience in this same set of adult readers. Analyses suggest that sensorineural auditory processing, reading subskills, and musical experience are related in adulthood, with faster neural conduction times and greater musical experience associated with stronger rapid-naming skills. These results are similar to the developmental findings that suggest reading subskills are related to sensorineural auditory processing and musical experience in children.

  4. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Behavioral Indications of Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Hartman, Kerry McGoldrick

    1988-01-01

    Identifies disruptive behaviors of children that may indicate central auditory processing disorders (CAPDs), perceptual handicaps of auditory discrimination or auditory memory not related to hearing ability. Outlines steps to modify the communication environment for CAPD children at home and in the classroom. (SV)

  6. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    ERIC Educational Resources Information Center

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  7. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy

    PubMed Central

    Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142

  8. Auditory Processing, Speech Perception and Phonological Ability in Pre-School Children at High-Risk for Dyslexia: A Longitudinal Study of the Auditory Temporal Processing Theory

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2007-01-01

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school…

  9. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  10. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  11. Visual form predictions facilitate auditory processing at the N1.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  12. Consensus paper: the role of the cerebellum in perceptual processes.

    PubMed

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  13. Auditory brainstem response to complex sounds: a tutorial

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2010-01-01

    This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007

  14. Facial Speech Gestures: The Relation between Visual Speech Processing, Phonological Awareness, and Developmental Dyslexia in 10-Year-Olds

    ERIC Educational Resources Information Center

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.

    2016-01-01

    Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…

  15. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  16. Wireless Control of Smartphones with Tongue Motion Using Tongue Drive Assistive Technology

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang

    2010-01-01

    Tongue Drive System (TDS) is a noninvasive, wireless and wearable assistive technology that helps people with severe disabilities control their environments using their tongue motion. TDS translates specific tongue gestures to commands by detecting a small permanent magnetic tracer on the users’ tongue. We have linked the TDS to a smartphone (iPhone/iPod Touch) with a customized wireless module, added to the iPhone. We also migrated and ran the TDS sensor signal processing algorithm and graphical user interface on the iPhone in real time. The TDS-iPhone interface was evaluated by four able-bodied subjects for dialing 10-digit phone numbers using the standard telephone keypad and three methods of prompting the numbers: visual, auditory, and cognitive. Preliminary results showed that the interface worked quite reliably at a rate of 15.4 digits per minute, on average, with negligible errors. PMID:21096049

  17. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Auditory processing disorders, verbal disfluency, and learning difficulties: a case study.

    PubMed

    Jutras, Benoît; Lagacé, Josée; Lavigne, Annik; Boissonneault, Andrée; Lavoie, Charlen

    2007-01-01

    This case study reports the findings of auditory behavioral and electrophysiological measures performed on a graduate student (identified as LN) presenting verbal disfluency and learning difficulties. Results of behavioral audiological testing documented the presence of auditory processing disorders, particularly temporal processing and binaural integration. Electrophysiological test results, including middle latency, late latency and cognitive potentials, revealed that LN's central auditory system processes acoustic stimuli differently to a reference group with normal hearing.

  19. Effects of rotation on the sleep state-dependent midlatency auditory evoked P50 potential in the human

    NASA Technical Reports Server (NTRS)

    Dornhoffer, John L.; Mamiya, N.; Bray, P.; Skinner, Robert D.; Garcia-Rill, Edgar

    2002-01-01

    Sopite syndrome, characterized by loss of initiative, sensitivity to normally innocuous sensory stimuli, and impaired concentration amounting to a sensory gating deficit, is commonly associated with Space Motion Sickness (SMS). The amplitude of the P50 potential is a measure of level of arousal, and a paired-stimulus paradigm can be used to measure sensory gating. We used the rotary chair to elicit the sensory mismatch that occurs with SMS by overstimulating the vestibular apparatus. The effects of rotation on the manifestation of the P50 midlatency auditory evoked response were then assessed as a measure of arousal and distractibility. Results showed that rotation-induced motion sickness produced no change in the level of arousal but did produce a significant deficit in sensory gating, indicating that some of the attentional and cognitive deficits observed with SMS may be due to distractibility induced by decreased habituation to repetitive stimuli.

  20. Auditory spatial processing in the human cortex.

    PubMed

    Salminen, Nelli H; Tiitinen, Hannu; May, Patrick J C

    2012-12-01

    The auditory system codes spatial locations in a way that deviates from the spatial representations found in other modalities. This difference is especially striking in the cortex, where neurons form topographical maps of visual and tactile space but where auditory space is represented through a population rate code. In this hemifield code, sound source location is represented in the activity of two widely tuned opponent populations, one tuned to the right and the other to the left side of auditory space. Scientists are only beginning to uncover how this coding strategy adapts to various spatial processing demands. This review presents the current understanding of auditory spatial processing in the cortex. To this end, the authors consider how various implementations of the hemifield code may exist within the auditory cortex and how these may be modulated by the stimulation and task context. As a result, a coherent set of neural strategies for auditory spatial processing emerges.

  1. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.

    PubMed

    Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E

    2008-10-21

    Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.

  2. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  4. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  5. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  6. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets.

    PubMed

    Meredith, M Alex; Allman, Brian L

    2015-03-01

    The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Auditory Processing Testing: In the Booth versus Outside the Booth.

    PubMed

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done, that is, in the booth or in the room. Results from the present study indicate that one can obtain the same results on auditory processing tests, regardless of whether testing is completed in a soundproof booth or in a quiet test environment. Therefore, audiologists should not be required to test for auditory processing in a soundproof booth. This study shows that audiologists can conduct testing in a quiet room so long as the background noise is sufficiently controlled. American Academy of Audiology

  9. Musical Experience, Sensorineural Auditory Processing, and Reading Subskills in Adults

    PubMed Central

    Tichko, Parker; Skoe, Erika

    2018-01-01

    Developmental research suggests that sensorineural auditory processing, reading subskills (e.g., phonological awareness and rapid naming), and musical experience are related during early periods of reading development. Interestingly, recent work suggests that these relations may extend into adulthood, with indices of sensorineural auditory processing relating to global reading ability. However, it is largely unknown whether sensorineural auditory processing relates to specific reading subskills, such as phonological awareness and rapid naming, as well as musical experience in mature readers. To address this question, we recorded electrophysiological responses to a repeating click (auditory stimulus) in a sample of adult readers. We then investigated relations between electrophysiological responses to sound, reading subskills, and musical experience in this same set of adult readers. Analyses suggest that sensorineural auditory processing, reading subskills, and musical experience are related in adulthood, with faster neural conduction times and greater musical experience associated with stronger rapid-naming skills. These results are similar to the developmental findings that suggest reading subskills are related to sensorineural auditory processing and musical experience in children. PMID:29702572

  10. Comorbidity of Auditory Processing, Language, and Reading Disorders

    ERIC Educational Resources Information Center

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  11. How bodies and voices interact in early emotion perception.

    PubMed

    Jessen, Sarah; Obleser, Jonas; Kotz, Sonja A

    2012-01-01

    Successful social communication draws strongly on the correct interpretation of others' body and vocal expressions. Both can provide emotional information and often occur simultaneously. Yet their interplay has hardly been studied. Using electroencephalography, we investigated the temporal development underlying their neural interaction in auditory and visual perception. In particular, we tested whether this interaction qualifies as true integration following multisensory integration principles such as inverse effectiveness. Emotional vocalizations were embedded in either low or high levels of noise and presented with or without video clips of matching emotional body expressions. In both, high and low noise conditions, a reduction in auditory N100 amplitude was observed for audiovisual stimuli. However, only under high noise, the N100 peaked earlier in the audiovisual than the auditory condition, suggesting facilitatory effects as predicted by the inverse effectiveness principle. Similarly, we observed earlier N100 peaks in response to emotional compared to neutral audiovisual stimuli. This was not the case in the unimodal auditory condition. Furthermore, suppression of beta-band oscillations (15-25 Hz) primarily reflecting biological motion perception was modulated 200-400 ms after the vocalization. While larger differences in suppression between audiovisual and audio stimuli in high compared to low noise levels were found for emotional stimuli, no such difference was observed for neutral stimuli. This observation is in accordance with the inverse effectiveness principle and suggests a modulation of integration by emotional content. Overall, results show that ecologically valid, complex stimuli such as joined body and vocal expressions are effectively integrated very early in processing.

  12. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  14. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    PubMed Central

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  15. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  16. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test

    PubMed Central

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2016-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits. PMID:28050213

  17. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Auditory processing theories of language disorders: past, present, and future.

    PubMed

    Miller, Carol A

    2011-07-01

    The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory processing disorder (APD), specific language impairment (SLI), and dyslexia. The history of auditory processing theories of these 3 disorders is described, points of convergence and controversy within and among the different branches of research literature are considered, and the influence of research on practice is discussed. The theoretical and clinical contributions of neurophysiological methods are also reviewed, and suggested approaches for critical reading of the research literature are provided. Research on the role of auditory processing in communication disorders springs from a variety of theoretical perspectives and assumptions, and this variety, combined with controversies over the interpretation of research results, makes it difficult to draw clinical implications from the literature. Neurophysiological research methods are a promising route to better understanding of auditory processing. Progress in theory development and its clinical application is most likely to be made when researchers from different disciplines and theoretical perspectives communicate clearly and combine the strengths of their approaches.

  19. Visual and auditory perception in preschool children at risk for dyslexia.

    PubMed

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.

  1. Tuning in to the Voices: A Multisite fMRI Study of Auditory Hallucinations

    PubMed Central

    Ford, Judith M.; Roach, Brian J.; Jorgensen, Kasper W.; Turner, Jessica A.; Brown, Gregory G.; Notestine, Randy; Bischoff-Grethe, Amanda; Greve, Douglas; Wible, Cynthia; Lauriello, John; Belger, Aysenil; Mueller, Bryon A.; Calhoun, Vincent; Preda, Adrian; Keator, David; O'Leary, Daniel S.; Lim, Kelvin O.; Glover, Gary; Potkin, Steven G.; Mathalon, Daniel H.

    2009-01-01

    Introduction: Auditory hallucinations or voices are experienced by 75% of people diagnosed with schizophrenia. We presumed that auditory cortex of schizophrenia patients who experience hallucinations is tonically “tuned” to internal auditory channels, at the cost of processing external sounds, both speech and nonspeech. Accordingly, we predicted that patients who hallucinate would show less auditory cortical activation to external acoustic stimuli than patients who did not. Methods: At 9 Functional Imaging Biomedical Informatics Research Network (FBIRN) sites, whole-brain images from 106 patients and 111 healthy comparison subjects were collected while subjects performed an auditory target detection task. Data were processed with the FBIRN processing stream. A region of interest analysis extracted activation values from primary (BA41) and secondary auditory cortex (BA42), auditory association cortex (BA22), and middle temporal gyrus (BA21). Patients were sorted into hallucinators (n = 66) and nonhallucinators (n = 40) based on symptom ratings done during the previous week. Results: Hallucinators had less activation to probe tones in left primary auditory cortex (BA41) than nonhallucinators. This effect was not seen on the right. Discussion: Although “voices” are the anticipated sensory experience, it appears that even primary auditory cortex is “turned on” and “tuned in” to process internal acoustic information at the cost of processing external sounds. Although this study was not designed to probe cortical competition for auditory resources, we were able to take advantage of the data and find significant effects, perhaps because of the power afforded by such a large sample. PMID:18987102

  2. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    PubMed

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  4. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  5. Enhanced attention-dependent activity in the auditory cortex of older musicians.

    PubMed

    Zendel, Benjamin Rich; Alain, Claude

    2014-01-01

    Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Compatibility of motion facilitates visuomotor synchronization.

    PubMed

    Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L

    2010-12-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.

  7. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The moving minimum audible angle is smaller during self motion than during source motion

    PubMed Central

    Brimijoin, W. Owen; Akeroyd, Michael A.

    2014-01-01

    We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system—in a manner not unlike the vestibulo-ocular reflex—works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion. We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create “head-stabilized” signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA). This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this “self-motion” condition we measured MMAA in a second “source-motion” condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition. For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1–2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues. PMID:25228856

  9. Proceedings of the Lake Wilderness Attention Conference Held at Seattle Washington, 22-24 September 1980.

    DTIC Science & Technology

    1981-07-10

    Pohlmann, L. D. Some models of observer behavior in two-channel auditory signal detection. Perception and Psychophy- sics, 1973, 14, 101-109. Spelke...spatial), and processing modalities ( auditory versus visual input, vocal versus manual response). If validated, this configuration has both theoretical...conclusion that auditory and visual processes will compete, as will spatial and verbal (albeit to a lesser extent than auditory - auditory , visual-visual

  10. Basic Auditory Processing Skills and Phonological Awareness in Low-IQ Readers and Typically Developing Controls

    ERIC Educational Resources Information Center

    Kuppen, Sarah; Huss, Martina; Fosker, Tim; Fegan, Natasha; Goswami, Usha

    2011-01-01

    We explore the relationships between basic auditory processing, phonological awareness, vocabulary, and word reading in a sample of 95 children, 55 typically developing children, and 40 children with low IQ. All children received nonspeech auditory processing tasks, phonological processing and literacy measures, and a receptive vocabulary task.…

  11. The influence of (central) auditory processing disorder in speech sound disorders.

    PubMed

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Evaluation of an imputed pitch velocity model of the auditory kappa effect.

