Sample records for auditory serial addition

  1. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    PubMed

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  2. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  3. Serial auditory-evoked potentials in the diagnosis and monitoring of a child with Landau-Kleffner syndrome.

    PubMed

    Plyler, Erin; Harkrider, Ashley W

    2013-01-01

    A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Clinical report. Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis. American Academy of Audiology.

  4. Cognitive fatigue in patients with myasthenia gravis.

    PubMed

    Jordan, Berit; Schweden, Tabea L K; Mehl, Theresa; Menge, Uwe; Zierz, Stephan

    2017-09-01

    Cognitive fatigue has frequently been reported in myasthenia gravis (MG). However, objective assessment of cognitive fatigability has never been evaluated. Thirty-three MG patients with stable generalized disease and 17 healthy controls underwent a test battery including repeated testing of attention and concentration (d2-R) and Paced Auditory Serial Addition Test. Fatigability was based on calculation of linear trend (LT) reflecting dynamic performance within subsequent constant time intervals. Additionally, fatigue questionnaires were used. MG patients showed a negative LT in second d2-R testing, indicating cognitive fatigability. This finding significantly differed from stable cognitive performance in controls (P < 0.05). Results of Paced Auditory Serial Addition Test testing did not differ between groups. Self-assessed fatigue was significantly higher in MG patients compared with controls (P < 0.001), but did not correlate with LT. LT quantifies cognitive fatigability as an objective measurement of performance decline in MG patients. Self-assessed cognitive fatigue is not correlated with objective findings. Muscle Nerve 56: 449-457, 2017. © 2016 Wiley Periodicals, Inc.

  5. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.

    PubMed

    Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E

    2008-10-21

    Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.

  6. Auditory Word Serial Recall Benefits from Orthographic Dissimilarity

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Lafontaine, Helene; Morais, Jose; Kolinsky, Regine

    2010-01-01

    The influence of orthographic knowledge has been consistently observed in speech recognition and metaphonological tasks. The present study provides data suggesting that such influence also pervades other cognitive domains related to language abilities, such as verbal working memory. Using serial recall of auditory seven-word lists, we observed…

  7. Temporal precision and the capacity of auditory-verbal short-term memory.

    PubMed

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  8. Postcategorical auditory distraction in short-term memory: Insights from increased task load and task type.

    PubMed

    Marsh, John E; Yang, Jingqi; Qualter, Pamela; Richardson, Cassandra; Perham, Nick; Vachon, François; Hughes, Robert W

    2018-06-01

    Task-irrelevant speech impairs short-term serial recall appreciably. On the interference-by-process account, the processing of physical (i.e., precategorical) changes in speech yields order cues that conflict with the serial-ordering process deployed to perform the serial recall task. In this view, the postcategorical properties (e.g., phonology, meaning) of speech play no role. The present study reassessed the implications of recent demonstrations of auditory postcategorical distraction in serial recall that have been taken as support for an alternative, attentional-diversion, account of the irrelevant speech effect. Focusing on the disruptive effect of emotionally valent compared with neutral words on serial recall, we show that the distracter-valence effect is eliminated under conditions-high task-encoding load-thought to shield against attentional diversion whereas the general effect of speech (neutral words compared with quiet) remains unaffected (Experiment 1). Furthermore, the distracter-valence effect generalizes to a task that does not require the processing of serial order-the missing-item task-whereas the effect of speech per se is attenuated in this task (Experiment 2). We conclude that postcategorical auditory distraction phenomena in serial short-term memory (STM) are incidental: they are observable in such a setting but, unlike the acoustically driven irrelevant speech effect, are not integral to it. As such, the findings support a duplex-mechanism account over a unitary view of auditory distraction. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Working Memory for Patterned Sequences of Auditory Objects in a Songbird

    ERIC Educational Resources Information Center

    Comins, Jordan A.; Gentner, Timothy Q.

    2010-01-01

    The capacity to remember sequences is critical to many behaviors, such as navigation and communication. Adult humans readily recall the serial order of auditory items, and this ability is commonly understood to support, in part, the speech processing for language comprehension. Theories of short-term serial recall posit either use of absolute…

  10. The Face-Symbol Test and the Symbol-Digit Test are not reliable surrogates for the Paced Auditory Serial Addition Test in multiple sclerosis.

    PubMed

    Williams, J; O'Rourke, K; Hutchinson, M; Tubridy, N

    2006-10-01

    The Paced Auditory Serial Addition Test (PASAT) is the chosen task for cognitive assessment in the multiple sclerosis functional composite (MSFC) and a widely used task in neuropsychological studies of people with multiple sclerosis (MS), but is unpopular with patients. The Face-Symbol Test (FST) and Symbol-Digit Tests (SDT) are alternative methods of cognitive testing in MS, which are easily administered and patient-friendly. In order to evaluate the potential of the FST as a possible surrogate for the PASAT, we directly compared the FST to the PASAT and the SDT in a cohort of 50 MS patients with varying levels of disability. There was significant correlation between SDT and FST scores (Spearman's rho 0.80, 95% CI 0.66-0.88), R(2) 65%, with moderate inter-test agreement (k =0.52). In contrast, SDT and FST scores were less predictive of PASAT scores. We concluded that neither the FST nor SDT are reliable surrogates for the PASAT.

  11. Impact of auditory selective attention on verbal short-term memory and vocabulary development.

    PubMed

    Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial

    2009-05-01

    This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing of item and serial order information because recent studies have shown this distinction to be critical when exploring relations between STM and lexical development. Multiple regression and variance partitioning analyses highlighted two variables as determinants of vocabulary development: (a) a serial order processing variable shared by STM order recall and a selective attention task for sequence information and (b) an attentional variable shared by selective attention measures targeting item or sequence information. The current study highlights the need for integrative STM models, accounting for conjoined influences of attentional capacities and serial order processing capacities on STM performance and the establishment of the lexical language network.

  12. Memory as embodiment: The case of modality and serial short-term memory.

    PubMed

    Macken, Bill; Taylor, John C; Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M

    2016-10-01

    Classical explanations for the modality effect-superior short-term serial recall of auditory compared to visual sequences-typically recur to privileged processing of information derived from auditory sources. Here we critically appraise such accounts, and re-evaluate the nature of the canonical empirical phenomena that have motivated them. Three experiments show that the standard account of modality in memory is untenable, since auditory superiority in recency is often accompanied by visual superiority in mid-list serial positions. We explain this simultaneous auditory and visual superiority by reference to the way in which perceptual objects are formed in the two modalities and how those objects are mapped to speech motor forms to support sequence maintenance and reproduction. Specifically, stronger obligatory object formation operating in the standard auditory form of sequence presentation compared to that for visual sequences leads both to enhanced addressability of information at the object boundaries and reduced addressability for that in the interior. Because standard visual presentation does not lead to such object formation, such sequences do not show the boundary advantage observed for auditory presentation, but neither do they suffer loss of addressability associated with object information, thereby affording more ready mapping of that information into a rehearsal cohort to support recall. We show that a range of factors that impede this perceptual-motor mapping eliminate visual superiority while leaving auditory superiority unaffected. We make a general case for viewing short-term memory as an embodied, perceptual-motor process. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Impact of Auditory Selective Attention on Verbal Short-Term Memory and Vocabulary Development

    ERIC Educational Resources Information Center

    Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial

    2009-01-01

    This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing…

  14. Recency and suffix effects in serial recall of musical stimuli.

    PubMed

    Greene, R L; Samuel, A G

    1986-10-01

    Auditory presentation of verbal items leads to larger recency effects in recall than visual presentation. This enhanced recency can be eliminated if a stimulus suffix (an irrelevant sound) follows the last item. Four experiments tested the hypothesis that recency and suffix effects in serial recall result from a speech-specific process. It was demonstrated that serial recall of musical notes played on a piano exhibited substantial recency effects. These recency effects were reduced when the list items were followed by either a piano chord or the word start. However, a white-noise suffix had no effect on recency. This pattern of data is consistent with current work on auditory perception and places constraints on theories of recency and suffix effects.

  15. Repetition Learning in the Immediate Serial Recall of Visual and Auditory Materials

    ERIC Educational Resources Information Center

    Page, Mike P. A.; Cumming, Nick; Norris, Dennis; Hitch, Graham J.; McNeil, Alan M.

    2006-01-01

    In 5 experiments, a Hebb repetition effect, that is, improved immediate serial recall of an (unannounced) repeating list, was demonstrated in the immediate serial recall of visual materials, even when use of phonological short-term memory was blocked by concurrent articulation. The learning of a repeatedly presented letter list in one modality…

  16. Maturation of Peripheral and Brainstem Auditory Function in the First Year Following Perinatal Asphyxia: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Jiang, Ze D.

    1998-01-01

    A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)

  17. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey

    PubMed Central

    Scott, Brian H.; Leccese, Paul A.; Saleem, Kadharbatcha S.; Kikuchi, Yukiko; Mullarkey, Matthew P.; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C.

    2017-01-01

    Abstract In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. PMID:26620266

  18. Is cross-modal integration of emotional expressions independent of attentional resources?

    PubMed

    Vroomen, J; Driver, J; de Gelder, B

    2001-12-01

    In this study, we examined whether integration of visual and auditory information about emotions requires limited attentional resources. Subjects judged whether a voice expressed happiness or fear, while trying to ignore a concurrently presented static facial expression. As an additional task, the subjects had to add two numbers together rapidly (Experiment 1), count the occurrences of a target digit in a rapid serial visual presentation (Experiment 2), or judge the pitch of a tone as high or low (Experiment 3). The visible face had an impact on judgments of the emotion of the heard voice in all the experiments. This cross-modal effect was independent of whether or not the subjects performed a demanding additional task. This suggests that integration of visual and auditory information about emotions may be a mandatory process, unconstrained by attentional resources.

  19. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  20. Language and Short-Term Memory: The Role of Perceptual-Motor Affordance

    PubMed Central

    2014-01-01

    The advantage for real words over nonwords in serial recall—the lexicality effect—is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are “cleaned up” via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge. PMID:24797440

  1. Language and short-term memory: the role of perceptual-motor affordance.

    PubMed

    Macken, Bill; Taylor, John C; Jones, Dylan M

    2014-09-01

    The advantage for real words over nonwords in serial recall--the lexicality effect--is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are "cleaned up" via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge.

  2. Impaired Processing of Serial Order Determines Working Memory Impairments in Alzheimer's Disease.

    PubMed

    De Belder, Maya; Santens, Patrick; Sieben, Anne; Fias, Wim

    2017-01-01

    Working memory (WM) problems are commonly observed in Alzheimer's disease (AD), but the affected mechanisms leading to impaired WM are still insufficiently understood. The ability to efficiently process serial order in WM has been demonstrated to be fundamental to fluent daily life functioning. The decreased capability to mentally process serial position in WM has been put forward as the underlying explanation for generally compromised WM performance. Determine which mechanisms, such as order processing, are responsible for deficient WM functioning in AD. A group of AD patients (n = 32) and their partners (n = 25), assigned to the control group, were submitted to an extensive battery of neuropsychological and experimental tasks, assessing general cognitive state and functioning of several aspects related to serial order WM. The results revealed an impaired ability to bind item information to serial position within WM in AD patients compared to controls. It was additionally observed that AD patients experienced specific difficulties with directing spatial attention when searching for item information stored in WM. The processing of serial order and the allocation of attentional resources are both disrupted, explaining the generally reduced WM functioning in AD patients. Further studies should now clarify whether this observation could explain disease-related problems for other cognitive functions such as verbal expression, auditory comprehension, or planning.

  3. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    PubMed

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Paced Auditory Serial Addition Test (PASAT 3.0 s): Demographically corrected norms for the Portuguese population.

    PubMed

    Sousa, Claudia Sofia; Neves, Mariana Rigueiro; Passos, Ana Margarida; Ferreira, Aristides; Sá, Maria José

    2017-05-23

    The main goal of this study was to produce adjusted normative data for the Portuguese population on the Paced Auditory Serial Addition Test (PASAT 3.0 s), the version used in the Brief Repeatable Battery of Neuropsychological Tests developed by the National Multiple Sclerosis Society. The study included 326 community-dwelling individuals (199 women and 127 men) aged between 20 and 70 (mean = 40.33, SD = 14.40), who had educational backgrounds ranging from 4 to 23 years of schooling (mean = 12.28, SD = 4.39). Age, gender and qualifications revealed differences in explaining their performance on the PASAT 3.0 s. Men had significantly better performance on the PASAT 3.0 s than women, even though this represents a small effect size r = 0.18. Demographically corrected normative data was developed and important information regarding performance on the PASAT 3.0 s test is provided. Results are discussed and presented in tables and a formula is presented for computing age, gender and education adjusted T-scores for performance on the PASAT 3.0 s. These results should be considered as useful reference values for clinicians and investigators when applying the PASAT 3.0 s to assess cognitive function like information processing speed in different pathologies.

  5. Auditory Distraction in Semantic Memory: A Process-Based Approach

    ERIC Educational Resources Information Center

    Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.

    2008-01-01

    Five experiments demonstrate auditory-semantic distraction in tests of memory for semantic category-exemplars. The effects of irrelevant sound on category-exemplar recall are shown to be functionally distinct from those found in the context of serial short-term memory by showing sensitivity to: The lexical-semantic, rather than acoustic,…

  6. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  7. When Does Between-Sequence Phonological Similarity Promote Irrelevant Sound Disruption?

    ERIC Educational Resources Information Center

    Marsh, John E.; Vachon, Francois; Jones, Dylan M.

    2008-01-01

    Typically, the phonological similarity between to-be-recalled items and TBI auditory stimuli has no impact if recall in serial order is required. However, in the present study, the authors have shown that the free recall, but not serial recall, of lists of phonologically related to-be-remembered items was disrupted by an irrelevant sound stream…

  8. Common Modality Effects in Immediate Free Recall and Immediate Serial Recall

    ERIC Educational Resources Information Center

    Grenfell-Essam, Rachel; Ward, Geoff; Tan, Lydia

    2017-01-01

    In 2 experiments, participants were presented with lists of between 2 and 12 words for either immediate free recall (IFR) or immediate serial recall (ISR). Auditory recall advantages at the end of the list (modality effects) and visual recall advantages early in the list (inverse modality effects) were observed in both tasks and the extent and…

  9. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  10. Investigating the role of visual and auditory search in reading and developmental dyslexia.

    PubMed

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  11. Auditory Attentional Capture during Serial Recall: Violations at Encoding of an Algorithm-Based Neural Model?

    ERIC Educational Resources Information Center

    Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.

    2005-01-01

    A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item…

  12. Auditory Serial Position Effects in Story Retelling for Non-Brain-Injured Participants and Persons with Aphasia

    ERIC Educational Resources Information Center

    Brodsky, Martin B.; McNeil, Malcolm R.; Doyle, Patrick J.; Fossett, Tepanata R. D.; Timm, Neil H.

    2003-01-01

    Using story retelling as an index of language ability, it is difficult to disambiguate comprehension and memory deficits. Collecting data on the serial position effect (SPE), however, illuminates the memory component. This study examined the SPE of the percentage of information units (%IU) produced in the connected speech samples of adults with…

  13. Translational validity of PASAT and the effect of fatigue and mood in patients with relapsing remitting MS: A functional MRI study.

    PubMed

    Iancheva, Dessislava; Trenova, Anastasiya G; Terziyski, Kiril; Kandilarova, Sevdalina; Mantarova, Stefka

    2018-04-03

    Paced Auditory Serial Addition Test (PASAT) is used for assessment of information processing speed, attention, and working memory, which are the most frequently affected cognitive domains in multiple sclerosis (MS) patients, and may be significantly affected by fatigue. However, the effect of fatigue and mood on the PASAT performance in MS patients translationally validated by fMRI has not been studied yet. The aim of this study is to investigate the translational validity of the PASAT, using fMRI during a paced visual serial addition test (PVSAT) paradigm in patients with relapsing remitting MS (RRMS) and to assess the impact of fatigue and mood on test performance. Fourteen patients with RRMS in remission and 14 healthy controls, matched by sex, age, and educational status, were enrolled in the study. The subjects underwent a standard neurological examination, neuropsychological evaluation with the PASAT 3', fMRI scanning with a PVSAT paradigm, and Beck Depression Inventory. All patients were assessed by the Modified Fatigue Impact Scale. Paced Auditory Serial Addition Test score was lower in patients (41.4 ± 15.5 vs 51.6 ± 7.5, P = .035). A moderate negative correlation (P = -0.563, P = 0.036) was found between PASAT and MIFS scores. The fMRI scanning showed significant activations in several clusters that differed between patients and controls. The patient group presented wider cluster activation; Brodmann area (BA) 6-bilaterally; left BA7, 8, and 9; and right BA40, while controls presented with activations in left BA6 and BA44. Significant negative correlations between PASAT score and cortical activations in left BA23, right BA32, and left BA7 were observed in patients only. Our results show that poorer performance on the PASAT is associated with higher activation in areas connected with working memory, attention, and emotional processes during the fMRI assessment with PVSAT paradigm, which provides evidence for the translational validity of the PASAT in patients with RRMS. © 2018 John Wiley & Sons, Ltd.

  14. An initial validation of the Virtual Reality Paced Auditory Serial Addition Test in a college sample.

    PubMed

    Parsons, Thomas D; Courtney, Christopher G

    2014-01-30

    Numerous studies have demonstrated that the Paced Auditory Serial Addition Test (PASAT) has utility for the detection of cognitive processing deficits. While the PASAT has demonstrated high levels of internal consistency and test-retest reliability, administration of the PASAT has been known to create undue anxiety and frustration in participants. As a result, degradation of performance may be found on the PASAT. The difficult nature of the PASAT may subsequently decrease the probability of their return for follow up testing. This study is a preliminary attempt at assessing the potential of a PASAT embedded in a virtual reality environment. The Virtual Reality PASAT (VR-PASAT) was compared with a paper-and-pencil version of the PASAT as well as other standardized neuropsychological measures. The two modalities of the PASAT were conducted with a sample of 50 healthy university students, between the ages of 19 and 34 years. Equivalent distributions were found for age, gender, education, and computer familiarity. Moderate relationships were found between VR-PASAT and other putative attentional processing measures. The VR-PASAT was unrelated to indices of learning, memory, or visuospatial processing. Comparison of the VR-PASAT with the traditional paper-and-pencil PASAT indicated that both versions require the examinee to sustain attention at an increasingly demanding, externally determined rate. Results offer preliminary support for the construct validity (in a college sample) of the VR-PASAT as an attentional processing measure and suggest that this task may provide some unique information not tapped by traditional attentional processing tasks. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The paced auditory serial addition test for working memory assessment: Psychometric properties

    PubMed Central

    Nikravesh, Maryam; Jafari, Zahra; Mehrpour, Masoud; Kazemi, Roozbeh; Amiri Shavaki, Younes; Hossienifar, Shamim; Azizi, Mohamad Parsa

    2017-01-01

    Background: The paced auditory serial addition test (PASAT) was primarily developed to assess the effects of traumatic brain injury on cognitive functioning. Working memory (WM) is one of the most important aspects of cognitive function, and WM impairment is one of the clinically remarkable signs of aphasia. To develop the Persian version of PASAT, an initial version was used in individuals with aphasia (IWA). Methods: In this study, 25 individuals with aphasia (29-60 years) and 85 controls (18-60 years) were included. PASAT was presented in the form of recorded 61 single-digit numbers (1 to 9). The participants repeatedly added the 2 recent digits. The psychometric properties of PASAT including convergent validity (using the digit memory span tasks), divergent validity (using results in the control group and IWA group), and face validity were investigated. Test-retest reliability was considered as well. Results: The relationship between the PASAT and digit memory span tests was moderate to strong in the control group (forward digit memory span test: r= 0.52, p< 0.0001; backward digit memory span test: r = 0.48, p< 0.0001). A strong relationship was found in IWA (forward digit memory span test: r= 0.72, p< 0.0001; backward digit memory span test: r= 0.53, p= 0.006). Also, strong testretest reliability (intraclass correlation= 0.95, p< 0.0001) was observed. Conclusion: According to our results, the PASAT is a valid and reliable test to assess working memory, particularly in IWA. It could be used as a feasible tool for clinical and research applications. PMID:29445690

  16. Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial.

    PubMed

    Corey-Bloom, Jody; Wolfson, Tanya; Gamst, Anthony; Jin, Shelia; Marcotte, Thomas D; Bentley, Heather; Gouaux, Ben

    2012-07-10

    Spasticity is a common and poorly controlled symptom of multiple sclerosis. Our objective was to determine the short-term effect of smoked cannabis on this symptom. We conducted a placebo-controlled, crossover trial involving adult patients with multiple sclerosis and spasticity. We recruited participants from a regional clinic or by referral from specialists. We randomly assigned participants to either the intervention (smoked cannabis, once daily for three days) or control (identical placebo cigarettes, once daily for three days). Each participant was assessed daily before and after treatment. After a washout interval of 11 days, participants crossed over to the opposite group. Our primary outcome was change in spasticity as measured by patient score on the modified Ashworth scale. Our secondary outcomes included patients' perception of pain (as measured using a visual analogue scale), a timed walk and changes in cognitive function (as measured by patient performance on the Paced Auditory Serial Addition Test), in addition to ratings of fatigue. Thirty-seven participants were randomized at the start of the study, 30 of whom completed the trial. Treatment with smoked cannabis resulted in a reduction in patient scores on the modified Ashworth scale by an average of 2.74 points more than placebo (p < 0.0001). In addition, treatment reduced pain scores on a visual analogue scale by an average of 5.28 points more than placebo (p = 0.008). Scores for the timed walk did not differ significantly between treatment and placebo (p = 0.2). Scores on the Paced Auditory Serial Addition Test decreased by 8.67 points more with treatment than with placebo (p = 0.003). No serious adverse events occurred during the trial. Smoked cannabis was superior to placebo in symptom and pain reduction in participants with treatment-resistant spasticity. Future studies should examine whether different doses can result in similar beneficial effects with less cognitive impact.

  17. Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial

    PubMed Central

    Corey-Bloom, Jody; Wolfson, Tanya; Gamst, Anthony; Jin, Shelia; Marcotte, Thomas D.; Bentley, Heather; Gouaux, Ben

    2012-01-01

    Background: Spasticity is a common and poorly controlled symptom of multiple sclerosis. Our objective was to determine the short-term effect of smoked cannabis on this symptom. Methods: We conducted a placebo-controlled, crossover trial involving adult patients with multiple sclerosis and spasticity. We recruited participants from a regional clinic or by referral from specialists. We randomly assigned participants to either the intervention (smoked cannabis, once daily for three days) or control (identical placebo cigarettes, once daily for three days). Each participant was assessed daily before and after treatment. After a washout interval of 11 days, participants crossed over to the opposite group. Our primary outcome was change in spasticity as measured by patient score on the modified Ashworth scale. Our secondary outcomes included patients’ perception of pain (as measured using a visual analogue scale), a timed walk and changes in cognitive function (as measured by patient performance on the Paced Auditory Serial Addition Test), in addition to ratings of fatigue. Results: Thirty-seven participants were randomized at the start of the study, 30 of whom completed the trial. Treatment with smoked cannabis resulted in a reduction in patient scores on the modified Ashworth scale by an average of 2.74 points more than placebo (p < 0.0001). In addition, treatment reduced pain scores on a visual analogue scale by an average of 5.28 points more than placebo (p = 0.008). Scores for the timed walk did not differ significantly between treatment and placebo (p = 0.2). Scores on the Paced Auditory Serial Addition Test decreased by 8.67 points more with treatment than with placebo (p = 0.003). No serious adverse events occurred during the trial. Interpretation: Smoked cannabis was superior to placebo in symptom and pain reduction in participants with treatment-resistant spasticity. Future studies should examine whether different doses can result in similar beneficial effects with less cognitive impact. PMID:22586334

  18. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study.

    PubMed

    Pavisian, Bennis; MacIntosh, Bradley J; Szilagyi, Greg; Staines, Richard W; O'Connor, Paul; Feinstein, Anthony

    2014-05-27

    To determine functional and structural neuroimaging correlates of cognitive dysfunction associated with cannabis use in multiple sclerosis (MS). In a cross-sectional study, 20 subjects with MS who smoked cannabis and 19 noncannabis users with MS, matched on demographic and neurologic variables, underwent fMRI while completing a test of working memory, the N-Back. Resting-state fMRI and structural MRI data (lesion and normal-appearing brain tissue volumes, diffusion tensor imaging metrics) were also collected. Neuropsychological data pertaining to verbal (Selective Reminding Test Revised) and visual (10/36 Spatial Recall Test) memory, information processing speed (Paced Auditory Serial Addition Test [2- and 3-second versions] and Symbol Digit Modalities Test), and attention (Word List Generation) were obtained. The cannabis group performed more poorly on the more demanding of the Paced Auditory Serial Addition Test tasks (i.e., 2-second version) (p < 0.02) and the 10/36 Spatial Recall Test (p < 0.03). Cannabis users had more diffuse cerebral activation across all N-Back trials and made more errors on the 2-Back task (p < 0.006), during which they displayed increased activation relative to nonusers in parietal (p < 0.007) and anterior cingulate (p < 0.001) regions implicated in working memory. No group differences in resting-state networks or structural MRI variables were found. Patients with MS who smoke cannabis are more cognitively impaired than nonusers. Cannabis further compromises cerebral compensatory mechanisms, already faulty in MS. These imaging data boost the construct validity of the neuropsychological findings and act as a cautionary note to cannabis users and prescribers. © 2014 American Academy of Neurology.

  19. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    PubMed Central

    Kamke, Marc R.; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945

  20. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    PubMed

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  1. The representation of order information in auditory-verbal short-term memory.

    PubMed

    Kalm, Kristjan; Norris, Dennis

    2014-05-14

    Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns representing their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory processing store associations between items and order as predicted by a positional model. The chaining model of order representation generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI evidence for a specific model of order representation in the human brain. Copyright © 2014 the authors 0270-6474/14/346879-08$15.00/0.

  2. Listening effort in younger and older adults: A comparison of auditory-only and auditory-visual presentations

    PubMed Central

    Sommers, Mitchell S.; Phelps, Damian

    2016-01-01

    One goal of the present study was to establish whether providing younger and older adults with visual speech information (both seeing and hearing a talker compared with listening alone) would reduce listening effort for understanding speech in noise. In addition, we used an individual differences approach to assess whether changes in listening effort were related to changes in visual enhancement – the improvement in speech understanding in going from an auditory-only (A-only) to an auditory-visual condition (AV) condition. To compare word recognition in A-only and AV modalities, younger and older adults identified words in both A-only and AV conditions in the presence of six-talker babble. Listening effort was assessed using a modified version of a serial recall task. Participants heard (A-only) or saw and heard (AV) a talker producing individual words without background noise. List presentation was stopped randomly and participants were then asked to repeat the last 3 words that were presented. Listening effort was assessed using recall performance in the 2-back and 3-back positions. Younger, but not older, adults exhibited reduced listening effort as indexed by greater recall in the 2- and 3-back positions for the AV compared with the A-only presentations. For younger, but not older adults, changes in performance from the A-only to the AV condition were moderately correlated with visual enhancement. Results are discussed within a limited-resource model of both A-only and AV speech perception. PMID:27355772

  3. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  4. Temporal Order Processing in Adult Dyslexics.

    ERIC Educational Resources Information Center

    Maxwell, David L.; And Others

    This study investigated the premise that disordered temporal order perception in retarded readers can be seen in the serial processing of both nonverbal auditory and visual information, and examined whether such information processing deficits relate to level of reading ability. The adult subjects included 20 in the dyslexic group, 12 in the…

  5. Auditory access, language access, and implicit sequence learning in deaf children.

    PubMed

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  6. Similarities between the irrelevant sound effect and the suffix effect.

    PubMed

    Hanley, J Richard; Bourgaize, Jake

    2018-03-29

    Although articulatory suppression abolishes the effect of irrelevant sound (ISE) on serial recall when sequences are presented visually, the effect persists with auditory presentation of list items. Two experiments were designed to test the claim that, when articulation is suppressed, the effect of irrelevant sound on the retention of auditory lists resembles a suffix effect. A suffix is a spoken word that immediately follows the final item in a list. Even though participants are told to ignore it, the suffix impairs serial recall of auditory lists. In Experiment 1, the irrelevant sound consisted of instrumental music. The music generated a significant ISE that was abolished by articulatory suppression. It therefore appears that, when articulation is suppressed, irrelevant sound must contain speech for it to have any effect on recall. This is consistent with what is known about the suffix effect. In Experiment 2, the effect of irrelevant sound under articulatory suppression was greater when the irrelevant sound was spoken by the same voice that presented the list items. This outcome is again consistent with the known characteristics of the suffix effect. It therefore appears that, when rehearsal is suppressed, irrelevant sound disrupts the acoustic-perceptual encoding of auditorily presented list items. There is no evidence that the persistence of the ISE under suppression is a result of interference to the representation of list items in a postcategorical phonological store.

  7. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Notetaking, Verbal Aptitude, & Listening Span: Factors Involved in Learning from Lectures.

    ERIC Educational Resources Information Center

    Walbaum, Sharlene D.

    Three variables (verbal aptitude, listening ability, and notetaking) that may mediate how much college students learn from a lecture were studied. Verbal aptitude was operationalized as a Verbal Scholastic Aptitude Test (VSAT) score. Listening ability was measured as the score on an auditory short-term memory task, using the serial running memory…

  9. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits from Regularities Are Reduced

    ERIC Educational Resources Information Center

    Daikhin, Luba; Raviv, Ofri; Ahissar, Merav

    2017-01-01

    Purpose: The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis),…

  10. Different verbal learning strategies in autism spectrum disorder: evidence from the Rey Auditory Verbal Learning Test.

    PubMed

    Bowler, Dermot M; Limoges, Elyse; Mottron, Laurent

    2009-06-01

    The Rey Auditory Verbal Learning Test, which requires the free recall of the same list of 15 unrelated words over 5 trials, was administered to 21 high-functioning adolescents and adults with autism spectrum disorder (ASD) and 21 matched typical individuals. The groups showed similar overall levels of free recall, rates of learning over trials and subjective organisation of their recall. However, the primacy portion of the serial position curve of the ASD participants showed slower growth over trials than that of the typical participants. The implications of this finding for our understanding of memory in ASD are discussed.

  11. The Ineluctable Modality of the Audible: Perceptual Determinants of Auditory Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Maidment, David W.; Macken, William J.

    2012-01-01

    Classical cognitive accounts of verbal short-term memory (STM) invoke an abstract, phonological level of representation which, although it may be derived differently via different modalities, is itself amodal. Key evidence for this view is that serial recall of phonologically similar verbal items (e.g., the letter sounds "b",…

  12. A Left-Ear Disadvantage for the Presentation of Irrelevant Sound: Manipulations of Task Requirements and Changing State

    ERIC Educational Resources Information Center

    Hadlington, Lee J.; Bridges, Andrew M.; Beaman, C. Philip

    2006-01-01

    Three experiments attempted to clarify the effect of altering the spatial presentation of irrelevant auditory information. Previous research using serial recall tasks demonstrated a left-ear disadvantage for the presentation of irrelevant sounds (Hadlington, Bridges, & Darby, 2004). Experiments 1 and 2 examined the effects of manipulating the…

  13. Disruption of Boundary Encoding During Sensorimotor Sequence Learning: An MEG Study.

    PubMed

    Michail, Georgios; Nikulin, Vadim V; Curio, Gabriel; Maess, Burkhard; Herrojo Ruiz, María

    2018-01-01

    Music performance relies on the ability to learn and execute actions and their associated sounds. The process of learning these auditory-motor contingencies depends on the proper encoding of the serial order of the actions and sounds. Among the different serial positions of a behavioral sequence, the first and last (boundary) elements are particularly relevant. Animal and patient studies have demonstrated a specific neural representation for boundary elements in prefrontal cortical regions and in the basal ganglia, highlighting the relevance of their proper encoding. The neural mechanisms underlying the encoding of sequence boundaries in the general human population remain, however, largely unknown. In this study, we examined how alterations of auditory feedback, introduced at different ordinal positions (boundary or within-sequence element), affect the neural and behavioral responses during sensorimotor sequence learning. Analysing the neuromagnetic signals from 20 participants while they performed short piano sequences under the occasional effect of altered feedback (AF), we found that at around 150-200 ms post-keystroke, the neural activities in the dorsolateral prefrontal cortex (DLPFC) and supplementary motor area (SMA) were dissociated for boundary and within-sequence elements. Furthermore, the behavioral data demonstrated that feedback alterations on boundaries led to greater performance costs, such as more errors in the subsequent keystrokes. These findings jointly support the idea that the proper encoding of boundaries is critical in acquiring sensorimotor sequences. They also provide evidence for the involvement of a distinct neural circuitry in humans including prefrontal and higher-order motor areas during the encoding of the different classes of serial order.

  14. Differential cognitive and perceptual correlates of print reading versus braille reading.

    PubMed

    Veispak, Anneli; Boets, Bart; Ghesquière, Pol

    2013-01-01

    The relations between reading, auditory, speech, phonological and tactile spatial processing are investigated in a Dutch speaking sample of blind braille readers as compared to sighted print readers. Performance is assessed in blind and sighted children and adults. Regarding phonological ability, braille readers perform equally well compared to print readers on phonological awareness, better on verbal short-term memory and significantly worse on lexical retrieval. The groups do not differ on speech perception or auditory processing. Braille readers, however, have more sensitive fingers than print readers. Investigation of the relations between these cognitive and perceptual skills and reading performance indicates that in the group of braille readers auditory temporal processing has a longer lasting and stronger impact not only on phonological abilities, which have to satisfy the high processing demands of the strictly serial language input, but also directly on the reading ability itself. Print readers switch between grapho-phonological and lexical reading modes depending on the familiarity of the items. Furthermore, the auditory temporal processing and speech perception, which were substantially interrelated with phonological processing, had no direct associations with print reading measures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis.

    PubMed

    Batista, Sonia; Zivadinov, Robert; Hoogs, Marietta; Bergsland, Niels; Heininen-Brown, Mari; Dwyer, Michael G; Weinstock-Guttman, Bianca; Benedict, Ralph H B

    2012-01-01

    Information-processing speed (IPS) slowing is a primary cognitive deficit in multiple sclerosis (MS). Basal ganglia, thalamus and neocortex are thought to have a key role for efficient information-processing, yet the specific relative contribution of these structures for MS-related IPS impairment is poorly understood. To determine if basal ganglia and thalamus atrophy independently contribute to visual and auditory IPS impairment in MS, after controlling for the influence of neocortical volume, we enrolled 86 consecutive MS patients and 25 normal controls undergoing 3T brain MRI and neuropsychological testing. Using Sienax and FIRST software, neocortical and deep gray matter (DGM) volumes were calculated. Neuropsychological testing contributed measures of auditory and visual IPS using the Paced Auditory Serial Addition Test (PASAT) and the Symbol Digit Modalities Test (SDMT), respectively. MS patients exhibited significantly slower IPS relative to controls and showed reduction in neocortex, caudate, putamen, globus pallidus, thalamus and nucleus accumbens volume. SDMT and PASAT were significantly correlated with all DGM regions. These effects were mitigated by controlling for the effects of neocortical volume, but all DGM volumes remained significantly correlated with SDMT, putamen (r = 0.409, p < 0.001) and thalamus (r = 0.362, p < 0.001) having the strongest effects, whereas for PASAT, the correlation was significant for putamen (r = 0.313, p < 0.01) but not for thalamus. We confirm the significant role of thalamus atrophy in MS-related IPS slowing and find that putamen atrophy is also a significant contributor to this disorder. These DGM structures have independent, significant roles, after controlling for the influence of neocortex atrophy.

  16. The Medial Paralemniscal Nucleus and Its Afferent Neuronal Connections in Rat

    PubMed Central

    VARGA, TAMÁS; PALKOVITS, MIKLÓS; USDIN, TED BJÖRN; DOBOLYI, ARPÁD

    2009-01-01

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. PMID:18770870

  17. The medial paralemniscal nucleus and its afferent neuronal connections in rat.

    PubMed

    Varga, Tamás; Palkovits, Miklós; Usdin, Ted Björn; Dobolyi, Arpád

    2008-11-10

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. (c) 2008 Wiley-Liss, Inc.

  18. Effect of parental family history of Alzheimer's disease on serial position profiles.

    PubMed

    La Rue, Asenath; Hermann, Bruce; Jones, Jana E; Johnson, Sterling; Asthana, Sanjay; Sager, Mark A

    2008-07-01

    An exaggerated recency effect (ie, disproportionate recall of last-presented items) has been consistently observed in the word list learning of patients with Alzheimer's disease (AD). Our study sought to determine whether there were similar alterations in serial position learning among asymptomatic persons at risk for AD as a result of parental family history. Subjects included 623 asymptomatic middle-aged children of patients with AD (median, 53 years) and 157 control participants whose parents survived to at least age 70 without AD or other memory disorders. All participants were administered the Rey Auditory Verbal Learning Test, which requires learning and recall of 15 unrelated nouns. There was no significant difference in total words recalled between the AD children and control groups. However, compared with controls, AD children exhibited a significantly greater tendency to recall words from the end (recency) versus beginning (primacy) of the list. Serial position effects were unrelated to apolipoprotein allele epsilon 4 or depressive symptoms. Asymptomatic persons at risk for AD by virtue of family history do not show a difference in total words recalled compared with controls, but they exhibit a distinctly different serial position curve, suggesting greater reliance on immediate as opposed to episodic memory. This is the same serial position pattern observed in mild AD, seen here in reduced severity. Longitudinal follow-up is planned to determine whether changes in serial position patterns are a meaningful marker for preclinical detection of AD.

  19. Specialized postsynaptic morphology enhances neurotransmitter dilution and high-frequency signaling at an auditory synapse.

    PubMed

    Graydon, Cole W; Cho, Soyoun; Diamond, Jeffrey S; Kachar, Bechara; von Gersdorff, Henrique; Grimes, William N

    2014-06-11

    Sensory processing in the auditory system requires that synapses, neurons, and circuits encode information with particularly high temporal and spectral precision. In the amphibian papillia, sound frequencies up to 1 kHz are encoded along a tonotopic array of hair cells and transmitted to afferent fibers via fast, repetitive synaptic transmission, thereby promoting phase locking between the presynaptic and postsynaptic cells. Here, we have combined serial section electron microscopy, paired electrophysiological recordings, and Monte Carlo diffusion simulations to examine novel mechanisms that facilitate fast synaptic transmission in the inner ear of frogs (Rana catesbeiana and Rana pipiens). Three-dimensional anatomical reconstructions reveal specialized spine-like contacts between individual afferent fibers and hair cells that are surrounded by large, open regions of extracellular space. Morphologically realistic diffusion simulations suggest that these local enlargements in extracellular space speed transmitter clearance and reduce spillover between neighboring synapses, thereby minimizing postsynaptic receptor desensitization and improving sensitivity during prolonged signal transmission. Additionally, evoked EPSCs in afferent fibers are unaffected by glutamate transporter blockade, suggesting that transmitter diffusion and dilution, and not uptake, play a primary role in speeding neurotransmission and ensuring fidelity at these synapses. Copyright © 2014 the authors 0270-6474/14/348358-15$15.00/0.

  20. Extended recency effect extended: blocking, presentation mode, and retention interval.

    PubMed

    Glidden, L M; Pawelski, C; Mar, H; Zigman, W

    1979-07-01

    The effect of blocking of stimulus items on the free recall of EMR adolescents was examined. In Experiment 1 a multitrial free-recall list of 15 pictures was presented either simultaneously in groups of 3, or sequentially, one at a time. Consistent ordering was used in both conditions, so that on each trial, each item in each set of 3 pictures was presented contiguously with the other 2 items from that set. In addition, recall came immediately or after a filled or unfilled delay of 24.5 seconds. Results showed that simultaneous presentation led to higher recall, subjective organization, and clustering than did sequential presentation, but analysis of serial-position curves showed a much reduced extended recency effect in comparison with previous studies. Experiment 2 was designed to determine whether the cause of the reduced extended recency was the use of pictures rather than words as stimuli. Stimuli were presented either as pictures, as pictures with auditory labels, or as words with auditory labels, with both simultaneous and consistent ordering for all conditions. Results indicated a strong extended recency effect for all groups, eliminating presentation mode as a causal factor in the data of Experiment 1. We concluded that blocking leads to increased organization and recall over a variety of presentation modes, rates, and block sizes.

  1. Association of physical fitness and fatness with cognitive function in women with fibromyalgia.

    PubMed

    Soriano-Maldonado, Alberto; Artero, Enrique G; Segura-Jiménez, Víctor; Aparicio, Virgina A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Munguía-Izquierdo, Diego; Casimiro-Andújar, Antonio J; Delgado-Fernández, Manuel; Ortega, Francisco B

    2016-09-01

    This study assessed the association of fitness and fatness with cognitive function in women with fibromyalgia, and the independent influence of their single components on cognitive tasks. A total of 468 women with fibromyalgia were included. Speed of information processing and working memory (Paced Auditory Serial Addition Task), as well as immediate and delayed recall, verbal learning and delayed recognition (Rey Auditory Verbal Learning Test) were assessed. Aerobic fitness, muscle strength, flexibility and motor agility were assessed with the Senior Fitness Test battery. Body mass index, percent body fat, fat-mass index and waist circumference were measured. Aerobic fitness was associated with attention and working memory (all, p < 0.05). All fitness components were generally associated with delayed recall, verbal learning and delayed recognition (all, p < 0.05). Aerobic fitness showed the most powerful association with attention, working memory, delayed recall and verbal learning, while motor agility was the most powerful indicator of delayed recognition. None of the fatness parameters were associated with any of the outcomes (all, p > 0.05). Our results suggest that fitness, but not fatness, is associated with cognitive function in women with fibromyalgia. Aerobic fitness appears to be the most powerful fitness component regarding the cognitive tasks evaluated.

