Sample records for auditory speech perception

  1. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    PubMed Central

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594

  2. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment

    PubMed Central

    PONS, FERRAN; ANDREU, LLORENC.; SANZ-TORRENT, MONICA; BUIL-LEGAZ, LUCIA; LEWKOWICZ, DAVID J.

    2014-01-01

    Speech perception involves the integration of auditory and visual articulatory information and, thus, requires the perception of temporal synchrony between this information. There is evidence that children with Specific Language Impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component followed the visual component. None of the groups perceived an audiovisual asynchrony of 366ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception. PMID:22874648

  3. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment.

    PubMed

    Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J

    2013-06-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.

  4. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Audio-Visual Speech Perception Is Special

    ERIC Educational Resources Information Center

    Tuomainen, J.; Andersen, T.S.; Tiippana, K.; Sams, M.

    2005-01-01

    In face-to-face conversation speech is perceived by ear and eye. We studied the prerequisites of audio-visual speech perception by using perceptually ambiguous sine wave replicas of natural speech as auditory stimuli. When the subjects were not aware that the auditory stimuli were speech, they showed only negligible integration of auditory and…

  6. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  7. A Causal Inference Model Explains Perception of the McGurk Effect and Other Incongruent Audiovisual Speech.

    PubMed

    Magnotti, John F; Beauchamp, Michael S

    2017-02-01

    Audiovisual speech integration combines information from auditory speech (talker's voice) and visual speech (talker's mouth movements) to improve perceptual accuracy. However, if the auditory and visual speech emanate from different talkers, integration decreases accuracy. Therefore, a key step in audiovisual speech perception is deciding whether auditory and visual speech have the same source, a process known as causal inference. A well-known illusion, the McGurk Effect, consists of incongruent audiovisual syllables, such as auditory "ba" + visual "ga" (AbaVga), that are integrated to produce a fused percept ("da"). This illusion raises two fundamental questions: first, given the incongruence between the auditory and visual syllables in the McGurk stimulus, why are they integrated; and second, why does the McGurk effect not occur for other, very similar syllables (e.g., AgaVba). We describe a simplified model of causal inference in multisensory speech perception (CIMS) that predicts the perception of arbitrary combinations of auditory and visual speech. We applied this model to behavioral data collected from 60 subjects perceiving both McGurk and non-McGurk incongruent speech stimuli. The CIMS model successfully predicted both the audiovisual integration observed for McGurk stimuli and the lack of integration observed for non-McGurk stimuli. An identical model without causal inference failed to accurately predict perception for either form of incongruent speech. The CIMS model uses causal inference to provide a computational framework for studying how the brain performs one of its most important tasks, integrating auditory and visual speech cues to allow us to communicate with others.

  8. The Relationship Between Speech Production and Speech Perception Deficits in Parkinson's Disease.

    PubMed

    De Keyser, Kim; Santens, Patrick; Bockstael, Annelies; Botteldooren, Dick; Talsma, Durk; De Vos, Stefanie; Van Cauwenberghe, Mieke; Verheugen, Femke; Corthals, Paul; De Letter, Miet

    2016-10-01

    This study investigated the possible relationship between hypokinetic speech production and speech intensity perception in patients with Parkinson's disease (PD). Participants included 14 patients with idiopathic PD and 14 matched healthy controls (HCs) with normal hearing and cognition. First, speech production was objectified through a standardized speech intelligibility assessment, acoustic analysis, and speech intensity measurements. Second, an overall estimation task and an intensity estimation task were addressed to evaluate overall speech perception and speech intensity perception, respectively. Finally, correlation analysis was performed between the speech characteristics of the overall estimation task and the corresponding acoustic analysis. The interaction between speech production and speech intensity perception was investigated by an intensity imitation task. Acoustic analysis and speech intensity measurements demonstrated significant differences in speech production between patients with PD and the HCs. A different pattern in the auditory perception of speech and speech intensity was found in the PD group. Auditory perceptual deficits may influence speech production in patients with PD. The present results suggest a disturbed auditory perception related to an automatic monitoring deficit in PD.

  9. Auditory-visual fusion in speech perception in children with cochlear implants

    PubMed Central

    Schorr, Efrat A.; Fox, Nathan A.; van Wassenhove, Virginie; Knudsen, Eric I.