    PubMed

    Henry, Molly J; McAuley, J Devin

    2009-04-01

    Three experiments evaluated an imputed pitch velocity model of the auditory kappa effect. Listeners heard 3-tone sequences and judged the timing of the middle (target) tone relative to the timing of the 1st and 3rd (bounding) tones. Experiment 1 held pitch constant but varied the time (T) interval between bounding tones (T = 728, 1,000, or 1,600 ms) in order to establish baseline performance levels for the 3 values of T. Experiments 2 and 3 combined the values of T tested in Experiment 1 with a pitch manipulation in order to create fast (8 semitones/728 ms), medium (8 semitones/1,000 ms), and slow (8 semitones/1,600 ms) velocity conditions. Consistent with an auditory motion hypothesis, distortions in perceived timing were larger for fast than for slow velocity conditions for both ascending sequences (Experiment 2) and descending sequences (Experiment 3). Overall, results supported the proposed imputed pitch velocity model of the auditory kappa effect. (c) 2009 APA, all rights reserved.

  13. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  14. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    PubMed

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during anesthesia.

  15. Auditory Processing Disorder and Foreign Language Acquisition

    ERIC Educational Resources Information Center

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  16. Auditory processing deficits in individuals with primary open-angle glaucoma.

    PubMed

    Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan

    2012-01-01

    The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.

  17. Towards neural correlates of auditory stimulus processing: A simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm

    PubMed Central

    Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk

    2014-01-01

    Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019

  18. Crossmodal Statistical Binding of Temporal Information and Stimuli Properties Recalibrates Perception of Visual Apparent Motion

    PubMed Central

    Zhang, Yi; Chen, Lihan

    2016-01-01

    Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910

  19. Auditory Processing Disorders: An Overview. ERIC Digest.

    ERIC Educational Resources Information Center

    Ciocci, Sandra R.

    This digest presents an overview of children with auditory processing disorders (APDs), children who can typically hear information but have difficulty attending to, storing, locating, retrieving, and/or clarifying that information to make it useful for academic and social purposes. The digest begins by describing central auditory processing and…

  20. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing.

    PubMed

    Black, Emily; Stevenson, Jennifer L; Bish, Joel P

    2017-08-01

    The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.

  1. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  2. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  3. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  4. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  5. Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.

    PubMed

    Stothart, George; Kazanina, Nina

    2016-11-01

    Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Acetylcholinesterase Inhibition and Information Processing in the Auditory Cortex

    DTIC Science & Technology

    1986-04-30

    9,24,29,30), or for causing auditory hallucinations (2,23,31,32). Thus, compounds which alter cho- linergic transmission, in particular anticholinesterases...the upper auditory system. Thus, attending to and understanding verbal messages in humans, irrespective of the particular voice which speaks them, may...00, AD ACETYLCHOLINESTERASE INHIBITION AND INFORMATION PROCESSING IN THE AUDITORY CORTEX ANNUAL SUMMARY REPORT DTIC ELECTENORMAN M

  8. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.

  9. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration

    PubMed Central

    Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno

    2014-01-01

    Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432

  10. Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.

    PubMed

    Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V

    2013-11-15

    Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Influence of visual and auditory biofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: a randomized controlled clinical trial.

    PubMed

    Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A

    2015-02-01

    Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.

  12. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    PubMed

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Compilation and Clinical Applicability of an Early Auditory Processing Assessment Battery for Young Children.

    ERIC Educational Resources Information Center

    Fair, Lisl; Louw, Brenda; Hugo, Rene

    2001-01-01

    This study compiled a comprehensive early auditory processing skills assessment battery and evaluated the battery to toddlers with (n=8) and without (n=9) early recurrent otitis media. The assessment battery successfully distinguished between normal and deficient early auditory processing development in the subjects. The study also found parents…

  14. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    PubMed

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  15. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mechanics of the Mammalian Cochlea

    PubMed Central

    Robles, Luis; Ruggero, Mario A.

    2013-01-01

    In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697

  17. Sleep-dependent consolidation benefits fast transfer of time interval training.

    PubMed

    Chen, Lihan; Guo, Lu; Bao, Ming

    2017-03-01

    Previous study has shown that short training (15 min) for explicitly discriminating temporal intervals between two paired auditory beeps, or between two paired tactile taps, can significantly improve observers' ability to classify the perceptual states of visual Ternus apparent motion while the training of task-irrelevant sensory properties did not help to improve visual timing (Chen and Zhou in Exp Brain Res 232(6):1855-1864, 2014). The present study examined the role of 'consolidation' after training of temporal task-irrelevant properties, or whether a pure delay (i.e., blank consolidation) following pretest of the target task would give rise to improved ability of visual interval timing, typified in visual Ternus display. A procedure of pretest-training-posttest was adopted, with the probe of discriminating Ternus apparent motion. The extended implicit training of timing in which the time intervals between paired auditory beeps or paired tactile taps were manipulated but the task was discrimination of the auditory pitches or tactile intensities, did not lead to the training benefits (Exps 1 and 3); however, a delay of 24 h after implicit training of timing, including solving 'Sudoku puzzles,' made the otherwise absent training benefits observable (Exps 2, 4, 5 and 6). The above improvements in performance were not due to a practice effect of Ternus motion (Exp 7). A general 'blank' consolidation period of 24 h also made improvements of visual timing observable (Exp 8). Taken together, the current findings indicated that sleep-dependent consolidation imposed a general effect, by potentially triggering and maintaining neuroplastic changes in the intrinsic (timing) network to enhance the ability of time perception.

  18. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.

  19. Hearing, Auditory Processing, and Language Skills of Male Youth Offenders and Remandees in Youth Justice Residences in New Zealand.

    PubMed

    Lount, Sarah A; Purdy, Suzanne C; Hand, Linda

    2017-01-01

    International evidence suggests youth offenders have greater difficulties with oral language than their nonoffending peers. This study examined the hearing, auditory processing, and language skills of male youth offenders and remandees (YORs) in New Zealand. Thirty-three male YORs, aged 14-17 years, were recruited from 2 youth justice residences, plus 39 similarly aged male students from local schools for comparison. Testing comprised tympanometry, self-reported hearing, pure-tone audiometry, 4 auditory processing tests, 2 standardized language tests, and a nonverbal intelligence test. Twenty-one (64%) of the YORs were identified as language impaired (LI), compared with 4 (10%) of the controls. Performance on all language measures was significantly worse in the YOR group, as were their hearing thresholds. Nine (27%) of the YOR group versus 7 (18%) of the control group fulfilled criteria for auditory processing disorder. Only 1 YOR versus 5 controls had an auditory processing disorder without LI. Language was an area of significant difficulty for YORs. Difficulties with auditory processing were more likely to be accompanied by LI in this group, compared with the controls. Provision of speech-language therapy services and awareness of auditory and language difficulties should be addressed in youth justice systems.

  20. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss.

    PubMed

    Kolarik, Andrew J; Moore, Brian C J; Zahorik, Pavel; Cirstea, Silvia; Pardhan, Shahina

    2016-02-01

    Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.

  1. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  2. The representation of conceptual knowledge: visual, auditory, and olfactory imagery compared with semantic processing.

    PubMed

    Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti

    2014-05-01

    Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.

  3. An Analysis of the Effects of Phenytoin in Treating Motion Sickness and the Effects of Motion Sickness on the Human Electroencephalogram

    DTIC Science & Technology

    1990-12-01

    ears ( tinnitus ) and/or a reduced auditory acuity resulted from the dosing. These side effects have been shown to 29 occur in some subjects as a result of...examinations. 5. Complete blood count (CBC). 6. Blood biochemistry screen (Chem 18 including liver function tests). 7. Blood cholesterol and lipids . 8. Chest X...blood lipids and cholesterol, chest X-ray, urinalysis, visual acuity test, vestibular evaluation and liver function studies. Subjects will then take

  4. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds.

    PubMed

    Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke

    2017-01-01

    Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.

  5. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds

    PubMed Central

    2017-01-01

    Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797

  6. Operator Performance Measures for Assessing Voice Communication Effectiveness

    DTIC Science & Technology

    1989-07-01

    performance and work- load assessment techniques have been based.I Broadbent (1958) described a limited capacity filter model of human information...INFORMATION PROCESSING 20 3.1.1. Auditory Attention 20 3.1.2. Auditory Memory 24 3.2. MODELS OF INFORMATION PROCESSING 24 3.2.1. Capacity Theories 25...Learning 0 Attention * Language Specialization • Decision Making• Problem Solving Auditory Information Processing Models of Processing Ooemtor

  7. Compatibility of Motion Facilitates Visuomotor Synchronization

    ERIC Educational Resources Information Center

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  8. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.

  9. Effect of conductive hearing loss on central auditory function.

    PubMed

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Influence of Eye Movements, Auditory Perception, and Phonemic Awareness in the Reading Process

    ERIC Educational Resources Information Center

    Megino-Elvira, Laura; Martín-Lobo, Pilar; Vergara-Moragues, Esperanza

    2016-01-01

    The authors' aim was to analyze the relationship of eye movements, auditory perception, and phonemic awareness with the reading process. The instruments used were the King-Devick Test (saccade eye movements), the PAF test (auditory perception), the PFC (phonemic awareness), the PROLEC-R (lexical process), the Canals reading speed test, and the…

  11. Developmental Trends in Auditory Processing Can Provide Early Predictions of Language Acquisition in Young Infants

    ERIC Educational Resources Information Center

    Chonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R.; Shao, Jie; Lozoff, Betsy

    2013-01-01

    Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with…

  12. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: a longitudinal study of the auditory temporal processing theory.

    PubMed

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol

    2007-04-09

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.

  13. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Respiratory sinus arrhythmia and auditory processing in autism: modifiable deficits of an integrated social engagement system?

    PubMed

    Porges, Stephen W; Macellaio, Matthew; Stanfill, Shannon D; McCue, Kimberly; Lewis, Gregory F; Harden, Emily R; Handelman, Mika; Denver, John; Bazhenova, Olga V; Heilman, Keri J

    2013-06-01

    The current study evaluated processes underlying two common symptoms (i.e., state regulation problems and deficits in auditory processing) associated with a diagnosis of autism spectrum disorders. Although these symptoms have been treated in the literature as unrelated, when informed by the Polyvagal Theory, these symptoms may be viewed as the predictable consequences of depressed neural regulation of an integrated social engagement system, in which there is down regulation of neural influences to the heart (i.e., via the vagus) and to the middle ear muscles (i.e., via the facial and trigeminal cranial nerves). Respiratory sinus arrhythmia (RSA) and heart period were monitored to evaluate state regulation during a baseline and two auditory processing tasks (i.e., the SCAN tests for Filtered Words and Competing Words), which were used to evaluate auditory processing performance. Children with a diagnosis of autism spectrum disorders (ASD) were contrasted with aged matched typically developing children. The current study identified three features that distinguished the ASD group from a group of typically developing children: 1) baseline RSA, 2) direction of RSA reactivity, and 3) auditory processing performance. In the ASD group, the pattern of change in RSA during the attention demanding SCAN tests moderated the relation between performance on the Competing Words test and IQ. In addition, in a subset of ASD participants, auditory processing performance improved and RSA increased following an intervention designed to improve auditory processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  16. Accounting for the phenomenology and varieties of auditory verbal hallucination within a predictive processing framework

    PubMed Central

    Wilkinson, Sam

    2018-01-01

    Two challenges that face popular self-monitoring theories (SMTs) of auditory verbal hallucination (AVH) are that they cannot account for the auditory phenomenology of AVHs and that they cannot account for their variety. In this paper I show that both challenges can be met by adopting a predictive processing framework (PPF), and by viewing AVHs as arising from abnormalities in predictive processing. I show how, within the PPF, both the auditory phenomenology of AVHs, and three subtypes of AVH, can be accounted for. PMID:25286243

  17. Basic Auditory Processing and Developmental Dyslexia in Chinese

    ERIC Educational Resources Information Center

    Wang, Hsiao-Lan Sharon; Huss, Martina; Hamalainen, Jarmo A.; Goswami, Usha

    2012-01-01

    The present study explores the relationship between basic auditory processing of sound rise time, frequency, duration and intensity, phonological skills (onset-rime and tone awareness, sound blending, RAN, and phonological memory) and reading disability in Chinese. A series of psychometric, literacy, phonological, auditory, and character…

  18. Temporal processing and long-latency auditory evoked potential in stutterers.

    PubMed

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.

  20. Audio aided electro-tactile perception training for finger posture biofeedback.

    PubMed

    Vargas, Jose Gonzalez; Yu, Wenwei

    2008-01-01

    Visual information is one of the prerequisites for most biofeedback studies. The aim of this study is to explore how the usage of an audio aided training helps in the learning process of dynamical electro-tactile perception without any visual feedback. In this research, the electrical simulation patterns associated with the experimenter's finger postures and motions were presented to the subjects. Along with the electrical stimulation patterns 2 different types of information, verbal and audio information on finger postures and motions, were presented to the verbal training subject group (group 1) and audio training subject group (group 2), respectively. The results showed an improvement in the ability to distinguish and memorize electrical stimulation patterns correspondent to finger postures and motions without visual feedback, and with audio tones aid, the learning was faster and the perception became more precise after training. Thus, this study clarified that, as a substitution to visual presentation, auditory information could help effectively in the formation of electro-tactile perception. Further research effort needed to make clear the difference between the visual guided and audio aided training in terms of information compilation, post-training effect and robustness of the perception.

  1. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Model for Amplification of Hair-Bundle Motion by Cyclical Binding of Ca2+ to Mechanoelectrical-Transduction Channels

    NASA Astrophysics Data System (ADS)

    Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.