  2. Acupuncture for treatment of insomnia in patients with traumatic brain injury: a pilot intervention study.

    PubMed

    Zollman, Felise S; Larson, Eric B; Wasek-Throm, Laura K; Cyborski, Cherina M; Bode, Rita K

    2012-01-01

    : To assess the efficacy of acupuncture in treating insomnia in traumatic brain injury (TBI) survivors as compared to medication, to determine whether acupuncture has fewer cognitive and affective adverse effects than does medication. : Twenty-four adult TBI survivors, randomized to acupuncture or control arms. : Outpatient rehabilitation clinic. : Insomnia Severity Index (degree of insomnia); actigraphy (sleep time); Hamilton Depression Rating Scale (depression); Repeatable Battery for the Assessment of Neuropsychological Status and Paced Auditory Serial Addition Test (cognitive function) administered at baseline and postintervention. : Sleep time did not differ between the treatment and control groups after intervention, whereas cognition improved in the former but not the latter. : Acupuncture has a beneficial effect on perception of sleep or sleep quality and on cognition in our small sample of patients with TBI. Further studies of this treatment modality are warranted to validate these findings and to explore factors that contribute to treatment efficacy.

  3. Implicit sequence learning in deaf children with cochlear implants.

    PubMed

    Conway, Christopher M; Pisoni, David B; Anaya, Esperanza M; Karpicke, Jennifer; Henning, Shirley C

    2011-01-01

    Deaf children with cochlear implants (CIs) represent an intriguing opportunity to study neurocognitive plasticity and reorganization when sound is introduced following a period of auditory deprivation early in development. Although it is common to consider deafness as affecting hearing alone, it may be the case that auditory deprivation leads to more global changes in neurocognitive function. In this paper, we investigate implicit sequence learning abilities in deaf children with CIs using a novel task that measured learning through improvement to immediate serial recall for statistically consistent visual sequences. The results demonstrated two key findings. First, the deaf children with CIs showed disturbances in their visual sequence learning abilities relative to the typically developing normal-hearing children. Second, sequence learning was significantly correlated with a standardized measure of language outcome in the CI children. These findings suggest that a period of auditory deprivation has secondary effects related to general sequencing deficits, and that disturbances in sequence learning may at least partially explain why some deaf children still struggle with language following cochlear implantation. © 2010 Blackwell Publishing Ltd.

  4. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant declinemore » on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.« less

  5. Auditory attentional capture during serial recall: violations at encoding of an algorithm-based neural model?

    PubMed

    Hughes, Robert W; Vachon, François; Jones, Dylan M

    2005-07-01

    A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item or a sequence of changing items. Moreover, the effect was evident during the presentation of the to-be-remembered sequence but not during rehearsal just prior to recall, suggesting that the encoding of sequences is particularly susceptible. The results suggest that attentional capture is due to a violation of an algorithm rather than an aggregate-based neural model and further undermine an attentional capture-based account of the classical changing-state irrelevant sound effect. ((c) 2005 APA, all rights reserved).

  6. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    PubMed

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Distracted driving in elderly and middle-aged drivers.

    PubMed

    Thompson, Kelsey R; Johnson, Amy M; Emerson, Jamie L; Dawson, Jeffrey D; Boer, Erwin R; Rizzo, Matthew

    2012-03-01

    Automobile driving is a safety-critical real-world example of multitasking. A variety of roadway and in-vehicle distracter tasks create information processing loads that compete for the neural resources needed to drive safely. Drivers with mind and brain aging may be particularly susceptible to distraction due to waning cognitive resources and control over attention. This study examined distracted driving performance in an instrumented vehicle (IV) in 86 elderly (mean=72.5 years, SD=5.0 years) and 51 middle-aged drivers (mean=53.7 years, SD=9.3 year) under a concurrent auditory-verbal processing load created by the Paced Auditory Serial Addition Task (PASAT). Compared to baseline (no-task) driving performance, distraction was associated with reduced steering control in both groups, with middle-aged drivers showing a greater increase in steering variability. The elderly drove slower and showed decreased speed variability during distraction compared to middle-aged drivers. They also tended to "freeze up", spending significantly more time holding the gas pedal steady, another tactic that may mitigate time pressured integration and control of information, thereby freeing mental resources to maintain situation awareness. While 39% of elderly and 43% of middle-aged drivers committed significantly more driving safety errors during distraction, 28% and 18%, respectively, actually improved, compatible with allocation of attention resources to safety critical tasks under a cognitive load. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Distracted Driving in Elderly and Middle-Aged Drivers

    PubMed Central

    Thompson, Kelsey R.; Johnson, Amy M.; Emerson, Jamie L.; Dawson, Jeffrey D.; Boer, Erwin R.

    2011-01-01

    Automobile driving is a safety-critical real-world example of multitasking. A variety of roadway and in-vehicle distracter tasks create information processing loads that compete for the neural resources needed to drive safely. Drivers with mind and brain aging may be particularly susceptible to distraction due to waning cognitive resources and control over attention. This study examined distracted driving performance in an instrumented vehicle (IV) in 86 elderly (mean = 72.5 years, SD = 5.0 years) and 51 middle-aged drivers (mean = 53.7 years, SD = 9.3 year) under a concurrent auditory-verbal processing load created by the Paced Auditory Serial Addition Task (PASAT). Compared to baseline (no-task) driving performance, distraction was associated with reduced steering control in both groups, with middle-aged drivers showing a greater increase in steering variability. The elderly drove slower and showed decreased speed variability during distraction compared to middle-aged drivers. They also tended to “freeze up”, spending significantly more time holding the gas pedal steady, another tactic that may mitigate time pressured integration and control of information, thereby freeing mental resources to maintain situation awareness. While 39% of elderly and 43% of middle-aged drivers committed significantly more driving safety errors during distraction, 28% and 18%, respectively, actually improved, compatible with allocation of attention resources to safety critical tasks under a cognitive load. PMID:22269561

  9. Distinctiveness revisited: unpredictable temporal isolation does not benefit short-term serial recall of heard or seen events.

    PubMed

    Nimmo, Lisa M; Lewandowsky, Stephan

    2006-09-01

    The notion of a link between time and memory is intuitively appealing and forms the core assumption of temporal distinctiveness models. Distinctiveness models predict that items that are temporally isolated from their neighbors at presentation should be recalled better than items that are temporally crowded. By contrast, event-based theories consider time to be incidental to the processes that govern memory, and such theories would not imply a temporal isolation advantage unless participants engaged in a consolidation process (e.g., rehearsal or selective encoding) that exploited the temporal structure of the list. In this report, we examine two studies that assessed the effect of temporal distinctiveness on memory, using auditory (Experiment 1) and auditory and visual (Experiment 2) presentation with unpredictably varying interitem intervals. The results show that with unpredictable intervals temporal isolation does not benefit memory, regardless of presentation modality.

  10. Prestimulus brain activity predicts primacy in list learning

    PubMed Central

    Galli, Giulia; Choy, Tsee Leng; Otten, Leun J.

    2012-01-01

    Brain activity immediately before an event can predict whether the event will later be remembered. This indicates that memory formation is influenced by anticipatory mechanisms engaged ahead of stimulus presentation. Here, we asked whether anticipatory processes affect the learning of short word lists, and whether such activity varies as a function of serial position. Participants memorized lists of intermixed visual and auditory words with either an elaborative or rote rehearsal strategy. At the end of each list, a distraction task was performed followed by free recall. Recall performance was better for words in initial list positions and following elaborative rehearsal. Electrical brain activity before auditory words predicted later recall in the elaborative rehearsal condition. Crucially, anticipatory activity only affected recall when words occurred in initial list positions. This indicates that anticipatory processes, possibly related to general semantic preparation, contribute to primacy effects. PMID:22888370

  11. Attentional capture by taboo words: A functional view of auditory distraction.

    PubMed

    Röer, Jan P; Körner, Ulrike; Buchner, Axel; Bell, Raoul

    2017-06-01

    It is well established that task-irrelevant, to-be-ignored speech adversely affects serial short-term memory (STM) for visually presented items compared with a quiet control condition. However, there is an ongoing debate about whether the semantic content of the speech has the capacity to capture attention and to disrupt memory performance. In the present article, we tested whether taboo words are more difficult to ignore than neutral words. Taboo words or neutral words were presented as (a) steady state sequences in which the same distractor word was repeated, (b) changing state sequences in which different distractor words were presented, and (c) auditory deviant sequences in which a single distractor word deviated from a sequence of repeated words. Experiments 1 and 2 showed that taboo words disrupted performance more than neutral words. This taboo effect did not habituate and it did not differ between individuals with high and low working memory capacity. In Experiments 3 and 4, in which only a single deviant taboo word was presented, no taboo effect was obtained. These results do not support the idea that the processing of the auditory distractors' semantic content is the result of occasional attention switches to the auditory modality. Instead, the overall pattern of results is more in line with a functional view of auditory distraction, according to which the to-be-ignored modality is routinely monitored for potentially important stimuli (e.g., self-relevant or threatening information), the detection of which draws processing resources away from the primary task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Memory factors in Rey AVLT: Implications for early staging of cognitive decline.

    PubMed

    Fernaeus, Sven-Erik; Ostberg, Per; Wahlund, Lars-Olof; Hellström, Ake

    2014-12-01

    Supraspan verbal list learning is widely used to assess dementia and related cognitive disorders where declarative memory deficits are a major clinical sign. While the overall learning rate is important for diagnosis, serial position patterns may give insight into more specific memory processes in patients with cognitive impairment. This study explored these patterns in a memory clinic clientele. One hundred eighty three participants took the Rey Auditory-Verbal Learning Test (RAVLT). The major groups were patients with Alzheimer's disease (AD), Vascular Dementia (VD), Mild Cognitive Impairment (MCI), and Subjective Cognitive Impairment (SCI) as well as healthy controls (HC). Raw scores for the five trials and five serial partitions were factor analysed. Three memory factors were found and interpreted as Primacy, Recency, and Resistance to Interference. AD and MCI patients had impaired scores in all factors. SCI patients were significantly impaired in the Resistance to Interference factor, and in the Recency factor at the first trial. The main conclusion is that serial position data from word list testing reflect specific memory capacities which vary with levels of cognitive impairment. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  13. Disability-Specific Atlases of Gray Matter Loss in Relapsing-Remitting Multiple Sclerosis.

    PubMed

    MacKenzie-Graham, Allan; Kurth, Florian; Itoh, Yuichiro; Wang, He-Jing; Montag, Michael J; Elashoff, Robert; Voskuhl, Rhonda R

    2016-08-01

    Multiple sclerosis (MS) is characterized by progressive gray matter (GM) atrophy that strongly correlates with clinical disability. However, whether localized GM atrophy correlates with specific disabilities in patients with MS remains unknown. To understand the association between localized GM atrophy and clinical disability in a biology-driven analysis of MS. In this cross-sectional study, magnetic resonance images were acquired from 133 women with relapsing-remitting MS and analyzed using voxel-based morphometry and volumetry. A regression analysis was used to determine whether voxelwise GM atrophy was associated with specific clinical deficits. Data were collected from June 28, 2007, to January 9, 2014. Voxelwise correlation of GM change with clinical outcome measures (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite scores). Among the 133 female patients (mean [SD] age, 37.4 [7.5] years), worse performance on the Multiple Sclerosis Functional Composite correlated with voxelwise GM volume loss in the middle cingulate cortex (P < .001) and a cluster in the precentral gyrus bilaterally (P = .004). In addition, worse performance on the Paced Auditory Serial Addition Test correlated with volume loss in the auditory and premotor cortices (P < .001), whereas worse performance on the 9-Hole Peg Test correlated with GM volume loss in Brodmann area 44 (Broca area; P = .02). Finally, voxelwise GM loss in the right paracentral lobulus correlated with bowel and bladder disability (P = .03). Thus, deficits in specific clinical test results were directly associated with localized GM loss in clinically eloquent locations. These biology-driven data indicate that specific disabilities in MS are associated with voxelwise GM loss in distinct locations. This approach may be used to develop disability-specific biomarkers for use in future clinical trials of neuroprotective treatments in MS.

  14. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  16. Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Arnegard, Ruth J.; Comstock, J. R., Jr.

    1991-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  17. The multi-attribute task battery for human operator workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Arnegard, Ruth J.

    1992-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  18. Rapid cognitive screening in multiple sclerosis accomplished by the Free Recall and Recognition Test.

    PubMed

    Claesson, I M; Ytterberg, C; Johansson, S; Almkvist, O; von Koch, L

    2007-03-01

    This study sought to investigate the feasibility of the Free Recall and Recognition Test (FRRT) as a practical screening tool for cognitive impairment in multiple sclerosis (MS). Persons with MS (n = 227) were consecutively recruited and assessed with four cognitive tests; FRRT, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test (PASAT), and the Mini-Mental State Examination (MMSE). Disease severity was assessed by the Expanded Disability Status Scale (EDSS). The FRRT, which was completed by 99% of the cohort in approximately 5 minutes per assessment, correlated significantly with the other cognitive tests, as well as with the disease severity rating. A cut-off of 4 for the FRRT recall rendered 90% sensitivity and 25% specificity, and a cut-off of 4.2 for the FRRT recognition resulted in 70% sensitivity and 51% specificity. We conclude that the FRRT proved feasible as a practical screening tool for cognitive impairment in MS within a clinical setting.

  19. Predictors of urge to smoke under stressful conditions: An experimental investigation utilizing the PASAT-C task to induce negative affect in smokers.

    PubMed

    Karekla, Maria; Panayiotou, Georgia; Collins, Bradley N

    2017-11-01

    Experimental evidence has demonstrated that the presence of cues previously associated with smoking behavior can increase urges to smoke in abstinent smokers. This study examined the effect of a laboratory-induced negative affective task (paced auditory serial addition task) on smoking urges among a sample of 35 abstinent college smokers (Mage = 20.83 years, SD = 1.71). Emotional states and physiological reactions experienced during the experiment, as well as individual differences in stress intolerance (anxiety sensitivity and experiential avoidance) were examined as predictors of the association between stressful states and smoking cravings. Smoking urges (smoking desire and negative affect relief) and negative emotions (frustration, irritability, stress) significantly increased, whereas positive emotions decreased from pre- to posttask. No significant interactions between individual differences and changes in urge were found. Results suggest that changes in negative affect may in part explain the association between induced stress and smoking cravings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Interrelating Behavioral Measures of Distress Tolerance with Self-Reported Experiential Avoidance.

    PubMed

    Schloss, Heather M; Haaga, David A F

    2011-03-01

    Experiential avoidance and distress intolerance play a central role in novel behavior therapies, yet they appear to overlap considerably the REBT concept of low frustration tolerance. Using baseline data from 100 adult cigarette smokers enrolled in a clinical trial of smoking cessation therapies, the present study evaluated the convergent validity of common questionnaire measures of experiential avoidance (Acceptance and Action Questionnaire; AAQ; Hayes et al. 2004, and Avoidance and Inflexibility Scale: AIS; Gifford et al. 2004) and behavioral measures of distress tolerance (computerized Mirror Tracing Persistence Task: MTPT-C: Strong et al. 2003; computerized Paced Auditory Serial Addition Task; PASAT-C; Lejuez et al. 2003). The distress tolerance measures correlated significantly (r = .29) with one another. However, the questionnaire measures of experiential avoidance did not correlate with each other, nor with the behavioral measures. Further research is needed on the validity of measuring experiential avoidance by self-report and of the overlap versus distinctiveness of seemingly similar constructs such as experiential avoidance, distress tolerance, and frustration tolerance.

  1. Interrelating Behavioral Measures of Distress Tolerance with Self-Reported Experiential Avoidance

    PubMed Central

    Schloss, Heather M.

    2011-01-01

    Experiential avoidance and distress intolerance play a central role in novel behavior therapies, yet they appear to overlap considerably the REBT concept of low frustration tolerance. Using baseline data from 100 adult cigarette smokers enrolled in a clinical trial of smoking cessation therapies, the present study evaluated the convergent validity of common questionnaire measures of experiential avoidance (Acceptance and Action Questionnaire; AAQ; Hayes et al. 2004, and Avoidance and Inflexibility Scale: AIS; Gifford et al. 2004) and behavioral measures of distress tolerance (computerized Mirror Tracing Persistence Task: MTPT-C: Strong et al. 2003; computerized Paced Auditory Serial Addition Task; PASAT-C; Lejuez et al. 2003). The distress tolerance measures correlated significantly (r = .29) with one another. However, the questionnaire measures of experiential avoidance did not correlate with each other, nor with the behavioral measures. Further research is needed on the validity of measuring experiential avoidance by self-report and of the overlap versus distinctiveness of seemingly similar constructs such as experiential avoidance, distress tolerance, and frustration tolerance. PMID:21448252

  2. Effect of acoustic similarity on short-term auditory memory in the monkey

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2013-01-01

    Recent evidence suggests that the monkey’s short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey’s performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample’s trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. PMID:23376550

  3. Effect of acoustic similarity on short-term auditory memory in the monkey.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2013-04-01

    Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Prediction of 3- to 5-Month Outcomes from Signs of Acute Bilirubin Toxicity in Newborn Infants.

    PubMed

    El Houchi, Salma Z; Iskander, Iman; Gamaleldin, Rasha; El Shenawy, Amira; Seoud, Iman; Abou-Youssef, Hazem; Wennberg, Richard P

    2017-04-01

    To evaluate the ability of the bilirubin-induced neurologic dysfunction (BIND) score to predict residual neurologic and auditory disability and to document the relationship of BIND score to total serum bilirubin (TSB) concentration. The BIND score (assessing mental status, muscle tone, and cry patterns) was obtained serially at 6- to 8-hour intervals in 220 near-term and full-term infants with severe hyperbilirubinemia. Neurologic and/or auditory outcomes at 3-5 months of age were correlated with the highest calculated BIND score. The BIND score was also correlated with TSB. Follow-up neurologic and auditory examinations were performed for 145/202 (72%) surviving infants. All infants with severe acute bilirubin encephalopathy (BIND scores 7-9) either died or suffered residual neurologic and auditory impairment. Of 24 cases with moderate encephalopathy (BIND 4-6), 15 (62.5%) resolved following aggressive intervention and were normal at follow-up. Three of 73 infants with mild encephalopathy (BIND scores 1-3) but severe jaundice (TSB ranging 33.5-38 mg/dL; 573-650 µmol/L) had residual neurologic and/or auditory impairment. A BIND score ≥4 had a specificity of 87.3% and a sensitivity of 97.4% for predicting poor neurologic outcomes (receiver operating characteristic analysis). BIND scores trended higher with severe hyperbilirubinemia (r 2  = 0.54, P < .005), but 5/39 (13%) infants with TSB ≥36.5 mg/dL (624 µmol/L) had BIND scores ≤3, and normal outcomes at 3-5 months. The BIND score can be used to evaluate the severity of acute bilirubin encephalopathy and predict residual neurologic and hearing dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Connections of cat auditory cortex: III. Corticocortical system.

    PubMed

    Lee, Charles C; Winer, Jeffery A

    2008-04-20

    The mammalian auditory cortex (AC) is essential for computing the source and decoding the information contained in sound. Knowledge of AC corticocortical connections is modest other than in the primary auditory regions, nor is there an anatomical framework in the cat for understanding the patterns of connections among the many auditory areas. To address this issue we investigated cat AC connectivity in 13 auditory regions. Retrograde tracers were injected in the same area or in different areas to reveal the areal and laminar sources of convergent input to each region. Architectonic borders were established in Nissl and SMI-32 immunostained material. We assessed the topography, convergence, and divergence of the labeling. Intrinsic input constituted >50% of the projection cells in each area, and extrinsic inputs were strongest from functionally related areas. Each area received significant convergent ipsilateral input from several fields (5 to 8; mean 6). These varied in their laminar origin and projection density. Major extrinsic projections were preferentially from areas of the same functional type (tonotopic to tonotopic, nontonotopic to nontonotopic, limbic-related to limbic-related, multisensory-to-multisensory), while smaller projections link areas belonging to different groups. Branched projections between areas were <2% with deposits of two tracers in an area or in different areas. All extrinsic projections to each area were highly and equally topographic and clustered. Intrinsic input arose from all layers except layer I, and extrinsic input had unique, area-specific infragranular and supragranular origins. The many areal and laminar sources of input may contribute to the complexity of physiological responses in AC and suggest that many projections of modest size converge within each area rather than a simpler area-to-area serial or hierarchical pattern of corticocortical connectivity. (c) 2008 Wiley-Liss, Inc.

  6. The Dyad-Adaptive Paced Auditory Serial Addition Test (DA-PASAT): Normative data and the effects of repeated testing, simulated malingering, and traumatic brain injury

    PubMed Central

    Wyma, John M.; Herron, Timothy J.; Yund, E. William; Reed, Bruce

    2018-01-01

    The Paced Auditory Serial Addition Test (PASAT) is widely used to evaluate processing speed and executive function in patients with multiple sclerosis, traumatic brain injury, and other neurological disorders. In the PASAT, subjects listen to sequences of digits while continuously reporting the sum of the last two digits presented. Four different stimulus onset asynchronies (SOAs) are usually tested, with difficulty increasing as SOAs are reduced. Ceiling effects are common at long SOAs, while the digit delivery rate often exceeds the subject’s processing capacity at short SOAs, causing some subjects to stop performing altogether. In addition, subjects may adopt an “alternate answer” strategy at short SOAs, which reduces the test’s demands on working-memory and processing speed. Consequently, studies have shown that the number of dyads (consecutive correct answers) is a more sensitive measure of PASAT performance than the overall number of correct sums. Here, we describe a 2.5-minute computerized test, the Dyad-Adaptive PASAT (DA-PASAT), where SOAs are adjusted with a 2:1 staircase, decreasing after each pair of correct responses and increasing after misses. Processing capacity is reflected in the minimum SOA (minSOA) achieved in 54 trials. Experiment 1 gathered normative data in two large populations: 1617 subjects in New Zealand ranging in age from 18 to 65 years, and 214 Californians ranging in age from 18 to 82 years. Minimum SOAs were influenced by age, education, and daily hours of computer-use. Minimum SOA z-scores, calculated after factoring out the influence of these factors, were virtually identical in the two control groups, as were response times (RTs) and dyad ratios (the proportion of hits occurring in dyads). Experiment 2 measured the test-retest reliability of the DA-PASAT in 44 young subjects who underwent three test sessions at weekly intervals. High intraclass correlation coefficients (ICCs) were found for minSOAs (0.87), response times (0.76), and dyad ratios (0.87). Performance improved across test sessions for all measures. Experiment 3 investigated the effects of simulated malingering in 50 subjects: 42% of simulated malingerers produced abnormal (p< 0.05) minSOA z-scores. Simulated malingerers with abnormal scores were distinguished with 87% sensitivity and 69% specificity from control subjects with abnormal scores by excessive differences between training performance and the actual test. Experiment 4 investigated patients with traumatic brain injury (TBI): patients with mild TBI performed within the normal range while patients with severe TBI showed deficits. The DA-PASAT reduces the time and stress of PASAT assessment while gathering sensitive measures of dyad processing that reveal the effects of aging, malingering, and traumatic brain injury on performance. PMID:29677192

  7. Disengagement from tasks as a function of cognitive load and depressive symptom severity.

    PubMed

    Bowie, Christopher R; Milanovic, Melissa; Tran, Tanya; Cassidy, Sarah

    2017-01-01

    Depression is associated with impairment in cognition and everyday functioning. Mechanisms of cognitive dysfunction in depression and the factors that influence strategic deployment of cognitive abilities in complex environments remain elusive. In this study we investigated whether depression symptom severity is associated with disengagement from a working memory task (Paced Auditory Serial Addition Task; PASAT) with parametric adjustment of task difficulty. 235 participants completed the Beck Depression Inventory, low and high cognitive load conditions of the PASAT, and quality of life. Cognitive disengagement was the sum of consecutive items in which participants did not proffer a response to the trial. Individuals with higher depression severity showed more cognitive disengagement on the high but not low cognitive load trial of the PASAT; they did not differ in number of correct responses. Increased disengagement from the low to high cognitive load was associated with more impaired quality of life. Depression severity is associated with increased disengagement from tasks as difficulty increases. These findings suggest the importance of measuring how cognitive skills are avoided in complex environments in addition to considering performance accuracy. Individuals with depressive symptoms might preferentially avoid cognitive tasks that are perceived as more complex in spite of intact ability.

  8. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    PubMed

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico-basal ganglia-thalamocortical circuits play a role in the modulation of the serial correlations of timing fluctuations exhibited in skilled musical performance.

  9. Irrelevant speech does not interfere with serial recall in early blind listeners.

    PubMed

    Kattner, Florian; Ellermeier, Wolfgang

    2014-01-01

    Phonological working memory is known be (a) inversely related to the duration of the items to be learned (word-length effect), and (b) impaired by the presence of irrelevant speech-like sounds (irrelevant-speech effect). As it is discussed controversially whether these memory disruptions are subject to attentional control, both effects were studied in sighted participants and in a sample of early blind individuals who are expected to be superior in selectively attending to auditory stimuli. Results show that, while performance depended on word length in both groups, irrelevant speech interfered with recall only in the sighted group, but not in blind participants. This suggests that blind listeners may be able to effectively prevent irrelevant sound from being encoded in the phonological store, presumably due to superior auditory processing. The occurrence of a word-length effect, however, implies that blind and sighted listeners are utilizing the same phonological rehearsal mechanism in order to maintain information in the phonological store.

  10. Role of serial order in the impact of talker variability on short-term memory: testing a perceptual organization-based account.

    PubMed

    Hughes, Robert W; Marsh, John E; Jones, Dylan M

    2011-11-01

    In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed.

  11. [Investigating phonological planning processes in speech production through a speech-error induction technique].

    PubMed

    Nakayama, Masataka; Saito, Satoru

    2015-08-01

    The present study investigated principles of phonological planning, a common serial ordering mechanism for speech production and phonological short-term memory. Nakayama and Saito (2014) have investigated the principles by using a speech-error induction technique, in which participants were exposed to an auditory distracIor word immediately before an utterance of a target word. They demonstrated within-word adjacent mora exchanges and serial position effects on error rates. These findings support, respectively, the temporal distance and the edge principles at a within-word level. As this previous study induced errors using word distractors created by exchanging adjacent morae in the target words, it is possible that the speech errors are expressions of lexical intrusions reflecting interactive activation of phonological and lexical/semantic representations. To eliminate this possibility, the present study used nonword distractors that had no lexical or semantic representations. This approach successfully replicated the error patterns identified in the abovementioned study, further confirming that the temporal distance and edge principles are organizing precepts in phonological planning.

  12. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings. PMID:23351174

  13. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  14. Strategy in short-term memory for pictures in childhood: a near-infrared spectroscopy study.

    PubMed

    Sanefuji, Masafumi; Takada, Yui; Kimura, Naoko; Torisu, Hiroyuki; Kira, Ryutaro; Ishizaki, Yoshito; Hara, Toshiro

    2011-02-01

    In Baddeley's working memory model, verbalizable visual material such as pictures are recoded into a phonological form and then rehearsed, while auditory material is rehearsed directly. The recoding and rehearsal processes are mediated by articulatory control process in the left ventrolateral prefrontal cortex (VLPFC). Developmentally, the phonological strategy for serially-presented visual material emerges around 7 years of age, while that for auditory material is consistently present by 4 years of age. However, the strategy change may actually be correlated with memory ability as this usually increases with age. To investigate the relationship between the strategy for pictures and memory ability, we monitored the left VLPFC activation in 5 to 11 year-old children during free recall of visually- or auditorily-presented familiar objects using event-related near-infrared spectroscopy. We hypothesized that the phonological strategy of rehearsal and recoding for visual material would provoke greater activation than only rehearsal for auditory material in the left VLPFC. Therefore, we presumed that the activation difference for visual material compared with auditory material in the left VLPFC may represent the tendency to use a phonological strategy. We found that the activation difference in the left VLPFC showed a significant positive correlation with memory ability but not with age, suggesting that children with high memory ability make more use of phonological strategy for pictures. The present study provides functional evidence that the strategy in short-term memory for pictures shifts gradually from non-phonological to phonological as memory ability increases in childhood. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Immediate list recall as a measure of short-term episodic memory: insights from the serial position effect and item response theory.

    PubMed

    Gavett, Brandon E; Horwitz, Julie E

    2012-03-01

    The serial position effect shows that two interrelated cognitive processes underlie immediate recall of a supraspan word list. The current study used item response theory (IRT) methods to determine whether the serial position effect poses a threat to the construct validity of immediate list recall as a measure of verbal episodic memory. Archival data were obtained from a national sample of 4,212 volunteers aged 28-84 in the Midlife Development in the United States study. Telephone assessment yielded item-level data for a single immediate recall trial of the Rey Auditory Verbal Learning Test (RAVLT). Two parameter logistic IRT procedures were used to estimate item parameters and the Q(1) statistic was used to evaluate item fit. A two-dimensional model better fit the data than a unidimensional model, supporting the notion that list recall is influenced by two underlying cognitive processes. IRT analyses revealed that 4 of the 15 RAVLT items (1, 12, 14, and 15) were misfit (p < .05). Item characteristic curves for items 14 and 15 decreased monotonically, implying an inverse relationship between the ability level and the probability of recall. Elimination of the four misfit items provided better fit to the data and met necessary IRT assumptions. Performance on a supraspan list learning test is influenced by multiple cognitive abilities; failure to account for the serial position of words decreases the construct validity of the test as a measure of episodic memory and may provide misleading results. IRT methods can ameliorate these problems and improve construct validity.

  16. Cognition, depression, fatigue, and quality of life in primary Sjögren's syndrome: correlations.

    PubMed

    Koçer, Belgin; Tezcan, Mehmet Engin; Batur, Hale Zeynep; Haznedaroğlu, Şeminur; Göker, Berna; İrkeç, Ceyla; Çetinkaya, Rümeysa

    2016-12-01

    The aim of the present study was to investigate the prevalence and pattern of cognitive dysfunction observed in primary Sjögren's syndrome (PSS) and to examine the relationships between cognitive abilities, depression, fatigue, and quality of life. Thirty-two subjects with PSS were compared with 19 healthy controls on comprehensive neuropsychological, depression, fatigue, health state, and daily-life activities tests. There was low performance in Clock Drawing, COWAT, Paced Auditory Serial Addition Test (PASAT), Colorless Word Reading (Stroop1) and Recognizing Colors (Stroop2) Patterns of STROOP test, SDLT, Auditory-Verbal Learning Test (AVLT), immediate and long-term verbal memory, Benton Judgment of Line Orientation Test (BJLOT), and in all the patterns of RCFT in PSS patients compared to the healthy control group ( p  < .05). It was observed an increased depression frequency and fatigue severity, impairment in health condition, and a decreased quality of life in PSS cases compared to the healthy controls ( p  < .05). All the depression, fatigue severity, and quality of life tests showed a significant positive correlation with each other ( p  < .05). A significant negative correlation between Clock Drawing and SF-36-BP ( p  = .031, r  = -.382) and SF-36-GH ( p  = .027, r  = -.392) was observed. Clock Drawing, PASAT, and AVLT are very useful tests to determine the subclinical and clinical cognitive dysfunction to evaluate attention, information processing speed, executive functions, and short-term and long-term verbal memory in PSS patients. Depression and fatigue may not affect the neuropsychological tests performance.

  17. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    PubMed

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  18. Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.

    PubMed

    Thorp, Elias B; Larson, Eric; Stepp, Cara E

    2014-01-01

    The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control.

  19. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  20. A comparison of serial order short-term memory effects across verbal and musical domains.

    PubMed

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-04-01

    Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.

  1. Bivariate autoregressive state-space modeling of psychophysiological time series data.

    PubMed

    Smith, Daniel M; Abtahi, Mohammadreza; Amiri, Amir Mohammad; Mankodiya, Kunal

    2016-08-01

    Heart rate (HR) and electrodermal activity (EDA) are often used as physiological measures of psychological arousal in various neuropsychology experiments. In this exploratory study, we analyze HR and EDA data collected from four participants, each with a history of suicidal tendencies, during a cognitive task known as the Paced Auditory Serial Addition Test (PASAT). A central aim of this investigation is to guide future research by assessing heterogeneity in the population of individuals with suicidal tendencies. Using a state-space modeling approach to time series analysis, we evaluate the effect of an exogenous input, i.e., the stimulus presentation rate which was increased systematically during the experimental task. Participants differed in several parameters characterizing the way in which psychological arousal was experienced during the task. Increasing the stimulus presentation rate was associated with an increase in EDA in participants 2 and 4. The effect on HR was positive for participant 2 and negative for participants 3 and 4. We discuss future directions in light of the heterogeneity in the population indicated by these findings.

  2. Ruminative and mindful self-focused attention in borderline personality disorder.

    PubMed

    Sauer, Shannon E; Baer, Ruth A

    2012-10-01

    The current study investigated the short-term effects of mindful and ruminative forms of self-focused attention on a behavioral measure of distress tolerance in individuals with borderline personality disorder (BPD) who had completed an angry mood induction. Participants included 40 individuals who met criteria for BPD and were currently involved in mental health treatment. Each completed an individual 1-hr session. Following an angry mood induction, each participant was randomly assigned to engage in ruminative or mindful self-focus for several minutes. All participants then completed the computerized Paced Auditory Serial Addition Test (PASAT-C), a behavioral measure of willingness to tolerate distress in the service of goal-directed behavior. The mindfulness group persisted significantly longer than the rumination group on the distress tolerance task and reported significantly lower levels of anger following the self-focus period. Results are consistent with previous studies in suggesting that distinct forms of self-focused attention have distinct outcomes and that, for people with BPD, mindful self-observation is an adaptive alternative to rumination when feeling angry. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  3. Leukoaraiosis Significantly Worsens Driving Performance of Ordinary Older Drivers

    PubMed Central

    Zheng, Rencheng; Fang, Fang; Ohori, Masanori; Nakamura, Hiroki; Kumagai, Yasuhiho; Okada, Hiroshi; Teramura, Kazuhiko; Nakayama, Satoshi; Irimajiri, Akinori; Taoka, Hiroshi; Okada, Satoshi

    2014-01-01

    Background Leukoaraiosis is defined as extracellular space caused mainly by atherosclerotic or demyelinated changes in the brain tissue and is commonly found in the brains of healthy older people. A significant association between leukoaraiosis and traffic crashes was reported in our previous study; however, the reason for this is still unclear. Method This paper presents a comprehensive evaluation of driving performance in ordinary older drivers with leukoaraiosis. First, the degree of leukoaraiosis was examined in 33 participants, who underwent an actual-vehicle driving examination on a standard driving course, and a driver skill rating was also collected while the driver carried out a paced auditory serial addition test, which is a calculating task given verbally. At the same time, a steering entropy method was used to estimate steering operation performance. Results The experimental results indicated that a normal older driver with leukoaraiosis was readily affected by external disturbances and made more operation errors and steered less smoothly than one without leukoaraiosis during driving; at the same time, their steering skill significantly deteriorated. Conclusions Leukoaraiosis worsens the driving performance of older drivers because of their increased vulnerability to distraction. PMID:25295736

  4. Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.

    PubMed

    Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C

    2008-04-01

    The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.

  5. Clinical experimental stress studies: methods and assessment.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-01-01

    Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Stress induction methods are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these methods are also important for the development of novel pharmacological agents for stress management. The well-described methods to induce stress in humans include the cold pressor test, Trier Social Stress Test, Montreal Imaging Stress Task, Maastricht Acute Stress Test, CO2 challenge test, Stroop test, Paced Auditory Serial Addition Task, noise stress, and Mannheim Multicomponent Stress Test. Stress assessment in humans is done by measuring biochemical markers such as cortisol, cortisol awakening response, dexamethasone suppression test, salivary α-amylase, plasma/urinary norepinephrine, norepinephrine spillover rate, and interleukins. Physiological and behavioral changes such as galvanic skin response, heart rate variability, pupil size, and muscle and/or skin sympathetic nerve activity (microneurography) and cardiovascular parameters such as heart rate, blood pressure, and self-reported anxiety are also monitored to assess stress response. This present review describes these commonly employed methods to induce stress in humans along with stress assessment methods.

  6. Distress tolerance: Associations with trauma and substance cue reactivity in low-income, inner-city adults with substance use disorders and posttraumatic stress.

    PubMed

    Vujanovic, Anka A; Wardle, Margaret C; Bakhshaie, Jafar; Smith, Lia J; Green, Charles E; Lane, Scott D; Schmitz, Joy M

    2018-05-01

    Cue reactivity has great potential to advance our understanding of posttraumatic stress disorder (PTSD), substance use disorder (SUD), and PTSD/SUD comorbidity. The present investigation examined distress tolerance (DT) with regard to trauma and substance cue reactivity. Participants included 58 low-income, inner-city adults (49.1% women; M age = 45.73, SD = 10.00) with substance dependence and at least 4 symptoms of PTSD. A script-driven cue reactivity paradigm was utilized. Four DT measures were administered, including the Distress Tolerance Scale (DTS), Mirror-Tracing Persistence Task (MTPT), Breath-Holding Task (BH), and Paced Auditory Serial Addition Task (PASAT). Lower DT, as indexed by MTPT duration, was significantly predictive of greater levels of self-reported substance cravings/urges in response to trauma cues, above and beyond covariates. Lower DTS scores predicted lower levels of self-reported control/safety ratings in response to substance cues. None of the DT indices was significantly predictive of heart rate variability. Clinical and research implications are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Are evoked potentials in patients with adult-onset pompe disease indicative of clinically relevant central nervous system involvement?

    PubMed

    Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt

    2014-08-01

    Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.

  8. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

    PubMed Central

    Gómez-Nieto, Ricardo; Horta-Júnior, José de Anchieta C.; Castellano, Orlando; Millian-Morell, Lymarie; Rubio, Maria E.; López, Dolores E.

    2014-01-01

    The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR. PMID:25120419

  9. Anxiety state affects information processing speed in patients with multiple sclerosis.

    PubMed

    Goretti, Benedetta; Viterbo, R G; Portaccio, E; Niccolai, C; Hakiki, B; Piscolla, E; Iaffaldano, P; Trojano, M; Amato, M P

    2014-04-01

    The aim of this study was to investigate the impact of anxiety on the cognitive performance of a clinical sample of relapsing-remitting (RR) MS patients. One hundred ninety patients (140 females) were included in the study and assessed through the beck depression inventory, the state-trait anxiety inventory and the Rao's brief repeatable battery which assesses cognitive domains most frequently impaired in MS. As for neuropsychological performance, a total of 76 (40%) subjects fulfilled our criterion for cognitive impairment. Tests most frequently failed by cognitive impairment (CI) patients were those assessing complex attention and information processing speed [Simbol Digit Modalities Test (SDMT), Paced Auditory Serial Auditory Test (PASAT) 3 and 2] and verbal memory. In the univariate analysis, state anxiety was related to failure on the SDMT (p = 0.042), and marginally, to failure on the PASAT-3 (p = 0.068), and to the presence of CI (p = 0.082). Moderate/severe depression was detected in 38 (20%) patients and fatigue in 109 (57%). Higher depression scores were related to impairment on the ST (OR = 1.05; 95% CI 1.01-1.10; p = 0.029).

  10. Reconstructing the Auditory Apparatus of Therapsids by Means of Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Laaß, Michael; Schillinger, Burkhard

    The internal cranial structure of mammalian ancestors, i.e. the therapsids or ;mammal-like reptiles;, is crucial for understanding the early mammalian evolution. In the past therapsid skulls were investigated by mechanical sectioning or serial grinding, which was a very time-consuming and destructive process and could only be applied to non-valuable or poorly preserved specimens. As most therapsid skulls are embedded in terrestrial iron-rich sediments of Late Permian or Triassic age, i.e. so called ;Red beds;, a successful investigation with X-Rays is often not possible. We successfully investigated therapsid skulls by means of neutron tomography at the facility ANTARES at FRM II in Munich using cold neutron radiation. This kind of radiation is able to penetrate iron-rich substances in the range between 5 and 15 cm and produces a good contrast between matrix and bones, which enables segmentation of internal cranial structures such as bones, cavities and canals of nerves and blood vessels. In particular, neutron tomography combined with methods of 3D modeling was used here for the investigation and reconstruction of the auditory apparatus of therapsids.

  11. A Model of Auditory-Cognitive Processing and Relevance to Clinical Applicability.

    PubMed

    Edwards, Brent

    2016-01-01

    Hearing loss and cognitive function interact in both a bottom-up and top-down relationship. Listening effort is tied to these interactions, and models have been developed to explain their relationship. The Ease of Language Understanding model in particular has gained considerable attention in its explanation of the effect of signal distortion on speech understanding. Signal distortion can also affect auditory scene analysis ability, however, resulting in a distorted auditory scene that can affect cognitive function, listening effort, and the allocation of cognitive resources. These effects are explained through an addition to the Ease of Language Understanding model. This model can be generalized to apply to all sounds, not only speech, representing the increased effort required for auditory environmental awareness and other nonspeech auditory tasks. While the authors have measures of speech understanding and cognitive load to quantify these interactions, they are lacking measures of the effect of hearing aid technology on auditory scene analysis ability and how effort and attention varies with the quality of an auditory scene. Additionally, the clinical relevance of hearing aid technology on cognitive function and the application of cognitive measures in hearing aid fittings will be limited until effectiveness is demonstrated in real-world situations.