    2005-01-01

    Speech, for most of us, is a bimodal percept whenever we both hear the voice and see the lip movements of a speaker. Children who are born deaf never have this bimodal experience. We tested children who had been deaf from birth and who subsequently received cochlear implants for their ability to fuse the auditory information provided by their implants with visual information about lip movements for speech perception. For most of the children with implants (92%), perception was dominated by vision when visual and auditory speech information conflicted. For some, bimodal fusion was strong and consistent, demonstrating a remarkable plasticity in their ability to form auditory-visual associations despite the atypical stimulation provided by implants. The likelihood of consistent auditory-visual fusion declined with age at implant beyond 2.5 years, suggesting a sensitive period for bimodal integration in speech perception. PMID:16339316

  10. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework

    PubMed Central

    Perrier, Pascal; Schwartz, Jean-Luc; Diard, Julien

    2018-01-01

    Shifts in perceptual boundaries resulting from speech motor learning induced by perturbations of the auditory feedback were taken as evidence for the involvement of motor functions in auditory speech perception. Beyond this general statement, the precise mechanisms underlying this involvement are not yet fully understood. In this paper we propose a quantitative evaluation of some hypotheses concerning the motor and auditory updates that could result from motor learning, in the context of various assumptions about the roles of the auditory and somatosensory pathways in speech perception. This analysis was made possible thanks to the use of a Bayesian model that implements these hypotheses by expressing the relationships between speech production and speech perception in a joint probability distribution. The evaluation focuses on how the hypotheses can (1) predict the location of perceptual boundary shifts once the perturbation has been removed, (2) account for the magnitude of the compensation in presence of the perturbation, and (3) describe the correlation between these two behavioral characteristics. Experimental findings about changes in speech perception following adaptation to auditory feedback perturbations serve as reference. Simulations suggest that they are compatible with a framework in which motor adaptation updates both the auditory-motor internal model and the auditory characterization of the perturbed phoneme, and where perception involves both auditory and somatosensory pathways. PMID:29357357

  11. Perception of Audio-Visual Speech Synchrony in Spanish-Speaking Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Pons, Ferran; Andreu, Llorenc; Sanz-Torrent, Monica; Buil-Legaz, Lucia; Lewkowicz, David J.

    2013-01-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the…

  12. Infants’ brain responses to speech suggest Analysis by Synthesis

    PubMed Central

    Kuhl, Patricia K.; Ramírez, Rey R.; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-01-01

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners’ knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca’s area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of “motherese” on early language learning, and (iii) the “social-gating” hypothesis and humans’ development of social understanding. PMID:25024207

  13. Infants' brain responses to speech suggest analysis by synthesis.

    PubMed

    Kuhl, Patricia K; Ramírez, Rey R; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-08-05

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners' knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca's area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of "motherese" on early language learning, and (iii) the "social-gating" hypothesis and humans' development of social understanding.

  14. Teaching Turkish as a Foreign Language: Extrapolating from Experimental Psychology

    ERIC Educational Resources Information Center

    Erdener, Dogu

    2017-01-01

    Speech perception is beyond the auditory domain and a multimodal process, specifically, an auditory-visual one--we process lip and face movements during speech. In this paper, the findings in cross-language studies of auditory-visual speech perception in the past two decades are interpreted to the applied domain of second language (L2)…

  15. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    NASA Astrophysics Data System (ADS)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  16. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers.

    PubMed

    Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia

    2018-01-17

    During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Speech Perception in Individuals with Auditory Neuropathy

    ERIC Educational Resources Information Center

    Zeng, Fan-Gang; Liu, Sheng

    2006-01-01

    Purpose: Speech perception in participants with auditory neuropathy (AN) was systematically studied to answer the following 2 questions: Does noise present a particular problem for people with AN: Can clear speech and cochlear implants alleviate this problem? Method: The researchers evaluated the advantage in intelligibility of clear speech over…

  18. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    PubMed

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners

    PubMed Central

    Park, Hyojin; Ince, Robin A.A.; Schyns, Philippe G.; Thut, Gregor; Gross, Joachim

    2015-01-01

    Summary Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. PMID:26028433

  20. Perception of the Auditory-Visual Illusion in Speech Perception by Children with Phonological Disorders

    ERIC Educational Resources Information Center

    Dodd, Barbara; McIntosh, Beth; Erdener, Dogu; Burnham, Denis

    2008-01-01

    An example of the auditory-visual illusion in speech perception, first described by McGurk and MacDonald, is the perception of [ta] when listeners hear [pa] in synchrony with the lip movements for [ka]. One account of the illusion is that lip-read and heard speech are combined in an articulatory code since people who mispronounce words respond…

  1. Effect of attentional load on audiovisual speech perception: evidence from ERPs.

    PubMed

    Alsius, Agnès; Möttönen, Riikka; Sams, Mikko E; Soto-Faraco, Salvador; Tiippana, Kaisa

    2014-01-01

    Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs) generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual, and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e., a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech.