    1998-12-01

    Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.

  3. Psychometric Evaluation of Children with Auditory Processing Disorder (APD): Comparison with Normal-Hearing and Clinical Non-APD Groups

    ERIC Educational Resources Information Center

    Iliadou, Vasiliki; Bamiou, Doris Eva

    2012-01-01

    Purpose: To investigate the clinical utility of the Children's Auditory Processing Performance Scale (CHAPPS; Smoski, Brunt, & Tannahill, 1992) to evaluate listening ability in 12-year-old children referred for auditory processing assessment. Method: This was a prospective case control study of 97 children (age range = 11;4 [years;months] to…

  4. Observations on the Use of SCAN To Identify Children at Risk for Central Auditory Processing Disorder.

    ERIC Educational Resources Information Center

    Emerson, Maria F.; And Others

    1997-01-01

    The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…

  5. Temporal factors affecting somatosensory–auditory interactions in speech processing

    PubMed Central

    Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.

    2014-01-01

    Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733

  6. Estradiol-dependent modulation of auditory processing and selectivity in songbirds

    PubMed Central

    Maney, Donna; Pinaud, Raphael

    2011-01-01

    The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency. PMID:21146556

  7. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    PubMed Central

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  8. Crossmodal interactions during non-linguistic auditory processing in cochlear-implanted deaf patients.

    PubMed

    Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier

    2016-10-01

    Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gender recognition depends on type of movement and motor skill. Analyzing and perceiving biological motion in musical and nonmusical tasks.

    PubMed

    Wöllner, Clemens; Deconinck, Frederik J A

    2013-05-01

    Gender recognition in point-light displays was investigated with regard to body morphology cues and motion cues of human motion performed with different levels of technical skill. Gestures of male and female orchestral conductors were recorded with a motion capture system while they conducted excerpts from a Mendelssohn string symphony to musicians. Point-light displays of conductors were presented to observers under the following conditions: visual-only, auditory-only, audiovisual, and two non-conducting conditions (walking and static images). Observers distinguished between male and female conductors in gait and static images, but not in visual-only and auditory-only conducting conditions. Across all conductors, gender recognition for audiovisual stimuli was better than chance, yet significantly less reliable than for gait. Separate analyses for two groups of conductors indicated an expertise effect in that novice conductors' gender was perceived above chance level for visual-only and audiovisual conducting, while skilled conducting gestures of experts did not afford gender-specific cues. In these conditions, participants may have ignored the body morphology cues that led to correct judgments for static images. Results point to a response bias such that conductors were more often judged to be male. Thus judgment accuracy depended both on the conductors' level of expertise as well as on the observers' concepts, suggesting that perceivable differences between men and women may diminish for highly trained movements of experienced individuals. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Left ventral occipitotemporal activation during orthographic and semantic processing of auditory words.

    PubMed

    Ludersdorfer, Philipp; Wimmer, Heinz; Richlan, Fabio; Schurz, Matthias; Hutzler, Florian; Kronbichler, Martin

    2016-01-01

    The present fMRI study investigated the hypothesis that activation of the left ventral occipitotemporal cortex (vOT) in response to auditory words can be attributed to lexical orthographic rather than lexico-semantic processing. To this end, we presented auditory words in both an orthographic ("three or four letter word?") and a semantic ("living or nonliving?") task. In addition, a auditory control condition presented tones in a pitch evaluation task. The results showed that the left vOT exhibited higher activation for orthographic relative to semantic processing of auditory words with a peak in the posterior part of vOT. Comparisons to the auditory control condition revealed that orthographic processing of auditory words elicited activation in a large vOT cluster. In contrast, activation for semantic processing was only weak and restricted to the middle part vOT. We interpret our findings as speaking for orthographic processing in left vOT. In particular, we suggest that activation in left middle vOT can be attributed to accessing orthographic whole-word representations. While activation of such representations was experimentally ascertained in the orthographic task, it might have also occurred automatically in the semantic task. Activation in the more posterior vOT region, on the other hand, may reflect the generation of explicit images of word-specific letter sequences required by the orthographic but not the semantic task. In addition, based on cross-modal suppression, the finding of marked deactivations in response to the auditory tones is taken to reflect the visual nature of representations and processes in left vOT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Auditory processing and morphological anomalies in medial geniculate nucleus of Cntnap2 mutant mice.

    PubMed

    Truong, Dongnhu T; Rendall, Amanda R; Castelluccio, Brian C; Eigsti, Inge-Marie; Fitch, R Holly

    2015-12-01

    Genetic epidemiological studies support a role for CNTNAP2 in developmental language disorders such as autism spectrum disorder, specific language impairment, and dyslexia. Atypical language development and function represent a core symptom of autism spectrum disorder (ASD), with evidence suggesting that aberrant auditory processing-including impaired spectrotemporal processing and enhanced pitch perception-may both contribute to an anomalous language phenotype. Investigation of gene-brain-behavior relationships in social and repetitive ASD symptomatology have benefited from experimentation on the Cntnap2 knockout (KO) mouse. However, auditory-processing behavior and effects on neural structures within the central auditory pathway have not been assessed in this model. Thus, this study examined whether auditory-processing abnormalities were associated with mutation of the Cntnap2 gene in mice. Cntnap2 KO mice were assessed on auditory-processing tasks including silent gap detection, embedded tone detection, and pitch discrimination. Cntnap2 knockout mice showed deficits in silent gap detection but a surprising superiority in pitch-related discrimination as compared with controls. Stereological analysis revealed a reduction in the number and density of neurons, as well as a shift in neuronal size distribution toward smaller neurons, in the medial geniculate nucleus of mutant mice. These findings are consistent with a central role for CNTNAP2 in the ontogeny and function of neural systems subserving auditory processing and suggest that developmental disruption of these neural systems could contribute to the atypical language phenotype seen in autism spectrum disorder. (c) 2015 APA, all rights reserved).

  12. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.

    PubMed

    Chambers, Anna R; Salazar, Juan J; Polley, Daniel B

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.

  13. Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine

    2010-01-01

    Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…

  14. Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.

    ERIC Educational Resources Information Center

    Miyamoto, Richard T.; Wong, Donald

    2001-01-01

    Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…

  15. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    ERIC Educational Resources Information Center

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  16. Auditory conflict and congruence in frontotemporal dementia.

    PubMed

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging

    PubMed Central

    Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano

    2013-01-01

    The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431

  18. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  19. Auditory Temporal Information Processing in Preschool Children at Family Risk for Dyslexia: Relations with Phonological Abilities and Developing Literacy Skills

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2006-01-01

    In this project, the hypothesis of an auditory temporal processing deficit in dyslexia was tested by examining auditory processing in relation to phonological skills in two contrasting groups of five-year-old preschool children, a familial high risk and a familial low risk group. Participants were individually matched for gender, age, non-verbal…

  20. Accounting for the phenomenology and varieties of auditory verbal hallucination within a predictive processing framework.

    PubMed

    Wilkinson, Sam

    2014-11-01

    Two challenges that face popular self-monitoring theories (SMTs) of auditory verbal hallucination (AVH) are that they cannot account for the auditory phenomenology of AVHs and that they cannot account for their variety. In this paper I show that both challenges can be met by adopting a predictive processing framework (PPF), and by viewing AVHs as arising from abnormalities in predictive processing. I show how, within the PPF, both the auditory phenomenology of AVHs, and three subtypes of AVH, can be accounted for. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  1. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  2. Thalamic and cortical pathways supporting auditory processing

    PubMed Central

    Lee, Charles C.

    2012-01-01

    The neural processing of auditory information engages pathways that begin initially at the cochlea and that eventually reach forebrain structures. At these higher levels, the computations necessary for extracting auditory source and identity information rely on the neuroanatomical connections between the thalamus and cortex. Here, the general organization of these connections in the medial geniculate body (thalamus) and the auditory cortex is reviewed. In addition, we consider two models organizing the thalamocortical pathways of the non-tonotopic and multimodal auditory nuclei. Overall, the transfer of information to the cortex via the thalamocortical pathways is complemented by the numerous intracortical and corticocortical pathways. Although interrelated, the convergent interactions among thalamocortical, corticocortical, and commissural pathways enable the computations necessary for the emergence of higher auditory perception. PMID:22728130

  3. Auditory processing deficits are sometimes necessary and sometimes sufficient for language difficulties in children: Evidence from mild to moderate sensorineural hearing loss.

    PubMed

    Halliday, Lorna F; Tuomainen, Outi; Rosen, Stuart

    2017-09-01

    There is a general consensus that many children and adults with dyslexia and/or specific language impairment display deficits in auditory processing. However, how these deficits are related to developmental disorders of language is uncertain, and at least four categories of model have been proposed: single distal cause models, risk factor models, association models, and consequence models. This study used children with mild to moderate sensorineural hearing loss (MMHL) to investigate the link between auditory processing deficits and language disorders. We examined the auditory processing and language skills of 46, 8-16year-old children with MMHL and 44 age-matched typically developing controls. Auditory processing abilities were assessed using child-friendly psychophysical techniques in order to obtain discrimination thresholds. Stimuli incorporated three different timescales (µs, ms, s) and three different levels of complexity (simple nonspeech tones, complex nonspeech sounds, speech sounds), and tasks required discrimination of frequency or amplitude cues. Language abilities were assessed using a battery of standardised assessments of phonological processing, reading, vocabulary, and grammar. We found evidence that three different auditory processing abilities showed different relationships with language: Deficits in a general auditory processing component were necessary but not sufficient for language difficulties, and were consistent with a risk factor model; Deficits in slow-rate amplitude modulation (envelope) detection were sufficient but not necessary for language difficulties, and were consistent with either a single distal cause or a consequence model; And deficits in the discrimination of a single speech contrast (/bɑ/ vs /dɑ/) were neither necessary nor sufficient for language difficulties, and were consistent with an association model. Our findings suggest that different auditory processing deficits may constitute distinct and independent routes to the development of language difficulties in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  5. Listening to Another Sense: Somatosensory Integration in the Auditory System

    PubMed Central

    Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.

    2014-01-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  6. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults

    PubMed Central

    Tusch, Erich S.; Alperin, Brittany R.; Holcomb, Phillip J.; Daffner, Kirk R.

    2016-01-01

    The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts. PMID:27806081

  7. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  8. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  9. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  10. Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion

    PubMed Central

    Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin

    2012-01-01

    It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for auditory adaptation. These findings, suggesting amodal representation for sub-second timing across modalities, are interpreted in the framework of temporal pacemaker model. PMID:23133408

  11. P50 Suppression in Children with Selective Mutism: A Preliminary Report

    ERIC Educational Resources Information Center

    Henkin, Yael; Feinholz, Maya; Arie, Miri; Bar-Haim, Yair

    2010-01-01

    Evidence suggests that children with selective mutism (SM) display significant aberrations in auditory efferent activity at the brainstem level that may underlie inefficient auditory processing during vocalization, and lead to speech avoidance. The objective of the present study was to explore auditory filtering processes at the cortical level in…

  12. The Diagnosis and Management of Auditory Processing Disorder

    ERIC Educational Resources Information Center

    Moore, David R.

    2011-01-01

    Purpose: To provide a personal perspective on auditory processing disorder (APD), with reference to the recent clinical forum on APD and the needs of clinical speech-language pathologists and audiologists. Method: The Medical Research Council-Institute of Hearing Research (MRC-IHR) has been engaged in research into APD and auditory learning for 8…

  13. Auditory and Linguistic Processes in the Perception of Intonation Contours.

    ERIC Educational Resources Information Center

    Studdert-Kennedy, Michael; Hadding, Kerstin

    By examining the relations among sections of the fundamental frequency contour used in judging an utterance as a question or statement, the experiment described in this report seeks a more detailed understanding of auditory-linguistic interaction in the perception of intonation contours. The perceptual process may be divided into stages (auditory,…

  14. Directional Effects between Rapid Auditory Processing and Phonological Awareness in Children

    ERIC Educational Resources Information Center

    Johnson, Erin Phinney; Pennington, Bruce F.; Lee, Nancy Raitano; Boada, Richard

    2009-01-01

    Background: Deficient rapid auditory processing (RAP) has been associated with early language impairment and dyslexia. Using an auditory masking paradigm, children with language disabilities perform selectively worse than controls at detecting a tone in a backward masking (BM) condition (tone followed by white noise) compared to a forward masking…

  15. Auditory Processing Disorder and Auditory/Language Interventions: An Evidence-Based Systematic Review

    ERIC Educational Resources Information Center

    Fey, Marc E.; Richard, Gail J.; Geffner, Donna; Kamhi, Alan G.; Medwetsky, Larry; Paul, Diane; Ross-Swain, Deborah; Wallach, Geraldine P.; Frymark, Tobi; Schooling, Tracy

    2011-01-01

    Purpose: In this systematic review, the peer-reviewed literature on the efficacy of interventions for school-age children with auditory processing disorder (APD) is critically evaluated. Method: Searches of 28 electronic databases yielded 25 studies for analysis. These studies were categorized by research phase (e.g., exploratory, efficacy) and…

  16. Auditory Perception and Word Recognition in Cantonese-Chinese Speaking Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Kidd, Joanna C.; Shum, Kathy K.; Wong, Anita M.-Y.; Ho, Connie S.-H.