  12. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  13. Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception

    PubMed Central

    Ghai, Shashank; Schmitz, Gerd; Hwang, Tong-Hun; Effenberg, Alfred O.

    2018-01-01

    The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings. PMID:29568259

  14. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    PubMed

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.

  15. The Serial Murderer's Motivations: An Interdisciplinary Review.

    ERIC Educational Resources Information Center

    DeHart, Dana D.; Mahoney, John M.

    1994-01-01

    Defines serial killer as individual who murders two or more victims over an extended period of time, ranging from days to years, with the crimes often being sexually motivated. Reviews existing motivational theories of serial murder and proposes additional explications from range of disciplines. Presents suggestions for future research and…

  16. Morphological Effects in Auditory Word Recognition: Evidence from Danish

    ERIC Educational Resources Information Center

    Balling, Laura Winther; Baayen, R. Harald

    2008-01-01

    In this study, we investigate the processing of morphologically complex words in Danish using auditory lexical decision. We document a second critical point in auditory comprehension in addition to the Uniqueness Point (UP), namely the point at which competing morphological continuation forms of the base cease to be compatible with the input,…

  17. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    PubMed

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  18. Phonological short-term store impairment after cerebellar lesion: a single case study.

    PubMed

    Chiricozzi, Francesca R; Clausi, Silvia; Molinari, Marco; Leggio, Maria G

    2008-01-01

    The cerebellum is a recent addition to the growing list of cerebral areas involved in the multifaceted structural system that sustains verbal working memory (vWM), but its contribution is still a matter of debate. Here, we present a patient with a selective deficit of vWM resulting from a bilateral cerebellar ischemic lesion. After this acute event, the patient had impaired immediate and delayed word-serial recall and auditory-verbal delayed recognition. The digit span, however, was completely preserved. To investigate the cerebellar contribution to vWM, four experiments addressing the function of different vWM phonological loop components were performed 18 months after the lesion, and results were compared with normative data or, when needed, with a small group of matched controls. In Experiment 1, digit span was assessed with different presentation and response modalities using lists of digits of varying lengths. In Experiment 2, the articulatory rehearsal system was analyzed by measurement of word length and articulatory suppression effects. Experiment 3 was devoted to analyzing the phonological short-term store (ph-STS) by the recency effect, the phonological similarity effect, short-term forgetting, and unattended speech. Data suggested a possible key role of the semantic component of the processed material, which was tested in Experiment 4, in which word and nonword-serial recall with or without interpolating activity were analyzed. The patient showed noticeably reduced scores in the tasks that primarily or exclusively engaged activity of the ph-STS, namely those of Experiment 3, and good performance in the tests that investigated the recirculation of verbal information. This pattern of results implicates the ph-STS as the cognitive locus of the patient's deficit. This report demonstrates a cerebellar role in encoding and/or strengthening the phonological traces in vWM.

  19. The nicotine metabolite, cotinine, attenuates glutamate (NMDA) antagonist-related effects on the performance of the five choice serial reaction time task (5C-SRTT) in rats

    PubMed Central

    Terry, Alvin V.; Buccafusco, Jerry J.; Schade, R. Foster; Vandenhuerk, Leah; Callahan, Patrick M.; Beck, Wayne D.; Hutchings, Elizabeth J.; Chapman, James M.; Li, Pei; Bartlett, Michael G.

    2012-01-01

    Cotinine, the most predominant metabolite of nicotine in mammalian species, has a pharmacological half-life that greatly exceeds its precursor. However, until recently, relatively few studies had been conducted to systematically characterize the behavioral pharmacology of cotinine. Our previous work indicated that cotinine improves prepulse inhibition of the auditory startle response in rats in pharmacological impairment models and that it improves working memory in non-human primates. Here we tested the hypothesis that cotinine improves sustained attention in rats and attenuates behavioral alterations induced by the glutamate (NMDA) antagonist MK-801. The effects of acute subcutaneous (dose range 0.03–10.0 mg/kg) and chronic oral administration (2.0 mg/kg/day in drinking water) of cotinine were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a five choice serial reaction time task (5C-SRTT). The results indicated only subtle effects of acute cotinine (administered alone) on performance of the 5C-SRTT (e.g., decreases in timeout responses). However, depending on dose, acute treatment with cotinine attenuated MK-801-related impairments in accuracy and elevations in timeout responses, and it increased the number of completed trials. Moreover, chronic cotinine attenuated MK-801-related impairments in accuracy and it reduced premature and timeout responses when the demands of the task were increased (i.e., by presenting VSDs or VITIs in addition to administering MK-801). These data suggest that cotinine may represent a prototype for compounds that have therapeutic potential for neuropsychiatric disorders (i.e., by improving sustained attention and decreasing impulsive and compulsive behaviors), especially those characterized by glutamate receptor alterations. PMID:22244928

  20. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  1. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.

  2. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    PubMed

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, P<0.0001) that was not specific to the treatment group (F2,48=0.43, P=0.65). No significant change of overall schizophrenia symptom severity measured by the Positive and Negative Syndrome Scale was observed. The lack of efficacy of tDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Disentangling conscious from unconscious cognitive processing with event-related EEG potentials.

    PubMed

    Rohaut, B; Naccache, L

    By looking for properties of consciousness, cognitive neuroscience studies have dramatically enlarged the scope of unconscious cognitive processing. This emerging knowledge inspired the development of new approaches allowing clinicians to probe and disentangle conscious from unconscious cognitive processes in non-communicating brain-injured patients both in terms of behaviour and brain activity. This information is extremely valuable in order to improve diagnosis and prognosis in such patients both at acute and chronic settings. Reciprocally, the growing observations coming from such patients suffering from disorders of consciousness provide valuable constraints to theoretical models of consciousness. In this review we chose to illustrate these recent developments by focusing on brain signals recorded with EEG at bedside in response to auditory stimuli. More precisely, we present the respective EEG markers of unconscious and conscious processing of two classes of auditory stimuli (sounds and words). We show that in both cases, conscious access to the corresponding representation (e.g.: auditory regularity and verbal semantic content) share a similar neural signature (P3b and P600/LPC) that can be distinguished from unconscious processing occurring during an earlier stage (MMN and N400). We propose a two-stage serial model of processing and discuss how unconscious and conscious signatures can be measured at bedside providing relevant informations for both diagnosis and prognosis of consciousness recovery. These two examples emphasize how fruitful can be the bidirectional approach exploring cognition in healthy subjects and in brain-damaged patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits From Regularities Are Reduced.

    PubMed

    Daikhin, Luba; Raviv, Ofri; Ahissar, Merav

    2017-02-01

    The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis), leading to the formation of less reliable sound predictions. Agus, Carrión-Castillo, Pressnitzer, and Ramus, (2014) reported seemingly contradictory evidence by showing similar performance by participants with and without dyslexia in a demanding auditory task that contained task-relevant regularities. To carefully assess the sensitivity of participants with dyslexia to regularities of this task, we replicated their study. Thirty participants with and 24 without dyslexia performed the replicated task. On each trial, a 1-s noise stimulus was presented. Participants had to decide whether the stimulus contained repetitions (was constructed from a 0.5-s noise segment repeated twice) or not. It is implicit in this structure that some of the stimuli with repetitions were themselves repeated across trials. We measured the ability to detect within-noise repetitions and the sensitivity to cross-trial repetitions of the same noise stimuli. We replicated the finding of similar mean performance. However, individuals with dyslexia were less sensitive to the cross-trial repetition of noise stimuli and tended to be more sensitive to repetitions in novel noise stimuli. These findings indicate that online auditory processing for individuals with dyslexia is adequate but their implicit retention and usage of sound regularities is indeed impaired.

  5. Evaluation of Techniques Used to Estimate Cortical Feature Maps

    PubMed Central

    Katta, Nalin; Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2011-01-01

    Functional properties of neurons are often distributed nonrandomly within a cortical area and form topographic maps that reveal insights into neuronal organization and interconnection. Some functional maps, such as in visual cortex, are fairly straightforward to discern with a variety of techniques, while other maps, such as in auditory cortex, have resisted easy characterization. In order to determine appropriate protocols for establishing accurate functional maps in auditory cortex, artificial topographic maps were probed under various conditions, and the accuracy of estimates formed from the actual maps was quantified. Under these conditions, low-complexity maps such as sound frequency can be estimated accurately with as few as 25 total samples (e.g., electrode penetrations or imaging pixels) if neural responses are averaged together. More samples are required to achieve the highest estimation accuracy for higher complexity maps, and averaging improves map estimate accuracy even more than increasing sampling density. Undersampling without averaging can result in misleading map estimates, while undersampling with averaging can lead to the false conclusion of no map when one actually exists. Uniform sample spacing only slightly improves map estimation over nonuniform sample spacing typical of serial electrode penetrations. Tessellation plots commonly used to visualize maps estimated using nonuniform sampling are always inferior to linearly interpolated estimates, although differences are slight at higher sampling densities. Within primary auditory cortex, then, multiunit sampling with at least 100 samples would likely result in reasonable feature map estimates for all but the highest complexity maps and the highest variability that might be expected. PMID:21889537

  6. Thalamic and cortical pathways supporting auditory processing

    PubMed Central

    Lee, Charles C.

    2012-01-01

    The neural processing of auditory information engages pathways that begin initially at the cochlea and that eventually reach forebrain structures. At these higher levels, the computations necessary for extracting auditory source and identity information rely on the neuroanatomical connections between the thalamus and cortex. Here, the general organization of these connections in the medial geniculate body (thalamus) and the auditory cortex is reviewed. In addition, we consider two models organizing the thalamocortical pathways of the non-tonotopic and multimodal auditory nuclei. Overall, the transfer of information to the cortex via the thalamocortical pathways is complemented by the numerous intracortical and corticocortical pathways. Although interrelated, the convergent interactions among thalamocortical, corticocortical, and commissural pathways enable the computations necessary for the emergence of higher auditory perception. PMID:22728130

  7. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  8. Statistical learning and auditory processing in children with music training: An ERP study.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Multiple Serial List Learning with Two Mnemonic Techniques.

    ERIC Educational Resources Information Center

    Marston, Paul T.; Young, Robert K.

    The classic mnemonic for learning serial lists, the method of loci, and its modern counterpart, the peg system, were compared by having subjects learn three 20-item serial lists. In addition to the type of mnemonic training, list imagery was either high (rated 6-7) or medium (rated 4-5), and instructions were either progressive elaboration (e.g.,…

  10. First branchial cleft sinus presenting with cholesteatoma and external auditory canal atresia.

    PubMed

    Yalçin, Sinasi; Karlidağ, Turgut; Kaygusuz, Irfan; Demirbağ, Erhan

    2003-07-01

    First branchial cleft abnormalities are rare. They may involve the external auditory canal and middle ear. We describe a 6-year-old girl with congenital external auditory canal atresia, microtia, and cholesteatoma of mastoid and middle ear in addition to the first branchial cleft abnormalities. Clinical features of the patient are briefly described and the embryological relationship between first branchial cleft anomaly and external auditory canal atresia is discussed. The surgical management of these lesions may be performed, both the complete excision of the sinus and reconstructive otologic surgery.

  11. Effects of Secondary Task Modality and Processing Code on Automation Trust and Utilization During Simulated Airline Luggage Screening

    NASA Technical Reports Server (NTRS)

    Phillips, Rachel; Madhavan, Poornima

    2010-01-01

    The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.

  12. Meal composition and shift work performance.

    PubMed

    Love, Heather L; Watters, Corilee A; Chang, Wei-Ching

    2005-01-01

    Research indicates that the ability to perform a task can be affected by the composition of the meal preceding the task. This study investigated the effect of shift workers' consumption of a medium-fat, medium-carbohydrate meal on alertness scores. Six subjects (four men, two women) aged 19 to 44 recorded food intake, sleep, and quality of sleep for two weeks, and measured their body temperature and performed cognitive tests during two night shifts at baseline and in test periods. The Stanford Sleepiness Scale (SSS) was used to quantify sleepiness, and a Paced Auditory Serial Addition Test (PASAT) was used to measure cognitive performance. In comparison with the score at baseline, when subjects had a low-fat, high-carbohydrate dietary intake (1,335 kcal/5,588 kJ, 56% carbohydrate, 28% fat), the 1.6-second PASAT score improved significantly (p=0.042) during night shifts when subjects consumed a test meal (987 kcal/4,131 kJ, 46% carbohydrate, 42% fat). No statistically significant difference in SSS was found between baseline and test periods. The reduced body temperature between 2400 hours and 0530 hours was similar for both baseline and test periods. Meal composition and size during night shifts may affect cognitive performance.

  13. The Buffer Effect of Therapy Dog Exposure on Stress Reactivity in Undergraduate Students

    PubMed Central

    Fiocco, Alexandra J.; Hunse, Anastasia M.

    2017-01-01

    Stress is an insidious health risk that is commonly reported among university students. While research suggests that dog exposure may facilitate recovery from a stress response, little is known about the buffer effect of dog exposure on the stress response to a future stressor. This study examined whether interaction with a therapy dog could reduce the strength of the physiological stress response when exposed to a subsequent stressor. Sixty-one university students were randomly assigned to either a therapy dog (TD, n = 31) or a no-dog control (C, n = 30) group. The stress response was measured by electrodermal activity (EDA) in response to the Paced Auditory Serial Addition Test (PASAT). Participants also completed questionnaires that assessed pet attitude, general stress levels, and affect. Analyses of covariance (ANCOVAs) showed that increase in EDA was significantly more pronounced in the C group than in the TD group (p < 0.01). Pet attitudes did not modulate the buffer effect of therapy dog exposure. Results suggest that therapy dog exposure may buffer the stress response in university students, which has implications for the promotion of a viable stress management program on university campuses. PMID:28665340

  14. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  15. Allocation of Attentional Resources toward a Secondary Cognitive Task Leads to Compromised Ankle Proprioceptive Performance in Healthy Young Adults

    PubMed Central

    Yasuda, Kazuhiro; Iimura, Naoyuki; Iwata, Hiroyasu

    2014-01-01

    The objective of the present study was to determine whether increased attentional demands influence the assessment of ankle joint proprioceptive ability in young adults. We used a dual-task condition, in which participants performed an ankle ipsilateral position-matching task with and without a secondary serial auditory subtraction task during target angle encoding. Two experiments were performed with two different cohorts: one in which the auditory subtraction task was easy (experiment 1a) and one in which it was difficult (experiment 1b). The results showed that, compared with the single-task condition, participants had higher absolute error under dual-task conditions in experiment 1b. The reduction in position-matching accuracy with an attentionally demanding cognitive task suggests that allocation of attentional resources toward a difficult second task can lead to compromised ankle proprioceptive performance. Therefore, these findings indicate that the difficulty level of the cognitive task might be the possible critical factor that decreased accuracy of position-matching task. We conclude that increased attentional demand with difficult cognitive task does influence the assessment of ankle joint proprioceptive ability in young adults when measured using an ankle ipsilateral position-matching task. PMID:24523966

  16. The word-length effect and disyllabic words.

    PubMed

    Lovatt, P; Avons, S E; Masterson, J

    2000-02-01

    Three experiments compared immediate serial recall of disyllabic words that differed on spoken duration. Two sets of long- and short-duration words were selected, in each case maximizing duration differences but matching for frequency, familiarity, phonological similarity, and number of phonemes, and controlling for semantic associations. Serial recall measures were obtained using auditory and visual presentation and spoken and picture-pointing recall. In Experiments 1a and 1b, using the first set of items, long words were better recalled than short words. In Experiments 2a and 2b, using the second set of items, no difference was found between long and short disyllabic words. Experiment 3 confirmed the large advantage for short-duration words in the word set originally selected by Baddeley, Thomson, and Buchanan (1975). These findings suggest that there is no reliable advantage for short-duration disyllables in span tasks, and that previous accounts of a word-length effect in disyllables are based on accidental differences between list items. The failure to find an effect of word duration casts doubt on theories that propose that the capacity of memory span is determined by the duration of list items or the decay rate of phonological information in short-term memory.

  17. Acquired Auditory Verbal Agnosia and Seizures in Childhood

    ERIC Educational Resources Information Center

    Cooper, Judith A.; Ferry, Peggy C.

    1978-01-01

    The paper presents a review of cases of children with acquired aphasia with convulsive disorder and discusses clinical features of three additional children in whom the specific syndrome of auditory verbal agnosia was identified. (Author/CL)

  18. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders.

    PubMed

    Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile

    2014-03-01

    This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  19. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    PubMed

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  1. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  2. The effect of aborting ongoing movements on end point position estimation.

    PubMed

    Itaguchi, Yoshihiro; Fukuzawa, Kazuyoshi

    2013-11-01

    The present study investigated the impact of motor commands to abort ongoing movement on position estimation. Participants carried out visually guided reaching movements on a horizontal plane with their eyes open. By setting a mirror above their arm, however, they could not see the arm, only the start and target points. They estimated the position of their fingertip based solely on proprioception after their reaching movement was stopped before reaching the target. The participants stopped reaching as soon as they heard an auditory cue or were mechanically prevented from moving any further by an obstacle in their path. These reaching movements were carried out at two different speeds (fast or slow). It was assumed that additional motor commands to abort ongoing movement were required and that their magnitude was high, low, and zero, in the auditory-fast condition, the auditory-slow condition, and both the obstacle conditions, respectively. There were two main results. (1) When the participants voluntarily stopped a fast movement in response to the auditory cue (the auditory-fast condition), they showed more underestimates than in the other three conditions. This underestimate effect was positively related to movement velocity. (2) An inverted-U-shaped bias pattern as a function of movement distance was observed consistently, except in the auditory-fast condition. These findings indicate that voluntarily stopping fast ongoing movement created a negative bias in the position estimate, supporting the idea that additional motor commands or efforts to abort planned movement are involved with the position estimation system. In addition, spatially probabilistic inference and signal-dependent noise may explain the underestimate effect of aborting ongoing movement.

  3. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    PubMed

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  4. Information flow in the auditory cortical network

    PubMed Central

    Hackett, Troy A.

    2011-01-01

    Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421

  5. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.

    PubMed

    Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian

    2018-04-18

    Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Monkeys have a limited form of short-term memory in audition

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2012-01-01

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to “overwriting” by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ∼1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample’s trace, but to retroactive interference from the intervening nonmatch stimulus. This “overwriting” effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory. PMID:22778411

  7. Monkeys have a limited form of short-term memory in audition.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2012-07-24

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to "overwriting" by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ~1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample's trace, but to retroactive interference from the intervening nonmatch stimulus. This "overwriting" effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory.

  8. Neurobehavioral effects among inhabitants around mobile phone base stations.

    PubMed

    Abdel-Rassoul, G; El-Fateh, O Abou; Salem, M Abou; Michael, A; Farahat, F; El-Batanouny, M; Salem, E

    2007-03-01

    There is a general concern on the possible hazardous health effects of exposure to radiofrequency electromagnetic radiations (RFR) emitted from mobile phone base station antennas on the human nervous system. To identify the possible neurobehavioral deficits among inhabitants living nearby mobile phone base stations. A cross-sectional study was conducted on (85) inhabitants living nearby the first mobile phone station antenna in Menoufiya governorate, Egypt, 37 are living in a building under the station antenna while 48 opposite the station. A control group (80) participants were matched with the exposed for age, sex, occupation and educational level. All participants completed a structured questionnaire containing: personal, educational and medical histories; general and neurological examinations; neurobehavioral test battery (NBTB) [involving tests for visuomotor speed, problem solving, attention and memory]; in addition to Eysenck personality questionnaire (EPQ). The prevalence of neuropsychiatric complaints as headache (23.5%), memory changes (28.2%), dizziness (18.8%), tremors (9.4%), depressive symptoms (21.7%), and sleep disturbance (23.5%) were significantly higher among exposed inhabitants than controls: (10%), (5%), (5%), (0%), (8.8%) and (10%), respectively (P<0.05). The NBTB indicated that the exposed inhabitants exhibited a significantly lower performance than controls in one of the tests of attention and short-term auditory memory [Paced Auditory Serial Addition Test (PASAT)]. Also, the inhabitants opposite the station exhibited a lower performance in the problem solving test (block design) than those under the station. All inhabitants exhibited a better performance in the two tests of visuomotor speed (Digit symbol and Trailmaking B) and one test of attention (Trailmaking A) than controls. The last available measures of RFR emitted from the first mobile phone base station antennas in Menoufiya governorate were less than the allowable standard level. Inhabitants living nearby mobile phone base stations are at risk for developing neuropsychiatric problems and some changes in the performance of neurobehavioral functions either by facilitation or inhibition. So, revision of standard guidelines for public exposure to RER from mobile phone base station antennas and using of NBTB for regular assessment and early detection of biological effects among inhabitants around the stations are recommended.

  9. Estradiol-dependent modulation of auditory processing and selectivity in songbirds

    PubMed Central

    Maney, Donna; Pinaud, Raphael

    2011-01-01

    The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency. PMID:21146556

  10. Subcortical functional reorganization due to early blindness

    PubMed Central

    Jiang, Fang; Fine, Ione; Watkins, Kate E.; Bridge, Holly

    2015-01-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a “visual” subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. PMID:25673746

  11. Subcortical functional reorganization due to early blindness.

    PubMed

    Coullon, Gaelle S L; Jiang, Fang; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-04-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. Copyright © 2015 the American Physiological Society.

  12. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  13. Left ventral occipitotemporal activation during orthographic and semantic processing of auditory words.

    PubMed

    Ludersdorfer, Philipp; Wimmer, Heinz; Richlan, Fabio; Schurz, Matthias; Hutzler, Florian; Kronbichler, Martin

    2016-01-01

    The present fMRI study investigated the hypothesis that activation of the left ventral occipitotemporal cortex (vOT) in response to auditory words can be attributed to lexical orthographic rather than lexico-semantic processing. To this end, we presented auditory words in both an orthographic ("three or four letter word?") and a semantic ("living or nonliving?") task. In addition, a auditory control condition presented tones in a pitch evaluation task. The results showed that the left vOT exhibited higher activation for orthographic relative to semantic processing of auditory words with a peak in the posterior part of vOT. Comparisons to the auditory control condition revealed that orthographic processing of auditory words elicited activation in a large vOT cluster. In contrast, activation for semantic processing was only weak and restricted to the middle part vOT. We interpret our findings as speaking for orthographic processing in left vOT. In particular, we suggest that activation in left middle vOT can be attributed to accessing orthographic whole-word representations. While activation of such representations was experimentally ascertained in the orthographic task, it might have also occurred automatically in the semantic task. Activation in the more posterior vOT region, on the other hand, may reflect the generation of explicit images of word-specific letter sequences required by the orthographic but not the semantic task. In addition, based on cross-modal suppression, the finding of marked deactivations in response to the auditory tones is taken to reflect the visual nature of representations and processes in left vOT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Progressive multiple sclerosis, cognitive function, and quality of life.

    PubMed

    Højsgaard Chow, Helene; Schreiber, Karen; Magyari, Melinda; Ammitzbøll, Cecilie; Börnsen, Lars; Romme Christensen, Jeppe; Ratzer, Rikke; Soelberg Sørensen, Per; Sellebjerg, Finn

    2018-02-01

    Patients with progressive multiple sclerosis (MS) often have cognitive impairment in addition to physical impairment. The burden of cognitive and physical impairment progresses over time, and may be major determinants of quality of life. The aim of this study was to assess to which degree quality of life correlates with physical and cognitive function in progressive MS. This is a retrospective study of 52 patients with primary progressive ( N  = 18) and secondary progressive MS ( N  = 34). Physical disability was assessed using the Expanded Disability Status Scale, Timed 25 Foot Walk (T25FW) test and 9-Hole Peg Test (9HPT). Cognitive function was assessed using Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test, and Trail Making Test B (TRAIL-B). In addition, quality of life was assessed by the Short Form 36 (SF-36) questionnaire. Only measures of cognitive function correlated with the overall SF-36 quality of life score and the Mental Component Summary score from the SF-36. The only physical measure that correlated with a measure of quality of life was T25FW test, which correlated with the Physical Component Summary from the SF-36. We found no other significant correlations between the measures of cognitive function and the overall physical measures but interestingly, we found a possible relationship between the 9HPT score for the nondominant hand and the SDMT and TRAIL-B. Our findings support inclusion of measures of cognitive function in the assessment of patients with progressive MS as these correlated closer with quality of life than measures of physical impairment.

  15. Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability

    PubMed Central

    Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan

    2015-01-01

    An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799

  16. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    PubMed

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  17. A Brain System for Auditory Working Memory.

    PubMed

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  18. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    PubMed

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  19. Opposite brain laterality in analogous auditory and visual tests.

    PubMed

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  20. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  1. A P300 event related potential technique for assessment of sexually oriented interest.

    PubMed

    Vardi, Yoram; Volos, Michal; Sprecher, Elliot; Granovsky, Yelena; Gruenwald, Ilan; Yarnitsky, David

    2006-12-01

    Despite all of the modern, sophisticated tests that exist for diagnosing and assessing male and female sexual disorders, to our knowledge there is no objective psychophysiological test to evaluate sexual arousal and interest. We provide preliminary data showing a decrease in auditory P300 wave amplitude during exposure to sexually explicit video clips and a significant correlation between the auditory P300 amplitude decrease and self-reported scores of sexual arousal and interest in the clips. A total of 30 healthy subjects were exposed to several blocks of auditory stimuli administered using an oddball paradigm. Baseline auditory P300 amplitudes were obtained and auditory stimuli were then delivered while viewing visual clips with 3 types of content, including sport, scenery and sex. Auditory P300 amplitude significantly decreased during viewing clips of all contents. Viewing sexual content clips caused a maximal decrease in P300 amplitude (p <0.0001). In addition, a high correlation was found between the amplitude decrease and scores on the sexual arousal questionnaire regarding the viewed clips (r = 0.61, p <0.001). In addition, the P300 amplitude decrease was significantly related to the sexual interest score (r = 0.37, p = 0.042) but not to interest in clips of nonsexual content. The change in auditory P300 amplitude during exposure to visual stimuli with sexual context seems to be an objective measure of subject sexual interest. This method might be applied to assess therapeutic intervention and as a diagnostic tool for assessing disorders of impaired libido or psychogenic sexual dysfunction.

  2. A Snapshot of Serial Rape: An Investigation of Criminal Sophistication and Use of Force on Victim Injury and Severity of the Assault.

    PubMed

    de Heer, Brooke

    2016-02-01

    Prior research on rapes reported to law enforcement has identified criminal sophistication and the use of force against the victim as possible unique identifiers to serial rape versus one-time rape. This study sought to contribute to the current literature on reported serial rape by investigating how the level of criminal sophistication of the rapist and use of force used were associated with two important outcomes of rape: victim injury and overall severity of the assault. In addition, it was evaluated whether rapist and victim ethnicity affected these relationships. A nation-wide sample of serial rape cases reported to law enforcement collected by the Federal Bureau of Investigation (FBI) was analyzed (108 rapists, 543 victims). Results indicated that serial rapists typically used a limited amount of force against the victim and displayed a high degree of criminal sophistication. In addition, the more criminally sophisticated the perpetrator was, the more sexual acts he performed on his victim. Finally, rapes between a White rapist and White victim were found to exhibit higher levels of criminal sophistication and were more severe in terms of number and types of sexual acts committed. These findings provide a more in-depth understanding of serial rape that can inform both academics and practitioners in the field about contributors to victim injury and severity of the assault. © The Author(s) 2014.

  3. Cortical contributions to the auditory frequency-following response revealed by MEG

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  4. Auditory beat stimulation and its effects on cognition and mood States.

    PubMed

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS.

  5. The utility of visual analogs of central auditory tests in the differential diagnosis of (central) auditory processing disorder and attention deficit hyperactivity disorder.

    PubMed

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2011-09-01

    Cacace and McFarland (2005) have suggested that the addition of cross-modal analogs will improve the diagnostic specificity of (C)APD (central auditory processing disorder) by ensuring that deficits observed are due to the auditory nature of the stimulus and not to supra-modal or other confounds. Others (e.g., Musiek et al, 2005) have expressed concern about the use of such analogs in diagnosing (C)APD given the uncertainty as to the degree to which cross-modal measures truly are analogous and emphasize the nonmodularity of the CANs (central auditory nervous system) and its function, which precludes modality specificity of (C)APD. To date, no studies have examined the clinical utility of cross-modal (e.g., visual) analogs of central auditory tests in the differential diagnosis of (C)APD. This study investigated performance of children diagnosed with (C)APD, children diagnosed with ADHD (attention deficit hyperactivity disorder), and typically developing children on three diagnostic tests of central auditory function and their corresponding visual analogs. The study sought to determine whether deficits observed in the (C)APD group were restricted to the auditory modality and the degree to which the addition of visual analogs aids in the ability to differentiate among groups. An experimental repeated measures design was employed. Participants consisted of three groups of right-handed children (normal control, n=10; ADHD, n=10; (C)APD, n=7) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of disorders unrelated to their primary diagnosis. Participants in Groups 2 and 3 met current diagnostic criteria for ADHD and (C)APD. Visual analogs of three tests in common clinical use for the diagnosis of (C)APD were used (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; and Duration Patterns [Pinheiro and Musiek, 1985]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANCOVAs (analyses of covariance) were used to examine effects of group, modality, and laterality (Dichotic/Dichoptic Digits) or response condition (auditory and visual patterning). In addition, planned univariate ANCOVAs were used to examine effects of group on intratest comparison measures (REA, HLD [Humming-Labeling Differential]). Children with both ADHD and (C)APD performed more poorly overall than typically developing children on all tasks, with the (C)APD group exhibiting the poorest performance on the auditory and visual patterns tests but the ADHD and (C)APD group performing similarly on the Dichotic/Dichoptic Digits task. However, each of the auditory and visual intratest comparison measures, when taken individually, was able to distinguish the (C)APD group from both the normal control and ADHD groups, whose performance did not differ from one another. Results underscore the importance of intratest comparison measures in the interpretation of central auditory tests (American Speech-Language-Hearing Association [ASHA], 2005 ; American Academy of Audiology [AAA], 2010). Results also support the "non-modular" view of (C)APD in which cross-modal deficits would be predicted based on shared neuroanatomical substrates. Finally, this study demonstrates that auditory tests alone are sufficient to distinguish (C)APD from supra-modal disorders, with cross-modal analogs adding little if anything to the differential diagnostic process. American Academy of Audiology.

  6. Audiological findings in Usher syndrome types IIa and II (non-IIa).

    PubMed

    Sadeghi, Mehdi; Cohn, Edward S; Kelly, William J; Kimberling, William J; Tranebjoerg, Lisbeth; Möller, Claes

    2004-03-01

    The aim was to define the natural history of hearing loss in Usher syndrome type IIa compared to non-IIa. People with Usher syndrome type II show moderate-to-severe hearing loss, normal balance and retinitis pigmentosa. Several genes cause Usher syndrome type II. Our subjects formed two genetic groups: (1) subjects with Usher syndrome type IIa with a mutation and/or linkage to the Usher IIa gene; (2) subjects with the Usher II phenotype with no mutation and/or linkage to the Usher IIa gene. Four hundred and two audiograms of 80 Usher IIa subjects were compared with 435 audiograms of 87 non-IIa subjects. Serial audiograms with intervals of > or = 5 years were examined for progression in 109 individuals Those with Usher syndrome type IIa had significantly worse hearing thresholds than those with non-IIa Usher syndrome after the second decade. The hearing loss in Usher syndrome type IIa was found to be more progressive, and the progression started earlier than in non-IIa Usher syndrome. This suggests an auditory phenotype for Usher syndrome type IIa that is different from that of other types of Usher syndrome II. Thus, this is to our knowledge one of the first studies showing a genotype-phenotype auditory correlation.

  7. An investigation of experiential avoidance, emotion dysregulation, and distress tolerance in young adult outpatients with borderline personality disorder symptoms.

    PubMed

    Iverson, Katherine M; Follette, Victoria M; Pistorello, Jacqueline; Fruzzetti, Alan E

    2012-10-01

    In this study we investigated 3 domains of emotional functioning--emotion dysregulation, distress tolerance, and experiential avoidance--in young adult outpatients with borderline personality disorder (BPD) symptoms. Participants were 40 young adult outpatients at a university counseling center who reported current suicidal ideation and met diagnostic criteria for BPD or experienced subthreshold BPD symptoms (i.e., met diagnostic criteria for 3 or 4 symptoms). Participants completed 3 self-report measures of emotional functioning-experiential avoidance (Acceptance and Action Questionnaire-2; Bond et al., 2011; Hayes et al., 2004), emotion dysregulation (Difficulties in Emotion Regulation Scale; Gratz & Roemer, 2004), and distress tolerance (Distress Tolerance Scale; Simons & Gaher, 2005)-and a behavioral measure of distress tolerance (Paced Auditory Serial Addition Task-Computerized; Lejuez, Kahler, & Brown, 2003), in addition to self-report measures of depression and BPD symptom severity. Partial correlations demonstrated that both emotion dysregulation and experiential avoidance were significantly associated with BPD symptom severity after accounting for depression. However, neither the self-report nor behavioral measure of distress tolerance were related to BPD symptom severity. A regression analysis with emotion dysregulation and experiential avoidance as independent variables revealed that only experiential avoidance was significantly associated with BPD symptom severity after controlling for depression symptoms. The current findings suggest that experiential avoidance may be a central process in BPD symptom severity. Future research directions are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  8. Options for Auditory Training for Adults with Hearing Loss.

    PubMed

    Olson, Anne D

    2015-11-01

    Hearing aid devices alone do not adequately compensate for sensory losses despite significant technological advances in digital technology. Overall use rates of amplification among adults with hearing loss remain low, and overall satisfaction and performance in noise can be improved. Although improved technology may partially address some listening problems, auditory training may be another alternative to improve speech recognition in noise and satisfaction with devices. The literature underlying auditory plasticity following placement of sensory devices suggests that additional auditory training may be needed for reorganization of the brain to occur. Furthermore, training may be required to acquire optimal performance from devices. Several auditory training programs that are readily accessible for adults with hearing loss, hearing aids, or cochlear implants are described. Programs that can be accessed via Web-based formats and smartphone technology are reviewed. A summary table is provided for easy access to programs with descriptions of features that allow hearing health care providers to assist clients in selecting the most appropriate auditory training program to fit their needs.

  9. Phonological working memory in German children with poor reading and spelling abilities.

    PubMed

    Steinbrink, Claudia; Klatte, Maria

    2008-11-01

    Deficits in verbal short-term memory have been identified as one factor underlying reading and spelling disorders. However, the nature of this deficit is still unclear. It has been proposed that poor readers make less use of phonological coding, especially if the task can be solved through visual strategies. In the framework of Baddeley's phonological loop model, this study examined serial recall performance in German second-grade children with poor vs good reading and spelling abilities. Children were presented with four-item lists of common nouns for immediate serial recall. Word length and phonological similarity as well as presentation modality (visual vs auditory) and type of recall (visual vs verbal) were varied as within-subject factors in a mixed design. Word length and phonological similarity effects did not differ between groups, thus indicating equal use of phonological coding and rehearsal in poor and good readers. However, in all conditions, except the one that combined visual presentation and visual recall, overall performance was significantly lower in poor readers. The results suggest that the poor readers' difficulties do not arise from an avoidance of the phonological loop, but from its inefficient use. An alternative account referring to unstable phonological representations in long-term memory is discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Spectra-temporal patterns underlying mental addition: an ERP and ERD/ERS study.

    PubMed

    Ku, Yixuan; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2010-03-12

    Functional neuroimaging data have shown that mental calculation involves fronto-parietal areas that are composed of different subsystems shared with other cognitive functions such as working memory and language. Event-related potential (ERP) analysis has also indicated sequential information changes during the calculation process. However, little is known about the dynamic properties of oscillatory networks in this process. In the present study, we applied both ERP and event-related (de-)synchronization (ERS/ERD) analyses to EEG data recorded from normal human subjects performing tasks for sequential visual/auditory mental addition. Results in the study indicate that the late positive components (LPCs) can be decomposed into two separate parts. The earlier element LPC1 (around 360ms) reflects the computing attribute and is more prominent in calculation tasks. The later element LPC2 (around 590ms) indicates an effect of number size and appears larger only in a more complex 2-digit addition task. The theta ERS and alpha ERD show modality-independent frontal and parietal differential patterns between the mental addition and control groups, and discrepancies are noted in the beta ERD between the 2-digit and 1-digit mental addition groups. The 2-digit addition (both visual and auditory) results in similar beta ERD patterns to the auditory control, which may indicate a reliance on auditory-related resources in mental arithmetic, especially with increasing task difficulty. These results coincide with the theory of simple calculation relying on the visuospatial process and complex calculation depending on the phonological process. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Investigation of the neurological correlates of information reception

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Animals trained to respond to a given pattern of electrical stimuli applied to pathways or centers of the auditory nervous system respond also to certain patterns of acoustic stimuli without additional training. Likewise, only certain electrical stimuli elicit responses after training to a given acoustic signal. In most instances, if a response has been learned to a given electrical stimulus applied to one center of the auditory nervous system, the same stimulus applied to another auditory center at either a higher or lower level will also elicit the response. This kind of transfer of response does not take place when a stimulus is applied through electrodes implanted in neural tissue outside of the auditory system.

  12. The effects of early auditory-based intervention on adult bilateral cochlear implant outcomes.

    PubMed

    Lim, Stacey R

    2017-09-01

    The goal of this exploratory study was to determine the types of improvement that sequentially implanted auditory-verbal and auditory-oral adults with prelingual and childhood hearing loss received in bilateral listening conditions, compared to their best unilateral listening condition. Five auditory-verbal adults and five auditory-oral adults were recruited for this study. Participants were seated in the center of a 6-loudspeaker array. BKB-SIN sentences were presented from 0° azimuth, while multi-talker babble was presented from various loudspeakers. BKB-SIN scores in bilateral and the best unilateral listening conditions were compared to determine the amount of improvement gained. As a group, the participants had improved speech understanding scores in the bilateral listening condition. Although not statistically significant, the auditory-verbal group tended to have greater speech understanding with greater levels of competing background noise, compared to the auditory-oral participants. Bilateral cochlear implantation provides individuals with prelingual and childhood hearing loss with improved speech understanding in noise. A higher emphasis on auditory development during the critical language development years may add to increased speech understanding in adulthood. However, other demographic factors such as age or device characteristics must also be considered. Although both auditory-verbal and auditory-oral approaches emphasize spoken language development, they emphasize auditory development to different degrees. This may affect cochlear implant (CI) outcomes. Further consideration should be made in future auditory research to determine whether these differences contribute to performance outcomes. Additional investigation with a larger participant pool, controlled for effects of age and CI devices and processing strategies, would be necessary to determine whether language learning approaches are associated with different levels of speech understanding performance.

  13. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.

  14. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    PubMed

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  15. A nonstationary Poisson point process describes the sequence of action potentials over long time scales in lateral-superior-olive auditory neurons.

    PubMed

    Turcott, R G; Lowen, S B; Li, E; Johnson, D H; Tsuchitani, C; Teich, M C

    1994-01-01

    The behavior of lateral-superior-olive (LSO) auditory neurons over large time scales was investigated. Of particular interest was the determination as to whether LSO neurons exhibit the same type of fractal behavior as that observed in primary VIII-nerve auditory neurons. It has been suggested that this fractal behavior, apparent on long time scales, may play a role in optimally coding natural sounds. We found that a nonfractal model, the nonstationary dead-time-modified Poisson point process (DTMP), describes the LSO firing patterns well for time scales greater than a few tens of milliseconds, a region where the specific details of refractoriness are unimportant. The rate is given by the sum of two decaying exponential functions. The process is completely specified by the initial values and time constants of the two exponentials and by the dead-time relation. Specific measures of the firing patterns investigated were the interspike-interval (ISI) histogram, the Fano-factor time curve (FFC), and the serial count correlation coefficient (SCC) with the number of action potentials in successive counting times serving as the random variable. For all the data sets we examined, the latter portion of the recording was well approximated by a single exponential rate function since the initial exponential portion rapidly decreases to a negligible value. Analytical expressions available for the statistics of a DTMP with a single exponential rate function can therefore be used for this portion of the data. Good agreement was obtained among the analytical results, the computer simulation, and the experimental data on time scales where the details of refractoriness are insignificant.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Deficits in auditory processing contribute to impairments in vocal affect recognition in autism spectrum disorders: A MEG study.

    PubMed

    Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David

    2015-11-01

    The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).

  17. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    PubMed Central

    Brown, LaShardai N.; Xing, Yazhi; Noble, Kenyaria V.; Barth, Jeremy L.; Panganiban, Clarisse H.; Smythe, Nancy M.; Bridges, Mary C.; Zhu, Juhong; Lang, Hainan

    2017-01-01

    Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation. PMID:29375297

  18. Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.

    PubMed

    Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing

    2016-01-01

    Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.

  19. The Effects of Auditory Tempo Changes on Rates of Stereotypic Behavior in Handicapped Children.

    ERIC Educational Resources Information Center

    Christopher, R.; Lewis, B.