  2. The organization and reorganization of audiovisual speech perception in the first year of life.

    PubMed

    Danielson, D Kyle; Bruderer, Alison G; Kandhadai, Padmapriya; Vatikiotis-Bateson, Eric; Werker, Janet F

    2017-04-01

    The period between six and 12 months is a sensitive period for language learning during which infants undergo auditory perceptual attunement, and recent results indicate that this sensitive period may exist across sensory modalities. We tested infants at three stages of perceptual attunement (six, nine, and 11 months) to determine 1) whether they were sensitive to the congruence between heard and seen speech stimuli in an unfamiliar language, and 2) whether familiarization with congruent audiovisual speech could boost subsequent non-native auditory discrimination. Infants at six- and nine-, but not 11-months, detected audiovisual congruence of non-native syllables. Familiarization to incongruent, but not congruent, audiovisual speech changed auditory discrimination at test for six-month-olds but not nine- or 11-month-olds. These results advance the proposal that speech perception is audiovisual from early in ontogeny, and that the sensitive period for audiovisual speech perception may last somewhat longer than that for auditory perception alone.

  3. The organization and reorganization of audiovisual speech perception in the first year of life

    PubMed Central

    Danielson, D. Kyle; Bruderer, Alison G.; Kandhadai, Padmapriya; Vatikiotis-Bateson, Eric; Werker, Janet F.

    2017-01-01

    The period between six and 12 months is a sensitive period for language learning during which infants undergo auditory perceptual attunement, and recent results indicate that this sensitive period may exist across sensory modalities. We tested infants at three stages of perceptual attunement (six, nine, and 11 months) to determine 1) whether they were sensitive to the congruence between heard and seen speech stimuli in an unfamiliar language, and 2) whether familiarization with congruent audiovisual speech could boost subsequent non-native auditory discrimination. Infants at six- and nine-, but not 11-months, detected audiovisual congruence of non-native syllables. Familiarization to incongruent, but not congruent, audiovisual speech changed auditory discrimination at test for six-month-olds but not nine- or 11-month-olds. These results advance the proposal that speech perception is audiovisual from early in ontogeny, and that the sensitive period for audiovisual speech perception may last somewhat longer than that for auditory perception alone. PMID:28970650

  4. Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.

    PubMed

    Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa

    2016-07-01

    The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.

  5. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  6. Auditory-Visual Speech Perception in Three- and Four-Year-Olds and Its Relationship to Perceptual Attunement and Receptive Vocabulary

    ERIC Educational Resources Information Center

    Erdener, Dogu; Burnham, Denis

    2018-01-01

    Despite the body of research on auditory-visual speech perception in infants and schoolchildren, development in the early childhood period remains relatively uncharted. In this study, English-speaking children between three and four years of age were investigated for: (i) the development of visual speech perception--lip-reading and visual…

  7. Auditory Processing and Speech Perception in Children with Specific Language Impairment: Relations with Oral Language and Literacy Skills

    ERIC Educational Resources Information Center

    Vandewalle, Ellen; Boets, Bart; Ghesquiere, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay…

  8. The effect of tinnitus specific intracochlear stimulation on speech perception in patients with unilateral or asymmetric hearing loss accompanied with tinnitus and the effect of formal auditory training.

    PubMed

    Arts, Remo A G J; George, Erwin L J; Janssen, Miranda A M L; Griessner, Andreas; Zierhofer, Clemens; Stokroos, Robert J

    2018-06-01

    Previous studies show that intracochlear electrical stimulation independent of environmental sounds appears to suppress tinnitus, even long-term. In order to assess the viability of this potential treatment option it is essential to study the effects of this tinnitus specific electrical stimulation on speech perception. A randomised, prospective crossover design. Ten patients with unilateral or asymmetric hearing loss and severe tinnitus complaints. The audiological effects of standard clinical CI, formal auditory training and tinnitus specific electrical stimulation were investigated. Results show that standard clinical CI in unilateral or asymmetric hearing loss is shown to be beneficial for speech perception in quiet, speech perception in noise and subjective hearing ability. Formal auditory training does not appear to improve speech perception performance. However, CI-related discomfort reduces significantly more rapidly during CI rehabilitation in subjects receiving formal auditory training. Furthermore, tinnitus specific electrical stimulation has neither positive nor negative effects on speech perception. In combination with the findings from previous studies on tinnitus suppression using intracochlear electrical stimulation independent of environmental sounds, the results of this study contribute to the viability of cochlear implantation based on tinnitus complaints.