    2017-01-01

    Auditory processing and spoken word recognition difficulties have been observed in Specific Language Impairment (SLI), raising the possibility that auditory perceptual deficits disrupt word recognition and, in turn, phonological processing and oral language. In this study, fifty-seven kindergarten children with SLI and fifty-three language-typical…

  17. Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism

    ERIC Educational Resources Information Center

    Groen, Wouter B.; van Orsouw, Linda; ter Huurne, Niels; Swinkels, Sophie; van der Gaag, Rutger-Jan; Buitelaar, Jan K.; Zwiers, Marcel P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with high-functioning-autism and 23 matched controls…

  18. Visual and Auditory Input in Second-Language Speech Processing

    ERIC Educational Resources Information Center

    Hardison, Debra M.

    2010-01-01

    The majority of studies in second-language (L2) speech processing have involved unimodal (i.e., auditory) input; however, in many instances, speech communication involves both visual and auditory sources of information. Some researchers have argued that multimodal speech is the primary mode of speech perception (e.g., Rosenblum 2005). Research on…

  19. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  20. Responses of auditory-cortex neurons to structural features of natural sounds.

    PubMed

    Nelken, I; Rotman, Y; Bar Yosef, O

    1999-01-14

    Sound-processing strategies that use the highly non-random structure of natural sounds may confer evolutionary advantage to many species. Auditory processing of natural sounds has been studied almost exclusively in the context of species-specific vocalizations, although these form only a small part of the acoustic biotope. To study the relationships between properties of natural soundscapes and neuronal processing mechanisms in the auditory system, we analysed sound from a range of different environments. Here we show that for many non-animal sounds and background mixtures of animal sounds, energy in different frequency bands is coherently modulated. Co-modulation of different frequency bands in background noise facilitates the detection of tones in noise by humans, a phenomenon known as co-modulation masking release (CMR). We show that co-modulation also improves the ability of auditory-cortex neurons to detect tones in noise, and we propose that this property of auditory neurons may underlie behavioural CMR. This correspondence may represent an adaptation of the auditory system for the use of an attribute of natural sounds to facilitate real-world processing tasks.

  1. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.

    PubMed

    Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K

    2013-11-01

    Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.

  2. Pre-Attentive Auditory Processing of Lexicality

    ERIC Educational Resources Information Center

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  3. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning.

    PubMed

    Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I

    2018-01-17

    In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Auditory reafferences: the influence of real-time feedback on movement control.

    PubMed

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  5. Auditory Scene Analysis: An Attention Perspective

    PubMed Central

    2017-01-01

    Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599

  6. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    PubMed

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  7. Test of the neurolinguistic programming hypothesis that eye-movements relate to processing imagery.

    PubMed

    Wertheim, E H; Habib, C; Cumming, G

    1986-04-01

    Bandler and Grinder's hypothesis that eye-movements reflect sensory processing was examined. 28 volunteers first memorized and then recalled visual, auditory, and kinesthetic stimuli. Changes in eye-positions during recall were videotaped and categorized by two raters into positions hypothesized by Bandler and Grinder's model to represent visual, auditory, and kinesthetic recall. Planned contrast analyses suggested that visual stimulus items, when recalled, elicited significantly more upward eye-positions and stares than auditory and kinesthetic items. Auditory and kinesthetic items, however, did not elicit more changes in eye-position hypothesized by the model to represent auditory and kinesthetic recall, respectively.

  8. Is auditory perceptual timing a core deficit of developmental coordination disorder?

    PubMed

    Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen

    2018-05-09

    Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.

  9. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  10. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  11. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  12. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    PubMed Central

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p < 0.05, and r = 0.76, p = 0.01, respectively, in a sample of 20 children with APD diagnosis. The standard APD battery identified a larger proportion of participants as having APD, than an attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both modalities is required. Revising diagnostic criteria to incorporate attention tests and the inattentive type of APD in the test battery, provides additional useful data to clinicians to ensure careful interpretation of APD assessments. PMID:29441033

  14. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed. PMID:28588524

  15. Modulating Human Auditory Processing by Transcranial Electrical Stimulation

    PubMed Central

    Heimrath, Kai; Fiene, Marina; Rufener, Katharina S.; Zaehle, Tino

    2016-01-01

    Transcranial electrical stimulation (tES) has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation, transcranial alternating current stimulation, and transcranial random noise stimulation has emerged. While the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders. PMID:27013969

  16. Multimodal lexical processing in auditory cortex is literacy skill dependent.

    PubMed

    McNorgan, Chris; Awati, Neha; Desroches, Amy S; Booth, James R

    2014-09-01

    Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others demonstrate recruitment of primary and associative auditory cortex during cross-modal processing. We sought to determine whether brain regions supporting phonological processing of larger lexical units (monosyllabic words) over larger time windows is sensitive to cross-modal information, and whether such effects are literacy dependent. Twenty-two children (age 8-14 years) made rhyming judgments for sequentially presented word and pseudoword pairs presented either unimodally (auditory- or visual-only) or cross-modally (audiovisual). Regression analyses examined the relationship between literacy and congruency effects (overlapping orthography and phonology vs. overlapping phonology-only). We extend previous findings by showing that higher literacy is correlated with greater congruency effects in auditory cortex (i.e., planum temporale) only for cross-modal processing. These skill effects were specific to known words and occurred over a large time window, suggesting that multimodal integration in posterior auditory cortex is critical for fluent reading. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  18. Auditory Processing, Linguistic Prosody Awareness, and Word Reading in Mandarin-Speaking Children Learning English

    ERIC Educational Resources Information Center

    Chung, Wei-Lun; Jarmulowicz, Linda; Bidelman, Gavin M.

    2017-01-01

    This study examined language-specific links among auditory processing, linguistic prosody awareness, and Mandarin (L1) and English (L2) word reading in 61 Mandarin-speaking, English-learning children. Three auditory discrimination abilities were measured: pitch contour, pitch interval, and rise time (rate of intensity change at tone onset).…

  19. Teaching Turkish as a Foreign Language: Extrapolating from Experimental Psychology

    ERIC Educational Resources Information Center

    Erdener, Dogu

    2017-01-01

    Speech perception is beyond the auditory domain and a multimodal process, specifically, an auditory-visual one--we process lip and face movements during speech. In this paper, the findings in cross-language studies of auditory-visual speech perception in the past two decades are interpreted to the applied domain of second language (L2)…

  20. Utilizing Oral-Motor Feedback in Auditory Conceptualization.

    ERIC Educational Resources Information Center

    Howard, Marilyn

    The Auditory Discrimination in Depth (ADD) program, an oral-motor approach to beginning reading instruction, trains first grade children in auditory skills by a process in which language and oral-motor feedback are used to integrate auditory properties with visual properties. This emphasis of the ADD program makes the child's perceptual…

  1. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  2. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.

    PubMed

    Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C

    2014-01-01

    Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.

  3. Auditory Task Irrelevance: A Basis for Inattentional Deafness

    PubMed Central

    Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.

    2018-01-01

    Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754

  4. Human Engineer’s Guide to Auditory Displays. Volume 2. Elements of Signal Reception and Resolution Affecting Auditory Displays.

    DTIC Science & Technology

    1984-08-01

    90de It noce..etrv wnd identify by block numberl .’-- This work reviews the areas of monaural and binaural signal detection, auditory discrimination And...AUDITORY DISPLAYS This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to...pertaining to the major areas of auditory processing in humans. The areas covered in the reviews presented here are monaural and binaural siqnal detection

  5. Auditory Processing Disorders

    MedlinePlus

    ... Loss Hearing Loss in Seniors Hearing Aids General Information Types Features Fittings Assistive Listening & Alerting Devices Cochlear Implants Aural Rehabilitation Auditory Processing Disorders (APDs) Common Conditions Dizziness Tinnitus Who Are ...

  6. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    PubMed

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Age-equivalent top-down modulation during cross-modal selective attention.

    PubMed

    Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam

    2014-12-01

    Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.

  8. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  9. Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production.

    PubMed

    Franken, Matthias K; Eisner, Frank; Acheson, Daniel J; McQueen, James M; Hagoort, Peter; Schoffelen, Jan-Mathijs

    2018-06-21

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Helicopter Aeromechanics

    DTIC Science & Technology

    1985-04-01

    evaluation is predominantly based on the impressions he gets from the stimulation of his sensual receptors, i.e. visual, motional and auditorial cues. For...Exchanging of scientific and technical information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the...extented. International cooperation has always been stimulating . Strong technology transfer restrictions could result in a technical isolation with

  11. Cross-modal perceptual load: the impact of modality and individual differences.

    PubMed

    Sandhu, Rajwant; Dyson, Benjamin James

    2016-05-01

    Visual distractor processing tends to be more pronounced when the perceptual load (PL) of a task is low compared to when it is high [perpetual load theory (PLT); Lavie in J Exp Psychol Hum Percept Perform 21(3):451-468, 1995]. While PLT is well established in the visual domain, application to cross-modal processing has produced mixed results, and the current study was designed in an attempt to improve previous methodologies. First, we assessed PLT using response competition, a typical metric from the uni-modal domain. Second, we looked at the impact of auditory load on visual distractors, and of visual load on auditory distractors, within the same individual. Third, we compared individual uni- and cross-modal selective attention abilities, by correlating performance with the visual Attentional Network Test (ANT). Fourth, we obtained a measure of the relative processing efficiency between vision and audition, to investigate whether processing ease influences the extent of distractor processing. Although distractor processing was evident during both attend auditory and attend visual conditions, we found that PL did not modulate processing of either visual or auditory distractors. We also found support for a correlation between the uni-modal (visual) ANT and our cross-modal task but only when the distractors were visual. Finally, although auditory processing was more impacted by visual distractors, our measure of processing efficiency only accounted for this asymmetry in the auditory high-load condition. The results are discussed with respect to the continued debate regarding the shared or separate nature of processing resources across modalities.

  12. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    PubMed

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  13. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  14. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing

    PubMed Central

    Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations. PMID:27310812

  15. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    PubMed

    Wilf, Meytal; Ramot, Michal; Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  16. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders

    PubMed Central

    Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.

    2013-01-01

    Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845

  17. Cerebral processing of auditory stimuli in patients with irritable bowel syndrome

    PubMed Central

    Andresen, Viola; Poellinger, Alexander; Tsrouya, Chedwa; Bach, Dominik; Stroh, Albrecht; Foerschler, Annette; Georgiewa, Petra; Schmidtmann, Marco; van der Voort, Ivo R; Kobelt, Peter; Zimmer, Claus; Wiedenmann, Bertram; Klapp, Burghard F; Monnikes, Hubert

    2006-01-01

    AIM: To determine by brain functional magnetic resonance imaging (fMRI) whether cerebral processing of non-visceral stimuli is altered in irritable bowel syndrome (IBS) patients compared with healthy subjects. To circumvent spinal viscerosomatic convergence mechanisms, we used auditory stimulation, and to identify a possible influence of psychological factors the stimuli differed in their emotional quality. METHODS: In 8 IBS patients and 8 controls, fMRI measurements were performed using a block design of 4 auditory stimuli of different emotional quality (pleasant sounds of chimes, unpleasant peep (2000 Hz), neutral words, and emotional words). A gradient echo T2*-weighted sequence was used for the functional scans. Statistical maps were constructed using the general linear model. RESULTS: To emotional auditory stimuli, IBS patients relative to controls responded with stronger deactivations in a greater variety of emotional processing regions, while the response patterns, unlike in controls, did not differentiate between distressing or pleasant sounds. To neutral auditory stimuli, by contrast, only IBS patients responded with large significant activations. CONCLUSION: Altered cerebral response patterns to auditory stimuli in emotional stimulus-processing regions suggest that altered sensory processing in IBS may not be specific for visceral sensation, but might reflect generalized changes in emotional sensitivity and affective reactivity, possibly associated with the psychological comorbidity often found in IBS patients. PMID:16586541

  18. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    PubMed Central

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  19. Human engineer's guide to auditory displays. Volume 1. Elements of perception and memory affecting auditory displays

    NASA Astrophysics Data System (ADS)

    Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.

    1984-08-01

    This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.

  20. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    PubMed

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  1. Central Auditory Processing Disorders: Is It a Meaningful Construct or a Twentieth Century Unicorn?

    ERIC Educational Resources Information Center

    Kamhi, Alan G.; Beasley, Daniel S.

    1985-01-01

    The article demonstrates how professional and theoretical perspectives (including psycholinguistics, behaviorist, and information processing perspectives) significantly influence the manner in which central auditory processing is viewed, assessed, and remediated. (Author/CL)

  2. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  3. Unraveling the principles of auditory cortical processing: can we learn from the visual system?

    PubMed Central

    King, Andrew J; Nelken, Israel

    2013-01-01

    Studies of auditory cortex are often driven by the assumption, derived from our better understanding of visual cortex, that basic physical properties of sounds are represented there before being used by higher-level areas for determining sound-source identity and location. However, we only have a limited appreciation of what the cortex adds to the extensive subcortical processing of auditory information, which can account for many perceptual abilities. This is partly because of the approaches that have dominated the study of auditory cortical processing to date, and future progress will unquestionably profit from the adoption of methods that have provided valuable insights into the neural basis of visual perception. At the same time, we propose that there are unique operating principles employed by the auditory cortex that relate largely to the simultaneous and sequential processing of previously derived features and that therefore need to be studied and understood in their own right. PMID:19471268

  4. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  5. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Brain Mapping of Language and Auditory Perception in High-Functioning Autistic Adults: A PET Study.

    ERIC Educational Resources Information Center

    Muller, R-A.; Behen, M. E.; Rothermel, R. D.; Chugani, D. C.; Muzik, O.; Mangner, T. J.; Chugani, H. T.