    1984-01-01

    Rates of stereotypic behaviors in six severely/profoundly retarded children (eight to 15 years old) were observed during varying presentations of auditory beats produced by a metronome. Visual and statistical analysis of research results suggested a significant reaction to stimulus presentation. However, additional data following…

  20. Auditory and Motor Rhythm Awareness in Adults with Dyslexia

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Fryer, Ben; Maltby, James; Goswami, Usha

    2006-01-01

    Children with developmental dyslexia appear to be insensitive to basic auditory cues to speech rhythm and stress. For example, they experience difficulties in processing duration and amplitude envelope onset cues. Here we explored the sensitivity of adults with developmental dyslexia to the same cues. In addition, relations with expressive and…

  1. Kansas Center for Research in Early Childhood Education Annual Report, FY 1973.

    ERIC Educational Resources Information Center

    Horowitz, Frances D.

    This monograph is a collection of papers describing a series of loosely related studies of visual attention, auditory stimulation, and language discrimination in young infants. Titles include: (1) Infant Attention and Discrimination: Methodological and Substantive Issues; (2) The Addition of Auditory Stimulation (Music) and an Interspersed…

  2. Impaired practice effects following mild traumatic brain injury: an event-related potential investigation.

    PubMed

    Rogers, Jeffrey M; Fox, Allison M; Donnelly, James

    2015-01-01

    The negative effects of mild traumatic brain injury (mTBI) on attention are well established. Effects of practice on neuropsychological test performance have also been long recognized and more recently linked to electrophysiological indices of information processing. The current study examined the behavioural and electrophysiological impact of mTBI on consistent practice of a neuropsychological test of attention. Prospective cohort study. Adult participants with a history of mild TBI (n = 10; time since injury > 2 months, mean = 15.2 months) and healthy matched controls (n = 10) completed the Paced Auditory Serial Addition Task (PASAT) at four separate sessions. Event-related potentials (ERPs) were simultaneously recorded. Accuracy of PASAT performance in both groups improved significantly with practice. In healthy controls behavioural improvements were associated with significant attenuation of a frontally distributed ERP component marker of executive attention. These executive attention demands did not appear to ease with consistent practice in the mTBI group, who also endorsed more concussion-related symptoms. These preliminary results suggest sustained mental effort is required to achieve 'normal' performance levels following mTBI and support the use of practice-related, ERP indices of recovery from mTBI as a sensitive correlate of persistent post-concussion symptoms.

  3. [Normalisation and validation of the Brief Neuropsychological Battery as the reference neuropsychological test in multiple sclerosis].

    PubMed

    Duque, P; Ibanez, J; Del Barco, A; Sepulcre, J; de Ramon, E; Fernandez-Fernandez, O

    2012-03-01

    INTRODUCTION. The current batteries such as the Brief Repeatable Battery of Neuropsychological Tests (BRB-N) for evaluating cognitive decline in patients with multiple sclerosis are complex and time-consuming. AIM. To obtain normative values and validate a new battery. SUBJECTS AND METHODS. Four neuropsychological tests were finally included (episodic memory, the Symbol-Digit Modalities Test, a category fluency test, and the Paced Auditory Serial Addition Test). Normative values (overall and by age group) were derived by administering the battery to healthy subjects (5th percentile was the limit of normal). External validity was explored by comparison with the BRB-N. The new battery was also administered to a subsample after 4 weeks to assess reproducibility. RESULTS. To provide normative data, 1036 healthy subjects were recruited. The mean completion time was 18.5 ± 5.2 minutes. For the 229 subjects who were administered the new battery and the BRB-N, no statistically significant differences were found except for mean completion time (19 ± 4 vs 25 ± 5 minutes). In the reproducibility study, there were no significant differences except in the memory tests. CONCLUSION. The scores on the new battery and the BRB-N were strongly correlated although the shorter completion time and ease of administration could make the new battery preferable in clinical practice.

  4. Statistical process control: A feasibility study of the application of time-series measurement in early neurorehabilitation after acquired brain injury.

    PubMed

    Markovic, Gabriela; Schult, Marie-Louise; Bartfai, Aniko; Elg, Mattias

    2017-01-31

    Progress in early cognitive recovery after acquired brain injury is uneven and unpredictable, and thus the evaluation of rehabilitation is complex. The use of time-series measurements is susceptible to statistical change due to process variation. To evaluate the feasibility of using a time-series method, statistical process control, in early cognitive rehabilitation. Participants were 27 patients with acquired brain injury undergoing interdisciplinary rehabilitation of attention within 4 months post-injury. The outcome measure, the Paced Auditory Serial Addition Test, was analysed using statistical process control. Statistical process control identifies if and when change occurs in the process according to 3 patterns: rapid, steady or stationary performers. The statistical process control method was adjusted, in terms of constructing the baseline and the total number of measurement points, in order to measure a process in change. Statistical process control methodology is feasible for use in early cognitive rehabilitation, since it provides information about change in a process, thus enabling adjustment of the individual treatment response. Together with the results indicating discernible subgroups that respond differently to rehabilitation, statistical process control could be a valid tool in clinical decision-making. This study is a starting-point in understanding the rehabilitation process using a real-time-measurements approach.

  5. Factor analysis of persistent postconcussive symptoms within a military sample with blast exposure.

    PubMed

    Franke, Laura M; Czarnota, Jenna N; Ketchum, Jessica M; Walker, William C

    2015-01-01

    To determine the factor structure of persistent postconcussive syndrome symptoms in a blast-exposed military sample and validate factors against objective and symptom measures. Veterans Affairs medical center and military bases. One hundred eighty-one service members and veterans with at least 1 significant exposure to blast during deployment within the 2 years prior to study enrollment. Confirmatory and exploratory factor analyses of the Rivermead Postconcussion Questionnaire. Rivermead Postconcussion Questionnaire, PTSD (posttraumatic stress disorder) Symptom Checklist-Civilian, Center for Epidemiological Studies Depression scale, Sensory Organization Test, Paced Auditory Serial Addition Test, California Verbal Learning Test, and Delis-Kaplan Executive Function System subtests. The 3-factor structure of persistent postconcussive syndrome was not confirmed. A 4-factor structure was extracted, and factors were interpreted as reflecting emotional, cognitive, visual, and vestibular functions. All factors were associated with scores on psychological symptom inventories; visual and vestibular factors were also associated with balance performance. There was no significant association between the cognitive factor and neuropsychological performance or between a history of mild traumatic brain injury and factor scores. Persistent postconcussive symptoms observed months after blast exposure seem to be related to 4 distinct forms of distress, but not to mild traumatic brain injury per se, with vestibular and visual factors possibly related to injury of sensory organs by blast.

  6. Training Endogenous Task Shifting Using Music Therapy: A Feasibility Study.

    PubMed

    Lynch, Colleen; LaGasse, A Blythe

    2016-01-01

    People with acquired brain injury (ABI) are highly susceptible to disturbances in executive functioning (EF), and these effects are pervasive. Research studies using music therapy for cognitive improvement in this population are limited. The purpose of this study was to determine the feasibility of a Musical Executive Function Training (MEFT) intervention to address task-shifting skills in adults with ABI and to obtain preliminary evidence of intervention effect on task shifting. Fourteen participants were randomly assigned to one of three groups: a music therapy intervention group (MTG), a singing group (SG), or the no-intervention control group (CG). The SG and MTG met for one hour a day for five days. Feasibility measures included participant completion rates and intervention fidelity. Potential benefits were measured using the Trail Making Test and the Paced Auditory Serial Addition Task as a pre- and posttest measure. Participant completion rates and interventionist fidelity to the protocol supported feasibility. One-way ANOVA of the pre- and posttest group differences revealed a trend toward improvement in the MTG over the SG. Feasibility and effect size data support a larger trial of the MEFT protocol. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Extended-release, once-daily morphine (Avinza) for the treatment of chronic nonmalignant pain: effect on pain, depressive symptoms, and cognition.

    PubMed

    Panjabi, Sumeet S; Panjabi, Ravi S; Shepherd, Marvin D; Lawson, Kenneth A; Johnsrud, Michael; Barner, Jamie

    2008-11-01

    To evaluate the impact of an extended-release, once-daily morphine sulfate formulation on depressive symptoms and neurocognition in patients with chronic nonmalignant pain. Prospective, open-label, one-group trial with a pretest-posttest design. Outpatient pain management clinic. Chronic nonmalignant pain patients inadequately controlled with short-acting opioid analgesics and eligible for treatment with once-daily morphine sulfate were initiated on a dose at or near the morphine-equivalent dose of the short-acting regimen. The following assessments were made at baseline and 4 weeks after initiating intervention: pain intensity, pain unpleasantness, pain suffering, pain behaviors, Beck Depression Inventory, and cognitive function. Eighty-four patients provided usable data. Pain intensity, unpleasantness, and suffering scores were significantly reduced at follow-up (P = 0.001). The mean Beck Depression Inventory scores were significantly lower at follow-up (P = 0.001). Significant improvements were seen in scores at follow-up on the three validated neurocognitive tests: the digit span test, the digit symbol substitution test, and the paced auditory serial addition test (P = 0.001). Achieving adequate pain control with once-daily morphine was associated with a reduction in pain and improvements in depressive symptoms and cognitive functioning in the short term.

  8. Cognitive processing speed is related to fall frequency in older adults with multiple sclerosis.

    PubMed

    Sosnoff, Jacob J; Balantrapu, Swathi; Pilutti, Lara A; Sandroff, Brian M; Morrison, Steven; Motl, Robert W

    2013-08-01

    To examine mobility, balance, fall risk, and cognition in older adults with multiple sclerosis (MS) as a function of fall frequency. Retrospective, cross-sectional design. University research laboratory. Community-dwelling persons with MS (N=27) aged between 50 and 75 years were divided into 2 groups-single-time (n=11) and recurrent (n=16; >2 falls/12 mo) fallers-on the basis of fall history. Not applicable. Mobility was assessed using a variety of measures including Multiple Sclerosis Walking Scale-12, walking speed (Timed 25-Foot Walk test), endurance (6-Minute Walk test), and functional mobility (Timed Up and Go test). Balance was assessed with the Berg Balance Scale, posturography, and self-reported balance confidence. Fall risk was assessed with the Physiological Profile Assessment. Cognitive processing speed was quantified with the Symbol Digit Modalities Test and the Paced Auditory Serial Addition Test. Recurrent fallers had slower cognitive processing speed than single-time fallers (P ≤.01). There was no difference in mobility, balance, or fall risk between recurrent and single-time fallers (P>.05). Results indicated that cognitive processing speed is associated with fall frequency and may have implications for fall prevention strategies targeting recurrent fallers with MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Early blindness alters the spatial organization of verbal working memory.

    PubMed

    Bottini, Roberto; Mattioni, Stefania; Collignon, Olivier

    2016-10-01

    Several studies suggest that serial order in working memory (WM) is grounded on space. For a list of ordered items held in WM, items at the beginning of the list are associated with the left side of space and items at the end of the list with the right side. This suggests that maintaining items in verbal WM is performed in strong analogy to writing these items down on a physical whiteboard for later consultation (The Mental Whiteboard Hypothesis). What drives this spatial mapping of ordered series in WM remains poorly understood. In the present study we tested whether visual experience is instrumental in establishing the link between serial order in WM and spatial processing. We tested early blind (EB), late blind (LB) and sighted individuals in an auditory WM task. Replicating previous studies, left-key responses were faster for early items in the list whereas later items facilitated right-key responses in the sighted group. The same effect was observed in LB individuals. In contrast, EB participants did not show any association between space and serial position in WM. These results suggest that early visual experience plays a critical role in linking ordered items in WM and spatial representations. The analogical spatial structure of WM may depend in part on the actual experience of using spatially organized devices (e.g., notes, whiteboards) to offload WM. These practices are largely precluded to EB individuals, who instead rely to mnemonic devices that are less spatially organized (e.g., recordings, vocal notes). The way we habitually organize information in the external world may bias the way we organize information in our WM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  11. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  12. Effect of training and level of external auditory feedback on the singing voice: volume and quality

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Background Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. Objectives The Lombard Effect in singers and the relationship between Sound Pressure Level (SPL) and external auditory feedback was evaluated for professional and non-professional singers. Additionally, the relationship between voice quality, evaluated in terms of Singing Power Ratio (SPR), and external auditory feedback, level of accompaniment, voice register and singer gender was analyzed. Methods The subjects were 10 amateur or beginner singers, and 10 classically-trained professional or semi-professional singers (10 males and 10 females). Subjects sang an excerpt from the Star-spangled Banner with three different levels of the accompaniment, 70, 80 and 90 dBA, and with three different levels of external auditory feedback. SPL and the SPR were analyzed. Results The Lombard Effect was stronger for non-professional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional than non-professional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. Conclusions With an increase in training, the singer’s reliance on external auditory feedback decreases. PMID:26186810

  13. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.

    PubMed

    Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo

    2017-02-01

    In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.

  14. Effect of Training and Level of External Auditory Feedback on the Singing Voice: Volume and Quality.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2016-07-01

    Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. The Lombard effect and the relationship between sound pressure level (SPL) and external auditory feedback were evaluated for professional and nonprofessional singers. Additionally, the relationship between voice quality, evaluated in terms of singing power ratio (SPR), and external auditory feedback, level of accompaniment, voice register, and singer gender was analyzed. The subjects were 10 amateur or beginner singers and 10 classically trained professional or semiprofessional singers (10 men and 10 women). Subjects sang an excerpt from the Star-Spangled Banner with three different levels of the accompaniment, 70, 80, and 90 dBA and with three different levels of external auditory feedback. SPL and SPR were analyzed. The Lombard effect was stronger for nonprofessional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional singers than nonprofessional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. With an increase in training, the singer's reliance on external auditory feedback decreases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

    PubMed Central

    Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang

    2008-01-01

    Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146

  16. Evidence for multisensory spatial-to-motor transformations in aiming movements of children.

    PubMed

    King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E

    2009-01-01

    The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.

  17. Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.

    2003-12-01

    A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond traditional visualization approaches. This work has been supported by the GRS Education and Public Outreach Program and the NASA Spacegrant Graduate Fellowship Program.

  18. Impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease patients.

    PubMed

    Simoes Loureiro, Isabelle; Lefebvre, Laurent

    2015-01-01

    The aim of this study was to generalize the positive impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease (AD) patients. In practice, the naming skills of healthy elderly persons improve when additional sensory signals are included. The hypothesis of this study was that the same influence would be observable in AD patients. Sixty elderly patients separated into three groups (healthy subjects, stage 1 AD patients, and stage 2 AD patients) were tested with a battery of naming tasks comprising three different modalities: a visual modality, an auditory modality, and a visual and auditory modality (bimodality). Our results reveal the positive influence of bimodality on the accuracy with which bimodal items are named (when compared with unimodal items) and their latency (when compared with unimodal auditory items). These results suggest that multisensory enrichment can improve lexical retrieval in AD patients.

  19. Auditory Beat Stimulation and its Effects on Cognition and Mood States

    PubMed Central

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P.; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS. PMID:26029120

  20. An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants.

    PubMed

    Lahav, Amir; Skoe, Erika

    2014-01-01

    The intrauterine environment allows the fetus to begin hearing low-frequency sounds in a protected fashion, ensuring initial optimal development of the peripheral and central auditory system. However, the auditory nursery provided by the womb vanishes once the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal intensive care unit (NICU). The present article draws a concerning line between auditory system development and HF noise in the NICU, which we argue is not necessarily conducive to fostering this development. Overexposure to HF noise during critical periods disrupts the functional organization of auditory cortical circuits. As a result, we theorize that the ability to tune out noise and extract acoustic information in a noisy environment may be impaired, leading to increased risks for a variety of auditory, language, and attention disorders. Additionally, HF noise in the NICU often masks human speech sounds, further limiting quality exposure to linguistic stimuli. Understanding the impact of the sound environment on the developing auditory system is an important first step in meeting the developmental demands of preterm newborns undergoing intensive care.

  1. Auditory hallucinations.

    PubMed

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  2. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  3. Auditory salience using natural soundscapes.

    PubMed

    Huang, Nicholas; Elhilali, Mounya

    2017-03-01

    Salience describes the phenomenon by which an object stands out from a scene. While its underlying processes are extensively studied in vision, mechanisms of auditory salience remain largely unknown. Previous studies have used well-controlled auditory scenes to shed light on some of the acoustic attributes that drive the salience of sound events. Unfortunately, the use of constrained stimuli in addition to a lack of well-established benchmarks of salience judgments hampers the development of comprehensive theories of sensory-driven auditory attention. The present study explores auditory salience in a set of dynamic natural scenes. A behavioral measure of salience is collected by having human volunteers listen to two concurrent scenes and indicate continuously which one attracts their attention. By using natural scenes, the study takes a data-driven rather than experimenter-driven approach to exploring the parameters of auditory salience. The findings indicate that the space of auditory salience is multidimensional (spanning loudness, pitch, spectral shape, as well as other acoustic attributes), nonlinear and highly context-dependent. Importantly, the results indicate that contextual information about the entire scene over both short and long scales needs to be considered in order to properly account for perceptual judgments of salience.

  4. Spoken language skills and educational placement in Finnish children with cochlear implants.

    PubMed

    Lonka, Eila; Hasan, Marja; Komulainen, Erkki

    2011-01-01

    This study reports the demographics, and the auditory and spoken language development as well as educational settings, for a total of 164 Finnish children with cochlear implants. Two questionnaires were employed: the first, concerning day care and educational placement, was filled in by professionals for rehabilitation guidance, and the second, evaluating language development (categories of auditory performance, spoken language skills, and main mode of communication), by speech and language therapists in audiology departments. Nearly half of the children were enrolled in normal kindergartens and 43% of school-aged children in mainstream schools. Categories of auditory performance were observed to grow in relation to age at cochlear implantation (p < 0.001) as well as in relation to proportional hearing age (p < 0.001). The composite scores for language development moved to more diversified ones in relation to increasing age at cochlear implantation and proportional hearing age (p < 0.001). Children without additional disorders outperformed those with additional disorders. The results indicate that the most favorable age for cochlear implantation could be earlier than 2. Compared to other children, spoken language evaluation scores of those with additional disabilities were significantly lower; however, these children showed gradual improvements in their auditory perception and language scores. Copyright © 2011 S. Karger AG, Basel.

  5. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    PubMed

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  7. The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display.

    PubMed

    Wang, Qingcui; Bao, Ming; Chen, Lihan

    2014-01-01

    Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.

  8. Age-equivalent top-down modulation during cross-modal selective attention.

    PubMed

    Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam

    2014-12-01

    Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.

  9. Leftward Lateralization of Auditory Cortex Underlies Holistic Sound Perception in Williams Syndrome

    PubMed Central

    Bendszus, Martin; Schneider, Peter

    2010-01-01

    Background Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Methodology/Principal Findings Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. Conclusions/Significance There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties. PMID:20808792

  10. Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production.

    PubMed

    Franken, Matthias K; Eisner, Frank; Acheson, Daniel J; McQueen, James M; Hagoort, Peter; Schoffelen, Jan-Mathijs

    2018-06-21

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effects of rumenic acid rich conjugated linoleic acid supplementation on cognitive function and handgrip performance in older men and women.

    PubMed

    Jenkins, Nathaniel D M; Housh, Terry J; Miramonti, Amelia A; McKay, Brianna D; Yeo, Noelle M; Smith, Cory M; Hill, Ethan C; Cochrane, Kristen C; Cramer, Joel T

    2016-11-01

    The purpose of this study was to investigate the effects of 8weeks at 6g per day of RAR CLA versus placebo on cognitive function and handgrip performance in older men and women. Sixty-five (43 women, 22 men) participants (mean±SD; age=72.4±5.9yrs; BMI=26.6±4.2kg·m -2 ) were randomly assigned to a RAR CLA (n=30: 10 men, 20 women) or placebo (PLA; high oleic sunflower oil; n=35: 12 men, 23 women) group in double-blind fashion and consumed 6g·d -1 of their allocated supplement for 8weeks. Before (Visit 1) and after supplementation (Visit 2), subjects completed the Serial Sevens Subtraction Test (S 7 ), Trail Making Test Part A (TM A ) and Part B (TM B ), and Rey's Auditory Verbal Learning Test (RAVLT) to measure cognitive function. The RAVLT included 5, 15-item auditory word recalls (R 1-5 ), an interference word recall (R B ), a 6th word recall (R 6 ), and a 15-item visual word recognition trial (R R ). For handgrip performance, subjects completed maximal voluntary isometric handgrip strength (MVIC) testing before (MVIC PRE ) and after (MVIC POST ) a handgrip fatigue test at 50% MVIC PRE . Hand joint discomfort was measured during MVIC PRE , MVIC POST , and the handgrip fatigue test. There were no treatment differences (p>0.05) for handgrip strength, handgrip fatigue, or cognitive function as measured by the Trail Making Test and Serial Seven's Subtraction Test in men or women. However, RAR CLA supplementation improved cognitive function as indicated by the RAVLT R 5 in men. A qualitative examination of the mean change scores suggested that, compared to PLA, RAR CLA supplementation was associated with a small improvement in joint discomfort in both men and women. Longer-term studies are needed to more fully understand the potential impact of RAR CLA on cognitive function and hand joint discomfort in older adults, particularly in those with lower cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  13. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    PubMed

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  14. Higher dietary diversity is related to better visual and auditory sustained attention.

    PubMed

    Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed

    2016-04-01

    Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (P<0·05). In conclusion, higher DDS is associated with better visual and auditory sustained attention.

  15. Why Do Pictures, but Not Visual Words, Reduce Older Adults’ False Memories?

    PubMed Central

    Smith, Rebekah E.; Hunt, R. Reed; Dunlap, Kathryn R.

    2015-01-01

    Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both the case of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment we provide the first simultaneous comparison of all three study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. PMID:26213799

  16. Why do pictures, but not visual words, reduce older adults' false memories?

    PubMed

    Smith, Rebekah E; Hunt, R Reed; Dunlap, Kathryn R

    2015-09-01

    Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both cases of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment, we provide the first simultaneous comparison of all 3 study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Effects of musical training on the auditory cortex in children.

    PubMed

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  18. A longitudinal study of auditory evoked field and language development in young children.

    PubMed

    Yoshimura, Yuko; Kikuchi, Mitsuru; Ueno, Sanae; Shitamichi, Kiyomi; Remijn, Gerard B; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Furutani, Naoki; Oi, Manabu; Munesue, Toshio; Tsubokawa, Tsunehisa; Higashida, Haruhiro; Minabe, Yoshio

    2014-11-01

    The relationship between language development in early childhood and the maturation of brain functions related to the human voice remains unclear. Because the development of the auditory system likely correlates with language development in young children, we investigated the relationship between the auditory evoked field (AEF) and language development using non-invasive child-customized magnetoencephalography (MEG) in a longitudinal design. Twenty typically developing children were recruited (aged 36-75 months old at the first measurement). These children were re-investigated 11-25 months after the first measurement. The AEF component P1m was examined to investigate the developmental changes in each participant's neural brain response to vocal stimuli. In addition, we examined the relationships between brain responses and language performance. P1m peak amplitude in response to vocal stimuli significantly increased in both hemispheres in the second measurement compared to the first measurement. However, no differences were observed in P1m latency. Notably, our results reveal that children with greater increases in P1m amplitude in the left hemisphere performed better on linguistic tests. Thus, our results indicate that P1m evoked by vocal stimuli is a neurophysiological marker for language development in young children. Additionally, MEG is a technique that can be used to investigate the maturation of the auditory cortex based on auditory evoked fields in young children. This study is the first to demonstrate a significant relationship between the development of the auditory processing system and the development of language abilities in young children. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Temporal auditory aspects in children with poor school performance and associated factors.

    PubMed

    Rezende, Bárbara Antunes; Lemos, Stela Maris Aguiar; Medeiros, Adriane Mesquita de

    2016-01-01

    To investigate the auditory temporal aspects in children with poor school performance aged 7-12 years and their association with behavioral aspects, health perception, school and health profiles, and sociodemographic factors. This is an observational, analytical, transversal study including 89 children with poor school performance aged 7-12 years enrolled in the municipal public schools of a municipality in Minas Gerais state, participants of Specialized Educational Assistance. The first stage of the study was conducted with the subjects' parents aiming to collect information on sociodemographic aspects, health profile, and educational records. In addition, the parents responded to the Strengths and Difficulties Questionnaire (SDQ). The second stage was conducted with the children in order to investigate their health self-perception and analyze the auditory assessment, which consisted of meatoscopy, Transient Otoacoustic Emissions, and tests that evaluated the aspects of simple auditory temporal ordering and auditory temporal resolution. Tests assessing the temporal aspects of auditory temporal processing were considered as response variables, and the explanatory variables were grouped for univariate and multivariate logistic regression analyses. The level of significance was set at 5%. Significant statistical correlation was found between the auditory temporal aspects and the variables age, gender, presence of repetition, and health self-perception. Children with poor school performance presented changes in the auditory temporal aspects. The temporal abilities assessed suggest association with different factors such as maturational process, health self-perception, and school records.

  20. Behavioral and electrophysiological auditory processing measures in traumatic brain injury after acoustically controlled auditory training: a long-term study

    PubMed Central

    Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro

    2015-01-01

    ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270

  1. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    PubMed

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  3. Information transfer rate with serial and simultaneous visual display formats

    NASA Astrophysics Data System (ADS)

    Matin, Ethel; Boff, Kenneth R.

    1988-04-01

    Information communication rate for a conventional display with three spatially separated windows was compared with rate for a serial display in which data frames were presented sequentially in one window. For both methods, each frame contained a randomly selected digit with various amounts of additional display 'clutter.' Subjects recalled the digits in a prescribed order. Large rate differences were found, with faster serial communication for all levels of the clutter factors. However, the rate difference was most pronounced for highly cluttered displays. An explanation for the latter effect in terms of visual masking in the retinal periphery was supported by the results of a second experiment. The working hypothesis that serial displays can speed information transfer for automatic but not for controlled processing is discussed.

  4. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    PubMed

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    PubMed

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self-exciting system is a key element for qualitatively reproducing A1 population activity and to understand the underlying mechanisms. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    PubMed

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary

    PubMed Central

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716

  9. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary.

    PubMed

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

  10. [Value of cumulative electrodermal responses in subliminal auditory perception. A preliminary study].

    PubMed

    Borgeat, F; Pannetier, M F

    1982-01-01

    This exploratory study examined the usefulness of averaging electrodermal potential responses for research on subliminal auditory perception. Eighteen female subjects were exposed to three kinds (emotional, neutral and 1000 Hz tone) of auditory stimulation which were repeated six times at three intensities (detection threshold, 10 dB under this threshold and 10 dB above identification threshold). Analysis of electrodermal potential responses showed that the number of responses was related to the emotionality of subliminal stimuli presented at detection threshold but not at 10 dB under it. The data interpretation proposed refers to perceptual defence theory. This study indicates that electrodermal response count constitutes a useful measure for subliminal auditory perception research, but averaging those responses was not shown to bring additional information.

  11. Do informal musical activities shape auditory skill development in preschool-age children?

    PubMed

    Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari

    2013-08-29

    The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are shaped by such informal musical activities both at home and in playschool-type settings. Although more research is still needed, the evidence emerging from these studies suggests that, in addition to formal musical training, informal musical activities can also influence the maturation of auditory discrimination and attention in preschool-aged children.

  12. Do informal musical activities shape auditory skill development in preschool-age children?

    PubMed Central

    Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari

    2013-01-01

    The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are shaped by such informal musical activities both at home and in playschool-type settings. Although more research is still needed, the evidence emerging from these studies suggests that, in addition to formal musical training, informal musical activities can also influence the maturation of auditory discrimination and attention in preschool-aged children. PMID:24009597

  13. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing.

    PubMed

    Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C

    2015-11-26

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.

  15. No auditory experience, no tinnitus: Lessons from subjects with congenital- and acquired single-sided deafness.

    PubMed

    Lee, Sang-Yeon; Nam, Dong Woo; Koo, Ja-Won; De Ridder, Dirk; Vanneste, Sven; Song, Jae-Jin

    2017-10-01

    Recent studies have adopted the Bayesian brain model to explain the generation of tinnitus in subjects with auditory deafferentation. That is, as the human brain works in a Bayesian manner to reduce environmental uncertainty, missing auditory information due to hearing loss may cause auditory phantom percepts, i.e., tinnitus. This type of deafferentation-induced auditory phantom percept should be preceded by auditory experience because the fill-in phenomenon, namely tinnitus, is based upon auditory prediction and the resultant prediction error. For example, a recent animal study observed the absence of tinnitus in cats with congenital single-sided deafness (SSD; Eggermont and Kral, Hear Res 2016). However, no human studies have investigated the presence and characteristics of tinnitus in subjects with congenital SSD. Thus, the present study sought to reveal differences in the generation of tinnitus between subjects with congenital SSD and those with acquired SSD to evaluate the replicability of previous animal studies. This study enrolled 20 subjects with congenital SSD and 44 subjects with acquired SSD and examined the presence and characteristics of tinnitus in the groups. None of the 20 subjects with congenital SSD perceived tinnitus on the affected side, whereas 30 of 44 subjects with acquired SSD experienced tinnitus on the affected side. Additionally, there were significant positive correlations between tinnitus characteristics and the audiometric characteristics of the SSD. In accordance with the findings of the recent animal study, tinnitus was absent in subjects with congenital SSD, but relatively frequent in subjects with acquired SSD, which suggests that the development of tinnitus should be preceded by auditory experience. In other words, subjects with profound congenital peripheral deafferentation do not develop auditory phantom percepts because no auditory predictions are available from the Bayesian brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  17. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    PubMed

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-04-12

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Relative size of auditory pathways in symmetrically and asymmetrically eared owls.

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R

    2011-01-01

    Owls are highly efficient predators with a specialized auditory system designed to aid in the localization of prey. One of the most unique anatomical features of the owl auditory system is the evolution of vertically asymmetrical ears in some species, which improves their ability to localize the elevational component of a sound stimulus. In the asymmetrically eared barn owl, interaural time differences (ITD) are used to localize sounds in azimuth, whereas interaural level differences (ILD) are used to localize sounds in elevation. These two features are processed independently in two separate neural pathways that converge in the external nucleus of the inferior colliculus to form an auditory map of space. Here, we present a comparison of the relative volume of 11 auditory nuclei in both the ITD and the ILD pathways of 8 species of symmetrically and asymmetrically eared owls in order to investigate evolutionary changes in the auditory pathways in relation to ear asymmetry. Overall, our results indicate that asymmetrically eared owls have much larger auditory nuclei than owls with symmetrical ears. In asymmetrically eared owls we found that both the ITD and ILD pathways are equally enlarged, and other auditory nuclei, not directly involved in binaural comparisons, are also enlarged. We suggest that the hypertrophy of auditory nuclei in asymmetrically eared owls likely reflects both an improved ability to precisely locate sounds in space and an expansion of the hearing range. Additionally, our results suggest that the hypertrophy of nuclei that compute space may have preceded that of the expansion of the hearing range and evolutionary changes in the size of the auditory system occurred independently of phylogeny. Copyright © 2011 S. Karger AG, Basel.

  19. Constructing Noise-Invariant Representations of Sound in the Auditory Pathway

    PubMed Central

    Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.

    2013-01-01

    Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596

  20. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  1. Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children.

    PubMed

    Sharma, Anu; Campbell, Julia; Cardon, Garrett

    2015-02-01

    Cortical development is dependent on extrinsic stimulation. As such, sensory deprivation, as in congenital deafness, can dramatically alter functional connectivity and growth in the auditory system. Cochlear implants ameliorate deprivation-induced delays in maturation by directly stimulating the central nervous system, and thereby restoring auditory input. The scenario in which hearing is lost due to deafness and then reestablished via a cochlear implant provides a window into the development of the central auditory system. Converging evidence from electrophysiologic and brain imaging studies of deaf animals and children fitted with cochlear implants has allowed us to elucidate the details of the time course for auditory cortical maturation under conditions of deprivation. Here, we review how the P1 cortical auditory evoked potential (CAEP) provides useful insight into sensitive period cut-offs for development of the primary auditory cortex in deaf children fitted with cochlear implants. Additionally, we present new data on similar sensitive period dynamics in higher-order auditory cortices, as measured by the N1 CAEP in cochlear implant recipients. Furthermore, cortical re-organization, secondary to sensory deprivation, may take the form of compensatory cross-modal plasticity. We provide new case-study evidence that cross-modal re-organization, in which intact sensory modalities (i.e., vision and somatosensation) recruit cortical regions associated with deficient sensory modalities (i.e., auditory) in cochlear implanted children may influence their behavioral outcomes with the implant. Improvements in our understanding of developmental neuroplasticity in the auditory system should lead to harnessing central auditory plasticity for superior clinical technique. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Feature conjunctions and auditory sensory memory.

    PubMed

    Sussman, E; Gomes, H; Nousak, J M; Ritter, W; Vaughan, H G

    1998-05-18

    This study sought to obtain additional evidence that transient auditory memory stores information about conjunctions of features on an automatic basis. The mismatch negativity of event-related potentials was employed because its operations are based on information that is stored in transient auditory memory. The mismatch negativity was found to be elicited by a tone that differed from standard tones in a combination of its perceived location and frequency. The result lends further support to the hypothesis that the system upon which the mismatch negativity relies processes stimuli in an holistic manner. Copyright 1998 Elsevier Science B.V.

  3. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  4. Auditory system dysfunction in Alzheimer disease and its prodromal states: A review.

    PubMed

    Swords, Gabriel M; Nguyen, Lydia T; Mudar, Raksha A; Llano, Daniel A

    2018-07-01

    Recent findings suggest that both peripheral and central auditory system dysfunction occur in the prodromal stages of Alzheimer Disease (AD), and therefore may represent early indicators of the disease. In addition, loss of auditory function itself leads to communication difficulties, social isolation and poor quality of life for both patients with AD and their caregivers. Developing a greater understanding of auditory dysfunction in early AD may shed light on the mechanisms of disease progression and carry diagnostic and therapeutic importance. Herein, we review the literature on hearing abilities in AD and its prodromal stages investigated through methods such as pure-tone audiometry, dichotic listening tasks, and evoked response potentials. We propose that screening for peripheral and central auditory dysfunction in at-risk populations is a low-cost and effective means to identify early AD pathology and provides an entry point for therapeutic interventions that enhance the quality of life of AD patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei

    PubMed Central

    Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.

    2009-01-01

    Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118

  6. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  7. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  8. Auditory short-term memory activation during score reading.

    PubMed

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  9. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  10. Auditory Short-Term Memory Activation during Score Reading

    PubMed Central

    Simoens, Veerle L.; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487

  11. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  12. Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.

    PubMed

    Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V

    2013-11-15

    Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Functional Relationships for Investigating Cognitive Processes

    PubMed Central

    Wright, Anthony A.

    2013-01-01

    Functional relationships (from systematic manipulation of critical variables) are advocated for revealing fundamental processes of (comparative) cognition—through examples from my work in psychophysics, learning, and memory. Functional relationships for pigeon wavelength (hue) discrimination revealed best discrimination at the spectral points of hue transition for pigeons—a correspondence (i.e., functional relationship) similar to that for humans. Functional relationships for learning revealed: Item-specific or relational learning in matching to sample as a function of the pigeons’ sample-response requirement, and same/different abstract-concept learning as a function of the training set size for rhesus monkeys, capuchin monkeys, and pigeons. Functional relationships for visual memory revealed serial position functions (a 1st order functional relationship) that changed systematically with retention delay (a 2nd order relationship) for pigeons, capuchin monkeys, rhesus monkeys, and humans. Functional relationships for rhesus-monkey auditory memory also revealed systematic changes in serial position functions with delay, but these changes were opposite to those for visual memory. Functional relationships for proactive interference revealed interference that varied as a function of a ratio of delay times. Functional relationships for change detection memory revealed (qualitative) similarities and (quantitative) differences in human and monkey visual short term memory as a function of the number of memory items. It is concluded that these findings were made possible by varying critical variables over a substantial portion of the manipulable range to generate functions and derive relationships. PMID:23174335

  14. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    DOEpatents

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  15. Hand Movement Deviations in a Visual Search Task with Cross Modal Cuing

    ERIC Educational Resources Information Center

    Aslan, Asli; Aslan, Hurol

    2007-01-01

    The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants'…

  16. Auditory Evidence Grids

    DTIC Science & Technology

    2006-01-01

    information of the robot (Figure 1) acquired via laser-based localization techniques. The results are maps of the global soundscape . The algorithmic...environments than noise maps. Furthermore, provided the acoustic localization algorithm can detect the sources, the soundscape can be mapped with many...gathering information about the auditory soundscape in which it is working. In addition to robustness in the presence of noise, it has also been

  17. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    PubMed Central

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  18. Influence of aging on human sound localization

    PubMed Central

    Dobreva, Marina S.; O'Neill, William E.

    2011-01-01

    Errors in sound localization, associated with age-related changes in peripheral and central auditory function, can pose threats to self and others in a commonly encountered environment such as a busy traffic intersection. This study aimed to quantify the accuracy and precision (repeatability) of free-field human sound localization as a function of advancing age. Head-fixed young, middle-aged, and elderly listeners localized band-passed targets using visually guided manual laser pointing in a darkened room. Targets were presented in the frontal field by a robotically controlled loudspeaker assembly hidden behind a screen. Broadband targets (0.1–20 kHz) activated all auditory spatial channels, whereas low-pass and high-pass targets selectively isolated interaural time and intensity difference cues (ITDs and IIDs) for azimuth and high-frequency spectral cues for elevation. In addition, to assess the upper frequency limit of ITD utilization across age groups more thoroughly, narrowband targets were presented at 250-Hz intervals from 250 Hz up to ∼2 kHz. Young subjects generally showed horizontal overestimation (overshoot) and vertical underestimation (undershoot) of auditory target location, and this effect varied with frequency band. Accuracy and/or precision worsened in older individuals for broadband, high-pass, and low-pass targets, reflective of peripheral but also central auditory aging. In addition, compared with young adults, middle-aged, and elderly listeners showed pronounced horizontal localization deficiencies (imprecision) for narrowband targets within 1,250–1,575 Hz, congruent with age-related central decline in auditory temporal processing. Findings underscore the distinct neural processing of the auditory spatial cues in sound localization and their selective deterioration with advancing age. PMID:21368004

  19. Evaluating the articulation index for auditory-visual input.

    PubMed

    Grant, K W; Braida, L D

    1991-06-01

    An investigation of the auditory-visual (AV) articulation index (AI) correction procedure outlined in the ANSI standard [ANSI S3.5-1969 (R1986)] was made by evaluating auditory (A), visual (V), and auditory-visual sentence identification for both wideband speech degraded by additive noise and a variety of bandpass-filtered speech conditions presented in quiet and in noise. When the data for each of the different listening conditions were averaged across talkers and subjects, the procedure outlined in the standard was fairly well supported, although deviations from the predicted AV score were noted for individual subjects as well as individual talkers. For filtered speech signals with AIA less than 0.25, there was a tendency for the standard to underpredict AV scores. Conversely, for signals with AIA greater than 0.25, the standard consistently overpredicted AV scores. Additionally, synergistic effects, where the AIA obtained from the combination of different bandpass-filtered conditions was greater than the sum of the individual AIA's, were observed for all nonadjacent filter-band combinations (e.g., the addition of a low-pass band with a 630-Hz cutoff and a high-pass band with a 3150-Hz cutoff). These latter deviations from the standard violate the basic assumption of additivity stated by Articulation Theory, but are consistent with earlier reports by Pollack [I. Pollack, J. Acoust. Soc. Am. 20, 259-266 (1948)], Licklider [J. C. R. Licklider, Psychology: A Study of a Science, Vol. 1, edited by S. Koch (McGraw-Hill, New York, 1959), pp. 41-144], and Kryter [K. D. Kryter, J. Acoust. Soc. Am. 32, 547-556 (1960)].

  20. Further evidence of auditory extinction in aphasia.

    PubMed

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-02-01

    Preliminary research (Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Seventeen IWA (M(age) = 53.19 years) and 17 neurologically intact controls (M(age) = 55.18 years) participated. Auditory stimuli were spoken letters presented in a free-field listening environment. Stimuli were presented in single-stimulus stimulation (SSS) or double-simultaneous stimulation (DSS) trials across 5 conditions designed to determine whether extinction is related to binding, inefficient attention resource allocation, or overall deficits in attention. All participants completed all experimental conditions. Significant extinction was demonstrated only by IWA when sounds were different, providing further evidence of auditory extinction. However, binding requirements did not appear to influence the IWA's performance. Results indicate that, for IWA, auditory extinction may not be attributed to a binding deficit or inefficient attention resource allocation because of equivalent performance across all 5 conditions. Rather, overall attentional resources may be influential. Future research in aphasia should explore the effect of the stimulus presentation in addition to the continued study of attention treatment.

  1. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  2. The effect of contextual auditory stimuli on virtual spatial navigation in patients with focal hemispheric lesions.

    PubMed

    Cogné, Mélanie; Knebel, Jean-François; Klinger, Evelyne; Bindschaedler, Claire; Rapin, Pierre-André; Joseph, Pierre-Alain; Clarke, Stephanie

    2018-01-01

    Topographical disorientation is a frequent deficit among patients suffering from brain injury. Spatial navigation can be explored in this population using virtual reality environments, even in the presence of motor or sensory disorders. Furthermore, the positive or negative impact of specific stimuli can be investigated. We studied how auditory stimuli influence the performance of brain-injured patients in a navigational task, using the Virtual Action Planning-Supermarket (VAP-S) with the addition of contextual ("sonar effect" and "name of product") and non-contextual ("periodic randomised noises") auditory stimuli. The study included 22 patients with a first unilateral hemispheric brain lesion and 17 healthy age-matched control subjects. After a software familiarisation, all subjects were tested without auditory stimuli, with a sonar effect or periodic random sounds in a random order, and with the stimulus "name of product". Contextual auditory stimuli improved patient performance more than control group performance. Contextual stimuli benefited most patients with severe executive dysfunction or with severe unilateral neglect. These results indicate that contextual auditory stimuli are useful in the assessment of navigational abilities in brain-damaged patients and that they should be used in rehabilitation paradigms.

  3. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  4. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    PubMed

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of a concurrent auditory task on visual search performance in a driving-related image-flicker task.

    PubMed

    Richard, Christian M; Wright, Richard D; Ee, Cheryl; Prime, Steven L; Shimizu, Yujiro; Vavrik, John

    2002-01-01

    The effect of a concurrent auditory task on visual search was investigated using an image-flicker technique. Participants were undergraduate university students with normal or corrected-to-normal vision who searched for changes in images of driving scenes that involved either driving-related (e.g., traffic light) or driving-unrelated (e.g., mailbox) scene elements. The results indicated that response times were significantly slower if the search was accompanied by a concurrent auditory task. In addition, slower overall responses to scenes involving driving-unrelated changes suggest that the underlying process affected by the concurrent auditory task is strategic in nature. These results were interpreted in terms of their implications for using a cellular telephone while driving. Actual or potential applications of this research include the development of safer in-vehicle communication devices.

  6. Assessing Working Memory in Mild Cognitive Impairment with Serial Order Recall.

    PubMed

    Emrani, Sheina; Libon, David J; Lamar, Melissa; Price, Catherine C; Jefferson, Angela L; Gifford, Katherine A; Hohman, Timothy J; Nation, Daniel A; Delano-Wood, Lisa; Jak, Amy; Bangen, Katherine J; Bondi, Mark W; Brickman, Adam M; Manly, Jennifer; Swenson, Rodney; Au, Rhoda

    2018-01-01

    Working memory (WM) is often assessed with serial order tests such as repeating digits backward. In prior dementia research using the Backward Digit Span Test (BDT), only aggregate test performance was examined. The current research tallied primacy/recency effects, out-of-sequence transposition errors, perseverations, and omissions to assess WM deficits in patients with mild cognitive impairment (MCI). Memory clinic patients (n = 66) were classified into three groups: single domain amnestic MCI (aMCI), combined mixed domain/dysexecutive MCI (mixed/dys MCI), and non-MCI where patients did not meet criteria for MCI. Serial order/WM ability was assessed by asking participants to repeat 7 trials of five digits backwards. Serial order position accuracy, transposition errors, perseverations, and omission errors were tallied. A 3 (group)×5 (serial position) repeated measures ANOVA yielded a significant group×trial interaction. Follow-up analyses found attenuation of the recency effect for mixed/dys MCI patients. Mixed/dys MCI patients scored lower than non-MCI patients for serial position 3 (p < 0.003) serial position 4 (p < 0.002); and lower than both group for serial position 5 (recency; p < 0.002). Mixed/dys MCI patients also produced more transposition errors than both groups (p < 0.010); and more omissions (p < 0.020), and perseverations errors (p < 0.018) than non-MCI patients. The attenuation of a recency effect using serial order parameters obtained from the BDT may provide a useful operational definition as well as additional diagnostic information regarding working memory deficits in MCI.

  7. Aging-related changes in auditory and visual integration measured with MEG

    PubMed Central

    Stephen, Julia M.; Knoefel, Janice E.; Adair, John; Hart, Blaine; Aine, Cheryl J.

    2010-01-01

    As noted in the aging literature, processing delays often occur in the central nervous system with increasing age, which is often attributable in part to demyelination. In addition, differential slowing between sensory systems has been shown to be most discrepant between visual (up to 20 ms) and auditory systems (< 5 ms). Therefore, we used MEG to measure the multisensory integration response in auditory association cortex in young and elderly participants to better understand the effects of aging on multisensory integration abilities. Results show a main effect for reaction times (RTs); the mean RTs of the elderly were significantly slower than the young. In addition, in the young we found significant facilitation of RTs to the multisensory stimuli relative to both unisensory stimuli, when comparing the cumulative distribution functions, which was not evident for the elderly. We also identified a significant interaction between age and condition in the superior temporal gyrus. In particular, the elderly had larger amplitude responses (~100 ms) to auditory stimuli relative to the young when auditory stimuli alone were presented, whereas the amplitude of responses to the multisensory stimuli was reduced in the elderly, relative to the young. This suppressed cortical multisensory integration response in the elderly, which corresponded with slower RTs and reduced RT facilitation effects in the elderly, has not been reported previously and may be related to poor cortical integration based on timing changes in unisensory processing in the elderly. PMID:20713130

  8. Aging-related changes in auditory and visual integration measured with MEG.

    PubMed

    Stephen, Julia M; Knoefel, Janice E; Adair, John; Hart, Blaine; Aine, Cheryl J

    2010-10-22

    As noted in the aging literature, processing delays often occur in the central nervous system with increasing age, which is often attributable in part to demyelination. In addition, differential slowing between sensory systems has been shown to be most discrepant between visual (up to 20ms) and auditory systems (<5ms). Therefore, we used MEG to measure the multisensory integration response in auditory association cortex in young and elderly participants to better understand the effects of aging on multisensory integration abilities. Results show a main effect for reaction times (RTs); the mean RTs of the elderly were significantly slower than the young. In addition, in the young we found significant facilitation of RTs to the multisensory stimuli relative to both unisensory stimuli, when comparing the cumulative distribution functions, which was not evident for the elderly. We also identified a significant interaction between age and condition in the superior temporal gyrus. In particular, the elderly had larger amplitude responses (∼100ms) to auditory stimuli relative to the young when auditory stimuli alone were presented, whereas the amplitude of responses to the multisensory stimuli was reduced in the elderly, relative to the young. This suppressed cortical multisensory integration response in the elderly, which corresponded with slower RTs and reduced RT facilitation effects, has not been reported previously and may be related to poor cortical integration based on timing changes in unisensory processing in the elderly. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Filling-in visual motion with sounds.

    PubMed

    Väljamäe, A; Soto-Faraco, S

    2008-10-01

    Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.

  10. Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study.

    PubMed

    Impey, Danielle; Knott, Verner

    2015-08-01

    Membrane potentials and brain plasticity are basic modes of cerebral information processing. Both can be externally (non-invasively) modulated by weak transcranial direct current stimulation (tDCS). Polarity-dependent tDCS-induced reversible circumscribed increases and decreases in cortical excitability and functional changes have been observed following stimulation of motor and visual cortices but relatively little research has been conducted with respect to the auditory cortex. The aim of this pilot study was to examine the effects of tDCS on auditory sensory discrimination in healthy participants (N = 12) assessed with the mismatch negativity (MMN) brain event-related potential (ERP). In a randomized, double-blind, sham-controlled design, participants received anodal tDCS over the primary auditory cortex (2 mA for 20 min) in one session and 'sham' stimulation (i.e., no stimulation except initial ramp-up for 30 s) in the other session. MMN elicited by changes in auditory pitch was found to be enhanced after receiving anodal tDCS compared to 'sham' stimulation, with the effects being evidenced in individuals with relatively reduced (vs. increased) baseline amplitudes and with relatively small (vs. large) pitch deviants. Additional studies are needed to further explore relationships between tDCS-related parameters, auditory stimulus features and individual differences prior to assessing the utility of this tool for treating auditory processing deficits in psychiatric and/or neurological disorders.

  11. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study.

    PubMed

    Gavrilescu, M; Rossell, S; Stuart, G W; Shea, T L; Innes-Brown, H; Henshall, K; McKay, C; Sergejew, A A; Copolov, D; Egan, G F

    2010-07-01

    Previous research has reported auditory processing deficits that are specific to schizophrenia patients with a history of auditory hallucinations (AH). One explanation for these findings is that there are abnormalities in the interhemispheric connectivity of auditory cortex pathways in AH patients; as yet this explanation has not been experimentally investigated. We assessed the interhemispheric connectivity of both primary (A1) and secondary (A2) auditory cortices in n=13 AH patients, n=13 schizophrenia patients without auditory hallucinations (non-AH) and n=16 healthy controls using functional connectivity measures from functional magnetic resonance imaging (fMRI) data. Functional connectivity was estimated from resting state fMRI data using regions of interest defined for each participant based on functional activation maps in response to passive listening to words. Additionally, stimulus-induced responses were regressed out of the stimulus data and the functional connectivity was estimated for the same regions to investigate the reliability of the estimates. AH patients had significantly reduced interhemispheric connectivity in both A1 and A2 when compared with non-AH patients and healthy controls. The latter two groups did not show any differences in functional connectivity. Further, this pattern of findings was similar across the two datasets, indicating the reliability of our estimates. These data have identified a trait deficit specific to AH patients. Since this deficit was characterized within both A1 and A2 it is expected to result in the disruption of multiple auditory functions, for example, the integration of basic auditory information between hemispheres (via A1) and higher-order language processing abilities (via A2).

  12. Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study

    PubMed Central

    Parker Jones, ‘Ōiwi; Prejawa, Susan; Hope, Thomas M. H.; Oberhuber, Marion; Seghier, Mohamed L.; Leff, Alex P.; Green, David W.; Price, Cathy J.

    2014-01-01

    The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing. PMID:24550807

  13. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    PubMed

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.

  15. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people.

    PubMed

    Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried

    2018-05-13

    Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Functional magnetic resonance imaging reflects changes in brain functioning with sedation.

    PubMed

    Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

    2000-12-01

    Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd.

  17. Hyperconnectivity of the dorsolateral prefrontal cortex following mental effort in multiple sclerosis patients with cognitive fatigue.

    PubMed

    Pravatà, Emanuele; Zecca, Chiara; Sestieri, Carlo; Caulo, Massimo; Riccitelli, Gianna Carla; Rocca, Maria Assunta; Filippi, Massimo; Cianfoni, Alessandro; Gobbi, Claudio

    2016-11-01

    To investigate the dynamic temporal changes of brain resting-state functional connectivity (RS-FC) following mental effort in multiple sclerosis (MS) patients with cognitive fatigue (CF). Twenty-two MS patients, 11 with (F) and 11 without CF, and 12 healthy controls were included. Separate RS-FC scans were acquired on a 3T MR scanner immediately before (t0), immediately after (t1) and 30 minutes after (t2) execution of the paced auditory serial addition test (PASAT), a cognitively demanding task. Subjectively perceived CF after PASAT execution was also assessed. RS-FC changes were investigated by using a data-driven approach (the Intrinsic Connectivity Contrast -power ), complemented by a priori defined regions of interest analyses. The F-group patients experienced stronger RS-FC at t2 between the left superior frontal gyrus (L-SFG) and occipital, frontal and temporal areas, which increased over time after PASAT execution. In the F-group patients, the L-SFG was hyperconnected at t1 with the left caudate nucleus and hypoconnected at t2 with the left anterior thalamus. These variations were correlated with both subjectively perceived and clinically assessed CF, and-for the left thalamus-with PASAT performance. The development of cortico-cortical and cortico-subcortical hyperconnectivity following mental effort is related to CF symptoms in MS patients. © The Author(s), 2016.

  18. Stability of an ERP-based measure of brain network activation (BNA) in athletes: A new electrophysiological assessment tool for concussion.

    PubMed

    Eckner, James T; Rettmann, Ashley; Narisetty, Naveen; Greer, Jacob; Moore, Brandon; Brimacombe, Susan; He, Xuming; Broglio, Steven P

    2016-01-01

    To determine test-re-test reliabilities of novel Evoked Response Potential (ERP)-based Brain Network Activation (BNA) scores in healthy athletes. Observational, repeated-measures study. Forty-two healthy male and female high school and collegiate athletes completed auditory oddball and go/no-go ERP assessments at baseline, 1 week, 6 weeks and 1 year. The BNA algorithm was applied to the ERP data, considering electrode location, frequency band, peak latency and normalized amplitude to generate seven unique BNA scores for each testing session. Mean BNA scores, intra-class correlation coefficient (ICC) values and reliable change (RC) values were calculated for each of the seven BNA networks. BNA scores ranged from 46.3 ± 34.9 to 69.9 ± 22.8, ICC values ranged from 0.46-0.65 and 95% RC values ranged from 38.3-68.1 across the seven networks. The wide range of BNA scores observed in this population of healthy athletes suggests that a single BNA score or set of BNA scores from a single after-injury test session may be difficult to interpret in isolation without knowledge of the athlete's own baseline BNA score(s) and/or the results of serial tests performed at additional time points. The stability of each BNA network should be considered when interpreting test-re-test BNA score changes.

  19. The Italian validation of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS) and the application of the Cognitive Impairment Index scoring procedure in MS patients.

    PubMed

    Argento, Ornella; Incerti, Chiara C; Quartuccio, Maria E; Magistrale, Giuseppe; Francia, Ada; Caltagirone, Carlo; Pisani, Valerio; Nocentini, Ugo

    2018-04-27

    Cognitive dysfunction occurs in almost 50-60% of patients with multiple sclerosis (MS) even in early stages of the disease and affects different aspects of patient's life. Aims of the present study were (1) to introduce and validate an Italian version of the minimal assessment of cognitive functions in MS (MACFIMS) battery and (2) to propose the use of the Cognitive Impairment Index (CII) as a scoring procedure to define the degree of impairment in relapsing-remitting (RRMS) and secondary-progressive (SPMS) patients. A total of 240 HC and 123 MS patients performed the Italian version of the MACFIMS composed by the same tests as the original except for the Paced Auditory Serial Addition Test. The CII was derived for each score of the 11 scales for participants of both groups. The results of the study show that cognitive impairment affects around 50% of our sample of MS patients. In RRMS group, only the 15.7% of patients reported a severe impairment, while in the group of SPMS, the 51.4% of patients felt in the "severely impaired" group. Results are in line with previously reported percentages of impairment in MS patients, showing that the calculation of the CII applied to the Italian version of the MACFIMS is sensitive and reliable in detecting different degrees of impairment in MS patients.

  20. A randomized, controlled, single-blind, 6-month pilot study to evaluate the efficacy of MS-Line!: a cognitive rehabilitation programme for patients with multiple sclerosis.

    PubMed

    Gich, Jordi; Freixanet, Jordi; García, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís

    2015-09-01

    MS-Line! was created to provide an effective treatment for cognitive impairment in multiple sclerosis (MS) patients. To assess the efficacy of MS-Line!. A randomized, controlled, single-blind, 6-month pilot study. Patients were randomly assigned to an experimental group (cognitive rehabilitation with the programme) or to a control group (no cognitive rehabilitation). Randomization was stratified by cognitive impairment level. Cognitive assessment included: selective reminding test, 10/36 spatial recall test (10/36 SPART), symbol digit modalities test, paced auditory serial addition test, word list generation (WLG), FAS test, subtests of WAIS-III, Boston naming test (BNT), and trail making test (TMT). Forty-three patients (22 in the experimental group, 21 in the control group) were analyzed. Covariance analysis showed significant differences in 10/36 SPART (P=0.0002), 10/36 SPART delayed recall (P=0.0021), WLG (P=0.0123), LNS (P=0.0413), BNT (P=0.0007) and TMT-A (P=0.010) scores between groups. The study showed a significant improvement related to learning and visual memory, executive functions, attention and information processing speed, and naming ability in those patients who received cognitive rehabilitation. The results suggest that MS-Line! is effective in improving cognitive impairment in MS patients. © The Author(s), 2015.

  1. The Faces Symbol Test, a newly developed screening instrument to assess cognitive decline related to multiple sclerosis: first results of the Berlin Multi-Centre FST Validation Study.

    PubMed

    Scherer, P; Penner, I K; Rohr, A; Boldt, H; Ringel, I; Wilke-Burger, H; Burger-Deinerth, E; Isakowitsch, K; Zimmermann, M; Zahrnt, S; Hauser, R; Hilbert, K; Tiel-Wilck, K; Anvari, K; Behringer, A; Peglau, I; Friedrich, H; Plenio, A; Benesch, G; Ehret, R; Nippert, I; Finke, G; Schulz, I; Bergtholdt, B; Breitkopf, S; Kaskel, P; Reischies, F; Kugler, J

    2007-04-01

    Reliable, language-independent, short screening instruments to test for cognitive function in patients with multiple sclerosis (MS) remain rare, despite the high number of patients affected by cognitive decline. We developed a new, short screening instrument, the Faces Symbol Test (FST), and compared its diagnostic test characteristics with a composite of the Digit Symbol Substitution Test (DSST) and the Paced Auditory Serial Addition Test (PASAT), in 108 MS patients and 33 healthy controls. An Informant-Report Questionnaire, a Self-Report Questionnaire, and a neurologist's estimation of the Every Day Life Cognitive Status were also applied to the MS patients. The statistical analyses comprised of a receiver operating characteristic analysis for test accuracy and for confounding variables. The PASAT and DSST composite score estimated that 36.5% of the MS patients had cognitive impairment. The FST estimated that 40.7% of the MS patients were cognitively impaired (sensitivity 84%; specificity 85%). The FST, DSST and PASAT results were significantly correlated with the patients' physical impairment, as measured by the Expanded Disability Status Scale (EDSS). The results suggest that the FST might be a culture-free, sensitive, and practical short screening instrument for the detection of cognitive decline in patients with MS, including those in the early stages.

  2. Factor Analysis of Persistent Post-Concussive Symptoms within a Military Sample with Blast Exposure

    PubMed Central

    Franke, L.M.; Czarnota, J.N.; Ketchum, J.M.; Walker, W.C.

    2014-01-01

    Objective To determine the factor structure of persistent post-concussive syndrome (PPCS) symptoms in a blast-exposed military sample and validate factors against objective and symptom measures. Setting Veterans Affairs medical center and military bases. Participants One hundred eighty-one service members and veterans with at least one significant exposure to blast during deployment within the two years prior to study enrollment. Design Confirmatory and exploratory factor analysis of the Rivermead Post-concussion Questionnaire (RPQ). Main Measures RPQ, PTSD Symptom Checklist-Civilian, Center for Epidemiologic Studies Depression inventory, Sensory Organization Test, Paced Auditory Serial Addition Test, California Verbal Learning Test, Delis-Kaplan Executive Function System subtests. Results The three-factor structure of PPCS was not confirmed. A four-factor structure was extracted, and factors were interpreted as reflecting emotional, cognitive, visual, and vestibular functions. All factors were associated with scores on psychological symptom inventories; visual and vestibular factors were also associated with balance performance. There was no significant association between the cognitive factor and neuropsychological performance, nor between a history of mTBI and factor scores. Conclusion Persistent post-concussive symptoms observed months after blast exposure seem to be related to four distinct forms of distress, but not to mTBI per se, with vestibular and visual factors possibly related to injury of sensory organs by blast. PMID:24695267

  3. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  4. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. General Mathematical Ability Predicts PASAT Performance in MS Patients: Implications for Clinical Interpretation and Cognitive Reserve.

    PubMed

    Sandry, Joshua; Paxton, Jessica; Sumowski, James F

    2016-03-01

    The Paced Auditory Serial Addition Test (PASAT) is used to assess cognitive status in multiple sclerosis (MS). Although the mathematical demands of the PASAT seem minor (single-digit arithmetic), cognitive psychology research links greater mathematical ability (e.g., algebra, calculus) to more rapid retrieval of single-digit math facts (e.g., 5+6=11). The present study evaluated the hypotheses that (a) mathematical ability is related to PASAT performance and (b) both the relationship between intelligence and PASAT performance as well as the relationship between education and PASAT performance are both mediated by mathematical ability. Forty-five MS patients were assessed using the Wechsler Test of Adult Reading, PASAT and Calculation Subtest of the Woodcock-Johnson-III. Regression based path analysis and bootstrapping were used to compute 95% confidence intervals and test for mediation. Mathematical ability (a) was related to PASAT (β=.61; p<.001) and (b) fully mediated the relationship between Intelligence and PASAT (β=.76; 95% confidence interval (CI95)=.28, 1.45; direct effect of Intelligence, β=.42; CI95=-.39, 1.23) as well as the relationship between Education and PASAT (β=2.43, CI95=.81, 5.16, direct effect of Education, β=.83, CI95=-1.95, 3.61). Mathematical ability represents a source of error in the clinical interpretation of cognitive decline using the PASAT. Domain-specific cognitive reserve is discussed.

  6. The protocol and design of a randomised controlled study on training of attention within the first year after acquired brain injury.

    PubMed

    Bartfai, Aniko; Markovic, Gabriela; Sargenius Landahl, Kristina; Schult, Marie-Louise

    2014-05-08

    To describe the design of the study aiming to examine intensive targeted cognitive rehabilitation of attention in the acute (<4 months) and subacute rehabilitation phases (4-12 months) after acquired brain injury and to evaluate the effects on function, activity and participation (return to work). Within a prospective, randomised, controlled study 120 consecutive patients with stroke or traumatic brain injury were randomised to 20 hours of intensive attention training by Attention Process Training or by standard, activity based training. Progress was evaluated by Statistical Process Control and by pre and post measurement of functional and activity levels. Return to work was also evaluated in the post-acute phase. Primary endpoints were the changes in the attention measure, Paced Auditory Serial Addition Test and changes in work ability. Secondary endpoints included measurement of cognitive functions, activity and work return. There were 3, 6 and 12-month follow ups focussing on health economics. The study will provide information on rehabilitation of attention in the early phases after ABI; effects on function, activity and return to work. Further, the application of Statistical Process Control might enable closer investigation of the cognitive changes after acquired brain injury and demonstrate the usefulness of process measures in rehabilitation. The study was registered at ClinicalTrials.gov Protocol. NCT02091453, registered: 19 March 2014.

  7. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics.

    PubMed

    Joyce, Alison P; Wang, Mengmeng; Lawrence-Henderson, Rosemary; Filliettaz, Cynthia; Leung, Sheldon S; Xu, Xin; O'Hara, Denise M

    2014-07-01

    The purpose of this study was to validate the approach of serial sampling from one mouse through ligand binding assay (LBA) quantification of dosed biotherapeutic in diluted whole blood to derive a pharmacokinetic (PK) profile. This investigation compared PK parameters obtained using serial and composite sampling methods following administration of human IgG monoclonal antibody. The serial sampling technique was established by collecting 10 μL of blood via tail vein at each time point following drug administration. Blood was immediately diluted into buffer followed by analyte quantitation using Gyrolab to derive plasma concentrations. Additional studies were conducted to understand matrix and sampling site effects on drug concentrations. The drug concentration profiles, irrespective of biological matrix, and PK parameters using both sampling methods were not significantly different. There were no sampling site effects on drug concentration measurements except that concentrations were slightly lower in sodium citrated plasma than other matrices. We recommend the application of mouse serial sampling, particularly with limiting drug supply or specialized animal models. Overall the efficiencies gained by serial sampling were 40-80% savings in study cost, animal usage, study length and drug conservation while inter-subject variability across PK parameters was less than 30%.

  8. Serial migration and its implications for the parent-child relationship: a retrospective analysis of the experiences of the children of Caribbean immigrants.

    PubMed

    Smith, Andrea; Lalonde, Richard N; Johnson, Simone

    2004-05-01

    This study addressed the potential impact of serial migration for parent-children relationships and for children's psychological well-being. The experience of being separated from their parents during childhood and reunited with them at a later time was retrospectively examined for 48 individuals. A series of measures (e.g., self-esteem, parental identification) associated with appraisals at critical time periods during serial migration (separation, reunion, current) revealed that serial migration can potentially disrupt parent-child bonding and unfavorably affect children's self-esteem and behavior. Time did not appear to be wholly effective in repairing rifts in the parent-child relationship. Risk factors for less successful reunions included lengthy separations and the addition of new members to the family unit in the child's absence. (c) 2004 APA

  9. Anatomy of the auditory thalamocortical system in the Mongolian gerbil: nuclear origins and cortical field-, layer-, and frequency-specificities.

    PubMed

    Saldeitis, Katja; Happel, Max F K; Ohl, Frank W; Scheich, Henning; Budinger, Eike

    2014-07-01

    Knowledge of the anatomical organization of the auditory thalamocortical (TC) system is fundamental for the understanding of auditory information processing in the brain. In the Mongolian gerbil (Meriones unguiculatus), a valuable model species in auditory research, the detailed anatomy of this system has not yet been worked out in detail. Here, we investigated the projections from the three subnuclei of the medial geniculate body (MGB), namely, its ventral (MGv), dorsal (MGd), and medial (MGm) divisions, as well as from several of their subdivisions (MGv: pars lateralis [LV], pars ovoidea [OV], rostral pole [RP]; MGd: deep dorsal nucleus [DD]), to the auditory cortex (AC) by stereotaxic pressure injections and electrophysiologically guided iontophoretic injections of the anterograde tract tracer biocytin. Our data reveal highly specific features of the TC connections regarding their nuclear origin in the subdivisions of the MGB and their termination patterns in the auditory cortical fields and layers. In addition to tonotopically organized projections, primarily of the LV, OV, and DD to the AC, a large number of axons diverge across the tonotopic gradient. These originate mainly from the RP, MGd (proper), and MGm. In particular, neurons of the MGm project in a columnar fashion to several auditory fields, forming small- and medium-sized boutons, and also hitherto unknown giant terminals. The distinctive layer-specific distribution of axonal endings within the AC indicates that each of the TC connectivity systems has a specific function in auditory cortical processing. Copyright © 2014 Wiley Periodicals, Inc.

  10. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly

    PubMed Central

    Appler, Jessica M.; Goodrich, Lisa V.

    2011-01-01

    Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575

  11. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    PubMed Central

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  12. The Effect of Cognitive Control on Different Types of Auditory Distraction.

    PubMed

    Bell, Raoul; Röer, Jan P; Marsh, John E; Storch, Dunja; Buchner, Axel

    2017-09-01

    Deviant as well as changing auditory distractors interfere with short-term memory. According to the duplex model of auditory distraction, the deviation effect is caused by a shift of attention while the changing-state effect is due to obligatory order processing. This theory predicts that foreknowledge should reduce the deviation effect, but should have no effect on the changing-state effect. We compared the effect of foreknowledge on the two phenomena directly within the same experiment. In a pilot study, specific foreknowledge was impotent in reducing either the changing-state effect or the deviation effect, but it reduced disruption by sentential speech, suggesting that the effects of foreknowledge on auditory distraction may increase with the complexity of the stimulus material. Given the unexpected nature of this finding, we tested whether the same finding would be obtained in (a) a direct preregistered replication in Germany and (b) an additional replication with translated stimulus materials in Sweden.

  13. Assessment of auditory skills in 140 cochlear implant children using the EARS protocol.

    PubMed

    Sainz, Manuel; Skarzynski, Henryk; Allum, John H J; Helms, Jan; Rivas, Adriana; Martin, Jane; Zorowka, Patrick Georg; Phillips, Lucy; Delauney, Joseph; Brockmeyer, Steffi Johanna; Kompis, Martin; Korolewa, Inna; Albegger, Klaus; Zwirner, Petra; Van De Heyning, Paul; D'Haese, Patrick

    2003-01-01

    Auditory performance of cochlear implant (CI) children was assessed with the Listening Progress Profile (LiP) and the Monosyllabic-Trochee-Polysyllabic-Word Test (MTP) following the EARS protocol. Additionally, the 'initial drop' phenomenon, a recently reported decrease of auditory performance occurring immediately after first fitting, was investigated. Patients were 140 prelingually deafened children from various clinics and centers worldwide implanted with a MEDEL COMBI 40/40+. Analysis of LiP data showed a significant increase after 1 month of CI use compared to preoperative scores (p < 0.01). No initial decrease was observed with this test. Analysis of MTP data revealed a significant improvement of word recognition after 6 months (p < 0.01), with a significant temporary decrease after initial fitting (p < 0.01). With both tests, children's auditory skills improved up to 2 years. Amount of improvement was negatively correlated with age at implantation. Copyright 2003 S. Karger AG, Basel

  14. Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.

    PubMed

    Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar

    2010-09-01

    The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.

  15. The effects of speech output technology in the learning of graphic symbols.

    PubMed Central

    Schlosser, R W; Belfiore, P J; Nigam, R; Blischak, D; Hetzroni, O

    1995-01-01

    The effects of auditory stimuli in the form of synthetic speech output on the learning of graphic symbols were evaluated. Three adults with severe to profound mental retardation and communication impairments were taught to point to lexigrams when presented with words under two conditions. In the first condition, participants used a voice output communication aid to receive synthetic speech as antecedent and consequent stimuli. In the second condition, with a nonelectronic communications board, participants did not receive synthetic speech. A parallel treatments design was used to evaluate the effects of the synthetic speech output as an added component of the augmentative and alternative communication system. The 3 participants reached criterion when not provided with the auditory stimuli. Although 2 participants also reached criterion when not provided with the auditory stimuli, the addition of auditory stimuli resulted in more efficient learning and a decreased error rate. Maintenance results, however, indicated no differences between conditions. Finding suggest that auditory stimuli in the form of synthetic speech contribute to the efficient acquisition of graphic communication symbols. PMID:14743828

  16. Auditory effects of aircraft noise on people living near an airport.

    PubMed

    Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C

    1997-01-01

    Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.

  17. Behavioral and subcortical signatures of musical expertise in Mandarin Chinese speakers

    PubMed Central

    Tervaniemi, Mari; Aalto, Daniel

    2018-01-01

    Both musical training and native language have been shown to have experience-based plastic effects on auditory processing. However, the combined effects within individuals are unclear. Recent research suggests that musical training and tone language speaking are not clearly additive in their effects on processing of auditory features and that there may be a disconnect between perceptual and neural signatures of auditory feature processing. The literature has only recently begun to investigate the effects of musical expertise on basic auditory processing for different linguistic groups. This work provides a profile of primary auditory feature discrimination for Mandarin speaking musicians and nonmusicians. The musicians showed enhanced perceptual discrimination for both frequency and duration as well as enhanced duration discrimination in a multifeature discrimination task, compared to nonmusicians. However, there were no differences between the groups in duration processing of nonspeech sounds at a subcortical level or in subcortical frequency representation of a nonnative tone contour, for fo or for the first or second formant region. The results indicate that musical expertise provides a cognitive, but not subcortical, advantage in a population of Mandarin speakers. PMID:29300756

  18. Examination of the relation between an assessment of skills and performance on auditory-visual conditional discriminations for children with autism spectrum disorder.

    PubMed

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The results of the skills assessment showed that 4 participants failed to demonstrate mastery of at least 1 of the skills. We compared the outcomes of the assessment to the results of auditory-visual conditional discrimination training and found that training outcomes were related to the assessment outcomes for 7 of the 9 participants. One participant who did not demonstrate mastery of all assessment skills subsequently learned several conditional discriminations when blocked training trials were conducted. Another participant who did not demonstrate mastery of the auditory discrimination skill subsequently acquired conditional discriminations in 1 of the training conditions. We discuss the implications of the assessment for practice and suggest additional areas of research on this topic. © Society for the Experimental Analysis of Behavior.

  19. Attentional Gain Control of Ongoing Cortical Speech Representations in a “Cocktail Party”

    PubMed Central

    Kerlin, Jess R.; Shahin, Antoine J.; Miller, Lee M.

    2010-01-01

    Normal listeners possess the remarkable perceptual ability to select a single speech stream among many competing talkers. However, few studies of selective attention have addressed the unique nature of speech as a temporally extended and complex auditory object. We hypothesized that sustained selective attention to speech in a multi-talker environment would act as gain control on the early auditory cortical representations of speech. Using high-density electroencephalography and a template-matching analysis method, we found selective gain to the continuous speech content of an attended talker, greatest at a frequency of 4–8 Hz, in auditory cortex. In addition, the difference in alpha power (8–12 Hz) at parietal sites across hemispheres indicated the direction of auditory attention to speech, as has been previously found in visual tasks. The strength of this hemispheric alpha lateralization, in turn, predicted an individual’s attentional gain of the cortical speech signal. These results support a model of spatial speech stream segregation, mediated by a supramodal attention mechanism, enabling selection of the attended representation in auditory cortex. PMID:20071526

  20. [A modified speech enhancement algorithm for electronic cochlear implant and its digital signal processing realization].

    PubMed

    Wang, Yulin; Tian, Xuelong

    2014-08-01

    In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.

  1. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.

    PubMed

    Torppa, Ritva; Faulkner, Andrew; Huotilainen, Minna; Järvikivi, Juhani; Lipsanen, Jari; Laasonen, Marja; Vainio, Martti

    2014-03-01

    To study prosodic perception in early-implanted children in relation to auditory discrimination, auditory working memory, and exposure to music. Word and sentence stress perception, discrimination of fundamental frequency (F0), intensity and duration, and forward digit span were measured twice over approximately 16 months. Musical activities were assessed by questionnaire. Twenty-one early-implanted and age-matched normal-hearing (NH) children (4-13 years). Children with cochlear implants (CIs) exposed to music performed better than others in stress perception and F0 discrimination. Only this subgroup of implanted children improved with age in word stress perception, intensity discrimination, and improved over time in digit span. Prosodic perception, F0 discrimination and forward digit span in implanted children exposed to music was equivalent to the NH group, but other implanted children performed more poorly. For children with CIs, word stress perception was linked to digit span and intensity discrimination: sentence stress perception was additionally linked to F0 discrimination. Prosodic perception in children with CIs is linked to auditory working memory and aspects of auditory discrimination. Engagement in music was linked to better performance across a range of measures, suggesting that music is a valuable tool in the rehabilitation of implanted children.

  2. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing

    PubMed Central

    Keough, Dwayne; Jones, Jeffery A.

    2009-01-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel ∕ta∕ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback. PMID:19640048

  3. Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory.

    PubMed

    Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P

    2002-04-01

    The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.

  4. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice.

    PubMed

    Liu, Ke; Ji, Fei; Yang, Guan; Hou, Zhaohui; Sun, Jianhe; Wang, Xiaoyu; Guo, Weiwei; Sun, Wei; Yang, Weiyan; Yang, Xiao; Yang, Shiming

    2016-10-01

    More than 100 genes have been associated with deafness. However, SMAD4 is rarely considered a contributor to deafness in humans, except for its well-defined role in cell differentiation and regeneration. Here, we report that a SMAD4 defect in mice can cause auditory neuropathy, which was defined as a mysterious hearing and speech perception disorder in human for which the genetic background remains unclear. Our study showed that a SMAD4 defect induces failed formation of cochlear ribbon synapse during the earlier stage of auditory development in mice. Further investigation found that there are nearly normal morphology of outer hair cells (OHCs) and post-synapse spiral ganglion nerves (SGNs) in SMAD4 conditional knockout mice (cKO); however, a preserved distortion product of otoacoustic emission (DPOAE) and cochlear microphonic (CM) still can be evoked in cKO mice. Moreover, a partial restoration of hearing detected by electric auditory brainstem response (eABR) has been obtained in the cKO mice using electrode stimuli toward auditory nerves. Additionally, the ribbon synapses in retina are not affected by this SMAD4 defect. Thus, our findings suggest that this SMAD4 defect causes auditory neuropathy via specialized disruption of cochlear ribbon synapses.

  5. Auditory Pitch Perception in Autism Spectrum Disorder Is Associated With Nonverbal Abilities.

    PubMed

    Chowdhury, Rakhee; Sharda, Megha; Foster, Nicholas E V; Germain, Esther; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L

    2017-11-01

    Atypical sensory perception and heterogeneous cognitive profiles are common features of autism spectrum disorder (ASD). However, previous findings on auditory sensory processing in ASD are mixed. Accordingly, auditory perception and its relation to cognitive abilities in ASD remain poorly understood. Here, children with ASD, and age- and intelligence quotient (IQ)-matched typically developing children, were tested on a low- and a higher level pitch processing task. Verbal and nonverbal cognitive abilities were measured using the Wechsler's Abbreviated Scale of Intelligence. There were no group differences in performance on either auditory task or IQ measure. However, there was significant variability in performance on the auditory tasks in both groups that was predicted by nonverbal, not verbal skills. These results suggest that auditory perception is related to nonverbal reasoning rather than verbal abilities in ASD and typically developing children. In addition, these findings provide evidence for preserved pitch processing in school-age children with ASD with average IQ, supporting the idea that there may be a subgroup of individuals with ASD that do not present perceptual or cognitive difficulties. Future directions involve examining whether similar perceptual-cognitive relationships might be observed in a broader sample of individuals with ASD, such as those with language impairment or lower IQ.

  6. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing.

    PubMed

    Keough, Dwayne; Jones, Jeffery A

    2009-08-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers' and untrained singers' (nonsingers') sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers' F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers' models appear to be more sensitive in response to subtle discrepancies in auditory feedback.

  7. On the cyclic nature of perception in vision versus audition

    PubMed Central

    VanRullen, Rufin; Zoefel, Benedikt; Ilhan, Barkin

    2014-01-01

    Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in approximately 7–13 Hz cycles rather than continuously. On the other hand, experimental attempts at applying similar tools to demonstrate the discreteness of auditory awareness have been largely unsuccessful. We argue and demonstrate experimentally that visual and auditory perception are not equally affected by temporal subsampling of their respective input streams: video sequences remain intelligible at sampling rates of two to three frames per second, whereas audio inputs lose their fine temporal structure, and thus all significance, below 20–30 samples per second. This does not mean, however, that our auditory perception must proceed continuously. Instead, we propose that audition could still involve perceptual cycles, but the periodic sampling should happen only after the stage of auditory feature extraction. In addition, although visual perceptual cycles can follow one another at a spontaneous pace largely independent of the visual input, auditory cycles may need to sample the input stream more flexibly, by adapting to the temporal structure of the auditory inputs. PMID:24639585

  8. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and

  9. Using complex auditory-visual samples to produce emergent relations in children with autism.

    PubMed

    Groskreutz, Nicole C; Karsina, Allen; Miguel, Caio F; Groskreutz, Mark P

    2010-03-01

    Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually and emergence of additional conditional relations and oral labeling. Tests revealed class-consistent performance for all participants following training.

  10. Auditory skills, language development, and adaptive behavior of children with cochlear implants and additional disabilities

    PubMed Central

    Beer, Jessica; Harris, Michael S.; Kronenberger, William G.; Holt, Rachael Frush; Pisoni, David B.

    2012-01-01

    Objective The objective of this study was to evaluate the development of functional auditory skills, language, and adaptive behavior in deaf children with cochlear implants (CI) who also have additional disabilities (AD). Design A two-group, pre-test versus post-test design was used. Study sample Comparisons were made between 23 children with CIs and ADs, and an age-matched comparison group of 23 children with CIs without ADs (No-AD). Assessments were obtained pre-CI and within 12 months post-CI. Results All but two deaf children with ADs improved in auditory skills using the IT-MAIS. Most deaf children in the AD group made progress in receptive but not expressive language using the Preschool Language Scale, but their language quotients were lower than the No-AD group. Five of eight children with ADs made progress in daily living skills and socialization skills; two made progress in motor skills. Children with ADs who did not make progress in language, did show progress in adaptive behavior. Conclusions Children with deafness and ADs made progress in functional auditory skills, receptive language, and adaptive behavior. Expanded assessment that includes adaptive functioning and multi-center collaboration is recommended to best determine benefits of implantation in areas of expected growth in this clinical population. PMID:22509948

  11. Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia.

    PubMed

    Sacks, Stephanie; Fisher, Melissa; Garrett, Coleman; Alexander, Phillip; Holland, Christine; Rose, Demian; Hooker, Christine; Vinogradov, Sophia

    2013-01-01

    Social cognitive deficits are an important treatment target in schizophrenia, but it is unclear to what degree they require specialized interventions and which specific components of behavioral interventions are effective. In this pilot study, we explored the effects of a novel computerized neuroplasticity-based auditory training delivered in conjunction with computerized social cognition training (SCT) in patients with schizophrenia. Nineteen clinically stable schizophrenia subjects performed 50 hours of computerized exercises that place implicit, increasing demands on auditory perception, plus 12 hours of computerized training in emotion identification, social perception, and theory of mind tasks. All subjects were assessed with MATRICS-recommended measures of neurocognition and social cognition, plus a measure of self-referential source memory before and after the computerized training. Subjects showed significant improvements on multiple measures of neurocognition. Additionally, subjects showed significant gains on measures of social cognition, including the MSCEIT Perceiving Emotions, MSCEIT Managing Emotions, and self-referential source memory, plus a significant decrease in positive symptoms. Computerized training of auditory processing/verbal learning in schizophrenia results in significant basic neurocognitive gains. Further, addition of computerized social cognition training results in significant gains in several social cognitive outcome measures. Computerized cognitive training that directly targets social cognitive processes can drive improvements in these crucial functions.

  12. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie.

    PubMed

    Hanke, Michael; Baumgartner, Florian J; Ibe, Pierre; Kaule, Falko R; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset - 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film ("Forrest Gump"). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures - from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized.

  13. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    PubMed Central

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p < 0.05, and r = 0.76, p = 0.01, respectively, in a sample of 20 children with APD diagnosis. The standard APD battery identified a larger proportion of participants as having APD, than an attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both modalities is required. Revising diagnostic criteria to incorporate attention tests and the inattentive type of APD in the test battery, provides additional useful data to clinicians to ensure careful interpretation of APD assessments. PMID:29441033

  14. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    PubMed Central

    2011-01-01

    Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334

  15. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing

    PubMed Central

    Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations. PMID:27310812

  16. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    PubMed

    Wilf, Meytal; Ramot, Michal; Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  17. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  18. Neural network retuning and neural predictors of learning success associated with cello training.

    PubMed

    Wollman, Indiana; Penhune, Virginia; Segado, Melanie; Carpentier, Thibaut; Zatorre, Robert J

    2018-06-26

    The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio-motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio-motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory-motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio-motor learning.