    1999-01-01

    A study used positron emission tomography (PET) to study patterns of brain activation during auditory processing in five high-functioning adults with autism. Results found that participants showed reversed hemispheric dominance during the verbal auditory stimulation and reduced activation of the auditory cortex and cerebellum. (CR)

  7. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  8. Stochastic correlative firing for figure-ground segregation.

    PubMed

    Chen, Zhe

    2005-03-01

    Segregation of sensory inputs into separate objects is a central aspect of perception and arises in all sensory modalities. The figure-ground segregation problem requires identifying an object of interest in a complex scene, in many cases given binaural auditory or binocular visual observations. The computations required for visual and auditory figure-ground segregation share many common features and can be cast within a unified framework. Sensory perception can be viewed as a problem of optimizing information transmission. Here we suggest a stochastic correlative firing mechanism and an associative learning rule for figure-ground segregation in several classic sensory perception tasks, including the cocktail party problem in binaural hearing, binocular fusion of stereo images, and Gestalt grouping in motion perception.

  9. Nonverbal auditory agnosia with lesion to Wernicke's area.

    PubMed

    Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic

    2010-01-01

    We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.

  10. Behavioral and subcortical signatures of musical expertise in Mandarin Chinese speakers

    PubMed Central

    Tervaniemi, Mari; Aalto, Daniel

    2018-01-01

    Both musical training and native language have been shown to have experience-based plastic effects on auditory processing. However, the combined effects within individuals are unclear. Recent research suggests that musical training and tone language speaking are not clearly additive in their effects on processing of auditory features and that there may be a disconnect between perceptual and neural signatures of auditory feature processing. The literature has only recently begun to investigate the effects of musical expertise on basic auditory processing for different linguistic groups. This work provides a profile of primary auditory feature discrimination for Mandarin speaking musicians and nonmusicians. The musicians showed enhanced perceptual discrimination for both frequency and duration as well as enhanced duration discrimination in a multifeature discrimination task, compared to nonmusicians. However, there were no differences between the groups in duration processing of nonspeech sounds at a subcortical level or in subcortical frequency representation of a nonnative tone contour, for fo or for the first or second formant region. The results indicate that musical expertise provides a cognitive, but not subcortical, advantage in a population of Mandarin speakers. PMID:29300756

  11. An assessment of auditory-guided locomotion in an obstacle circumvention task.

    PubMed

    Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina

    2016-06-01

    This study investigated how effectively audition can be used to guide navigation around an obstacle. Ten blindfolded normally sighted participants navigated around a 0.6 × 2 m obstacle while producing self-generated mouth click sounds. Objective movement performance was measured using a Vicon motion capture system. Performance with full vision without generating sound was used as a baseline for comparison. The obstacle's location was varied randomly from trial to trial: it was either straight ahead or 25 cm to the left or right relative to the participant. Although audition provided sufficient information to detect the obstacle and guide participants around it without collision in the majority of trials, buffer space (clearance between the shoulder and obstacle), overall movement times, and number of velocity corrections were significantly (p < 0.05) greater with auditory guidance than visual guidance. Collisions sometime occurred under auditory guidance, suggesting that audition did not always provide an accurate estimate of the space between the participant and obstacle. Unlike visual guidance, participants did not always walk around the side that afforded the most space during auditory guidance. Mean buffer space was 1.8 times higher under auditory than under visual guidance. Results suggest that sound can be used to generate buffer space when vision is unavailable, allowing navigation around an obstacle without collision in the majority of trials.

  12. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    PubMed

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  13. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  14. Processing Problems and Language Impairment in Children.

    ERIC Educational Resources Information Center

    Watkins, Ruth V.

    1990-01-01

    The article reviews studies on the assessment of rapid auditory processing abilities. Issues in auditory processing research are identified including a link between otitis media with effusion and language learning problems. A theory that linguistically impaired children experience difficulty in perceiving and processing low phonetic substance…

  15. Local and Global Auditory Processing: Behavioral and ERP Evidence

    PubMed Central

    Sanders, Lisa D.; Poeppel, David

    2007-01-01

    Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115

  16. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  17. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    PubMed

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  18. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    PubMed

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  20. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  1. Revisiting the "enigma" of musicians with dyslexia: Auditory sequencing and speech abilities.

    PubMed

    Zuk, Jennifer; Bishop-Liebler, Paula; Ozernov-Palchik, Ola; Moore, Emma; Overy, Katie; Welch, Graham; Gaab, Nadine

    2017-04-01

    Previous research has suggested a link between musical training and auditory processing skills. Musicians have shown enhanced perception of auditory features critical to both music and speech, suggesting that this link extends beyond basic auditory processing. It remains unclear to what extent musicians who also have dyslexia show these specialized abilities, considering often-observed persistent deficits that coincide with reading impairments. The present study evaluated auditory sequencing and speech discrimination in 52 adults comprised of musicians with dyslexia, nonmusicians with dyslexia, and typical musicians. An auditory sequencing task measuring perceptual acuity for tone sequences of increasing length was administered. Furthermore, subjects were asked to discriminate synthesized syllable continua varying in acoustic components of speech necessary for intraphonemic discrimination, which included spectral (formant frequency) and temporal (voice onset time [VOT] and amplitude envelope) features. Results indicate that musicians with dyslexia did not significantly differ from typical musicians and performed better than nonmusicians with dyslexia for auditory sequencing as well as discrimination of spectral and VOT cues within syllable continua. However, typical musicians demonstrated superior performance relative to both groups with dyslexia for discrimination of syllables varying in amplitude information. These findings suggest a distinct profile of speech processing abilities in musicians with dyslexia, with specific weaknesses in discerning amplitude cues within speech. Because these difficulties seem to remain persistent in adults with dyslexia despite musical training, this study only partly supports the potential for musical training to enhance the auditory processing skills known to be crucial for literacy in individuals with dyslexia. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Brain responses to biological motion predict treatment outcome in young adults with autism receiving Virtual Reality Social Cognition Training: Preliminary findings.

    PubMed

    Yang, Y J Daniel; Allen, Tandra; Abdullahi, Sebiha M; Pelphrey, Kevin A; Volkmar, Fred R; Chapman, Sandra B

    2017-06-01

    Autism Spectrum Disorder (ASD) is characterized by remarkable heterogeneity in social, communication, and behavioral deficits, creating a major barrier in identifying effective treatments for a given individual with ASD. To facilitate precision medicine in ASD, we utilized a well-validated biological motion neuroimaging task to identify pretreatment biomarkers that can accurately forecast the response to an evidence-based behavioral treatment, Virtual Reality-Social Cognition Training (VR-SCT). In a preliminary sample of 17 young adults with high-functioning ASD, we identified neural predictors of change in emotion recognition after VR-SCT. The predictors were characterized by the pretreatment brain activations to biological vs. scrambled motion in the neural circuits that support (a) language comprehension and interpretation of incongruent auditory emotions and prosody, and (b) processing socio-emotional experience and interpersonal affective information, as well as emotional regulation. The predictive value of the findings for individual adults with ASD was supported by regression-based multivariate pattern analyses with cross validation. To our knowledge, this is the first pilot study that shows neuroimaging-based predictive biomarkers for treatment effectiveness in adults with ASD. The findings have potentially far-reaching implications for developing more precise and effective treatments for ASD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.

  4. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  5. Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.

    PubMed

    Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu

    2016-10-01

    The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.

  6. Sensory Processing of Backward-Masking Signals in Children with Language-Learning Impairment as Assessed with the Auditory Brainstem Response.

    ERIC Educational Resources Information Center

    Marler, Jeffrey A.; Champlin, Craig A.

    2005-01-01

    The purpose of this study was to examine the possible contribution of sensory mechanisms to an auditory processing deficit shown by some children with language-learning impairment (LLI). Auditory brainstem responses (ABRs) were measured from 2 groups of school-aged (8-10 years) children. One group consisted of 10 children with LLI, and the other…

  7. A Comparison of Visual and Auditory Processing Tests on the Woodcock-Johnson Tests of Cognitive Ability, Revised and the Learning Efficiency Test-II.

    ERIC Educational Resources Information Center

    Bolen, L. M.; Kimball, D. J.; Hall, C. W.; Webster, R. E.

    1997-01-01

    Compares the visual and auditory processing factors of the Woodcock Johnson Tests of Cognitive Ability, Revised (WJR COG) and the visual and auditory memory factors of the Learning Efficiency Test, II (LET-II) among 120 college students. Results indicate two significant performance differences between the WJR COG and LET-II. (RJM)

  8. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.

    PubMed

    Parthasarathy, Aravindakshan; Bartlett, Edward

    2012-07-01

    Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals.

    PubMed

    Rizza, Aurora; Terekhov, Alexander V; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O'Regan, J Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980's and 1990's, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level.

  10. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals

    PubMed Central

    Rizza, Aurora; Terekhov, Alexander V.; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O’Regan, J. Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980’s and 1990’s, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level. PMID:29875719

  11. Influence of anxiety, depression and looming cognitive style on auditory looming perception.

    PubMed

    Riskind, John H; Kleiman, Evan M; Seifritz, Erich; Neuhoff, John

    2014-01-01

    Previous studies show that individuals with an anticipatory auditory looming bias over-estimate the closeness of a sound source that approaches them. Our present study bridges cognitive clinical and perception research, and provides evidence that anxiety symptoms and a particular putative cognitive style that creates vulnerability for anxiety (looming cognitive style, or LCS) are related to how people perceive this ecologically fundamental auditory warning signal. The effects of anxiety symptoms on the anticipatory auditory looming effect synergistically depend on the dimension of perceived personal danger assessed by the LCS (physical or social threat). Depression symptoms, in contrast to anxiety symptoms, predict a diminution of the auditory looming bias. Findings broaden our understanding of the links between cognitive-affective states and auditory perception processes and lend further support to past studies providing evidence that the looming cognitive style is related to bias in threat processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. EGR-1 Expression in Catecholamine-synthesizing Neurons Reflects Auditory Learning and Correlates with Responses in Auditory Processing Areas.

    PubMed

    Dai, Jennifer B; Chen, Yining; Sakata, Jon T

    2018-05-21

    Distinguishing between familiar and unfamiliar individuals is an important task that shapes the expression of social behavior. As such, identifying the neural populations involved in processing and learning the sensory attributes of individuals is important for understanding mechanisms of behavior. Catecholamine-synthesizing neurons have been implicated in sensory processing, but relatively little is known about their contribution to auditory learning and processing across various vertebrate taxa. Here we investigated the extent to which immediate early gene expression in catecholaminergic circuitry reflects information about the familiarity of social signals and predicts immediate early gene expression in sensory processing areas in songbirds. We found that male zebra finches readily learned to differentiate between familiar and unfamiliar acoustic signals ('songs') and that playback of familiar songs led to fewer catecholaminergic neurons in the locus coeruleus (but not in the ventral tegmental area, substantia nigra, or periaqueductal gray) expressing the immediate early gene, EGR-1, than playback of unfamiliar songs. The pattern of EGR-1 expression in the locus coeruleus was similar to that observed in two auditory processing areas implicated in auditory learning and memory, namely the caudomedial nidopallium (NCM) and the caudal medial mesopallium (CMM), suggesting a contribution of catecholamines to sensory processing. Consistent with this, the pattern of catecholaminergic innervation onto auditory neurons co-varied with the degree to which song playback affected the relative intensity of EGR-1 expression. Together, our data support the contention that catecholamines like norepinephrine contribute to social recognition and the processing of social information. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Response to own name in children: ERP study of auditory social information processing.

    PubMed

    Key, Alexandra P; Jones, Dorita; Peters, Sarika U

    2016-09-01

    Auditory processing is an important component of cognitive development, and names are among the most frequently occurring receptive language stimuli. Although own name processing has been examined in infants and adults, surprisingly little data exist on responses to own name in children. The present ERP study examined spoken name processing in 32 children (M=7.85years) using a passive listening paradigm. Our results demonstrated that children differentiate own and close other's names from unknown names, as reflected by the enhanced parietal P300 response. The responses to own and close other names did not differ between each other. Repeated presentations of an unknown name did not result in the same familiarity as the known names. These results suggest that auditory ERPs to known/unknown names are a feasible means to evaluate complex auditory processing without the need for overt behavioral responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Response to Own Name in Children: ERP Study of Auditory Social Information Processing

    PubMed Central

    Key, Alexandra P.; Jones, Dorita; Peters, Sarika U.

    2016-01-01

    Auditory processing is an important component of cognitive development, and names are among the most frequently occurring receptive language stimuli. Although own name processing has been examined in infants and adults, surprisingly little data exist on responses to own name in children. The present ERP study examined spoken name processing in 32 children (M=7.85 years) using a passive listening paradigm. Our results demonstrated that children differentiate own and close other’s names from unknown names, as reflected by the enhanced parietal P300 response. The responses to own and close other names did not differ between each other. Repeated presentations of an unknown name did not result in the same familiarity as the known names. These results suggest that auditory ERPs to known/unknown names are a feasible means to evaluate complex auditory processing without the need for overt behavioral responses. PMID:27456543

  15. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia

    PubMed Central

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B.; Loewy, Rachel; Vinogradov, Sophia

    2016-01-01

    BACKGROUND Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. METHODS 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. RESULTS We observed signifcant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed inter-individual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20–40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. CONCLUSIONS There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of inter-individual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. PMID:27617637

  16. The Role of the Auditory Brainstem in Processing Musically Relevant Pitch

    PubMed Central

    Bidelman, Gavin M.

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  17. Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.

    2011-12-01

    It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not just for young scientists but also for people of all ages.