  19. Respiratory sinus arrhythmia and auditory processing in autism: modifiable deficits of an integrated social engagement system?

    PubMed

    Porges, Stephen W; Macellaio, Matthew; Stanfill, Shannon D; McCue, Kimberly; Lewis, Gregory F; Harden, Emily R; Handelman, Mika; Denver, John; Bazhenova, Olga V; Heilman, Keri J

    2013-06-01

    The current study evaluated processes underlying two common symptoms (i.e., state regulation problems and deficits in auditory processing) associated with a diagnosis of autism spectrum disorders. Although these symptoms have been treated in the literature as unrelated, when informed by the Polyvagal Theory, these symptoms may be viewed as the predictable consequences of depressed neural regulation of an integrated social engagement system, in which there is down regulation of neural influences to the heart (i.e., via the vagus) and to the middle ear muscles (i.e., via the facial and trigeminal cranial nerves). Respiratory sinus arrhythmia (RSA) and heart period were monitored to evaluate state regulation during a baseline and two auditory processing tasks (i.e., the SCAN tests for Filtered Words and Competing Words), which were used to evaluate auditory processing performance. Children with a diagnosis of autism spectrum disorders (ASD) were contrasted with aged matched typically developing children. The current study identified three features that distinguished the ASD group from a group of typically developing children: 1) baseline RSA, 2) direction of RSA reactivity, and 3) auditory processing performance. In the ASD group, the pattern of change in RSA during the attention demanding SCAN tests moderated the relation between performance on the Competing Words test and IQ. In addition, in a subset of ASD participants, auditory processing performance improved and RSA increased following an intervention designed to improve auditory processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder: Auditory-evoked response in children with autism spectrum disorder.

    PubMed

    Yoshimura, Yuko; Kikuchi, Mitsuru; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Takahashi, Tetsuya; Remijn, Gerard B; Oi, Manabu; Munesue, Toshio; Higashida, Haruhiro; Minabe, Yoshio

    2016-01-01

    The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD) in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD) is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G) subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  1. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers.

    PubMed

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  2. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    PubMed Central

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435

  3. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  4. Influence of visual and auditory biofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: a randomized controlled clinical trial.

    PubMed

    Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A

    2015-02-01

    Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.

  5. The relationship between serial sexual murder and autoerotic asphyxiation.

    PubMed

    Myers, Wade C; Bukhanovskiy, Alexandr; Justen, Elle; Morton, Robert J; Tilley, John; Adams, Kenneth; Vandagriff, Virgil L; Hazelwood, Robert R

    2008-04-07

    This case series documents and examines the association between autoerotic asphyxiation, sadomasochism, and serial sexual murderers. Autoerotic asphyxiation, along with other paraphilias found in this population, is reviewed. Five cases of serial sexual killers who engaged in autoerotic asphyxiation were identified worldwide: four from the United States and one from Russia. Case reports for each are provided. All (100%) were found to have sexual sadism in addition to autoerotic asphyxiation. Furthermore, two (40%) had bondage fetishism, and two (40%) had transvestic fetishism, consistent with these paraphilias co-occurring in those with autoerotic asphyxiation. Overall the group averaged 4.0 lifetime paraphilias. Some possible relationships were observed between the offenders' paraphilic orientation and their modus operandi, e.g., all of these serial killers strangled victims-suggesting an association between their sadistic and asphyxiative paraphilic interests. The overlap of seemingly polar opposite paraphilias in this sample--sexual sadism and autoerotic asphyxiation--is explored from a historical and clinical perspective. Multiple commonalities shared between these five offenders and serial sexual murderers in general are addressed. A primary limitation of this study is its small sample size and empirical basis; the results may not be generalizable beyond the sample. The findings from this study support the supposition that crime scene behaviors often reflect paraphilic disturbances in those who commit serial sexual homicides.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Yunsic; Amar, Jacques G.

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N{sup 3} where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scalingmore » of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N{sup 1/2}. Some additional possible methods to improve the scaling of TAD are also discussed.« less

  7. Improved scaling of temperature-accelerated dynamics using localization

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N1/2. Some additional possible methods to improve the scaling of TAD are also discussed.

  8. Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia

    PubMed Central

    Moyer, Caitlin E.; Delevich, Kristen M.; Fish, Kenneth N.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Dorph-Petersen, Karl-Anton; Lewis, David A.; Sweet, Robert A.

    2012-01-01

    Background Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. Methods We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. Results GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Conclusions Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex. PMID:22624794

  9. Human amygdala activation by the sound produced during dental treatment: A fMRI study.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  10. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    PubMed Central

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli. PMID:26356376

  11. Influence of auditory and audiovisual stimuli on the right-left prevalence effect.

    PubMed

    Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim

    2014-01-01

    When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.

  12. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  13. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.

    PubMed

    Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith

    2017-01-01

    Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.

  14. The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    PubMed Central

    Sörös, Peter; Michael, Nikolaus; Tollkötter, Melanie; Pfleiderer, Bettina

    2006-01-01

    Background A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i) the amplitude of the N1m response and (ii) its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. Results Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak) and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. Conclusion These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex. PMID:16884545

  15. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing

    PubMed Central

    Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias

    2018-01-01

    Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637

  16. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  17. The relationship of phonological ability, speech perception, and auditory perception in adults with dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquiere, Pol; Wouters, Jan

    2014-01-01

    This study investigated whether auditory, speech perception, and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e., rapid automatic naming, verbal short-term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency modulation (FM) and an amplitude rise time (RT); an intensity discrimination task (ID) was included as a non-dynamic control task. Speech perception was assessed by means of sentences and words-in-noise tasks. Group analyses revealed significant group differences in auditory tasks (i.e., RT and ID) and in phonological processing measures, yet no differences were found for speech perception. In addition, performance on RT discrimination correlated with reading but this relation was mediated by phonological processing and not by speech-in-noise. Finally, inspection of the individual scores revealed that the dyslexic readers showed an increased proportion of deviant subjects on the slow-dynamic auditory and phonological tasks, yet each individual dyslexic reader does not display a clear pattern of deficiencies across the processing skills. Although our results support phonological and slow-rate dynamic auditory deficits which relate to literacy, they suggest that at the individual level, problems in reading and writing cannot be explained by the cascading auditory theory. Instead, dyslexic adults seem to vary considerably in the extent to which each of the auditory and phonological factors are expressed and interact with environmental and higher-order cognitive influences. PMID:25071512

  18. The combined effects of forward masking by noise and high click rate on monaural and binaural human auditory nerve and brainstem potentials.

    PubMed

    Pratt, Hillel; Polyakov, Andrey; Bleich, Naomi; Mittelman, Naomi

    2004-07-01

    To study effects of forward masking and rapid stimulation on human monaurally- and binaurally-evoked brainstem potentials and suggest their relation to synaptic fatigue and recovery and to neuronal action potential refractoriness. Auditory brainstem evoked potentials (ABEPs) were recorded from 12 normally- and symmetrically hearing adults, in response to each click (50 dB nHL, condensation and rarefaction) in a train of nine, with an inter-click interval of 11 ms, that followed a white noise burst of 100 ms duration (50 dB nHL). Sequences of white noise and click train were repeated at a rate of 2.89 s(-1). The interval between noise and first click in the train was 2, 11, 22, 44, 66 or 88 ms in different runs. ABEPs were averaged (8000 repetitions) using a dwell time of 25 micros/address/channel. The binaural interaction components (BICs) of ABEPs were derived and the single, centrally located equivalent dipoles of ABEP waves I and V and of the BIC major wave were estimated. The latencies of dipoles I and V of ABEP, their inter-dipole interval and the dipole magnitude of component V were significantly affected by the interval between noise and clicks and by the serial position of the click in the train. The latency and dipole magnitude of the major BIC component were significantly affected by the interval between noise and clicks. Interval from noise and the click's serial position in the train interacted to affect dipole V latency, dipole V magnitude, BIC latencies and the V-I inter-dipole latency difference. Most of the effects were fully apparent by the first few clicks in the train, and the trend (increase or decrease) was affected by the interval between noise and clicks. The changes in latency and magnitude of ABEP and BIC components with advancing position in the click train and the interactions of click position in the train with the intervals from noise indicate an interaction of fatigue and recovery, compatible with synaptic depletion and replenishing, respectively. With the 2 ms interval between noise and the first click in the train, neuronal action potential refractoriness may also be involved.

  19. Surgical management of internal auditory canal and cerebellopontine angle facial nerve schwannoma

    PubMed Central

    Mowry, Sarah; Hansen, Marlan; Gantz, Bruce

    2013-01-01

    Objective To investigate the long-term patient outcomes following tumor debulking for internal auditory canal facial schwannoma (FNS). Study Design retrospective case review Setting Tertiary referral center Patients Patients operated on between 1998–2010 for a preoperative diagnosis of vestibular schwannoma with the intraoperative identification FNS instead. Intervention diagnostic and therapeutic Main Outcome Measures House-Brackmann facial nerve score immediately and at long term follow up (>1 yr); recurrence of tumor. Results 16 patients were identified who were presumed to have vestibular schwannoma but intraoperatively were diagnosed with facial nerve schwannoma. Eleven underwent debulking surgery (67%–99% tumor removal), 2 underwent decompression only, 2 were diagnosed with nervus intermedius tumors and had total tumor removal with preservation of the motor branch of CN VII, 1 had complete tumor removal with facial nerve grafting. Five of 11 debulking patients underwent the MCF approach for tumor removal; the remainder had translabyrinthine resections. One debulking patient was lost to follow-up. Nine of 10 patients with long term follow up had H/B grade I or II facial function. One patient had recurrence of the tumor that required revision surgery with total removal and facial nerve grafting. Conclusions Tumor debulking for FNS provides an opportunity for tumor removal and excellent facial nerve function. Continuous facial nerve monitoring is vital for successful debulking surgery. FNS debulking is feasible via the MCF approach. Serial postoperative imaging is warranted to monitor for recurrence. PMID:22772011

  20. Memory functions of children born with asymmetric intrauterine growth restriction.

    PubMed

    Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul

    2006-10-30

    Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.

  1. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    PubMed

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we studied the behavioral consequences of adding different types of auditory distractors in a visual selective attention task in wild-type and α-9 nicotinic receptor knock-out (KO) mice. We demonstrate that KO mice perform poorly in the selective attention paradigm and that an intact medial olivocochlear transmission aids in ignoring auditory distractors during attention. Copyright © 2016 the authors 0270-6474/16/367198-12$15.00/0.

  2. Implications of Subliminal Classical Conditioning for Defeating the Use of Countermeasures in the Detection of Deception: Subliminal Evaluation

    DTIC Science & Technology

    1993-08-01

    presented emotional stimuli than for subliminally presented neutral stimuli. Emotional stimuli consisted of sexually charged photographs, and the neutral...behavior. In addition to research using visual stimuli, some 13 studies have been conducted using subliminal (masked by 40 dB white noise) auditory ...deactivating suggestions masked by a 40-dB white noise signal. For the deactivating subliminal auditory messages, suggestions of heaviness and warmth

  3. Distributed Mobile Device Based Shooter Detection Simulation

    DTIC Science & Technology

    2013-09-01

    three signatures of a gunshot ( muzzle flash [optical], muzzle blast [auditory], and shock wave [auditory]), we focus only on information from the...bullet, while this proximity is important when using information from the shock wave. Detecting and using the muzzle flash would require accurate...Additionally, the mobile device would need to be aimed towards the blast to even have a chance detect the muzzle flash . 2.1 Single Microphone When a sound is

  4. Experimental Psychological Stress on Quantitative Sensory Testing Response in Patients with Temporomandibular Disorders.

    PubMed

    Araújo Oliveira Ferreira, Dyna Mara; Costa, Yuri Martins; de Quevedo, Henrique Müller; Bonjardim, Leonardo Rigoldi; Rodrigues Conti, Paulo César

    2018-05-15

    To assess the modulatory effects of experimental psychological stress on the somatosensory evaluation of myofascial temporomandibular disorder (TMD) patients. A total of 20 women with myofascial TMD and 20 age-matched healthy women were assessed by means of a standardized battery of quantitative sensory testing. Cold detection threshold (CDT), warm detection threshold (WDT), cold pain threshold (CPT), heat pain threshold (HPT), mechanical pain threshold (MPT), wind-up ratio (WUR), and pressure pain threshold (PPT) were performed on the facial skin overlying the masseter muscle. The variables were measured in three sessions: before (baseline) and immediately after the Paced Auditory Serial Addition Task (PASAT) (stress) and then after a washout period of 20 to 30 minutes (poststress). Mixed analysis of variance (ANOVA) was applied to the data, and the significance level was set at P = .050. A significant main effect of the experimental session on all thermal tests was found (ANOVA: F > 4.10, P < .017), where detection tests presented an increase in thresholds in the poststress session compared to baseline (CDT, P = .012; WDT, P = .040) and pain thresholds were reduced in the stress (CPT, P < .001; HPT, P = .001) and poststress sessions (CPT, P = .005; HPT, P = .006) compared to baseline. In addition, a significant main effect of the study group on all mechanical tests (MPT, WUR, and PPT) was found (ANOVA: F > 4.65, P < .037), where TMD patients were more sensitive than healthy volunteers. Acute mental stress conditioning can modulate thermal sensitivity of the skin overlying the masseter in myofascial TMD patients and healthy volunteers. Therefore, psychological stress should be considered in order to perform an unbiased somatosensory assessment of TMD patients.

  5. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  6. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source. Copyright © 2018 the authors 0270-6474/18/383252-13$15.00/0.

  7. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  8. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    PubMed

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  9. Visual abilities are important for auditory-only speech recognition: evidence from autism spectrum disorder.

    PubMed

    Schelinski, Stefanie; Riedel, Philipp; von Kriegstein, Katharina

    2014-12-01

    In auditory-only conditions, for example when we listen to someone on the phone, it is essential to fast and accurately recognize what is said (speech recognition). Previous studies have shown that speech recognition performance in auditory-only conditions is better if the speaker is known not only by voice, but also by face. Here, we tested the hypothesis that such an improvement in auditory-only speech recognition depends on the ability to lip-read. To test this we recruited a group of adults with autism spectrum disorder (ASD), a condition associated with difficulties in lip-reading, and typically developed controls. All participants were trained to identify six speakers by name and voice. Three speakers were learned by a video showing their face and three others were learned in a matched control condition without face. After training, participants performed an auditory-only speech recognition test that consisted of sentences spoken by the trained speakers. As a control condition, the test also included speaker identity recognition on the same auditory material. The results showed that, in the control group, performance in speech recognition was improved for speakers known by face in comparison to speakers learned in the matched control condition without face. The ASD group lacked such a performance benefit. For the ASD group auditory-only speech recognition was even worse for speakers known by face compared to speakers not known by face. In speaker identity recognition, the ASD group performed worse than the control group independent of whether the speakers were learned with or without face. Two additional visual experiments showed that the ASD group performed worse in lip-reading whereas face identity recognition was within the normal range. The findings support the view that auditory-only communication involves specific visual mechanisms. Further, they indicate that in ASD, speaker-specific dynamic visual information is not available to optimize auditory-only speech recognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The possible influence of noise frequency components on the health of exposed industrial workers--a review.

    PubMed

    Mahendra Prashanth, K V; Venugopalachar, Sridhar

    2011-01-01

    Noise is a common occupational health hazard in most industrial settings. An assessment of noise and its adverse health effects based on noise intensity is inadequate. For an efficient evaluation of noise effects, frequency spectrum analysis should also be included. This paper aims to substantiate the importance of studying the contribution of noise frequencies in evaluating health effects and their association with physiological behavior within human body. Additionally, a review of studies published between 1988 and 2009 that investigate the impact of industrial/occupational noise on auditory and non-auditory effects and the probable association and contribution of noise frequency components to these effects is presented. The relevant studies in English were identified in Medknow, Medline, Wiley, Elsevier, and Springer publications. Data were extracted from the studies that fulfilled the following criteria: title and/or abstract of the given study that involved industrial/occupational noise exposure in relation to auditory and non-auditory effects or health effects. Significant data on the study characteristics, including noise frequency characteristics, for assessment were considered in the study. It is demonstrated that only a few studies have considered the frequency contributions in their investigations to study auditory effects and not non-auditory effects. The data suggest that significant adverse health effects due to industrial noise include auditory and heart-related problems. The study provides a strong evidence for the claims that noise with a major frequency characteristic of around 4 kHz has auditory effects and being deficient in data fails to show any influence of noise frequency components on non-auditory effects. Furthermore, specific noise levels and frequencies predicting the corresponding health impacts have not yet been validated. There is a need for advance research to clarify the importance of the dominant noise frequency contribution in evaluating health effects.

  11. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    PubMed Central

    Bangert, Marc; Altenmüller, Eckart O

    2003-01-01

    Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529

  12. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    PubMed

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  13. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing

    PubMed Central

    Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio

    2017-01-01

    Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729

  14. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  15. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    PubMed

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  16. Hearing in noisy environments: noise invariance and contrast gain control

    PubMed Central

    Willmore, Ben D B; Cooke, James E; King, Andrew J

    2014-01-01

    Contrast gain control has recently been identified as a fundamental property of the auditory system. Electrophysiological recordings in ferrets have shown that neurons continuously adjust their gain (their sensitivity to change in sound level) in response to the contrast of sounds that are heard. At the level of the auditory cortex, these gain changes partly compensate for changes in sound contrast. This means that sounds which are structurally similar, but have different contrasts, have similar neuronal representations in the auditory cortex. As a result, the cortical representation is relatively invariant to stimulus contrast and robust to the presence of noise in the stimulus. In the inferior colliculus (an important subcortical auditory structure), gain changes are less reliably compensatory, suggesting that contrast- and noise-invariant representations are constructed gradually as one ascends the auditory pathway. In addition to noise invariance, contrast gain control provides a variety of computational advantages over static neuronal representations; it makes efficient use of neuronal dynamic range, may contribute to redundancy-reducing, sparse codes for sound and allows for simpler decoding of population responses. The circuits underlying auditory contrast gain control are still under investigation. As in the visual system, these circuits may be modulated by factors other than stimulus contrast, forming a potential neural substrate for mediating the effects of attention as well as interactions between the senses. PMID:24907308

  17. A sound advantage: Increased auditory capacity in autism.

    PubMed

    Remington, Anna; Fairnie, Jake

    2017-09-01

    Autism Spectrum Disorder (ASD) has an intriguing auditory processing profile. Individuals show enhanced pitch discrimination, yet often find seemingly innocuous sounds distressing. This study used two behavioural experiments to examine whether an increased capacity for processing sounds in ASD could underlie both the difficulties and enhanced abilities found in the auditory domain. Autistic and non-autistic young adults performed a set of auditory detection and identification tasks designed to tax processing capacity and establish the extent of perceptual capacity in each population. Tasks were constructed to highlight both the benefits and disadvantages of increased capacity. Autistic people were better at detecting additional unexpected and expected sounds (increased distraction and superior performance respectively). This suggests that they have increased auditory perceptual capacity relative to non-autistic people. This increased capacity may offer an explanation for the auditory superiorities seen in autism (e.g. heightened pitch detection). Somewhat counter-intuitively, this same 'skill' could result in the sensory overload that is often reported - which subsequently can interfere with social communication. Reframing autistic perceptual processing in terms of increased capacity, rather than a filtering deficit or inability to maintain focus, increases our understanding of this complex condition, and has important practical implications that could be used to develop intervention programs to minimise the distress that is often seen in response to sensory stimuli. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms.

    PubMed

    Bennur, Sharath; Tsunada, Joji; Cohen, Yale E; Liu, Robert C

    2013-11-01

    Acoustic communication between animals requires them to detect, discriminate, and categorize conspecific or heterospecific vocalizations in their natural environment. Laboratory studies of the auditory-processing abilities that facilitate these tasks have typically employed a broad range of acoustic stimuli, ranging from natural sounds like vocalizations to "artificial" sounds like pure tones and noise bursts. However, even when using vocalizations, laboratory studies often test abilities like categorization in relatively artificial contexts. Consequently, it is not clear whether neural and behavioral correlates of these tasks (1) reflect extensive operant training, which drives plastic changes in auditory pathways, or (2) the innate capacity of the animal and its auditory system. Here, we review a number of recent studies, which suggest that adopting more ethological paradigms utilizing natural communication contexts are scientifically important for elucidating how the auditory system normally processes and learns communication sounds. Additionally, since learning the meaning of communication sounds generally involves social interactions that engage neuromodulatory systems differently than laboratory-based conditioning paradigms, we argue that scientists need to pursue more ethological approaches to more fully inform our understanding of how the auditory system is engaged during acoustic communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Multisensory guidance of orienting behavior.

    PubMed

    Maier, Joost X; Groh, Jennifer M

    2009-12-01

    We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.

  20. Sound arithmetic: auditory cues in the rehabilitation of impaired fact retrieval.

    PubMed

    Domahs, Frank; Zamarian, Laura; Delazer, Margarete

    2008-04-01

    The present single case study describes the rehabilitation of an acquired impairment of multiplication fact retrieval. In addition to a conventional drill approach, one set of problems was preceded by auditory cues while the other half was not. After extensive repetition, non-specific improvements could be observed for all trained problems (e.g., 3 * 7) as well as for their non-trained complementary problems (e.g., 7 * 3). Beyond this general improvement, specific therapy effects were found for problems trained with auditory cues. These specific effects were attributed to an involvement of implicit memory systems and/or attentional processes during training. Thus, the present results demonstrate that cues in the training of arithmetic facts do not have to be visual to be effective.

  1. Psychophysical evaluation of three-dimensional auditory displays

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.

    1991-01-01

    Work during this reporting period included the completion of our research on the use of principal components analysis (PCA) to model the acoustical head related transfer functions (HRTFs) that are used to synthesize virtual sources for three dimensional auditory displays. In addition, a series of studies was initiated on the perceptual errors made by listeners when localizing free-field and virtual sources. Previous research has revealed that under certain conditions these perceptual errors, often called 'confusions' or 'reversals', are both large and frequent, thus seriously comprising the utility of a 3-D virtual auditory display. The long-range goal of our work in this area is to elucidate the sources of the confusions and to develop signal-processing strategies to reduce or eliminate them.

  2. Classification of underwater target echoes based on auditory perception characteristics

    NASA Astrophysics Data System (ADS)

    Li, Xiukun; Meng, Xiangxia; Liu, Hang; Liu, Mingye

    2014-06-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  3. Stress and tinnitus—from bedside to bench and back

    PubMed Central

    Mazurek, Birgit; Haupt, Heidemarie; Olze, Heidi; Szczepek, Agnieszka J.

    2012-01-01

    The aim of this review is to focus the attention of clinicians and basic researchers on the association between psycho-social stress and tinnitus. Although tinnitus is an auditory symptom, its onset and progression often associates with emotional strain. Recent epidemiological studies have provided evidence for a direct relationship between the emotional status of subjects and tinnitus. In addition, studies of function, morphology, and gene and protein expression in the auditory system of animals exposed to stress support the notion that the emotional status can influence the auditory system. The data provided by clinical and basic research with use of animal stress models offers valuable clues for an improvement in diagnosis and more effective treatment of tinnitus. PMID:22701404

  4. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    PubMed

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  5. Different auditory feedback control for echolocation and communication in horseshoe bats.

    PubMed

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  6. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    PubMed Central

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  7. Surgical factors in pediatric cochlear implantation and their early effects on electrode activation and functional outcomes.

    PubMed

    Francis, Howard W; Buchman, Craig A; Visaya, Jiovani M; Wang, Nae-Yuh; Zwolan, Teresa A; Fink, Nancy E; Niparko, John K

    2008-06-01

    To assess the impact of surgical factors on electrode status and early communication outcomes in young children in the first 2 years of cochlear implantation. Prospective multicenter cohort study. Six tertiary referral centers. Children 5 years or younger before implantation with normal nonverbal intelligence. Cochlear implant operations in 209 ears of 188 children. Percent active channels, auditory behavior as measured by the Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale and Reynell receptive language scores. Stable insertion of the full electrode array was accomplished in 96.2% of ears. At least 75% of electrode channels were active in 88% of ears. Electrode deactivation had a significant negative effect on Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale scores at 24 months but no effect on receptive language scores. Significantly fewer active electrodes were associated with a history of meningitis. Surgical complications requiring additional hospitalization and/or revision surgery occurred in 6.7% of patients but had no measurable effect on the development of auditory behavior within the first 2 years. Negative, although insignificant, associations were observed between the need for perioperative revision of the device and 1) the percent of active electrodes and 2) the receptive language level at 2-year follow-up. Activation of the entire electrode array is associated with better early auditory outcomes. Decrements in the number of active electrodes and lower gains of receptive language after manipulation of the newly implanted device were not statistically significant but may be clinically relevant, underscoring the importance of surgical technique and the effective placement of the electrode array.

  8. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  9. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration

    PubMed Central

    Butler, Blake E.; Lomber, Stephen G.

    2013-01-01

    The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants. PMID:24324409

  10. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  11. Neural Measures of a Japanese Consonant Length Discrimination by Japanese and American English Listeners: Affects of Attention

    PubMed Central

    Hisagi, Miwako; Shafer, Valerie L.; Strange, Winifred; Sussman, Elyse S.

    2015-01-01

    This study examined automaticity of discrimination of a Japanese length contrast for consonants (miʃi vs. miʃʃi) in native (Japanese) and non-native (American-English) listeners using behavioral measures and the event-related potential (ERP) mismatch negativity (MMN). Attention to the auditory input was manipulated either away from the auditory input via a visual oddball task (Visual Attend), or to the input by asking the listeners to count auditory deviants (Auditory Attend). Results showed a larger MMN when attention was focused on the consonant contrast than away from it for both groups. The MMN was larger for consonant duration increments than decrements. No difference in MMN between the language groups was observed, but the Japanese listeners did show better behavioral discrimination than the American English listeners. In addition, behavioral responses showed a weak, but significant correlation with MMN amplitude. These findings suggest that both acoustic-phonetic properties and phonological experience affects automaticity of speech processing. PMID:26119918

  12. Lateralized effects of orthographical irregularity and auditory memory load on the kinematics of transcription typewriting.

    PubMed

    Bloemsaat, Gijs; Van Galen, Gerard P; Meulenbroek, Ruud G J

    2003-05-01

    This study investigated the combined effects of orthographical irregularity and auditory memory load on the kinematics of finger movements in a transcription-typewriting task. Eight right-handed touch-typists were asked to type 80 strings of ten seven-letter words. In half the trials an irregularly spelt target word elicited a specific key press sequence of either the left or right index finger. In the other trials regularly spelt target words elicited the same key press sequence. An auditory memory load was added in half the trials by asking participants to remember the pitch of a tone during task performance. Orthographical irregularity was expected to slow down performance. Auditory memory load, viewed as a low level stressor, was expected to affect performance only when orthographically irregular words needed to be typed. The hypotheses were confirmed. Additional analysis showed differential effects on the left and right hand, possibly related to verbal-manual interference and hand dominance. The results are discussed in relation to relevant findings of recent neuroimaging studies.

  13. Reading strategies of Chinese students with severe to profound hearing loss.

    PubMed

    Cheung, Ka Yan; Leung, Man Tak; McPherson, Bradley

    2013-01-01

    The present study investigated the significance of auditory discrimination and the use of phonological and orthographic codes during the course of reading development in Chinese students who are deaf or hard of hearing (D/HH). In this study, the reading behaviors of D/HH students in 2 tasks-a task on auditory perception of onset rime and a synonym decision task-were compared with those of their chronological age-matched and reading level (RL)-matched controls. Cross-group comparison of the performances of participants in the task on auditory perception suggests that poor auditory discrimination ability may be a possible cause of reading problems for D/HH students. In addition, results of the synonym decision task reveal that D/HH students with poor reading ability demonstrate a significantly greater preference for orthographic rather than phonological information, when compared with the D/HH students with good reading ability and their RL-matched controls. Implications for future studies and educational planning are discussed.

  14. How musical expertise shapes speech perception: evidence from auditory classification images.

    PubMed

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-09-24

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.

  15. A role for descending auditory cortical projections in songbird vocal learning

    PubMed Central

    Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S

    2014-01-01

    Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934

  16. EEG-based auditory attention decoding using unprocessed binaural signals in reverberant and noisy conditions?

    PubMed

    Aroudi, Ali; Doclo, Simon

    2017-07-01

    To decode auditory attention from single-trial EEG recordings in an acoustic scenario with two competing speakers, a least-squares method has been recently proposed. This method however requires the clean speech signals of both the attended and the unattended speaker to be available as reference signals. Since in practice only the binaural signals consisting of a reverberant mixture of both speakers and background noise are available, in this paper we explore the potential of using these (unprocessed) signals as reference signals for decoding auditory attention in different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In addition, we investigate whether it is possible to use these signals instead of the clean attended speech signal for filter training. The experimental results show that using the unprocessed binaural signals for filter training and for decoding auditory attention is feasible with a relatively large decoding performance, although for most acoustic conditions the decoding performance is significantly lower than when using the clean speech signals.

  17. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    PubMed

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  19. Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis

    ERIC Educational Resources Information Center

    Juslin, Peter; Karlsson, Linnea; Olsson, Henrik

    2008-01-01

    There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…

  20. Influence of Acute Multispecies and Multistrain Probiotic Supplementation on Cardiovascular Function and Reactivity to Psychological Stress in Young Adults: A Double-Blind, Randomized, Placebo-Controlled Trial.

    PubMed

    Möller, Clara M; Olsa, Eamon J A; Ginty, Annie T; Rapelje, Alyssa L; Tindall, Christina L; Holesh, Laura A; Petersen, Karen L; Conklin, Sarah M

    2017-10-01

    The potential influence of probiotic supplementation on cardiovascular health and stress responsivity remains largely unexplored. Some evidence suggests the possibility that probiotics may influence blood pressure. A separate body of research suggests that exaggerated cardiovascular reactions to acute psychological stress in the laboratory predict cardiovascular morbidity and mortality. The current investigation explored the effect of acute probiotic use on (1) resting cardiovascular measures in healthy young adults and (2) cardiovascular and psychological reactions to an acute psychological stressor in the laboratory. Participants (N = 105, M [SD] age = 20.17 [1.26], 84.8% white) completed a 2-week, double-blind, and placebo-controlled trial of a multispecies and multistrain probiotic. Exclusion criteria included previous probiotic use, diagnosed gastrointestinal disorder, and/or current antibiotic use. At visits 1 and 2, participants completed the Paced Auditory Serial Addition Test, a widely used psychological stress task. Participants were randomly assigned to a probiotic blend or matched placebo. Compared with placebo, 2-week probiotic supplementation did not affect resting measures of cardiovascular function, cardiovascular responses during or recovery from stress, or psychological reactions to acute psychological stress. Contrary to expectations, short-term use of a probiotic supplement in healthy participants did not influence measures of cardiovascular function or responsivity to psychological stress. Future research is needed to determine species- and strain-specific effects of probiotics in healthy participants with various degrees of stress responsiveness, as well as in diseased populations.

  1. QualiCOP: real-world effectiveness, tolerability, and quality of life in patients with relapsing-remitting multiple sclerosis treated with glatiramer acetate, treatment-naïve patients, and previously treated patients.

    PubMed

    Ziemssen, Tjalf; Calabrese, Pasquale; Penner, Iris-Katharina; Apfel, Rainer

    2016-04-01

    Treatment of symptoms and signs beyond the expanded disability status scale remains a major target in multiple sclerosis. QualiCOP was an observational, non-interventional, open-label study conducted at 170 sites in Germany. Of the 754 enrolled patients, 96 % had relapsing-remitting multiple sclerosis (MS) and were either disease-modifying therapy naïve (de novo, n = 481) or previously treated (n = 237) with once-daily, subcutaneous 20-mg/mL glatiramer acetate (GA). Assessments of relapse rate, disease progression, overall functioning, quality of life (QoL), cognition, fatigue, and depression were performed over 24 months. GA treatment over 24 months was associated with reduced annual relapse rate for previously treated (from 0.98 to 0.54 relapses) and de novo (from 0.81 to 0.48 relapses) patients. Multiple Sclerosis Functional Composite scores showed slight improvement in both cohorts (all p < 0.01). Paced Auditory Serial Addition Test and Multiple Sclerosis Inventory Cognition scale scores showed robust improvement in cognition among previously treated and de novo cohorts (all p < 0.001). General Depression Scale scores showed significantly reduced depressive symptoms (p < 0.001). Disease severity, fatigue, and QoL were stable over the observational period. These real-world findings suggest that patients with MS show benefit from GA treatment in important QoL parameters beyond standard measures of relapse and disease severity.

  2. Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury.

    PubMed

    Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H

    2009-07-01

    Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.

  3. Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability.

    PubMed

    Khaleeli, Z; Cercignani, M; Audoin, B; Ciccarelli, O; Miller, D H; Thompson, A J

    2007-08-01

    Disability in primary progressive multiple sclerosis (PPMS) has been correlated with damage to the normal appearing brain tissues. Magnetization transfer ratio (MTR) and volume changes indicate that much of this damage occurs in the normal appearing grey matter, but the clinical significance of this remains uncertain. We aimed to localize these changes to distinct grey matter regions, and investigate the clinical impact of the MTR changes. 46 patients with early PPMS and 23 controls underwent MT and high-resolution T1-weighted imaging. Patients were scored on the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite and subtests (Nine-Hole Peg Test, Timed Walk Test, Paced Auditory Serial Addition Test [PASAT]). Grey matter volume and MTR were compared between patients and controls, adjusting for age. Mean MTR for significant regions within the motor network and in areas relevant to PASAT performance were correlated with appropriate clinical scores, adjusting for grey matter volume. Patients showed reduced MTR and atrophy in the right pre- and left post-central gyri, right middle frontal gyrus, left insula, and thalamus bilaterally. Reduced MTR without significant atrophy occurred in the left pre-central gyrus, left superior frontal gyri, bilateral superior temporal gyri, right insula and visual cortex. Higher EDSS correlated with lower MTR in the right primary motor cortex (BA 4). In conclusion, localized grey matter damage occurs in early PPMS, and MTR change is more widespread than atrophy. Damage demonstrated by reduced MTR is clinically eloquent.

  4. Identification of Bodies by Unique Serial Numbers on Implanted Medical Devices.

    PubMed

    Blessing, Melissa M; Lin, Peter T

    2018-05-01

    Visual identification is the most common identification method used by medical examiners but is not always possible. Alternative methods include X-ray, fingerprint, or DNA comparison, but these methods require additional resources. Comparison of serial numbers on implanted medical devices is a rapid and definitive method of identification. To assess the practicality of using this method, we reviewed 608 consecutive forensic autopsies performed at a regional medical examiner office. Of these, 56 cases required an alternative method of identification due to decomposition (n = 35), gunshot wound (n = 9), blunt trauma (n = 6), or charring (n = 6). Of these 56 cases, eight (14.3%) were known to have an implanted medical device. Of these eight cases, five (63%) could be positively identified by comparing serial numbers. If an implanted medical device is known to be present, and medical records are available, identification by medical device serial number should be a first-line method. © 2017 American Academy of Forensic Sciences.

  5. Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation.

    PubMed

    Kubota, Keiichi; Watanabe, Tomohide; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2016-01-01

    A two serially connected single-chamber microbial fuel cell (MFC) was applied to the treatment of diluted molasses wastewater in a continuous operation mode. In addition, the effect of series and parallel connection between the anodes and the cathode on power generation was investigated experimentally. The two serially connected MFC process achieved 79.8% of chemical oxygen demand removal and 11.6% of Coulombic efficiency when the hydraulic retention time of the whole process was 26 h. The power densities were 0.54, 0.34 and 0.40 W m(-3) when electrodes were in individual connection, serial connection and parallel connection modes, respectively. A high open circuit voltage was obtained in the serial connection. Power density decreased at low organic loading rates (OLR) due to the shortage of organic matter. Power generation efficiency tended to decrease as a result of enhancement of methane fermentation at high OLRs. Therefore, high power density and efficiency can be achieved by using a suitable OLR range.

  6. Efficient multitasking: parallel versus serial processing of multiple tasks

    PubMed Central

    Fischer, Rico; Plessow, Franziska

    2015-01-01

    In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling. PMID:26441742

  7. Efficient multitasking: parallel versus serial processing of multiple tasks.

    PubMed

    Fischer, Rico; Plessow, Franziska

    2015-01-01

    In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.

  8. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing

    PubMed Central

    Yang, Changju; Kim, Hyongsuk

    2016-01-01

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186

  9. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

    PubMed

    Yang, Changju; Kim, Hyongsuk

    2016-08-19

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

  10. Evaluation of Brewer's spent yeast to produce flavor enhancer nucleotides: influence of serial repitching.

    PubMed

    Vieira, Elsa; Brandão, Tiago; Ferreira, Isabel M P L V O

    2013-09-18

    The present work evaluates the influence of serial yeast repitching on nucleotide composition of brewer's spent yeast extracts produced without addition of exogenous enzymes. Two procedures for disrupting cell walls were compared, and the conditions for low-cost and efficient RNA hydrolysis were selected. A HILIC methodology was validated for the quantification of nucleotides and nucleosides in yeast extracts. Thirty-seven samples of brewer's spent yeast ( Saccharomyces pastorianus ) organized according to the number of serial repitchings were analyzed. Nucleotides accounted for 71.1-88.2% of the RNA products; 2'AMP was the most abundant (ranging between 0.08 and 2.89 g/100 g dry yeast). 5'GMP content ranged between 0.082 and 0.907 g/100 g dry yeast. The sum of 5'GMP, 5'IMP, and 5'AMP represented between 25 and 32% of total nucleotides. This works highlights for the first time that although serial repitching influences the content of monophosphate nucleotides and nucleosides, the profiles of these RNA hydrolysis products are not affected.

  11. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  12. Human sensitivity to differences in the rate of auditory cue change.

    PubMed

    Maloff, Erin S; Grantham, D Wesley; Ashmead, Daniel H

    2013-05-01

    Measurement of sensitivity to differences in the rate of change of auditory signal parameters is complicated by confounds among duration, extent, and velocity of the changing signal. Dooley and Moore [(1988) J. Acoust. Soc. Am. 84(4), 1332-1337] proposed a method for measuring sensitivity to rate of change using a duration discrimination task. They reported improved duration discrimination when an additional intensity or frequency change cue was present. The current experiments were an attempt to use this method to measure sensitivity to the rate of change in intensity and spatial position. Experiment 1 investigated whether duration discrimination was enhanced when additional cues of rate of intensity change, rate of spatial position change, or both were provided. Experiment 2 determined whether participant listening experience or the testing environment influenced duration discrimination task performance. Experiment 3 assessed whether duration discrimination could be used to measure sensitivity to rates of changes in intensity and spatial position for stimuli with lower rates of change, as well as emphasizing the constancy of the velocity cue. Results of these experiments showed that duration discrimination was impaired rather than enhanced by the additional velocity cues. The findings are discussed in terms of the demands of listening to concurrent changes along multiple auditory dimensions.

  13. The Staggered Spondaic Word Test. A ten-minute look at the central nervous system through the ears.

    PubMed

    Katz, J; Smith, P S

    1991-01-01

    We have described three major groupings that encompass most auditory processing difficulties. While the problems may be superimposed upon one another in any individual client, each diagnostic sign is closely associated with particular communication and learning disorders. In addition, these behaviors may be related back to the functional anatomy of the regions that are implicated by the SSW test. The auditory-decoding group is deficient in rapid analysis of speech. The vagueness of speech sound knowledge is thought to lead to auditory misunderstanding and confusion. In early life, this may be reflected in the child's articulation. Poor phonic skills that result from this deficit are thought to contribute to their limited reading and spelling abilities. The auditory tolerance-fading memory group is often thought to have severe auditory-processing problems because those in it are highly distracted by background sounds and have poor auditory memories. However, school performance is not far from grade level, and the resulting reading disabilities stem more from limited comprehension than from an inability to sound out the words. Distractibility and poor auditory memory could contribute to the apparent weakness in reading comprehension. Many of the characteristics of the auditory tolerance-fading memory group are similar to those of attention deficit disorder cases. Both groups are associated anatomically with the AC region. The auditory integration cases can be divided into two subgroups. In the first, the subjects exhibit the most severe reading and spelling problems of the three major categories. These individuals closely resemble the classical dyslexics. We presume that this disorder represents a major disruption in auditory-visual integration. The second subgroup has much less severe learning difficulties, which closely follow the pattern of dysfunction of the auditory tolerance-fading memory group. The excellent physiological procedures to which we have been exposed during this Windows on the Brain conference provide a glimpse of the exciting possibilities for studying brain function. However, in working with individuals who have cognitive impairments, the new technology should be validated by standard behavioral tests. In turn, the new techniques will provide those who use behavioral measures with new parameters and concepts to broaden our understanding. For the past quarter of a century, the SSW test has been compared with other behavioral, physiological, and anatomical procedures. Based on the information that has been assembled, we have been able to classify auditory processing disorders into three major categories.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Outcome of coronary plaque burden: a 10-year follow-up of aggressive medical management.