  18. A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception.

    PubMed

    Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D

    2018-06-01

    The precise mechanisms underlying tinnitus perception and distress are still not fully understood. A recent proposition is that auditory prediction errors and related memory representations may play a role in driving tinnitus perception. It is of interest to further explore this. To obtain a comprehensive narrative synthesis of current research in relation to auditory prediction and its potential role in tinnitus perception and severity. A narrative review methodological framework was followed. The key words Prediction Auditory, Memory Prediction Auditory, Tinnitus AND Memory, Tinnitus AND Prediction in Article Title, Abstract, and Keywords were extensively searched on four databases: PubMed, Scopus, SpringerLink, and PsychINFO. All study types were selected from 2000-2016 (end of 2016) and had the following exclusion criteria applied: minimum age of participants <18, nonhuman participants, and article not available in English. Reference lists of articles were reviewed to identify any further relevant studies. Articles were short listed based on title relevance. After reading the abstracts and with consensus made between coauthors, a total of 114 studies were selected for charting data. The hierarchical predictive coding model based on the Bayesian brain hypothesis, attentional modulation and top-down feedback serves as the fundamental framework in current literature for how auditory prediction may occur. Predictions are integral to speech and music processing, as well as in sequential processing and identification of auditory objects during auditory streaming. Although deviant responses are observable from middle latency time ranges, the mismatch negativity (MMN) waveform is the most commonly studied electrophysiological index of auditory irregularity detection. However, limitations may apply when interpreting findings because of the debatable origin of the MMN and its restricted ability to model real-life, more complex auditory phenomenon. Cortical oscillatory band activity may act as neurophysiological substrates for auditory prediction. Tinnitus has been modeled as an auditory object which may demonstrate incomplete processing during auditory scene analysis resulting in tinnitus salience and therefore difficulty in habituation. Within the electrophysiological domain, there is currently mixed evidence regarding oscillatory band changes in tinnitus. There are theoretical proposals for a relationship between prediction error and tinnitus but few published empirical studies. American Academy of Audiology.

  19. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  20. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?

    PubMed

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Friederici, Angela D

    2015-12-01

    Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Metabotropic glutamate receptors in auditory processing

    PubMed Central

    Lu, Yong

    2014-01-01

    As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898

  2. A Description of a Prototype System at NTID which Merges Computer Assisted Instruction and Instructional Television.

    ERIC Educational Resources Information Center

    vonFeldt, James R.

    The development of a prototype system is described which merges the strengths of computer assisted instruction, data gathering, interactive learning, individualized instruction, and the motion in color, and audio features of television. Creation of the prototype system will allow testing of both TV and interactive CAI/TV strategies in auditory and…

  3. Eye-tracking and EMG supported 3D Virtual Reality - an integrated tool for perceptual and motor development of children with severe physical disabilities: a research concept.

    PubMed

    Pulay, Márk Ágoston

    2015-01-01

    Letting children with severe physical disabilities (like Tetraparesis spastica) to get relevant motional experiences of appropriate quality and quantity is now the greatest challenge for us in the field of neurorehabilitation. These motional experiences may establish many cognitive processes, but may also cause additional secondary cognitive dysfunctions such as disorders in body image, figure invariance, visual perception, auditory differentiation, concentration, analytic and synthetic ways of thinking, visual memory etc. Virtual Reality is a technology that provides a sense of presence in a real environment with the help of 3D pictures and animations formed in a computer environment and enable the person to interact with the objects in that environment. One of our biggest challenges is to find a well suited input device (hardware) to let the children with severe physical disabilities to interact with the computer. Based on our own experiences and a thorough literature review we have come to the conclusion that an effective combination of eye-tracking and EMG devices should work well.

  4. Non-Linguistic Auditory Processing and Working Memory Update in Pre-School Children Who Stutter: An Electrophysiological Study

    PubMed Central

    Kaganovich, Natalya; Wray, Amanda Hampton; Weber-Fox, Christine

    2010-01-01

    Non-linguistic auditory processing and working memory update were examined with event-related potentials (ERPs) in 18 children who stutter (CWS) and 18 children who do not stutter (CWNS). Children heard frequent 1kHz tones interspersed with rare 2kHz tones. The two groups did not differ on any measure of the P1 and N1 components, strongly suggesting that early auditory processing of pure tones is unimpaired in CWS. However, as a group, only CWNS exhibited a P3 component to rare tones suggesting that developmental stuttering may be associated with a less efficient attentional allocation and working memory update in response to auditory change. PMID:21038162

  5. Auditory Processing Disorder (For Parents)

    MedlinePlus

    ... or other speech-language difficulties? Are verbal (word) math problems difficult for your child? Is your child ... inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  6. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    PubMed

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  8. Study on the application of the time-compressed speech in children.

    PubMed

    Padilha, Fernanda Yasmin Odila Maestri Miguel; Pinheiro, Maria Madalena Canina

    2017-11-09

    To analyze the performance of children without alteration of central auditory processing in the Time-compressed Speech Test. This is a descriptive, observational, cross-sectional study. Study participants were 22 children aged 7-11 years without central auditory processing disorders. The following instruments were used to assess whether these children presented central auditory processing disorders: Scale of Auditory Behaviors, simplified evaluation of central auditory processing, and Dichotic Test of Digits (binaural integration stage). The Time-compressed Speech Test was applied to the children without auditory changes. The participants presented better performance in the list of monosyllabic words than in the list of disyllabic words, but with no statistically significant difference. No influence on test performance was observed with respect to order of presentation of the lists and the variables gender and ear. Regarding age, difference in performance was observed only in the list of disyllabic words. The mean score of children in the Time-compressed Speech Test was lower than that of adults reported in the national literature. Difference in test performance was observed only with respect to the age variable for the list of disyllabic words. No difference was observed in the order of presentation of the lists or in the type of stimulus.

  9. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  10. Simulation of talking faces in the human brain improves auditory speech recognition

    PubMed Central

    von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.

    2008-01-01

    Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648

  11. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858

  12. Opposite brain laterality in analogous auditory and visual tests.

    PubMed

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  13. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  14. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.

    PubMed

    Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru

    2007-01-01

    Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.

  15. The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    PubMed Central

    Sörös, Peter; Michael, Nikolaus; Tollkötter, Melanie; Pfleiderer, Bettina

    2006-01-01

    Background A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i) the amplitude of the N1m response and (ii) its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. Results Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak) and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. Conclusion These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex. PMID:16884545

  16. Investigating the role of visual and auditory search in reading and developmental dyslexia

    PubMed Central

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a “serial” search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d′) strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in “serial” search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills. PMID:24093014

  17. Investigating the role of visual and auditory search in reading and developmental dyslexia.

    PubMed

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  18. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  19. The relationship of phonological ability, speech perception, and auditory perception in adults with dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquiere, Pol; Wouters, Jan

    2014-01-01

    This study investigated whether auditory, speech perception, and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e., rapid automatic naming, verbal short-term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency modulation (FM) and an amplitude rise time (RT); an intensity discrimination task (ID) was included as a non-dynamic control task. Speech perception was assessed by means of sentences and words-in-noise tasks. Group analyses revealed significant group differences in auditory tasks (i.e., RT and ID) and in phonological processing measures, yet no differences were found for speech perception. In addition, performance on RT discrimination correlated with reading but this relation was mediated by phonological processing and not by speech-in-noise. Finally, inspection of the individual scores revealed that the dyslexic readers showed an increased proportion of deviant subjects on the slow-dynamic auditory and phonological tasks, yet each individual dyslexic reader does not display a clear pattern of deficiencies across the processing skills. Although our results support phonological and slow-rate dynamic auditory deficits which relate to literacy, they suggest that at the individual level, problems in reading and writing cannot be explained by the cascading auditory theory. Instead, dyslexic adults seem to vary considerably in the extent to which each of the auditory and phonological factors are expressed and interact with environmental and higher-order cognitive influences. PMID:25071512

  20. Auditory global-local processing: effects of attention and musical experience.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L

    2012-10-01

    In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience.

  1. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  2. Perception of temporally modified speech in auditory neuropathy.

    PubMed

    Hassan, Dalia Mohamed

    2011-01-01

    Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

  3. Students' Learning of a Generalized Theory of Sound Transmission from a Teaching-Learning Sequence about Sound, Hearing and Health

    NASA Astrophysics Data System (ADS)

    West, Eva; Wallin, Anita

    2013-04-01

    Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.

  4. Demodulation processes in auditory perception

    NASA Astrophysics Data System (ADS)

    Feth, Lawrence L.

    1994-08-01

    The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.

  5. Nonlinear Processing of Auditory Brainstem Response

    DTIC Science & Technology

    2001-10-25

    Kraków, Poland Abstract: - Auditory brainstem response potentials (ABR) are signals calculated from the EEG signals registered as responses to an...acoustic activation of the auditory system. The ABR signals provide an objective, diagnostic method, widely applied in examinations of hearing organs

  6. Degraded speech sound processing in a rat model of fragile X syndrome

    PubMed Central

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Kilgard, Michael P.

    2014-01-01

    Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies. PMID:24713347

  7. Neural plasticity and its initiating conditions in tinnitus.

    PubMed

    Roberts, L E

    2018-03-01

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  8. The neural basis of visual dominance in the context of audio-visual object processing.

    PubMed

    Schmid, Carmen; Büchel, Christian; Rose, Michael

    2011-03-01

    Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-01-01

    Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information. PMID:26989281

  10. Association between central auditory processing mechanism and cardiac autonomic regulation

    PubMed Central

    2014-01-01

    Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli. PMID:24834128

  11. Central Auditory Processing through the Looking Glass: A Critical Look at Diagnosis and Management.

    ERIC Educational Resources Information Center

    Young, Maxine L.

    1985-01-01

    The article examines the contributions of both audiologists and speech-language pathologists to the diagnosis and management of students with central auditory processing disorders and language impairments. (CL)

  12. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID:24194828

  13. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.

  14. Spoken Language Processing Model: Bridging Auditory and Language Processing to Guide Assessment and Intervention

    ERIC Educational Resources Information Center

    Medwetsky, Larry

    2011-01-01

    Purpose: This article outlines the author's conceptualization of the key mechanisms that are engaged in the processing of spoken language, referred to as the spoken language processing model. The act of processing what is heard is very complex and involves the successful intertwining of auditory, cognitive, and language mechanisms. Spoken language…

  15. Neural correlates of auditory scene analysis and perception

    PubMed Central

    Cohen, Yale E.

    2014-01-01

    The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354

  16. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  17. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  18. Auditory, Tactile, and Audiotactile Information Processing Following Visual Deprivation

    ERIC Educational Resources Information Center

    Occelli, Valeria; Spence, Charles; Zampini, Massimiliano

    2013-01-01

    We highlight the results of those studies that have investigated the plastic reorganization processes that occur within the human brain as a consequence of visual deprivation, as well as how these processes give rise to behaviorally observable changes in the perceptual processing of auditory and tactile information. We review the evidence showing…

  19. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

    PubMed

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-02-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods. © 2015. Published by The Company of Biologists Ltd.

  20. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  1. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  2. Exploring the role of auditory analysis in atypical compared to typical language development.

    PubMed

    Grube, Manon; Cooper, Freya E; Kumar, Sukhbinder; Kelly, Tom; Griffiths, Timothy D

    2014-02-01

    The relationship between auditory processing and language skills has been debated for decades. Previous findings have been inconsistent, both in typically developing and impaired subjects, including those with dyslexia or specific language impairment. Whether correlations between auditory and language skills are consistent between different populations has hardly been addressed at all. The present work presents an exploratory approach of testing for patterns of correlations in a range of measures of auditory processing. In a recent study, we reported findings from a large cohort of eleven-year olds on a range of auditory measures and the data supported a specific role for the processing of short sequences in pitch and time in typical language development. Here we tested whether a group of individuals with dyslexic traits (DT group; n = 28) from the same year group would show the same pattern of correlations between auditory and language skills as the typically developing group (TD group; n = 173). Regarding the raw scores, the DT group showed a significantly poorer performance on the language but not the auditory measures, including measures of pitch, time and rhythm, and timbre (modulation). In terms of correlations, there was a tendency to decrease in correlations between short-sequence processing and language skills, contrasted by a significant increase in correlation for basic, single-sound processing, in particular in the domain of modulation. The data support the notion that the fundamental relationship between auditory and language skills might differ in atypical compared to typical language development, with the implication that merging data or drawing inference between populations might be problematic. Further examination of the relationship between both basic sound feature analysis and music-like sound analysis and language skills in impaired populations might allow the development of appropriate training strategies. These might include types of musical training to augment language skills via their common bases in sound sequence analysis. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    ERIC Educational Resources Information Center

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  4. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    ERIC Educational Resources Information Center

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  5. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia.

    PubMed

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia

    2016-11-01

    Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    PubMed

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  8. Auditory Middle Latency Response and Phonological Awareness in Students with Learning Disabilities

    PubMed Central

    Romero, Ana Carla Leite; Funayama, Carolina Araújo Rodrigues; Capellini, Simone Aparecida; Frizzo, Ana Claudia Figueiredo

    2015-01-01

    Introduction Behavioral tests of auditory processing have been applied in schools and highlight the association between phonological awareness abilities and auditory processing, confirming that low performance on phonological awareness tests may be due to low performance on auditory processing tests. Objective To characterize the auditory middle latency response and the phonological awareness tests and to investigate correlations between responses in a group of children with learning disorders. Methods The study included 25 students with learning disabilities. Phonological awareness and auditory middle latency response were tested with electrodes placed on the left and right hemispheres. The correlation between the measurements was performed using the Spearman rank correlation coefficient. Results There is some correlation between the tests, especially between the Pa component and syllabic awareness, where moderate negative correlation is observed. Conclusion In this study, when phonological awareness subtests were performed, specifically phonemic awareness, the students showed a low score for the age group, although for the objective examination, prolonged Pa latency in the contralateral via was observed. Negative weak to moderate correlation for Pa wave latency was observed, as was positive weak correlation for Na-Pa amplitude. PMID:26491479

  9. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects

    PubMed Central

    2011-01-01

    Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917

  11. Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study

    PubMed Central

    Parker Jones, ‘Ōiwi; Prejawa, Susan; Hope, Thomas M. H.; Oberhuber, Marion; Seghier, Mohamed L.; Leff, Alex P.; Green, David W.; Price, Cathy J.

    2014-01-01

    The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing. PMID:24550807

  12. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    PubMed

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.

  14. Cerebral responses to local and global auditory novelty under general anesthesia

    PubMed Central

    Uhrig, Lynn; Janssen, David; Dehaene, Stanislas; Jarraya, Béchir

    2017-01-01

    Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices. PMID:27502046

  15. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    PubMed

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    PubMed

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  17. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Auditory short-term memory capacity correlates with gray matter density in the left posterior STS in cognitively normal and dyslexic adults.

    PubMed

    Richardson, Fiona M; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M; Leff, Alex P; Price, Cathy J

    2011-12-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using whole-brain statistics, we identified a region in the left posterior STS where gray matter density was positively correlated with forward digit span, backward digit span, and performance on a "spoonerisms" task that required both auditory STM and phoneme manipulation. Across tasks and participant groups, the correlation was highly significant even when variance related to reading and auditory nonword repetition was factored out. Although the dyslexics had poorer phonological skills, the effect of auditory STM capacity in the left STS was the same as in the cognitively normal group. We also illustrate that the anatomical location of this effect is in proximity to a lesion site recently associated with reduced auditory STM capacity in patients with stroke damage. This result, therefore, indicates that gray matter density in the posterior STS predicts auditory STM capacity in the healthy and damaged brain. In conclusion, we suggest that our present findings are consistent with the view that there is an overlap between the mechanisms that support language processing and auditory STM.

  19. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  20. Cortical mechanisms for the segregation and representation of acoustic textures.

    PubMed

    Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D

    2010-02-10

    Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.

  1. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    PubMed

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Effects of Auditory Distraction on Cognitive Processing of Young Adults

    ERIC Educational Resources Information Center

    LaPointe, Leonard L.; Heald, Gary R.; Stierwalt, Julie A. G.; Kemker, Brett E.; Maurice, Trisha

    2007-01-01

    Objective: The effects of interference, competition, and distraction on cognitive processing are unclearly understood, particularly regarding type and intensity of auditory distraction across a variety of cognitive processing tasks. Method: The purpose of this investigation was to report two experiments that sought to explore the effects of types…

  3. Are Auditory and Visual Processing Deficits Related to Developmental Dyslexia?

    ERIC Educational Resources Information Center

    Georgiou, George K.; Papadopoulos, Timothy C.; Zarouna, Elena; Parrila, Rauno

    2012-01-01

    The purpose of this study was to examine if children with dyslexia learning to read a consistent orthography (Greek) experience auditory and visual processing deficits and if these deficits are associated with phonological awareness, rapid naming speed and orthographic processing. We administered measures of general cognitive ability, phonological…

  4. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  5. Psychoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, Brian C. J.

    Psychoacoustics psychological is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

  6. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation

    PubMed Central

    Scarfe, Amy C.; Moore, Brian C. J.; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound. PMID:28407000

  9. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    PubMed

    Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  10. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.

    PubMed

    Bidelman, Gavin M

    2016-10-01

    Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.

  11. Cortical contributions to the auditory frequency-following response revealed by MEG

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  12. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  13. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  14. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  15. A sound advantage: Increased auditory capacity in autism.

    PubMed

    Remington, Anna; Fairnie, Jake

    2017-09-01

    Autism Spectrum Disorder (ASD) has an intriguing auditory processing profile. Individuals show enhanced pitch discrimination, yet often find seemingly innocuous sounds distressing. This study used two behavioural experiments to examine whether an increased capacity for processing sounds in ASD could underlie both the difficulties and enhanced abilities found in the auditory domain. Autistic and non-autistic young adults performed a set of auditory detection and identification tasks designed to tax processing capacity and establish the extent of perceptual capacity in each population. Tasks were constructed to highlight both the benefits and disadvantages of increased capacity. Autistic people were better at detecting additional unexpected and expected sounds (increased distraction and superior performance respectively). This suggests that they have increased auditory perceptual capacity relative to non-autistic people. This increased capacity may offer an explanation for the auditory superiorities seen in autism (e.g. heightened pitch detection). Somewhat counter-intuitively, this same 'skill' could result in the sensory overload that is often reported - which subsequently can interfere with social communication. Reframing autistic perceptual processing in terms of increased capacity, rather than a filtering deficit or inability to maintain focus, increases our understanding of this complex condition, and has important practical implications that could be used to develop intervention programs to minimise the distress that is often seen in response to sensory stimuli. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [In Process Citation

    PubMed

    Ackermann; Mathiak

    1999-11-01

    Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.

  17. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  18. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    PubMed Central

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  19. The Role of Age and Executive Function in Auditory Category Learning

    PubMed Central

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  20. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE PAGES

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...

    2017-06-30

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  1. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  2. Echolocation: A Study of Auditory Functioning in Blind and Sighted Subjects.

    ERIC Educational Resources Information Center

    Arias, C.; And Others

    1993-01-01

    This study evaluated the peripheral and central auditory functioning (and thus the potential to perceive obstacles through reflected sound) of eight totally blind persons and eight sighted persons. The blind subjects were able to process auditory information faster than the control group. (Author/DB)

  3. Comparing Monotic and Diotic Selective Auditory Attention Abilities in Children

    ERIC Educational Resources Information Center

    Cherry, Rochelle; Rubinstein, Adrienne

    2006-01-01

    Purpose: Some researchers have assessed ear-specific performance of auditory processing ability using speech recognition tasks with normative data based on diotic administration. The present study investigated whether monotic and diotic administrations yield similar results using the Selective Auditory Attention Test. Method: Seventy-two typically…

  4. Perception of Small Frequency Differences in Children with Auditory Processing Disorder or Specific Language Impairment

    PubMed Central

    Rota-Donahue, Christine; Schwartz, Richard G.; Shafer, Valerie; Sussman, Elyse S.

    2016-01-01

    Background Frequency discrimination is often impaired in children developing language atypically. However, findings in the detection of small frequency changes in these children are conflicting. Previous studies on children’s auditory perceptual abilities usually involved establishing differential sensitivity thresholds in sample populations who were not tested for auditory deficits. To date, there are no data comparing suprathreshold frequency discrimination ability in children tested for both auditory processing and language skills. Purpose This study examined the perception of small frequency differences (Δf) in children with auditory processing disorder (APD) and/or specific language impairment (SLI). The aim was to determine whether children with APD and children with SLI showed differences in their behavioral responses to frequency changes. Results were expected to identify different degrees of impairment and shed some light on the auditory perceptual overlap between pediatric APD and SLI. Research Design An experimental group design using a two-alternative forced-choice procedure was used to determine frequency discrimination ability for three magnitudes of Δf from the 1000-Hz base frequency. Study Sample Thirty children between 10 years of age and 12 years, 11 months of age: 17 children with APD and/or SLI, and 13 typically developing (TD) peers participated. The clinical groups included four children with APD only, four children with SLI only, and nine children with both APD and SLI. Data Collection and Analysis Behavioral data collected using headphone delivery were analyzed using the sensitivity index d′, calculated for three Δf was 2%, 5%, and 15% of the base frequency or 20, 50, and 150 Hz. Correlations between the dependent variable d′ and the independent variables measuring auditory processing and language skills were also obtained. A stepwise regression analysis was then performed. Results TD children and children with APD and/or SLI differed in the detection of small-tone Δf. In addition, APD or SLI status affected behavioral results differently. Comparisons between auditory processing test scores or language test scores and the sensitivity index d′ showed different strengths of correlation based on the magnitudes of the Δf. Auditory processing scores showed stronger correlation to the sensitivity index d′ for the small Δf, while language scores showed stronger correlation to the sensitivity index d′ for the large Δf. Conclusion Although children with APD and/or SLI have difficulty with behavioral frequency discrimination, this difficulty may stem from two different levels: a basic auditory level for children with APD and a higher language processing level for children with SLI; the frequency discrimination performance seemed to be affected by the labeling demands of the same versus different frequency discrimination task for the children with SLI. PMID:27310407

  5. Perception of Small Frequency Differences in Children with Auditory Processing Disorder or Specific Language Impairment.

    PubMed

    Rota-Donahue, Christine; Schwartz, Richard G; Shafer, Valerie; Sussman, Elyse S

    2016-06-01

    Frequency discrimination is often impaired in children developing language atypically. However, findings in the detection of small frequency changes in these children are conflicting. Previous studies on children's auditory perceptual abilities usually involved establishing differential sensitivity thresholds in sample populations who were not tested for auditory deficits. To date, there are no data comparing suprathreshold frequency discrimination ability in children tested for both auditory processing and language skills. : This study examined the perception of small frequency differences (∆ƒ) in children with auditory processing disorder (APD) and/or specific language impairment (SLI). The aim was to determine whether children with APD and children with SLI showed differences in their behavioral responses to frequency changes. Results were expected to identify different degrees of impairment and shed some light on the auditory perceptual overlap between pediatric APD and SLI. An experimental group design using a two-alternative forced-choice procedure was used to determine frequency discrimination ability for three magnitudes of ∆ƒ from the 1000-Hz base frequency. Thirty children between 10 years of age and 12 years, 11 months of age: 17 children with APD and/or SLI, and 13 typically developing (TD) peers participated. The clinical groups included four children with APD only, four children with SLI only, and nine children with both APD and SLI. Behavioral data collected using headphone delivery were analyzed using the sensitivity index d', calculated for three ∆ƒ was 2%, 5%, and 15% of the base frequency or 20, 50, and 150 Hz. Correlations between the dependent variable d' and the independent variables measuring auditory processing and language skills were also obtained. A stepwise regression analysis was then performed. TD children and children with APD and/or SLI differed in the detection of small-tone ∆ƒ. In addition, APD or SLI status affected behavioral results differently. Comparisons between auditory processing test scores or language test scores and the sensitivity index d' showed different strengths of correlation based on the magnitudes of the ∆ƒ. Auditory processing scores showed stronger correlation to the sensitivity index d' for the small ∆ƒ, while language scores showed stronger correlation to the sensitivity index d' for the large ∆ƒ. Although children with APD and/or SLI have difficulty with behavioral frequency discrimination, this difficulty may stem from two different levels: a basic auditory level for children with APD and a higher language processing level for children with SLI; the frequency discrimination performance seemed to be affected by the labeling demands of the same versus different frequency discrimination task for the children with SLI. American Academy of Audiology.

  6. Oscillatory flow in the cochlea visualized by a magnetic resonance imaging technique.

    PubMed

    Denk, W; Keolian, R M; Ogawa, S; Jelinski, L W

    1993-02-15

    We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear. It permits the detection of displacements far smaller than the spatial resolution. The method is demonstrated on a phantom and on living rats. It is projected to have applications for auditory research, for the visualization of vocal tract dynamics during speech and singing, and for determination of the spatial distribution of mechanical relaxations in materials.

  7. Sound envelope processing in the developing human brain: A MEG study.

    PubMed

    Tang, Huizhen; Brock, Jon; Johnson, Blake W

    2016-02-01

    This study investigated auditory cortical processing of linguistically-relevant temporal modulations in the developing brains of young children. Auditory envelope following responses to white noise amplitude modulated at rates of 1-80 Hz in healthy children (aged 3-5 years) and adults were recorded using a paediatric magnetoencephalography (MEG) system and a conventional MEG system, respectively. For children, there were envelope following responses to slow modulations but no significant responses to rates higher than about 25 Hz, whereas adults showed significant envelope following responses to almost the entire range of stimulus rates. Our results show that the auditory cortex of preschool-aged children has a sharply limited capacity to process rapid amplitude modulations in sounds, as compared to the auditory cortex of adults. These neurophysiological results are consistent with previous psychophysical evidence for a protracted maturational time course for auditory temporal processing. The findings are also in good agreement with current linguistic theories that posit a perceptual bias for low frequency temporal information in speech during language acquisition. These insights also have clinical relevance for our understanding of language disorders that are associated with difficulties in processing temporal information in speech. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.

    PubMed

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.

  9. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction

    PubMed Central

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load—and other aspects of task difficulty—increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information—which decreases distractibility—as a side effect of the increased activity in a focused-attention network. PMID:27242485

  10. Auditory processing efficiency deficits in children with developmental language impairments

    NASA Astrophysics Data System (ADS)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  11. Electrophysiological Correlates of Rapid Auditory and Linguistic Processing in Adolescents with Specific Language Impairment

    ERIC Educational Resources Information Center

    Weber-Fox, Christine; Leonard, Laurence B.; Wray, Amanda Hampton; Tomblin, J. Bruce

    2010-01-01

    Brief tonal stimuli and spoken sentences were utilized to examine whether adolescents (aged 14;3-18;1) with specific language impairments (SLI) exhibit atypical neural activity for rapid auditory processing of non-linguistic stimuli and linguistic processing of verb-agreement and semantic constraints. Further, we examined whether the behavioral…

  12. Auditory Processing Efficiency and Temporal Resolution in Children and Adults.

    ERIC Educational Resources Information Center

    Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.