    PubMed

    Goh, Victor K; Lau, Chu-Pak; Mohlenkamp, Stefan; Rumberger, John A; Achenbach, Stephan; Budoff, Matthew J

    2010-03-12

    The effect of aggressive medical therapy on quantitative coronary plaque burden is not generally known, especially in ethnic Chinese. We reasoned that Cardiac CT could conveniently quantify early coronary atherosclerosis in our patient population, and hypothesized that serial observation could differentiate the efficacy of aggressive medical therapy regarding progression and regression of the atherosclerotic process, as well as evaluating the additional impact of life-style modification and the relative effects of the application of statin therapy. We employed a standardized Cardiac CT protocol to serially scan 113 westernized Hong Kong Chinese individuals (64 men and 49 women) with Chest Pain and positive coronary risk factors. In all cases included for this serial investigation, subsequent evaluation showed no significantly-obstructive coronary disease by functional studies and angiography. After stringent risk factor modification, including aggressive statin therapy to achieve LDL-cholesterol lowering conforming to N.C.E.P. ATP III guidelines, serial CT scans were performed 1-12 years apart for changes in coronary artery calcification (CAC), using the Agatston Score (AS) for quantification. At baseline, the mean AS was 1413.6 for males (mean age 54.4 years) and 2293.3 for females (mean age 62.4 years). The average increase of AS in the entire study population was 24% per year, contrasting with 16.4% per year on strict risk factor modification plus statin therapy, as opposed to 33.2% per year for historical control patients (p < 0.001). Additionally, 20.4% of the 113 patients demonstrated decreasing calcium scores. Medical therapy also yielded a remarkably low adverse event rate during the follow-up period --- 2 deaths, 2 strokes and only 1 case requiring PCI. This study revealed that aggressive medical therapy can positively influence coronary plaque aiding in serial regression of calcium scores.

  15. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less

  16. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    PubMed

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  17. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    DOE PAGES

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; ...

    2014-10-09

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less

  18. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    PubMed Central

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-01-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789

  19. Driver compliance to take-over requests with different auditory outputs in conditional automation.

    PubMed

    Forster, Yannick; Naujoks, Frederik; Neukum, Alexandra; Huestegge, Lynn

    2017-12-01

    Conditionally automated driving (CAD) systems are expected to improve traffic safety. Whenever the CAD system exceeds its limit of operation, designers of the system need to ensure a safe and timely enough transition from automated to manual mode. An existing visual Human-Machine Interface (HMI) was supplemented by different auditory outputs. The present work compares the effects of different auditory outputs in form of (1) a generic warning tone and (2) additional semantic speech output on driver behavior for the announcement of an upcoming take-over request (TOR). We expect the information carried by means of speech output to lead to faster reactions and better subjective evaluations by the drivers compared to generic auditory output. To test this assumption, N=17 drivers completed two simulator drives, once with a generic warning tone ('Generic') and once with additional speech output ('Speech+generic'), while they were working on a non-driving related task (NDRT; i.e., reading a magazine). Each drive incorporated one transition from automated to manual mode when yellow secondary lanes emerged. Different reaction time measures, relevant for the take-over process, were assessed. Furthermore, drivers evaluated the complete HMI regarding usefulness, ease of use and perceived visual workload just after experiencing the take-over. They gave comparative ratings on usability and acceptance at the end of the experiment. Results revealed that reaction times, reflecting information processing time (i.e., hands on the steering wheel, termination of NDRT), were shorter for 'Speech+generic' compared to 'Generic' while reaction time, reflecting allocation of attention (i.e., first glance ahead), did not show this difference. Subjective ratings were in favor of the system with additional speech output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Music and Dyslexia: A New Musical Training Method to Improve Reading and Related Disorders

    PubMed Central

    Habib, Michel; Lardy, Chloé; Desiles, Tristan; Commeiras, Céline; Chobert, Julie; Besson, Mireille

    2016-01-01

    Numerous arguments in the recent neuroscientific literature support the use of musical training as a therapeutic tool among the arsenal already available to therapists and educators for treating children with dyslexia. In the present study, we tested the efficacy of a specially-designed Cognitivo-Musical Training (CMT) method based upon three principles: (1) music-language analogies: training dyslexics with music could contribute to improve brain circuits which are common to music and language processes; (2) the temporal and rhythmic features of music, which could exert a positive effect on the multiple dimensions of the “temporal deficit” characteristic of some types of dyslexia; and (3) cross-modal integration, based on converging evidence of impaired connectivity between brain regions in dyslexia and related disorders. Accordingly, we developed a series of musical exercises involving jointly and simultaneously sensory (visual, auditory, somatosensory) and motor systems, with special emphasis on rhythmic perception and production in addition to intensive training of various features of the musical auditory signal. Two separate studies were carried out, one in which dyslexic children received intensive musical exercises concentrated over 18 h during 3 consecutive days, and the other in which the 18 h of musical training were spread over 6 weeks. Both studies showed significant improvements in some untrained, linguistic and non-linguistic variables. The first one yielded significant improvement in categorical perception and auditory perception of temporal components of speech. The second study revealed additional improvements in auditory attention, phonological awareness (syllable fusion), reading abilities, and repetition of pseudo-words. Importantly, most improvements persisted after an untrained period of 6 weeks. These results provide new additional arguments for using music as part of systematic therapeutic and instructional practice for dyslexic children. PMID:26834689

  1. Speech processing in children with functional articulation disorders.

    PubMed

    Gósy, Mária; Horváth, Viktória

    2015-03-01

    This study explored auditory speech processing and comprehension abilities in 5-8-year-old monolingual Hungarian children with functional articulation disorders (FADs) and their typically developing peers. Our main hypothesis was that children with FAD would show co-existing auditory speech processing disorders, with different levels of these skills depending on the nature of the receptive processes. The tasks included (i) sentence and non-word repetitions, (ii) non-word discrimination and (iii) sentence and story comprehension. Results suggest that the auditory speech processing of children with FAD is underdeveloped compared with that of typically developing children, and largely varies across task types. In addition, there are differences between children with FAD and controls in all age groups from 5 to 8 years. Our results have several clinical implications.

  2. An evaluation of unisensory and multisensory adaptive flight-path navigation displays

    NASA Astrophysics Data System (ADS)

    Moroney, Brian W.

    1999-11-01

    The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)

  3. The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations

    PubMed Central

    Kompus, Kristiina; Falkenberg, Liv E.; Bless, Josef J.; Johnsen, Erik; Kroken, Rune A.; Kråkvik, Bodil; Larøi, Frank; Løberg, Else-Marie; Vedul-Kjelsås, Einar; Westerhausen, René; Hugdahl, Kenneth

    2013-01-01

    Auditory verbal hallucinations (AVHs) are a subjective experience of “hearing voices” in the absence of corresponding physical stimulation in the environment. The most remarkable feature of AVHs is their perceptual quality, that is, the experience is subjectively often as vivid as hearing an actual voice, as opposed to mental imagery or auditory memories. This has lead to propositions that dysregulation of the primary auditory cortex (PAC) is a crucial component of the neural mechanism of AVHs. One possible mechanism by which the PAC could give rise to the experience of hallucinations is aberrant patterns of neuronal activity whereby the PAC is overly sensitive to activation arising from internal processing, while being less responsive to external stimulation. In this paper, we review recent research relevant to the role of the PAC in the generation of AVHs. We present new data from a functional magnetic resonance imaging (fMRI) study, examining the responsivity of the left and right PAC to parametrical modulation of the intensity of auditory verbal stimulation, and corresponding attentional top-down control in non-clinical participants with AVHs, and non-clinical participants with no AVHs. Non-clinical hallucinators showed reduced activation to speech sounds but intact attentional modulation in the right PAC. Additionally, we present data from a group of schizophrenia patients with AVHs, who do not show attentional modulation of left or right PAC. The context-appropriate modulation of the PAC may be a protective factor in non-clinical hallucinations. PMID:23630479

  4. Egocentric and allocentric representations in auditory cortex

    PubMed Central

    Brimijoin, W. Owen; Bizley, Jennifer K.

    2017-01-01

    A key function of the brain is to provide a stable representation of an object’s location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position. PMID:28617796

  5. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    PubMed

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.

  6. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination☆

    PubMed Central

    Raij, Tuukka T.; Riekki, Tapani J.J.

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  8. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    PubMed Central

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for “frequency tagging” of attention effects on maskers. Noise masking reduced early (50–150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50–150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise. PMID:21368107

  9. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials.

    PubMed

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L

    2013-12-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Domestic pigs' (Sus scrofa domestica) use of direct and indirect visual and auditory cues in an object choice task.

    PubMed

    Nawroth, Christian; von Borell, Eberhard

    2015-05-01

    Recently, foraging strategies have been linked to the ability to use indirect visual information. More selective feeders should express a higher aversion against losses compared to non-selective feeders and should therefore be more prone to avoid empty food locations. To extend these findings, in this study, we present a series of studies investigating the use of direct and indirect visual and auditory information by an omnivorous but selective feeder-the domestic pig. Subjects had to choose between two buckets, with only one containing a reward. Before making a choice, the subjects in Experiment 1 (N = 8) received full information regarding both the baited and non-baited location, either in a visual or auditory domain. In this experiment, the subjects were able to use visual but not auditory cues to infer the location of the reward spontaneously. Additionally, four individuals learned to use auditory cues after a period of training. In Experiment 2 (N = 8), the pigs were given different amounts of visual information about the content of the buckets-lifting either both of the buckets (full information), the baited bucket (direct information), the empty bucket (indirect information) or no bucket at all (no information). The subjects as a group were able to use direct and indirect visual cues. However, over the course of the experiment, the performance dropped to chance level when indirect information was provided. A final experiment (N = 3) provided preliminary results for pigs' use of indirect auditory information to infer the location of a reward. We conclude that pigs at a very young age are able to make decisions based on indirect information in the visual domain, whereas their performance in the use of indirect auditory information warrants further investigation.

  11. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis.

    PubMed

    Yoo, Ga Eul; Kim, Soo Ji

    2016-01-01

    Given the increasing evidence demonstrating the effects of rhythmic auditory cueing for motor rehabilitation of stroke patients, this synthesized analysis is needed in order to improve rehabilitative practice and maximize clinical effectiveness. This study aimed to systematically analyze the literature on rhythmic auditory cueing for motor rehabilitation of stroke patients by highlighting the outcome variables, type of cueing, and stage of stroke. A systematic review with meta-analysis of randomized controlled or clinically controlled trials was conducted. Electronic databases and music therapy journals were searched for studies including stroke, the use of rhythmic auditory cueing, and motor outcomes, such as gait and upper-extremity function. A total of 10 studies (RCT or CCT) with 356 individuals were included for meta-analysis. There were large effect sizes (Hedges's g = 0.984 for walking velocity; Hedges's g = 0.840 for cadence; Hedges's g = 0.760 for stride length; and Hedges's g = 0.456 for Fugl-Meyer test scores) in the use of rhythmic auditory cueing. Additional subgroup analysis demonstrated that although the type of rhythmic cueing and stage of stroke did not lead to statistically substantial group differences, the effect sizes and heterogeneity values in each subgroup implied possible differences in treatment effect. This study corroborates the beneficial effects of rhythmic auditory cueing, supporting its expanded application to broadened areas of rehabilitation for stroke patients. Also, it suggests the future investigation of the differential outcomes depending on how rhythmic auditory cueing is provided in terms of type and intensity implemented. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Auditory peripersonal space in humans.

    PubMed

    Farnè, Alessandro; Làdavas, Elisabetta

    2002-10-01

    In the present study we report neuropsychological evidence of the existence of an auditory peripersonal space representation around the head in humans and its characteristics. In a group of right brain-damaged patients with tactile extinction, we found that a sound delivered near the ipsilesional side of the head (20 cm) strongly extinguished a tactile stimulus delivered to the contralesional side of the head (cross-modal auditory-tactile extinction). By contrast, when an auditory stimulus was presented far from the head (70 cm), cross-modal extinction was dramatically reduced. This spatially specific cross-modal extinction was most consistently found (i.e., both in the front and back spaces) when a complex sound was presented, like a white noise burst. Pure tones produced spatially specific cross-modal extinction when presented in the back space, but not in the front space. In addition, the most severe cross-modal extinction emerged when sounds came from behind the head, thus showing that the back space is more sensitive than the front space to the sensory interaction of auditory-tactile inputs. Finally, when cross-modal effects were investigated by reversing the spatial arrangement of cross-modal stimuli (i.e., touch on the right and sound on the left), we found that an ipsilesional tactile stimulus, although inducing a small amount of cross-modal tactile-auditory extinction, did not produce any spatial-specific effect. Therefore, the selective aspects of cross-modal interaction found near the head cannot be explained by a competition between a damaged left spatial representation and an intact right spatial representation. Thus, consistent with neurophysiological evidence from monkeys, our findings strongly support the existence, in humans, of an integrated cross-modal system coding auditory and tactile stimuli near the body, that is, in the peripersonal space.

  13. Chronic low-level Pb exposure during development decreases the expression of the voltage-dependent anion channel in auditory neurons of the brainstem.

    PubMed

    Prins, John M; Brooks, Diane M; Thompson, Charles M; Lurie, Diana I

    2010-12-01

    Lead (Pb) exposure is a risk factor for neurological dysfunction. How Pb produces these behavioral deficits is unknown, but Pb exposure during development is associated with auditory temporal processing deficits in both humans and animals. Pb disrupts cellular energy metabolism and efficient energy production is crucial for auditory neurons to maintain high rates of synaptic activity. The voltage-dependent anion channel (VDAC) is involved in the regulation of mitochondrial physiology and is a critical component in controlling mitochondrial energy production. We have previously demonstrated that VDAC is an in vitro target for Pb, therefore, VDAC may represent a potential target for Pb in the auditory system. In order to determine whether Pb alters VDAC expression in central auditory neurons, CBA/CaJ mice (n=3-5/group) were exposed to 0.01mM, or 0.1mM Pb acetate during development via drinking water. At P21, immunohistochemistry reveals a significant decrease for VDAC in neurons of the Medial Nucleus of the Trapezoid Body. Western blot analysis confirms that Pb results in a significant decrease for VDAC. Decreases in VDAC expression could lead to an upregulation of other cellular energy producing systems as a compensatory mechanism, and a Pb-induced increase in brain type creatine kinase is observed in auditory regions of the brainstem. In addition, comparative proteomic analysis shows that several proteins of the glycolytic pathway, the phosphocreatine circuit, and oxidative phosphorylation are also upregulated in response to developmental Pb exposure. Thus, Pb-induced decreases in VDAC could have a significant effect on the function of auditory neurons. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    PubMed Central

    da Silva, Sheila Ap. F.; Guida, Heraldo L.; dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B. M.; Ferreira, Celso; Ribeiro, Vivian F.; Barnabe, Viviani; Silva, Sidney B.; Fonseca, Fernando L. A.; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D.; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms2 and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms2) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart. PMID:25177673

  15. Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

    PubMed Central

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-01-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414

  16. A novel relay nucleus between the inferior colliculus and the optic tectum in the chicken (Gallus gallus).

    PubMed

    Niederleitner, Bertram; Gutierrez-Ibanez, Cristian; Krabichler, Quirin; Weigel, Stefan; Luksch, Harald

    2017-02-15

    Processing multimodal sensory information is vital for behaving animals in many contexts. The barn owl, an auditory specialist, is a classic model for studying multisensory integration. In the barn owl, spatial auditory information is conveyed to the optic tectum (TeO) by a direct projection from the external nucleus of the inferior colliculus (ICX). In contrast, evidence of an integration of visual and auditory information in auditory generalist avian species is completely lacking. In particular, it is not known whether in auditory generalist species the ICX projects to the TeO at all. Here we use various retrograde and anterograde tracing techniques both in vivo and in vitro, intracellular fillings of neurons in vitro, and whole-cell patch recordings to characterize the connectivity between ICX and TeO in the chicken. We found that there is a direct projection from ICX to the TeO in the chicken, although this is small and only to the deeper layers (layers 13-15) of the TeO. However, we found a relay area interposed among the IC, the TeO, and the isthmic complex that receives strong synaptic input from the ICX and projects broadly upon the intermediate and deep layers of the TeO. This area is an external portion of the formatio reticularis lateralis (FRLx). In addition to the projection to the TeO, cells in FRLx send, via collaterals, descending projections through tectopontine-tectoreticular pathways. This newly described connection from the inferior colliculus to the TeO provides a solid basis for visual-auditory integration in an auditory generalist bird. J. Comp. Neurol. 525:513-534, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A verbal behavior analysis of auditory hallucinations

    PubMed Central

    Burns, Caleb E. S.; Heiby, Elaine M.; Tharp, Roland G.

    1983-01-01

    A review of recent research on the non-medical control of auditory hallucinations is presented. It is suggested that the decreases in hallucinatory behavior obtained in studies using aversive contingencies may be attributable to the disruption of the chains of behavior involved. The results of several additional studies are interpreted as indicating that methods of stimulus control and the use of incompatible behaviors may be effective in reducing the rate of auditory hallucinations. Research relating auditory hallucinations to subvocalizations is presented in support of the view that hallucinatory phenomena are sometimes related to the subject's own vocal productions. Skinner's views (1934, 1936, 1953, 1957, 1980) are then presented as possible explanations of some hallucinatory behavior. It is suggested that some auditory hallucinations consit of the mishearing of environmental and physiological stimuli as voices in a fashion similar to that which Skinner observed in his work with the verbal summator. The maintenance of long chains of such responses may be largely attributable to self-intraverbal influences (such as are present during automatic writing). With some auditory hallucinations, this progression involves first mishearing ambiguous stimuli as voices and then attributing the voices to some cause (e.g., insanity, the television, radio, or God). Later, the frequent and ongoing chains of such behavior may contaminate other verbal responses. Such verbal behavior may be parasitic on “normal verbal behavior” (and hence, not directly dependent on consquences for maintenance), may be cued by various stimuli (including respiration), and may interfere with other covert and overt behavior. Several studies to investigate this view are presented. It is hoped that such research will lead to a better understanding of the major issues involved in the etiology and treatment of auditory hallucinations in particular and perhaps of psychosis in general. PMID:22478583

  18. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  19. Temporal lobe networks supporting the comprehension of spoken words.

    PubMed

    Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius

    2017-09-01

    Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Inhalational exposure to carbonyl sulfide produces altered brainstem auditory and somatosensory-evoked potentials in Fischer 344N rats.

    PubMed

    Herr, David W; Graff, Jaimie E; Moser, Virginia C; Crofton, Kevin M; Little, Peter B; Morgan, Daniel L; Sills, Robert C

    2007-01-01

    Carbonyl sulfide (COS), a chemical listed by the original Clean Air Act, was tested for neurotoxicity by a National Institute of Environmental Health Sciences/National Toxicology Program and U.S. Environmental Protection Agency collaborative investigation. Previous studies demonstrated that COS produced cortical and brainstem lesions and altered auditory neurophysiological responses to click stimuli. This paper reports the results of expanded neurophysiological examinations that were an integral part of the previously published experiments (Morgan et al., 2004, Toxicol. Appl. Pharmacol. 200, 131-145; Sills et al., 2004, Toxicol. Pathol. 32, 1-10). Fisher 334N rats were exposed to 0, 200, 300, or 400 ppm COS for 6 h/day, 5 days/week for 12 weeks, or to 0, 300, or 400 ppm COS for 2 weeks using whole-body inhalation chambers. After treatment, the animals were studied using neurophysiological tests to examine: peripheral nerve function, somatosensory-evoked potentials (SEPs) (tail/hindlimb and facial cortical regions), brainstem auditory-evoked responses (BAERs), and visual flash-evoked potentials (2-week study). Additionally, the animals exposed for 2 weeks were examined using a functional observational battery (FOB) and response modification audiometry (RMA). Peripheral nerve function was not altered for any exposure scenario. Likewise, amplitudes of SEPs recorded from the cerebellum were not altered by treatment with COS. In contrast, amplitudes and latencies of SEPs recorded from cortical areas were altered after 12-week exposure to 400 ppm COS. The SEP waveforms were changed to a greater extent after forelimb stimulation than tail stimulation in the 2-week study. The most consistent findings were decreased amplitudes of BAER peaks associated with brainstem regions after exposure to 400 ppm COS. Additional BAER peaks were affected after 12 weeks, compared to 2 weeks of treatment, indicating that additional regions of the brainstem were damaged with longer exposures. The changes in BAERs were observed in the absence of altered auditory responsiveness in FOB or RMA. This series of experiments demonstrates that COS produces changes in brainstem auditory and cortical somatosensory neurophysiological responses that correlate with previously described histopathological damage.

  1. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    PubMed

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning

    PubMed Central

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H.R.; Schmidt, Marc

    2015-01-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. PMID:23603062

  3. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  4. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  5. The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.

    PubMed

    Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L

    2018-04-05

    The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.

  6. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    PubMed Central

    Haley, Katarina L.

    2015-01-01

    Purpose To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not expected to improve speech fluency. Method Ten participants with APH/AOS and 10 neurologically healthy (NH) participants were studied under both feedback conditions. To allow examination of individual responses, we used an ABACA design. Effects were examined on syllable rate, disfluency duration, and vocal intensity. Results Seven of 10 APH/AOS participants increased fluency with masking by increasing rate, decreasing disfluency duration, or both. In contrast, none of the NH participants increased speaking rate with MAF. In the AAF condition, only 1 APH/AOS participant increased fluency. Four APH/AOS participants and 8 NH participants slowed their rate with AAF. Conclusions Speaking with MAF appears to increase fluency in a subset of individuals with APH/AOS, indicating that overreliance on auditory feedback monitoring may contribute to their disorder presentation. The distinction between responders and nonresponders was not linked to AOS diagnosis, so additional work is needed to develop hypotheses for candidacy and underlying control mechanisms. PMID:26363508

  7. Speech Recognition and Parent Ratings From Auditory Development Questionnaires in Children Who Are Hard of Hearing.

    PubMed

    McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use, and better language abilities generally had higher parent ratings of auditory skills and better speech-recognition abilities in quiet and in noise than peers with less audibility, more limited HA use, or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Children who are hard of hearing continue to experience delays in auditory skill development and speech-recognition abilities compared with peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported before the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech-recognition abilities and also may enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children's speech recognition.

  8. An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials (Preprint)

    DTIC Science & Technology

    2012-03-01

    the three main sub-systems. The Mitsubishi RV12SVL 6-axis robot arm has a 54’’ reach, which allows it to readily move a 2” diameter stainless ... steel sample holder, Figure 2A, between sample exchange points on the Robo-Met.3D, the Tescan SEM, and an additional sample transfer stand that enables...Rowenhorst DJ, et al. (2006) Crystallographic and morphological analysis of coarse martensite : Combining EBSD and serial sectioning. Scripta

  9. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study

    PubMed Central

    Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-01-01

    Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503

  10. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  11. A comparison of sensory-motor activity during speech in first and second languages.

    PubMed

    Simmonds, Anna J; Wise, Richard J S; Dhanjal, Novraj S; Leech, Robert

    2011-07-01

    A foreign language (L2) learned after childhood results in an accent. This functional neuroimaging study investigated speech in L2 as a sensory-motor skill. The hypothesis was that there would be an altered response in auditory and somatosensory association cortex, specifically the planum temporale and parietal operculum, respectively, when speaking in L2 relative to L1, independent of rate of speaking. These regions were selected for three reasons. First, an influential computational model proposes that these cortices integrate predictive feedforward and postarticulatory sensory feedback signals during articulation. Second, these adjacent regions (known as Spt) have been identified as a "sensory-motor interface" for speech production. Third, probabilistic anatomical atlases exist for these regions, to ensure the analyses are confined to sensory-motor differences between L2 and L1. The study used functional magnetic resonance imaging (fMRI), and participants produced connected overt speech. The first hypothesis was that there would be greater activity in the planum temporale and the parietal operculum when subjects spoke in L2 compared with L1, one interpretation being that there is less efficient postarticulatory sensory monitoring when speaking in the less familiar L2. The second hypothesis was that this effect would be observed in both cerebral hemispheres. Although Spt is considered to be left-lateralized, this is based on studies of covert speech, whereas overt speech is accompanied by sensory feedback to bilateral auditory and somatosensory cortices. Both hypotheses were confirmed by the results. These findings provide the basis for future investigations of sensory-motor aspects of language learning using serial fMRI studies.

  12. Context and meter enhance long-range planning in music performance

    PubMed Central

    Mathias, Brian; Pfordresher, Peter Q.; Palmer, Caroline

    2015-01-01

    Neural responses demonstrate evidence of resonance, or oscillation, during the production of periodic auditory events. Music contains periodic auditory events that give rise to a sense of beat, which in turn generates a sense of meter on the basis of multiple periodicities. Metrical hierarchies may aid memory for music by facilitating similarity-based associations among sequence events at different periodic distances that unfold in longer contexts. A fundamental question is how metrical associations arising from a musical context influence memory during music performance. Longer contexts may facilitate metrical associations at higher hierarchical levels more than shorter contexts, a prediction of the range model, a formal model of planning processes in music performance (Palmer and Pfordresher, 2003; Pfordresher et al., 2007). Serial ordering errors, in which intended sequence events are produced in incorrect sequence positions, were measured as skilled pianists performed musical pieces that contained excerpts embedded in long or short musical contexts. Pitch errors arose from metrically similar positions and further sequential distances more often when the excerpt was embedded in long contexts compared to short contexts. Musicians’ keystroke intensities and error rates also revealed influences of metrical hierarchies, which differed for performances in long and short contexts. The range model accounted for contextual effects and provided better fits to empirical findings when metrical associations between sequence events were included. Longer sequence contexts may facilitate planning during sequence production by increasing conceptual similarity between hierarchically associated events. These findings are consistent with the notion that neural oscillations at multiple periodicities may strengthen metrical associations across sequence events during planning. PMID:25628550

  13. Auditory hair cell innervational patterns in lizards.

    PubMed

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions.

  14. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    PubMed

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.

  15. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    PubMed Central

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008

  16. Auditory and visual cueing modulate cycling speed of older adults and persons with Parkinson's disease in a Virtual Cycling (V-Cycle) system.

    PubMed

    Gallagher, Rosemary; Damodaran, Harish; Werner, William G; Powell, Wendy; Deutsch, Judith E

    2016-08-19

    Evidence based virtual environments (VEs) that incorporate compensatory strategies such as cueing may change motor behavior and increase exercise intensity while also being engaging and motivating. The purpose of this study was to determine if persons with Parkinson's disease and aged matched healthy adults responded to auditory and visual cueing embedded in a bicycling VE as a method to increase exercise intensity. We tested two groups of participants, persons with Parkinson's disease (PD) (n = 15) and age-matched healthy adults (n = 13) as they cycled on a stationary bicycle while interacting with a VE. Participants cycled under two conditions: auditory cueing (provided by a metronome) and visual cueing (represented as central road markers in the VE). The auditory condition had four trials in which auditory cues or the VE were presented alone or in combination. The visual condition had five trials in which the VE and visual cue rate presentation was manipulated. Data were analyzed by condition using factorial RMANOVAs with planned t-tests corrected for multiple comparisons. There were no differences in pedaling rates between groups for both the auditory and visual cueing conditions. Persons with PD increased their pedaling rate in the auditory (F 4.78, p = 0.029) and visual cueing (F 26.48, p < 0.000) conditions. Age-matched healthy adults also increased their pedaling rate in the auditory (F = 24.72, p < 0.000) and visual cueing (F = 40.69, p < 0.000) conditions. Trial-to-trial comparisons in the visual condition in age-matched healthy adults showed a step-wise increase in pedaling rate (p = 0.003 to p < 0.000). In contrast, persons with PD increased their pedaling rate only when explicitly instructed to attend to the visual cues (p < 0.000). An evidenced based cycling VE can modify pedaling rate in persons with PD and age-matched healthy adults. Persons with PD required attention directed to the visual cues in order to obtain an increase in cycling intensity. The combination of the VE and auditory cues was neither additive nor interfering. These data serve as preliminary evidence that embedding auditory and visual cues to alter cycling speed in a VE as method to increase exercise intensity that may promote fitness.

  17. [The serial murder: a few theoretical perspectives].

    PubMed

    Leistedt, S; Linkowski, P

    2011-01-01

    Despite numbers of publications and effort to try to establish the definition, the classification, the epidemiology, the clinical aspects and the psychopathology of serial killers, a universal consensus seems to say the least. Crime, though reduced in some countries, appears to impact more and more consistent worldwide, generating controversial ideas and a multitude of possible explanations. The serial killer usually presents as a caucasian man, aged between 20 and 40 years, often embedded socially and in his family, but with serious psychiatric, personal and especially family history. Usually acting alone, the serial killer plans a crime well in advance, but sometimes within the scope of impulsivity for a minority, the victim not being previously selected. In the latter case, an actual mental illness like psychosis is found. It is clear from numerous psychopathological studies conducted so far that most serial killers are defined as psychopathic sexual sadists, whose childhood was difficult, if not flouted, punctuated by physical and psychological violence situations. In addition, pervasive fantasies combined with thoughts of death, sex and violence are as much in common with the original acts of which they are the instigators. Beyond a relentless media that is constantly watering the public with stories and pictures depicting them as such, serial killers remain an enigma. We can therefore attempt to answer the various questions raised by this phenomenon, the way these people operate and how we can curb the rise, thanks to the neurobiological and neurophysiological approaches that science offers us.

  18. Toward a research-based assessment of dyslexia: using cognitive measures to identify reading disabilities.

    PubMed

    Bell, Sherry Mee; McCallum, R Steve; Cox, Elizabeth A

    2003-01-01

    One hundred five participants from a random sample of elementary and middle school children completed measures of reading achievement and cognitive abilities presumed, based on a synthesis of current dyslexia research, to underlie reading. Factor analyses of these cognitive variables (including auditory processing, phonological awareness, short-term auditory memory, visual memory, rapid automatized naming, and visual processing speed) produced three empirically and theoretically derived factors (auditory processing, visual processing/speed, and memory), each of which contributed to the prediction of reading and spelling skills. Factor scores from the three factors combined predicted 85% of the variance associated with letter/sight word naming, 70% of the variance associated with reading comprehension, 73% for spelling, and 61% for phonetic decoding. The auditory processing factor was the strongest predictor, accounting for 27% to 43% of the variance across the different achievement areas. The results provide practitioner and researcher with theoretical and empirical support for the inclusion of measures of the three factors, in addition to specific measures of reading achievement, in a standardized assessment of dyslexia. Guidelines for a thorough, research-based assessment are provided.

  19. An Expanded Role for the Dorsal Auditory Pathway in Sensorimotor Control and Integration

    PubMed Central

    Rauschecker, Josef P.

    2010-01-01

    The dual-pathway model of auditory cortical processing assumes that two largely segregated processing streams originating in the lateral belt subserve the two main functions of hearing: identification of auditory “objects”, including speech; and localization of sounds in space (Rauschecker and Tian, 2000). Evidence has accumulated, chiefly from work in humans and nonhuman primates, that an antero-ventral pathway supports the former function, whereas a postero-dorsal stream supports the latter, i.e. processing of space and motion-in-space. In addition, the postero-dorsal stream has also been postulated to subserve some functions of speech and language in humans. A recent review (Rauschecker and Scott, 2009) has proposed the possibility that both functions of the postero-dorsal pathway can be subsumed under the same structural forward model: an efference copy sent from prefrontal and premotor cortex provides the basis for “optimal state estimation” in the inferior parietal lobe and in sensory areas of the posterior auditory cortex. The current article corroborates this model by adding and discussing recent evidence. PMID:20850511

  20. Visual adaptation enhances action sound discrimination.

    PubMed

    Barraclough, Nick E; Page, Steve A; Keefe, Bruce D

    2017-01-01

    Prolonged exposure, or adaptation, to a stimulus in 1 modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in 1 modality can bias perception in another modality. Here, we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory, or audiovisual hand actions enhanced discrimination between 2 subsequently presented hand action sounds. Discrimination was most enhanced when the visual action "matched" the auditory action. In addition, prior adaptation to a visual, auditory, or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation-induced crossmodal enhancements cannot be explained by postperceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli.

  1. Hearing improvement in a patient with variant Muckle‐Wells syndrome in response to interleukin 1 receptor antagonism

    PubMed Central

    Rynne, M; Maclean, C; Bybee, A; McDermott, M F; Emery, P

    2006-01-01

    Background Muckle‐Wells syndrome (MWS), familial cold autoinflammatory syndrome, and neonatal onset multisystem inflammatory disease, also called chronic, infantile, neurological, cutaneous, and articular syndrome, are three hereditary autoinflammatory syndromes caused by mutations affecting the CIAS1/NALP3 gene on chromosome 1q44. The proinflammatory cytokine, interleukin 1β, is believed to have a fundamental role in their pathogenesis. Case report The case is described of a 59 year old white woman who presented with increasingly severe MWS‐type features over a 15 year period. The response to interleukin 1β inhibition with anakinra was dramatic, including a reduction in intracranial pressure with associated auditory improvement, as demonstrated by serial audiometry. Conclusions The confirmed improvement in hearing after initiation of interleukin 1 receptor antagonism corroborates previous reports that specific blockade of this single cytokine reverses most of the symptoms of this group of CIAS1/NALP3 related autoinflammatory conditions, including the sensorineural deafness, which has not been previously reported. PMID:16531551

  2. Explanations of grouping in immediate ordered recall.

    PubMed

    Frick, R W

    1989-09-01

    This article is about grouping in immediate ordered recall. The following findings are reported: (1) grouping a presentation improves recall, even when steps are taken to prevent rehearsal; (2) grouping primarily improves recall of the items adjoining the grouping, creating primacy and recency within groups; and (3) this primacy and recency are found even when single, isolated errors in recall are considered. These results suggest that the effects of grouping cannot be fully explained by rehearsal, chunking, or the number of directions in which an item can be transposed. It is suggested instead that (1) the auditory short-term store contains an unparsed and uncategorized representation that must be parsed and categorized just prior to recall, in a process of recovery; (2) items adjoining the boundary of a presentation are more easily recovered; and (3) grouping creates a boundary within the presentation. To support this explanation, a final experiment demonstrates an interaction between type of stimuli and serial position, with grouping most improving recall of adjoining phonemes.

  3. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    PubMed

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1α, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Performance of normal adults and children on central auditory diagnostic tests and their corresponding visual analogs.

    PubMed

    Bellis, Teri James; Ross, Jody

    2011-09-01

    It has been suggested that, in order to validate a diagnosis of (C)APD (central auditory processing disorder), testing using direct cross-modal analogs should be performed to demonstrate that deficits exist solely or primarily in the auditory modality (McFarland and Cacace, 1995; Cacace and McFarland, 2005). This modality-specific viewpoint is controversial and not universally accepted (American Speech-Language-Hearing Association [ASHA], 2005; Musiek et al, 2005). Further, no such analogs have been developed to date, and neither the feasibility of such testing in normally functioning individuals nor the concurrent validity of cross-modal analogs has been established. The purpose of this study was to investigate the feasibility of cross-modal testing by examining the performance of normal adults and children on four tests of central auditory function and their corresponding visual analogs. In addition, this study investigated the degree to which concurrent validity of auditory and visual versions of these tests could be demonstrated. An experimental repeated measures design was employed. Participants consisted of two groups (adults, n=10; children, n=10) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of auditory/otologic, language, learning, neurologic, or related disorders. Visual analogs of four tests in common clinical use for the diagnosis of (C)APD were developed (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; Duration Patterns [Pinheiro and Musiek, 1985]; and the Random Gap Detection Test [RGDT; Keith, 2000]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANOVAs (analyses of variance) were used to examine effects of group, modality, and laterality (for the Dichotic/Dichoptic Digits tests) or response condition (for the auditory and visual Frequency Patterns and Duration Patterns tests). Pearson product-moment correlations were used to investigate relationships between auditory and visual performance. Adults performed significantly better than children on the Dichotic/Dichoptic Digits tests. Results also revealed a significant effect of modality, with auditory better than visual, and a significant modality×laterality interaction, with a right-ear advantage seen for the auditory task and a left-visual-field advantage seen for the visual task. For the Frequency Patterns test and its visual analog, results revealed a significant modality×response condition interaction, with humming better than labeling for the auditory version but the reversed effect for the visual version. For Duration Patterns testing, visual performance was significantly poorer than auditory performance. Due to poor test-retest reliability and ceiling effects for the auditory and visual gap-detection tasks, analyses could not be performed. No cross-modal correlations were observed for any test. Results demonstrated that cross-modal testing is at least feasible using easily accessible computer hardware and software. The lack of any cross-modal correlations suggests independent processing mechanisms for auditory and visual versions of each task. Examination of performance in individuals with central auditory and pan-sensory disorders is needed to determine the utility of cross-modal analogs in the differential diagnosis of (C)APD. American Academy of Audiology.

  5. Programmed serial stereochemical relay and its application in the synthesis of morphinans† †Electronic supplementary information (ESI) available. CCDC 1526432. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03189k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Ho (Kenny) Park, Kun; Chen, Rui

    2017-01-01

    Herein we report a rationally designed, serial point-to-axial and axial-to-point stereoinduction and its integration into multi-step and target-oriented organic synthesis. In this proof-of-concept study, the configurational stability of several carefully designed atropisomeric intermediates and the fidelity of their unconventional stereoinductions were systematically investigated. The highly functionalized prepared synthetic intermediate was further applied in a novel chemical method to access the morphinans and it is potentially applicable to other structurally related alkaloids. PMID:29147530

  6. Cephalometric superimpositions.

    PubMed

    Gu, Yan; McNamara, James A

    2008-11-01

    To test the hypothesis that there is no difference between the information produced by superimposition of serial lateral headfilms on anatomical structures and that produced by superimposition on metallic implants according to the protocols of Björk. Serial cephalograms of 10 untreated subjects who had tantalum implants placed in the maxilla and mandible during childhood were analyzed. Headfilms taken at six consecutive stages of cervical vertebral maturation (CS1-CS6) for six female and four male subjects were used. Tracings were superimposed according to the methods of superimpositions advocated by the American Board of Orthodontics (ABO). In addition, superimpositions along the inferior border of the mandible were performed. Finally, superimpositions of serial tracings on stable intraosseous implants were made to determine the actual growth and remodeling patterns of the maxilla and mandible. The ABO maxillary superimposition method underestimates the vertical displacement and overestimates the forward movement of maxillary landmarks. Superimposing on the internal cortical outline of the symphysis and the inferior alveolar nerve canals generally approximates the mandibular superimposition on implants, although the lower anterior border of the symphysis may be a preferable area of superimposition. Superimposition on the lower border of the mandible does not reflect accurately the actual pattern of growth and remodeling of the mandible. When analyzing serial headfilms, erroneous information concerning patterns of bone growth and remodeling can be obtained if convenient, but biologically incorrect superimposition protocols are used. In addition, tooth movements measured can be distorted significantly depending on the method of superimposition.

  7. Listening comprehension across the adult lifespan

    PubMed Central

    Sommers, Mitchell S.; Hale, Sandra; Myerson, Joel; Rose, Nathan; Tye-Murray, Nancy; Spehar, Brent

    2011-01-01

    Short Summary The current study provides the first systematic assessment of listening comprehension across the adult lifespan. A total of 433 participants ranging in age from 20-90 listened to spoken passages and answered comprehension questions following each passage. In addition, measures of auditory sensitivity were obtained from all participants to determine if hearing loss and listening comprehension changed similarly across the adult lifespan. As expected, auditory sensitivity declined from age 20 to age 90. In contrast, listening comprehension remained relatively unchanged until approximately age 65-70, with declines evident only for the oldest participants. PMID:21716112

  8. Direct recordings from the auditory cortex in a cochlear implant user.

    PubMed

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  9. Can an aircraft be piloted via sonification with an acceptable attentional cost? A comparison of blind and sighted pilots.

    PubMed

    Valéry, Benoît; Scannella, Sébastien; Peysakhovich, Vsevolod; Barone, Pascal; Causse, Mickaël

    2017-07-01

    In the aeronautics field, some authors have suggested that an aircraft's attitude sonification could be used by pilots to cope with spatial disorientation situations. Such a system is currently used by blind pilots to control the attitude of their aircraft. However, given the suspected higher auditory attentional capacities of blind people, the possibility for sighted individuals to use this system remains an open question. For example, its introduction may overload the auditory channel, which may in turn alter the responsiveness of pilots to infrequent but critical auditory warnings. In this study, two groups of pilots (blind versus sighted) performed a simulated flight experiment consisting of successive aircraft maneuvers, on the sole basis of an aircraft sonification. Maneuver difficulty was varied while we assessed flight performance along with subjective and electroencephalographic (EEG) measures of workload. The results showed that both groups of participants reached target-attitudes with a good accuracy. However, more complex maneuvers increased subjective workload and impaired brain responsiveness toward unexpected auditory stimuli as demonstrated by lower N1 and P3 amplitudes. Despite that the EEG signal showed a clear reorganization of the brain in the blind participants (higher alpha power), the brain responsiveness to unexpected auditory stimuli was not significantly different between the two groups. The results suggest that an auditory display might provide useful additional information to spatially disoriented pilots with normal vision. However, its use should be restricted to critical situations and simple recovery or guidance maneuvers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    PubMed

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Auditory input modulates sleep: an intra-cochlear-implanted human model.

    PubMed

    Velluti, Ricardo A; Pedemonte, Marisa; Suárez, Hámlet; Bentancor, Claudia; Rodríguez-Servetti, Zulma

    2010-12-01

    To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep. © 2010 European Sleep Research Society.

  12. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery.

    PubMed

    Rodriguez, Rosendo A

    2004-06-01

    Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.

  13. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Superior serial memory in the blind: a case of cognitive compensatory adjustment.