    2004-01-01

    Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…

  13. Injury- and Use-Related Plasticity in the Adult Auditory System.

    ERIC Educational Resources Information Center

    Irvine, Dexter R. F.

    2000-01-01

    This article discusses findings concerning the plasticity of auditory cortical processing mechanisms in adults, including the effects of restricted cochlear damage or behavioral training with acoustic stimuli on the frequency selectivity of auditory cortical neurons and evidence for analogous injury- and use-related plasticity in the adult human…

  14. The Effect of Auditory Information on Patterns of Intrusions and Reductions

    ERIC Educational Resources Information Center

    Slis, Anneke; van Lieshout, Pascal

    2016-01-01

    Purpose: The study investigates whether auditory information affects the nature of intrusion and reduction errors in reiterated speech. These errors are hypothesized to arise as a consequence of autonomous mechanisms to stabilize movement coordination. The specific question addressed is whether this process is affected by auditory information so…

  15. Auditory Backward Masking Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.

    2005-01-01

    Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…

  16. Music and language: relations and disconnections.

    PubMed

    Kraus, Nina; Slater, Jessica

    2015-01-01

    Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.

  17. The integration processing of the visual and auditory information in videos of real-world events: an ERP study.

    PubMed

    Liu, Baolin; Wang, Zhongning; Jin, Zhixing

    2009-09-11

    In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.

  18. Estradiol-dependent Modulation of Serotonergic Markers in Auditory Areas of a Seasonally Breeding Songbird

    PubMed Central

    Matragrano, Lisa L.; Sanford, Sara E.; Salvante, Katrina G.; Beaulieu, Michaël; Sockman, Keith W.; Maney, Donna L.

    2011-01-01

    Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing. PMID:21942431

  19. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  20. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  1. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    PubMed

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS. Copyright © 2017 the authors 0270-6474/17/377403-17$15.00/0.

  2. Profiles of Types of Central Auditory Processing Disorders in Children with Learning Disabilities.

    ERIC Educational Resources Information Center

    Musiek, Frank E.; And Others

    1985-01-01

    The article profiles five cases of children (8-17 years old) with learning disabilities and auditory processing problems. Possible correlations between the presumed etiology and the unique audiological pattern on the central test battery are analyzed. (Author/CL)

  3. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  4. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  5. An Experimental Analysis of Memory Processing

    PubMed Central

    Wright, Anthony A

    2007-01-01

    Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes—tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed. PMID:18047230

  6. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  7. Electrophysiologic Assessment of Auditory Training Benefits in Older Adults

    PubMed Central

    Anderson, Samira; Jenkins, Kimberly

    2015-01-01

    Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912

  8. Auditory Pitch Perception in Autism Spectrum Disorder Is Associated With Nonverbal Abilities.

    PubMed

    Chowdhury, Rakhee; Sharda, Megha; Foster, Nicholas E V; Germain, Esther; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L

    2017-11-01

    Atypical sensory perception and heterogeneous cognitive profiles are common features of autism spectrum disorder (ASD). However, previous findings on auditory sensory processing in ASD are mixed. Accordingly, auditory perception and its relation to cognitive abilities in ASD remain poorly understood. Here, children with ASD, and age- and intelligence quotient (IQ)-matched typically developing children, were tested on a low- and a higher level pitch processing task. Verbal and nonverbal cognitive abilities were measured using the Wechsler's Abbreviated Scale of Intelligence. There were no group differences in performance on either auditory task or IQ measure. However, there was significant variability in performance on the auditory tasks in both groups that was predicted by nonverbal, not verbal skills. These results suggest that auditory perception is related to nonverbal reasoning rather than verbal abilities in ASD and typically developing children. In addition, these findings provide evidence for preserved pitch processing in school-age children with ASD with average IQ, supporting the idea that there may be a subgroup of individuals with ASD that do not present perceptual or cognitive difficulties. Future directions involve examining whether similar perceptual-cognitive relationships might be observed in a broader sample of individuals with ASD, such as those with language impairment or lower IQ.

  9. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  10. The importance of laughing in your face: influences of visual laughter on auditory laughter perception.

    PubMed

    Jordan, Timothy R; Abedipour, Lily

    2010-01-01

    Hearing the sound of laughter is important for social communication, but processes contributing to the audibility of laughter remain to be determined. Production of laughter resembles production of speech in that both involve visible facial movements accompanying socially significant auditory signals. However, while it is known that speech is more audible when the facial movements producing the speech sound can be seen, similar visual enhancement of the audibility of laughter remains unknown. To address this issue, spontaneously occurring laughter was edited to produce stimuli comprising visual laughter, auditory laughter, visual and auditory laughter combined, and no laughter at all (either visual or auditory), all presented in four levels of background noise. Visual laughter and no-laughter stimuli produced very few reports of auditory laughter. However, visual laughter consistently made auditory laughter more audible, compared to the same auditory signal presented without visual laughter, resembling findings reported previously for speech.

  11. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex

    PubMed Central

    Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J

    2014-01-01

    Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075

  12. Auditory Attention and Comprehension During a Simulated Night Shift: Effects of Task Characteristics.

    PubMed

    Pilcher, June J; Jennings, Kristen S; Phillips, Ginger E; McCubbin, James A

    2016-11-01

    The current study investigated performance on a dual auditory task during a simulated night shift. Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork. © 2016, Human Factors and Ergonomics Society.

  13. Integration and segregation in auditory scene analysis

    NASA Astrophysics Data System (ADS)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  14. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Perceptual constancy in auditory perception of distance to railway tracks.

    PubMed

    De Coensel, Bert; Nilsson, Mats E; Berglund, Birgitta; Brown, A L

    2013-07-01

    Distance to a sound source can be accurately estimated solely from auditory information. With a sound source such as a train that is passing by at a relatively large distance, the most important auditory information for the listener for estimating its distance consists of the intensity of the sound, spectral changes in the sound caused by air absorption, and the motion-induced rate of change of intensity. However, these cues are relative because prior information/experience of the sound source-its source power, its spectrum and the typical speed at which it moves-is required for such distance estimates. This paper describes two listening experiments that allow investigation of further prior contextual information taken into account by listeners-viz., whether they are indoors or outdoors. Asked to estimate the distance to the track of a railway, it is shown that listeners assessing sounds heard inside the dwelling based their distance estimates on the expected train passby sound level outdoors rather than on the passby sound level actually experienced indoors. This form of perceptual constancy may have consequences for the assessment of annoyance caused by railway noise.

  16. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus

    PubMed Central

    2017-01-01

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. PMID:28179553

  17. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.

    PubMed

    Zhu, Lin L; Beauchamp, Michael S

    2017-03-08

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. Copyright © 2017 the authors 0270-6474/17/372697-12$15.00/0.

  18. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    PubMed

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Verbal short-term memory span in children: long-term modality dependent effects of intrauterine growth restriction.

    PubMed

    Geva, R; Eshel, R; Leitner, Y; Fattal-Valevski, A; Harel, S

    2008-12-01

    Recent reports showed that children born with intrauterine growth restriction (IUGR) are at greater risk of experiencing verbal short-term memory span (STM) deficits that may impede their learning capacities at school. It is still unknown whether these deficits are modality dependent. This long-term, prospective design study examined modality-dependent verbal STM functions in children who were diagnosed at birth with IUGR (n = 138) and a control group (n = 64). Their STM skills were evaluated individually at 9 years of age with four conditions of the Visual-Aural Digit Span Test (VADS; Koppitz, 1981): auditory-oral, auditory-written, visuospatial-oral and visuospatial-written. Cognitive competence was evaluated with the short form of the Wechsler Intelligence Scales for Children--revised (WISC-R95; Wechsler, 1998). We found IUGR-related specific auditory-oral STM deficits (p < .036) in conjunction with two double dissociations: an auditory-visuospatial (p < .014) and an input-output processing distinction (p < .014). Cognitive competence had a significant effect on all four conditions; however, the effect of IUGR on the auditory-oral condition was not overridden by the effect of intelligence quotient (IQ). Intrauterine growth restriction affects global competence and inter-modality processing, as well as distinct auditory input processing related to verbal STM functions. The findings support a long-term relationship between prenatal aberrant head growth and auditory verbal STM deficits by the end of the first decade of life. Empirical, clinical and educational implications are presented.

  20. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder: Auditory-evoked response in children with autism spectrum disorder.

    PubMed

    Yoshimura, Yuko; Kikuchi, Mitsuru; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Takahashi, Tetsuya; Remijn, Gerard B; Oi, Manabu; Munesue, Toshio; Higashida, Haruhiro; Minabe, Yoshio

    2016-01-01

    The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD) in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD) is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G) subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  1. Effects of Secondary Task Modality and Processing Code on Automation Trust and Utilization During Simulated Airline Luggage Screening

    NASA Technical Reports Server (NTRS)

    Phillips, Rachel; Madhavan, Poornima

    2010-01-01

    The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.

  2. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641

  3. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  5. Temporal lobe networks supporting the comprehension of spoken words.

    PubMed

    Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius

    2017-09-01

    Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  7. Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation

    PubMed Central

    2013-01-01

    Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain processes, which are necessary precursors of perceptual learning. Cautious discussion is required when interpreting the finding of a P2 amplitude increase between recordings before and after training and learning. PMID:24314010

  8. Visual Cortical Entrainment to Motion and Categorical Speech Features during Silent Lipreading

    PubMed Central

    O’Sullivan, Aisling E.; Crosse, Michael J.; Di Liberto, Giovanni M.; Lalor, Edmund C.

    2017-01-01

    Speech is a multisensory percept, comprising an auditory and visual component. While the content and processing pathways of audio speech have been well characterized, the visual component is less well understood. In this work, we expand current methodologies using system identification to introduce a framework that facilitates the study of visual speech in its natural, continuous form. Specifically, we use models based on the unheard acoustic envelope (E), the motion signal (M) and categorical visual speech features (V) to predict EEG activity during silent lipreading. Our results show that each of these models performs similarly at predicting EEG in visual regions and that respective combinations of the individual models (EV, MV, EM and EMV) provide an improved prediction of the neural activity over their constituent models. In comparing these different combinations, we find that the model incorporating all three types of features (EMV) outperforms the individual models, as well as both the EV and MV models, while it performs similarly to the EM model. Importantly, EM does not outperform EV and MV, which, considering the higher dimensionality of the V model, suggests that more data is needed to clarify this finding. Nevertheless, the performance of EMV, and comparisons of the subject performances for the three individual models, provides further evidence to suggest that visual regions are involved in both low-level processing of stimulus dynamics and categorical speech perception. This framework may prove useful for investigating modality-specific processing of visual speech under naturalistic conditions. PMID:28123363

  9. Incorporating Auditory Models in Speech/Audio Applications

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, Harish

    2011-12-01

    Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.

  10. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity.

    PubMed

    Jansson-Verkasalo, Eira; Eggers, Kurt; Järvenpää, Anu; Suominen, Kalervo; Van den Bergh, Bea; De Nil, Luc; Kujala, Teija

    2014-09-01

    Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Auditory training and challenges associated with participation and compliance.

    PubMed

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-10-01

    When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.

  13. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  14. Intracerebral evidence of rhythm transform in the human auditory cortex.

    PubMed

    Nozaradan, Sylvie; Mouraux, André; Jonas, Jacques; Colnat-Coulbois, Sophie; Rossion, Bruno; Maillard, Louis

    2017-07-01

    Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (<30 Hz) and high-frequency (>30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

  15. Auditory memory function in expert chess players.

    PubMed

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  16. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    PubMed

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    PubMed Central

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  18. Temporal auditory aspects in children with poor school performance and associated factors.

    PubMed

    Rezende, Bárbara Antunes; Lemos, Stela Maris Aguiar; Medeiros, Adriane Mesquita de

    2016-01-01

    To investigate the auditory temporal aspects in children with poor school performance aged 7-12 years and their association with behavioral aspects, health perception, school and health profiles, and sociodemographic factors. This is an observational, analytical, transversal study including 89 children with poor school performance aged 7-12 years enrolled in the municipal public schools of a municipality in Minas Gerais state, participants of Specialized Educational Assistance. The first stage of the study was conducted with the subjects' parents aiming to collect information on sociodemographic aspects, health profile, and educational records. In addition, the parents responded to the Strengths and Difficulties Questionnaire (SDQ). The second stage was conducted with the children in order to investigate their health self-perception and analyze the auditory assessment, which consisted of meatoscopy, Transient Otoacoustic Emissions, and tests that evaluated the aspects of simple auditory temporal ordering and auditory temporal resolution. Tests assessing the temporal aspects of auditory temporal processing were considered as response variables, and the explanatory variables were grouped for univariate and multivariate logistic regression analyses. The level of significance was set at 5%. Significant statistical correlation was found between the auditory temporal aspects and the variables age, gender, presence of repetition, and health self-perception. Children with poor school performance presented changes in the auditory temporal aspects. The temporal abilities assessed suggest association with different factors such as maturational process, health self-perception, and school records.

  19. Behavioral and electrophysiological auditory processing measures in traumatic brain injury after acoustically controlled auditory training: a long-term study

    PubMed Central

    Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro

    2015-01-01

    ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270

  20. Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia

    PubMed Central

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia

    2009-01-01

    Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187

Top