    PubMed

    Raz, Noa; Striem, Ella; Pundak, Golan; Orlov, Tanya; Zohary, Ehud

    2007-07-03

    In the absence of vision, perception of space is likely to be highly dependent on memory. As previously stated, the blind tend to code spatial information in the form of "route-like" sequential representations [1-3]. Thus, serial memory, indicating the order in which items are encountered, may be especially important for the blind to generate a mental picture of the world. In accordance, we find that the congenitally blind are remarkably superior to sighted peers in serial memory tasks. Specifically, subjects heard a list of 20 words and were instructed to recall the words according to their original order in the list. The blind recalled more words than the sighted (indicating better item memory), but their greatest advantage was in recalling longer word sequences (according to their original order). We further show that the serial memory superiority of the blind is not merely a result of their advantage in item recall per se (as we additionally confirm via a separate recognition memory task). These results suggest the refinement of a specific cognitive ability to compensate for blindness in humans.

  15. Time-resolved structural studies with serial crystallography: A new light on retinal proteins

    PubMed Central

    Panneels, Valérie; Wu, Wenting; Tsai, Ching-Ju; Nogly, Przemek; Rheinberger, Jan; Jaeger, Kathrin; Cicchetti, Gregor; Gati, Cornelius; Kick, Leonhard M.; Sala, Leonardo; Capitani, Guido; Milne, Chris; Padeste, Celestino; Pedrini, Bill; Li, Xiao-Dan; Standfuss, Jörg; Abela, Rafael; Schertler, Gebhard

    2015-01-01

    Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination. PMID:26798817

  16. Speech recognition and parent-ratings from auditory development questionnaires in children who are hard of hearing

    PubMed Central

    McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Objectives Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HA) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children’s auditory experience on parent-report auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Design Parent ratings on auditory development questionnaires and children’s speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years of age. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children Rating Scale, and an adaptation of the Speech, Spatial and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open and Closed set task, Early Speech Perception Test, Lexical Neighborhood Test, and Phonetically-balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared to peers with normal hearing matched for age, maternal educational level and nonverbal intelligence. The effects of aided audibility, HA use and language ability on parent responses to auditory development questionnaires and on children’s speech recognition were also examined. Results Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use and better language abilities generally had higher parent ratings of auditory skills and better speech recognition abilities in quiet and in noise than peers with less audibility, more limited HA use or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Conclusions Children who are hard of hearing continue to experience delays in auditory skill development and speech recognition abilities compared to peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported prior to the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech recognition abilities, and may also enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children’s speech recognition. PMID:26731160

  17. Agnosia for accents in primary progressive aphasia☆

    PubMed Central

    Fletcher, Phillip D.; Downey, Laura E.; Agustus, Jennifer L.; Hailstone, Julia C.; Tyndall, Marina H.; Cifelli, Alberto; Schott, Jonathan M.; Warrington, Elizabeth K.; Warren, Jason D.

    2013-01-01

    As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the fractionation of brain mechanisms for complex sound analysis, and for the stratification of progressive aphasia syndromes according to the signature of nonverbal auditory deficits they produce. PMID:23721780

  18. Agnosia for accents in primary progressive aphasia.

    PubMed

    Fletcher, Phillip D; Downey, Laura E; Agustus, Jennifer L; Hailstone, Julia C; Tyndall, Marina H; Cifelli, Alberto; Schott, Jonathan M; Warrington, Elizabeth K; Warren, Jason D

    2013-08-01

    As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the fractionation of brain mechanisms for complex sound analysis, and for the stratification of progressive aphasia syndromes according to the signature of nonverbal auditory deficits they produce. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The Influence of Tactile Cognitive Maps on Auditory Space Perception in Sighted Persons.

    PubMed

    Tonelli, Alessia; Gori, Monica; Brayda, Luca

    2016-01-01

    We have recently shown that vision is important to improve spatial auditory cognition. In this study, we investigate whether touch is as effective as vision to create a cognitive map of a soundscape. In particular, we tested whether the creation of a mental representation of a room, obtained through tactile exploration of a 3D model, can influence the perception of a complex auditory task in sighted people. We tested two groups of blindfolded sighted people - one experimental and one control group - in an auditory space bisection task. In the first group, the bisection task was performed three times: specifically, the participants explored with their hands the 3D tactile model of the room and were led along the perimeter of the room between the first and the second execution of the space bisection. Then, they were allowed to remove the blindfold for a few minutes and look at the room between the second and third execution of the space bisection. Instead, the control group repeated for two consecutive times the space bisection task without performing any environmental exploration in between. Considering the first execution as a baseline, we found an improvement in the precision after the tactile exploration of the 3D model. Interestingly, no additional gain was obtained when room observation followed the tactile exploration, suggesting that no additional gain was obtained by vision cues after spatial tactile cues were internalized. No improvement was found between the first and the second execution of the space bisection without environmental exploration in the control group, suggesting that the improvement was not due to task learning. Our results show that tactile information modulates the precision of an ongoing space auditory task as well as visual information. This suggests that cognitive maps elicited by touch may participate in cross-modal calibration and supra-modal representations of space that increase implicit knowledge about sound propagation.

  20. The inpatient evaluation and treatment of a self-professed budding serial killer.

    PubMed

    Reisner, Andrew D; McGee, Mark; Noffsinger, Stephen G

    2003-02-01

    The authors present the case of a man who was hospitalized after claiming that he was about to become a serial killer. The patient presented with extensive written homicidal fantasies and homicidal intentions without evidence of actual homicidal acts. In addition to routine assessments, hospital staff members used case conferences, psychological testing, outside forensic consultation, and a forensic review process to make decisions regarding diagnosis, treatment planning, and discharge. The patient was discharged after 8 months of inpatient treatment and was apparently free of homicidal impulses or symptoms of severe mental illness. A 2-year court commitment allowed for the enactment and potential enforcement of a discharge plan that was endorsed by the patient, the hospital, and community care providers. The authors review diagnostic and risk management issues. Comparisons with known features of typical serial killers are made.

  1. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Using multisensory cues to facilitate air traffic management.

    PubMed

    Ngo, Mary K; Pierce, Russell S; Spence, Charles

    2012-12-01

    In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.

  3. Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex.

    PubMed

    Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T

    2013-10-01

    Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Visual and auditory synchronization deficits among dyslexic readers as compared to non-impaired readers: a cross-correlation algorithm analysis

    PubMed Central

    Sela, Itamar

    2014-01-01

    Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia. PMID:24959125

  5. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study.

    PubMed

    Kreifelts, Benjamin; Ethofer, Thomas; Grodd, Wolfgang; Erb, Michael; Wildgruber, Dirk

    2007-10-01

    In a natural environment, non-verbal emotional communication is multimodal (i.e. speech melody, facial expression) and multifaceted concerning the variety of expressed emotions. Understanding these communicative signals and integrating them into a common percept is paramount to successful social behaviour. While many previous studies have focused on the neurobiology of emotional communication in the auditory or visual modality alone, far less is known about multimodal integration of auditory and visual non-verbal emotional information. The present study investigated this process using event-related fMRI. Behavioural data revealed that audiovisual presentation of non-verbal emotional information resulted in a significant increase in correctly classified stimuli when compared with visual and auditory stimulation. This behavioural gain was paralleled by enhanced activation in bilateral posterior superior temporal gyrus (pSTG) and right thalamus, when contrasting audiovisual to auditory and visual conditions. Further, a characteristic of these brain regions, substantiating their role in the emotional integration process, is a linear relationship between the gain in classification accuracy and the strength of the BOLD response during the bimodal condition. Additionally, enhanced effective connectivity between audiovisual integration areas and associative auditory and visual cortices was observed during audiovisual stimulation, offering further insight into the neural process accomplishing multimodal integration. Finally, we were able to document an enhanced sensitivity of the putative integration sites to stimuli with emotional non-verbal content as compared to neutral stimuli.

  6. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline; Fulton, Sherry; Campbell, Jerry; Fisher, Jeffrey; Na, Kwangsam; Cocker, David; Nelson-Miller, Alisa; Moon, Patrick; Pouyatos, Benoit

    2007-08-01

    We report on the transient and persistent effects of JP-8 jet fuel exposure on auditory function in rats. JP-8 has become the standard jet fuel utilized in the United States and North Atlantic Treaty Organization countries for military use and it is closely related to Jet A fuel, which is used in U.S. domestic aviation. Rats received JP-8 fuel (1000 mg/m(3)) by nose-only inhalation for 4 h and half of them were immediately subjected to an octave band of noise ranging between 97 and 105 dB in different experiments. The noise by itself produces a small, but permanent auditory impairment. The current permissible exposure level for JP-8 is 350 mg/m(3). Additionally, a positive control group received only noise exposure, and a fourth group consisted of untreated control subjects. Exposures occurred either on 1 day or repeatedly on 5 successive days. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. In other rats, tissues were harvested following JP-8 exposure for assessment of hydrocarbon levels or glutathione (GSH) levels. A single JP-8 exposure by itself at 1000 mg/m(3) did not disrupt auditory function. However, exposure to JP-8 and noise produced an additive disruption in outer hair cell function. Repeated 5-day JP-8 exposure at 1000 mg/m(3) for 4 h produced impairment of outer hair cell function that was most evident at the first postexposure assessment time. Partial though not complete recovery was observed over a 4-week postexposure period. The adverse effects of repeated JP-8 exposures on auditory function were inconsistent, but combined treatment with JP-8 + noise yielded greater impairment of auditory function, and hair cell loss than did noise by itself. Qualitative comparison of outer hair cell loss suggests an increase in outer hair cell death among rats treated with JP-8 + noise for 5 days as compared to noise alone. In most instances, hydrocarbon constituents of the fuel were largely eliminated in all tissues by 1-h postexposure with the exception of fat. Finally, JP-8 exposure did result in a significant depletion of total GSH that was observable in liver with a nonsignificant trend toward depletion in the brain and lung raising the possibility that the promotion of noise-induced hearing loss by JP-8 might have resulted from oxidative stress.

  7. Maturation of auditory neural processes in autism spectrum disorder - A longitudinal MEG study.

    PubMed

    Port, Russell G; Edgar, J Christopher; Ku, Matthew; Bloy, Luke; Murray, Rebecca; Blaskey, Lisa; Levy, Susan E; Roberts, Timothy P L

    2016-01-01

    Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design. Initially recruited for a previous study, 27 children with ASD and nine typically developing (TD) children, aged 6- to 11-years-old, were re-recruited two to five years later. At both timepoints, MEG data were obtained while participants passively listened to sinusoidal pure-tones. Bilateral primary/secondary auditory cortex time domain (100 ms evoked response latency (M100)) and spectrotemporal measures (gamma-band power and inter-trial coherence (ITC)) were examined. MEG measures were also qualitatively examined for five children who exhibited "optimal outcome", participants who were initially on spectrum, but no longer met diagnostic criteria at follow-up. M100 latencies were delayed in ASD versus TD at the initial exam (~ 19 ms) and at follow-up (~ 18 ms). At both exams, M100 latencies were associated with clinical ASD severity. In addition, gamma-band evoked power and ITC were reduced in ASD versus TD. M100 latency and gamma-band maturation rates did not differ between ASD and TD. Of note, the cohort of five children that demonstrated "optimal outcome" additionally exhibited M100 latency and gamma-band activity mean values in-between TD and ASD at both timepoints. Though justifying only qualitative interpretation, these "optimal outcome" related data are presented here to motivate future studies. Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities in ASD persisted across time. Of note, data from the five children whom demonstrated "optimal outcome" qualitatively suggest that such clinical improvements may be associated with auditory brain responses intermediate between TD and ASD. These "optimal outcome" related results are not statistically significant though, likely due to the low sample size of this cohort, and to be expected as a result of the relatively low proportion of "optimal outcome" in the ASD population. Thus, further investigations with larger cohorts are needed to determine if the above auditory response phenotypes have prognostic utility, predictive of clinical outcome.

  8. Sox2 marks epithelial competence to generate teeth in mammals and reptiles

    PubMed Central

    Juuri, Emma; Jussila, Maria; Seidel, Kerstin; Holmes, Scott; Wu, Ping; Richman, Joy; Heikinheimo, Kristiina; Chuong, Cheng-Ming; Arnold, Katrin; Hochedlinger, Konrad; Klein, Ophir; Michon, Frederic; Thesleff, Irma

    2013-01-01

    Tooth renewal is initiated from epithelium associated with existing teeth. The development of new teeth requires dental epithelial cells that have competence for tooth formation, but specific marker genes for these cells have not been identified. Here, we analyzed expression patterns of the transcription factor Sox2 in two different modes of successional tooth formation: tooth replacement and serial addition of primary teeth. We observed specific Sox2 expression in the dental lamina that gives rise to successional teeth in mammals with one round of tooth replacement as well as in reptiles with continuous tooth replacement. Sox2 was also expressed in the dental lamina during serial addition of mammalian molars, and genetic lineage tracing indicated that Sox2+ cells of the first molar give rise to the epithelial cell lineages of the second and third molars. Moreover, conditional deletion of Sox2 resulted in hyperplastic epithelium in the forming posterior molars. Our results indicate that the Sox2+ dental epithelium has competence for successional tooth formation and that Sox2 regulates the progenitor state of dental epithelial cells. The findings imply that the function of Sox2 has been conserved during evolution and that tooth replacement and serial addition of primary teeth represent variations of the same developmental process. The expression patterns of Sox2 support the hypothesis that dormant capacity for continuous tooth renewal exists in mammals. PMID:23462476

  9. Unobtrusive Multi-Static Serial LiDAR Imager (UMSLI) First Generation Shape-Matching Based Classifier for 2D Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zheng; Ouyang, Bing; Principe, Jose

    A multi-static serial LiDAR system prototype was developed under DE-EE0006787 to detect, classify, and record interactions of marine life with marine hydrokinetic generation equipment. This software implements a shape-matching based classifier algorithm for the underwater automated detection of marine life for that system. In addition to applying shape descriptors, the algorithm also adopts information theoretical learning based affine shape registration, improving point correspondences found by shape descriptors as well as the final similarity measure.

  10. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  11. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2006-02-01

    It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.

  12. Teaching Typing by Transcription.

    ERIC Educational Resources Information Center

    Janson, Eleanor L.

    1978-01-01

    In addition to discussing the program for teaching typewriting to blind students using the auditory mode, the article presents a sample lesson in print, along with typing rates achieved by earlier classes. (DLS)

  13. Intentional attention switching in dichotic listening: exploring the efficiency of nonspatial and spatial selection.

    PubMed

    Lawo, Vera; Fels, Janina; Oberem, Josefa; Koch, Iring

    2014-10-01

    Using an auditory variant of task switching, we examined the ability to intentionally switch attention in a dichotic-listening task. In our study, participants responded selectively to one of two simultaneously presented auditory number words (spoken by a female and a male, one for each ear) by categorizing its numerical magnitude. The mapping of gender (female vs. male) and ear (left vs. right) was unpredictable. The to-be-attended feature for gender or ear, respectively, was indicated by a visual selection cue prior to auditory stimulus onset. In Experiment 1, explicitly cued switches of the relevant feature dimension (e.g., from gender to ear) and switches of the relevant feature within a dimension (e.g., from male to female) occurred in an unpredictable manner. We found large performance costs when the relevant feature switched, but switches of the relevant feature dimension incurred only small additional costs. The feature-switch costs were larger in ear-relevant than in gender-relevant trials. In Experiment 2, we replicated these findings using a simplified design (i.e., only within-dimension switches with blocked dimensions). In Experiment 3, we examined preparation effects by manipulating the cueing interval and found a preparation benefit only when ear was cued. Together, our data suggest that the large part of attentional switch costs arises from reconfiguration at the level of relevant auditory features (e.g., left vs. right) rather than feature dimensions (ear vs. gender). Additionally, our findings suggest that ear-based target selection benefits more from preparation time (i.e., time to direct attention to one ear) than gender-based target selection.

  14. Effectiveness of enhanced pulse oximetry sonifications for conveying oxygen saturation ranges: a laboratory comparison of five auditory displays.

    PubMed

    Paterson, E; Sanderson, P M; Paterson, N A B; Loeb, R G

    2017-12-01

    Anaesthetists monitor auditory information about a patient's vital signs in an environment that can be noisy and while performing other cognitively demanding tasks. It can be difficult to identify oxygen saturation (SpO2) values using existing pulse oximeter auditory displays (sonifications). In a laboratory setting, we compared the ability of non-clinician participants to detect transitions into and out of an SpO2 target range using five different sonifications while they performed a secondary distractor arithmetic task in the presence of background noise. The control sonification was based on the auditory display of current pulse oximeters and comprised a variable pitch with an alarm. The four experimental conditions included an Alarm Only condition, a Variable pitch only condition, and two conditions using sonifications enhanced with additional sound dimensions. Accuracy to detect SpO2 target transitions was the primary outcome. We found that participants using the two sonifications enhanced with the additional sound dimensions of tremolo and brightness were significantly more accurate (83 and 96%, respectively) at detecting transitions to and from a target SpO2 range than participants using a pitch only sonification plus alarms (57%) as implemented in current pulse oximeters. Enhanced sonifications are more informative than conventional sonification. The implication is that they might allow anaesthetists to judge better when desaturation decreases below, or returns to, a target range. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Pilot mental workload: how well do pilots really perform?

    PubMed

    Morris, Charles H; Leung, Ying K

    2006-12-15

    The purpose of this study was to investigate the effects of increasing mental demands on various aspects of aircrew performance. In particular, the robustness of the prioritization and allocation hierarchy of aviate-navigate-communicate was examined, a hierarchy commonly used within the aviation industry. A total of 42 trainee pilots were divided into three workload groups (low, medium, high) to complete a desktop, computer-based exercise that simulated combinations of generic flight deck activities: flight control manipulation, rule-based actions and higher level cognitive processing, in addition to Air Traffic Control instructions that varied in length from one chunk of auditory information to seven chunks. It was found that as mental workload and auditory input increased, participants experienced considerable difficulty in carrying out the primary manipulation task. A similar decline in prioritization was also observed. Moreover, when pilots were under a high mental workload their ability to comprehend more than two chunks of auditory data deteriorated rapidly.

  16. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  17. Auditory feedback blocks memory benefits of cueing during sleep

    PubMed Central

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-01-01

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. PMID:26507814

  18. The influence of moving auditory stimuli on standing balance in healthy young adults and the elderly.

    PubMed

    Tanaka, T; Kojima, S; Takeda, H; Ino, S; Ifukube, T

    2001-12-15

    The maintenance of postural balance depends on effective and efficient feedback from various sensory inputs. The importance of auditory inputs in this respect is not, as yet, fully understood. The purpose of this study was to analyse how the moving auditory stimuli could affect the standing balance in healthy adults of different ages. The participants of the study were 12 healthy volunteers, who were divided into two age categories: the young group (mean = 21.9 years) and the elderly group (mean = 68.9 years). The instrument used for evaluation of standing balance was a force plate for measuring body sway parameters. The toe pressure was measured using the F-scan Tactile Sensor System. The moving auditory stimulus produced a white-noise sound and binaural cue using the Beachtron Affordable 3D Audio system. The moving auditory stimulus conditions were employed by having the sound come from the right to left or vice versa at the height of the participant's ears. Participants were asked to stand on the force plate in the Romberg position for 20 s with either eyes opened or eyes closed for analysing the effect of visual input. Simultaneously, all participants tried to remain in the standing position with and without auditory stimulation that the participants heard from the headphone. In addition, the variables of body sway were measured under four conditions for analysing the effect of decreased tactile sensation of toes and feet soles: standing on the normal surface (NS) or soft surface (SS) with and without auditory stimulation. The participants were asked to stand in a total of eight conditions. The results showed that the lateral body sway of the elderly group was more influenced than that of the young group by the lateral moving auditory stimulation. The analysis of toe pressure indicated that all participants used their left feet more than their right feet to maintain balance. Moreover, the elderly had the tendency to be stabilized mainly by use of their heels. The young group were mainly stabilized by the toes of their feet. The results suggest that the elderly may need a more appropriate stimulus of tactile and auditory sense as a feedback system than the young for maintaining and control of their standing postures.

  19. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study.

    PubMed

    Dewey, Rebecca Susan; Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-03-09

    Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. ©Rebecca Susan Dewey, Deborah A Hall, Hannah Guest, Garreth Prendergast, Christopher J Plack, Susan T Francis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.03.2018.

  20. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  1. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of hearing loss on semantic access by auditory and audiovisual speech in children.

    PubMed

    Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F; Abdi, Hervé

    2013-01-01

    This research studied whether the mode of input (auditory versus audiovisual) influenced semantic access by speech in children with sensorineural hearing impairment (HI). Participants, 31 children with HI and 62 children with normal hearing (NH), were tested with the authors' new multimodal picture word task. Children were instructed to name pictures displayed on a monitor and ignore auditory or audiovisual speech distractors. The semantic content of the distractors was varied to be related versus unrelated to the pictures (e.g., picture distractor of dog-bear versus dog-cheese, respectively). In children with NH, picture-naming times were slower in the presence of semantically related distractors. This slowing, called semantic interference, is attributed to the meaning-related picture-distractor entries competing for selection and control of the response (the lexical selection by competition hypothesis). Recently, a modification of the lexical selection by competition hypothesis, called the competition threshold (CT) hypothesis, proposed that (1) the competition between the picture-distractor entries is determined by a threshold, and (2) distractors with experimentally reduced fidelity cannot reach the CT. Thus, semantically related distractors with reduced fidelity do not produce the normal interference effect, but instead no effect or semantic facilitation (faster picture naming times for semantically related versus unrelated distractors). Facilitation occurs because the activation level of the semantically related distractor with reduced fidelity (1) is not sufficient to exceed the CT and produce interference but (2) is sufficient to activate its concept, which then strengthens the activation of the picture and facilitates naming. This research investigated whether the proposals of the CT hypothesis generalize to the auditory domain, to the natural degradation of speech due to HI, and to participants who are children. Our multimodal picture word task allowed us to (1) quantify picture naming results in the presence of auditory speech distractors and (2) probe whether the addition of visual speech enriched the fidelity of the auditory input sufficiently to influence results. In the HI group, the auditory distractors produced no effect or a facilitative effect, in agreement with proposals of the CT hypothesis. In contrast, the audiovisual distractors produced the normal semantic interference effect. Results in the HI versus NH groups differed significantly for the auditory mode, but not for the audiovisual mode. This research indicates that the lower fidelity auditory speech associated with HI affects the normalcy of semantic access by children. Further, adding visual speech enriches the lower fidelity auditory input sufficiently to produce the semantic interference effect typical of children with NH.

  3. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects.

    PubMed

    Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi

    2018-05-16

    Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  5. Tinnitus and Auditory Perception After a History of Noise Exposure: Relationship to Auditory Brainstem Response Measures.

    PubMed

    Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P

    2018-01-15

    To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.

  6. Auditory risk assessment of college music students in jazz band-based instructional activity.

    PubMed

    Gopal, Kamakshi V; Chesky, Kris; Beschoner, Elizabeth A; Nelson, Paul D; Stewart, Bradley J

    2013-01-01

    It is well-known that musicians are at risk for music-induced hearing loss, however, systematic evaluation of music exposure and its effects on the auditory system are still difficult to assess. The purpose of the study was to determine if college students in jazz band-based instructional activity are exposed to loud classroom noise and consequently exhibit acute but significant changes in basic auditory measures compared to non-music students in regular classroom sessions. For this we (1) measured and compared personal exposure levels of college students (n = 14) participating in a routine 50 min jazz ensemble-based instructional activity (experimental) to personal exposure levels of non-music students (n = 11) participating in a 50-min regular classroom activity (control), and (2) measured and compared pre- to post-auditory changes associated with these two types of classroom exposures. Results showed that the L eq (equivalent continuous noise level) generated during the 50 min jazz ensemble-based instructional activity ranged from 95 dBA to 105.8 dBA with a mean of 99.5 ± 2.5 dBA. In the regular classroom, the L eq ranged from 46.4 dBA to 67.4 dBA with a mean of 49.9 ± 10.6 dBA. Additionally, significant differences were observed in pre to post-auditory measures between the two groups. The experimental group showed a significant temporary threshold shift bilaterally at 4000 Hz (P < 0.05), and a significant decrease in the amplitude of transient-evoked otoacoustic emission response in both ears (P < 0.05) after exposure to the jazz ensemble-based instructional activity. No significant changes were found in the control group between pre- and post-exposure measures. This study quantified the noise exposure in jazz band-based practice sessions and its effects on basic auditory measures. Temporary, yet significant, auditory changes seen in music students place them at risk for hearing loss compared to their non-music cohorts.

  7. Impact of olfactory and auditory priming on the attraction to foods with high energy density.

    PubMed

    Chambaron, S; Chisin, Q; Chabanet, C; Issanchou, S; Brand, G

    2015-12-01

    \\]\\Recent research suggests that non-attentively perceived stimuli may significantly influence consumers' food choices. The main objective of the present study was to determine whether an olfactory prime (a sweet-fatty odour) and a semantic auditory prime (a nutritional prevention message), both presented incidentally, either alone or in combination can influence subsequent food choices. The experiment included 147 participants who were assigned to four different conditions: a control condition, a scented condition, an auditory condition or an auditory-scented condition. All participants remained in the waiting room during15 min while they performed a 'lure' task. For the scented condition, the participants were unobtrusively exposed to a 'pain au chocolat' odour. Those in the auditory condition were exposed to an audiotape including radio podcasts and a nutritional message. A third group of participants was exposed to both olfactory and auditory stimuli simultaneously. In the control condition, no stimulation was given. Following this waiting period, all participants moved into a non-odorised test room where they were asked to choose, from dishes served buffet-style, the starter, main course and dessert that they would actually eat for lunch. The results showed that the participants primed with the odour of 'pain au chocolat' tended to choose more desserts with high energy density (i.e., a waffle) than the participants in the control condition (p = 0.06). Unexpectedly, the participants primed with the nutritional auditory message chose to consume more desserts with high energy density than the participants in the control condition (p = 0.03). In the last condition (odour and nutritional message), they chose to consume more desserts with high energy density than the participants in the control condition (p = 0.01), and the data reveal an additive effect of the two primes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis of aging in lager brewing yeast during serial repitching.

    PubMed

    Bühligen, Franziska; Lindner, Patrick; Fetzer, Ingo; Stahl, Frank; Scheper, Thomas; Harms, Hauke; Müller, Susann

    2014-10-10

    Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study.

    PubMed

    Emmert, Kirsten; Kopel, Rotem; Koush, Yury; Maire, Raphael; Senn, Pascal; Van De Ville, Dimitri; Haller, Sven

    2017-01-01

    The emerging technique of real-time fMRI neurofeedback trains individuals to regulate their own brain activity via feedback from an fMRI measure of neural activity. Optimum feedback presentation has yet to be determined, particularly when working with clinical populations. To this end, we compared continuous against intermittent feedback in subjects with tinnitus. Fourteen participants with tinnitus completed the whole experiment consisting of nine runs (3 runs × 3 days). Prior to the neurofeedback, the target region was localized within the auditory cortex using auditory stimulation (1 kHz tone pulsating at 6 Hz) in an ON-OFF block design. During neurofeedback runs, participants received either continuous (n = 7, age 46.84 ± 12.01, Tinnitus Functional Index (TFI) 49.43 ± 15.70) or intermittent feedback (only after the regulation block) (n = 7, age 47.42 ± 12.39, TFI 49.82 ± 20.28). Participants were asked to decrease auditory cortex activity that was presented to them by a moving bar. In the first and the last session, participants also underwent arterial spin labeling (ASL) and resting-state fMRI imaging. We assessed tinnitus severity using the TFI questionnaire before all sessions, directly after all sessions and six weeks after all sessions. We then compared neuroimaging results from neurofeedback using a general linear model (GLM) and region-of-interest analysis as well as behavior measures employing a repeated-measures ANOVA. In addition, we looked at the seed-based connectivity of the auditory cortex using resting-state data and the cerebral blood flow using ASL data. GLM group analysis revealed that a considerable part of the target region within the auditory cortex was significantly deactivated during neurofeedback. When comparing continuous and intermittent feedback groups, the continuous group showed a stronger deactivation of parts of the target region, specifically the secondary auditory cortex. This result was confirmed in the region-of-interest analysis that showed a significant down-regulation effect for the continuous but not the intermittent group. Additionally, continuous feedback led to a slightly stronger effect over time while intermittent feedback showed best results in the first session. Behaviorally, there was no significant effect on the total TFI score, though on a descriptive level TFI scores tended to decrease after all sessions and in the six weeks follow up in the continuous group. Seed-based connectivity with a fixed-effects analysis revealed that functional connectivity increased over sessions in the posterior cingulate cortex, premotor area and part of the insula when looking at all patients while cerebral blood flow did not change significantly over time. Overall, these results show that continuous feedback is suitable for long-term neurofeedback experiments while intermittent feedback presentation promises good results for single session experiments when using the auditory cortex as a target region. In particular, the down-regulation effect is more pronounced in the secondary auditory cortex, which might be more susceptible to voluntary modulation in comparison to a primary sensory region.

  10. Feasibility of and Design Parameters for a Computer-Based Attitudinal Research Information System

    DTIC Science & Technology

    1975-08-01

    Auditory Displays Auditory Evoked Potentials Auditory Feedback Auditory Hallucinations Auditory Localization Auditory Maski ng Auditory Neurons...surprising to hear these prob- lems e:qpressed once again and in the same old refrain. The Navy attitude surveyors were frustrated when they...Audiolcgy Audiometers Aud iometry Audiotapes Audiovisual Communications Media Audiovisual Instruction Auditory Cortex Auditory

  11. Walking stability during cell phone use in healthy adults.

    PubMed

    Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S

    2015-05-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Walking Stability during Cell Phone Use in Healthy Adults

    PubMed Central

    Kao, Pei-Chun; Higginson, Christopher I.; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S.

    2015-01-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. PMID:25890490

  13. Cognitive Rehabilitation for Military Service Members With Mild Traumatic Brain Injury: A Randomized Clinical Trial.

    PubMed

    Cooper, Douglas B; Bowles, Amy O; Kennedy, Jan E; Curtiss, Glenn; French, Louis M; Tate, David F; Vanderploeg, Rodney D

    To compare cognitive rehabilitation (CR) interventions for mild traumatic brain injury (mTBI) with standard of care management, including psychoeducation and medical care for noncognitive symptoms. Military medical center. A total of 126 service members who received mTBI from 3 to 24 months before baseline evaluation and reported ongoing cognitive difficulties. Randomized clinical trial with treatment outcomes assessed at baseline, 3-week, 6-week, 12-week, and 18-week follow-ups. Participants were randomly assigned to one of four 6-week treatment arms: (1) psychoeducation, (2) computer-based CR, (3) therapist-directed manualized CR, and (4) integrated therapist-directed CR combined with cognitive-behavioral psychotherapy (CBT). Treatment dosage was constant (10 h/wk) for intervention arms 2 to 4. Paced Auditory Serial Addition Test (PASAT); Symptom Checklist-90 Revised (SCL-90-R); Key Behaviors Change Inventory (KBCI). No differences were noted between treatment arms on demographics, injury-related characteristics, or psychiatric comorbidity apart from education, with participants assigned to the computer arm having less education. Using mixed-model analysis of variance, all 4 treatment groups showed a significant improvement over time on the 3 primary outcome measures. Treatment groups showed equivalent improvement on the PASAT. The therapist-directed CR and integrated CR treatment groups had better KBCI outcomes compared with the psychoeducation group. Improvements on primary outcome measures during treatment were maintained at follow-up with no differences among arms. Both therapist-directed CR and integrated CR with CBT reduced functional cognitive symptoms in service members after mTBI beyond psychoeducation and medical management alone.

  14. Inhibitory saccadic dysfunction is associated with cerebellar injury in multiple sclerosis.

    PubMed

    Kolbe, Scott C; Kilpatrick, Trevor J; Mitchell, Peter J; White, Owen; Egan, Gary F; Fielding, Joanne

    2014-05-01

    Cognitive dysfunction is common in patients with multiple sclerosis (MS). Saccadic eye movement paradigms such as antisaccades (AS) can sensitively interrogate cognitive function, in particular, the executive and attentional processes of response selection and inhibition. Although we have previously demonstrated significant deficits in the generation of AS in MS patients, the neuropathological changes underlying these deficits were not elucidated. In this study, 24 patients with relapsing-remitting MS underwent testing using an AS paradigm. Rank correlation and multiple regression analyses were subsequently used to determine whether AS errors in these patients were associated with: (i) neurological and radiological abnormalities, as measured by standard clinical techniques, (ii) cognitive dysfunction, and (iii) regionally specific cerebral white and gray-matter damage. Although AS error rates in MS patients did not correlate with clinical disability (using the Expanded Disability Status Score), T2 lesion load or brain parenchymal fraction, AS error rate did correlate with performance on the Paced Auditory Serial Addition Task and the Symbol Digit Modalities Test, neuropsychological tests commonly used in MS. Further, voxel-wise regression analyses revealed associations between AS errors and reduced fractional anisotropy throughout most of the cerebellum, and increased mean diffusivity in the cerebellar vermis. Region-wise regression analyses confirmed that AS errors also correlated with gray-matter atrophy in the cerebellum right VI subregion. These results support the use of the AS paradigm as a marker for cognitive dysfunction in MS and implicate structural and microstructural changes to the cerebellum as a contributing mechanism for AS deficits in these patients. Copyright © 2013 Wiley Periodicals, Inc.

  15. The interacting effect of depressive symptoms, gender, and distress tolerance on substance use problems among residential treatment-seeking substance users.

    PubMed

    Ali, Bina; Seitz-Brown, C J; Daughters, Stacey B

    2015-03-01

    Depression is associated with substance use problems; however, the specific individual characteristics influencing this association are not well identified. Empirical evidence and theory suggest that gender and distress tolerance-defined behaviorally as an individual's ability to persist in goal-directed behavior while experiencing negative affective states-are important underlying factors in this relationship. Hence, the purpose of the current study was to examine whether gender and distress tolerance moderate the relationship between depressive symptoms and substance use problems. Participants included 189 substance users recruited from a residential substance abuse treatment center. The Short Inventory of Problems-Alcohol and Drugs scale was used to measure self-reported substance use problems. The Beck Depression Inventory was used to assess self-reported depressive symptoms. Gender was self-reported, and distress tolerance was behaviorally indexed by the Computerized Paced Auditory Serial Addition Task. Hierarchical linear regression analysis indicated a significant three-way interaction of depressive symptoms, gender, and distress tolerance on substance use problems, adjusting for relevant demographic variables, anxiety symptoms, impulsivity, as well as DSM-IV psychiatric disorders. Probing of this three-way interaction demonstrated a significant positive association between depressive symptoms and substance use problems among females with low distress tolerance. Findings indicate that female treatment-seeking substance users with high levels of depressive symptoms exhibit greater substance use problems if they also evidence low distress tolerance. Study implications are discussed, including the development of prevention and intervention programs that target distress tolerance skills. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Correlation of the VEMP score, ambulation and upper extremity function in clinically isolated syndrome.

    PubMed

    Crnošija, Luka; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Brinar, Vesna; Habek, Mario

    2015-12-15

    To investigate the correlation of the vestibular evoked myogenic potential (VEMP) score with Timed 25-Foot Walk (T25FW), 9-Hole Peg Test (9HPT), Paced Auditory Serial Addition Test (PASAT) and EDSS in patients with multiple sclerosis (MS). This prospective, cross sectional study included 52 patients with clinically isolated syndrome (CIS). Cervical VEMP (cVEMP) and ocular VEMP (oVEMP), analyzed in the form of the cVEMP, oVEMP and VEMP scores, T25FW, 9HPT, PASAT and Expanded Disability Status Scale (EDSS) were performed. The only predictor of walking impairment in this study was general disability as measured by the EDSS, after controlling for age, gender, PASAT and EDSS the effect of VEMP score was non-significant (p=0.419). 9HPT of the dominant hand did not correlate with the oVEMP score (rs=0.258, p=0.065), however after controlling for age, gender, PASAT and EDSS, the effect of the oVEMP score on 9HPT of the dominant hand was statistically significant (p=0.017). After controlling for age, gender and oVEMP score, the effect of the PASAT on 9HPT variable for the non-dominant hand was statistically significant (p=0.001). We found possible effects of brainstem dysfunction on walking impairment, however they were not seen after correction for EDSS and cognitive dysfunction. On the other hand, dominant hand function seems to be influenced by upper brainstem dysfunction measured with oVEMP, while cognitive dysfunction is related to non-dominant hand function. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task.

    PubMed

    Donnet, Sophie; Bartolo, Ramon; Fernandes, José Maria; Cunha, João Paulo Silva; Prado, Luis; Merchant, Hugo

    2014-05-01

    A critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450-1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence. Copyright © 2014 the American Physiological Society.

  18. Hemodynamic and psychological responses to laboratory stressors in women: Assessing the roles of menstrual cycle phase, premenstrual symptomatology, and sleep characteristics

    PubMed Central

    Lustyk, M. Kathleen B.; Douglas, Haley A.C.; Shilling, Elizabeth A.; Woods, Nancy F.

    2016-01-01

    This study assessed whether premenstrual symptomatology and/or sleep characteristics explain increased luteal phase psychophysiological reactivity to laboratory stressors. We hypothesized that: (1) premenstrual symptoms and sleep characteristics would explain greater luteal versus follicular phase psychophysiological reactivity, (2) symptoms and sleep characteristics would differentially predict psychophysiological reactivity within each cycle phase, and (3) symptoms and sleep characteristics would interact to affect luteal but not follicular reactivity. Freely cycling women (N=87) completed two laboratory sessions, one follicular (cycle days 5–9) and one luteal (days 7–10 post-ovulation). We employed two stressors: one physical (cold pressor task) and the other cognitive in nature (Paced Auditory Serial Addition Task). During testing, electrocardiography monitored heart rate (HR) while a timed and auto-inflatable sphygmomanometer assessed blood pressure (BP). Participants also completed a one-time self-report measure of sleep characteristics and premenstrual symptomatology as well as a measure of state anxiety pre-post stressor. Results revealed greater luteal HR and systolic BP reactivity compared to follicular reactivity (p<0.001 for both analyses), however neither premenstrual symptoms nor sleep characteristics explained this luteal increase. Within cycle analyses revealed that symptoms and sleep characteristics interacted to affect luteal phase state anxiety reactivity (R2=.32, p=.002) with negative affect being associated with more reactivity when sleep hours were low (β=.333, p=.04). Overall, significant relationships existed during the luteal phase only. Findings are discussed in terms of clinical utility and methodological challenges related to performing laboratory stress testing in women. PMID:23092740

  19. Sleep and Cognitive Function in Multiple Sclerosis.

    PubMed

    Braley, Tiffany J; Kratz, Anna L; Kaplish, Neeraj; Chervin, Ronald D

    2016-08-01

    To examine associations between cognitive performance and polysomnographic measures of obstructive sleep apnea in patients with multiple sclerosis (MS). Participants underwent a comprehensive MS-specific cognitive testing battery (the Minimal Assessment of Cognitive Function in MS, or MACFIMS) and in-laboratory overnight PSG. In adjusted linear regression models, the oxygen desaturation index (ODI) and minimum oxygen saturation (MinO2) were significantly associated with performance on multiple MACFIMS measures, including the Paced Auditory Serial Addition Test (PASAT; 2-sec and 3-sec versions), which assesses working memory, processing speed, and attention, and on the Brief Visuospatial Memory Test-Revised, a test of delayed visual memory. The respiratory disturbance index (RDI) was also significantly associated with PASAT-3 scores as well as the California Verbal Learning Test-II (CVLT-II) Discriminability Index, a test of verbal memory and response inhibition. Among these associations, apnea severity measures accounted for between 12% and 23% of the variance in cognitive test performance. Polysomnographic measures of sleep fragmentation (as reflected by the total arousal index) and total sleep time also showed significant associations with a component of the CVLT-II that assesses response inhibition, explaining 18% and 27% of the variance in performance. Among patients with MS, obstructive sleep apnea and sleep disturbance are significantly associated with diminished visual memory, verbal memory, executive function (as reflected by response inhibition), attention, processing speed, and working memory. If sleep disorders degrade these cognitive functions, effective treatment could offer new opportunities to improve cognitive functioning in patients with MS. A commentary on this article appears in this issue on page 1489. © 2016 Associated Professional Sleep Societies, LLC.

  20. Improved physical fitness correlates with improved cognition in multiple sclerosis.

    PubMed

    Beier, Meghan; Bombardier, Charles H; Hartoonian, Narineh; Motl, Robert W; Kraft, George H

    2014-07-01

    To determine whether there is an association between improvements in objective measures of physical fitness and performance on cognitive tests in people with multiple sclerosis (MS). Post hoc correlational analysis in which people demonstrating physical improvement were compared with those not demonstrating physical improvement. Individuals with MS residing in the community. Adults with clinically confirmed MS (N=88) who participated in a controlled trial of a telephone-based health promotion intervention, chose to work on exercise, and completed the pre- and postintervention assessments. Participants were measured for strength (isokinetic dynamometer), aerobic fitness (bicycle ergometer), and cognition (Paced Auditory Serial Addition Test [PASAT], Trail Making Test [TMT]) at baseline and 12 weeks later. Change in fitness was calculated by subtracting each participant's baseline score from the outcome score, and then transforming the difference to a z score. Individuals with a z score ≥1 on any fitness measure were placed in the physically improved group (n=25). All others were in the physically not improved group (n=57). After controlling for covariates (age, sex, ethnicity, education, disease activity, MS type), there was a significant group-by-time interaction, suggesting that cognitive functioning changed over time based on level of fitness. Participants in the physically improved group demonstrated improved performance on measures of executive functioning after 12 weeks of exercise. The results of this study lend support to the hypothesis that change in fitness is associated with improved executive functioning in people with MS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

Top