  9. Impact of Language on Development of Auditory-Visual Speech Perception

    ERIC Educational Resources Information Center

    Sekiyama, Kaoru; Burnham, Denis

    2008-01-01

    The McGurk effect paradigm was used to examine the developmental onset of inter-language differences between Japanese and English in auditory-visual speech perception. Participants were asked to identify syllables in audiovisual (with congruent or discrepant auditory and visual components), audio-only, and video-only presentations at various…

  10. Visual and Auditory Input in Second-Language Speech Processing

    ERIC Educational Resources Information Center

    Hardison, Debra M.

    2010-01-01

    The majority of studies in second-language (L2) speech processing have involved unimodal (i.e., auditory) input; however, in many instances, speech communication involves both visual and auditory sources of information. Some researchers have argued that multimodal speech is the primary mode of speech perception (e.g., Rosenblum 2005). Research on…

  11. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers.

    PubMed

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  12. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    PubMed Central

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435

  13. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  14. Speech perception: Some new directions in research and theory

    PubMed Central

    Pisoni, David B.

    2012-01-01

    The perception of speech is one of the most fascinating attributes of human behavior; both the auditory periphery and higher centers help define the parameters of sound perception. In this paper some of the fundamental perceptual problems facing speech sciences are described. The paper focuses on several of the new directions speech perception research is taking to solve these problems. Recent developments suggest that major breakthroughs in research and theory will soon be possible. The current study of segmentation, invariance, and normalization are described. The paper summarizes some of the new techniques used to understand auditory perception of speech signals and their linguistic significance to the human listener. PMID:4031245

  15. Effect of attentional load on audiovisual speech perception: evidence from ERPs

    PubMed Central

    Alsius, Agnès; Möttönen, Riikka; Sams, Mikko E.; Soto-Faraco, Salvador; Tiippana, Kaisa

    2014-01-01

    Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs) generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual, and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e., a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech. PMID:25076922

  16. Perception of temporally modified speech in auditory neuropathy.

    PubMed

    Hassan, Dalia Mohamed

    2011-01-01

    Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

  17. Intracranial mapping of auditory perception: event-related responses and electrocortical stimulation.

    PubMed

    Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D

    2009-01-01

    We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.

  18. Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation

    PubMed Central

    Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.

    2010-01-01

    Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540

  19. The role of Broca's area in speech perception: evidence from aphasia revisited.

    PubMed

    Hickok, Gregory; Costanzo, Maddalena; Capasso, Rita; Miceli, Gabriele

    2011-12-01

    Motor theories of speech perception have been re-vitalized as a consequence of the discovery of mirror neurons. Some authors have even promoted a strong version of the motor theory, arguing that the motor speech system is critical for perception. Part of the evidence that is cited in favor of this claim is the observation from the early 1980s that individuals with Broca's aphasia, and therefore inferred damage to Broca's area, can have deficits in speech sound discrimination. Here we re-examine this issue in 24 patients with radiologically confirmed lesions to Broca's area and various degrees of associated non-fluent speech production. Patients performed two same-different discrimination tasks involving pairs of CV syllables, one in which both CVs were presented auditorily, and the other in which one syllable was auditorily presented and the other visually presented as an orthographic form; word comprehension was also assessed using word-to-picture matching tasks in both auditory and visual forms. Discrimination performance on the all-auditory task was four standard deviations above chance, as measured using d', and was unrelated to the degree of non-fluency in the patients' speech production. Performance on the auditory-visual task, however, was worse than, and not correlated with, the all-auditory task. The auditory-visual task was related to the degree of speech non-fluency. Word comprehension was at ceiling for the auditory version (97% accuracy) and near ceiling for the orthographic version (90% accuracy). We conclude that the motor speech system is not necessary for speech perception as measured both by discrimination and comprehension paradigms, but may play a role in orthographic decoding or in auditory-visual matching of phonological forms. 2011 Elsevier Inc. All rights reserved.

  20. Timing in audiovisual speech perception: A mini review and new psychophysical data.

    PubMed

    Venezia, Jonathan H; Thurman, Steven M; Matchin, William; George, Sahara E; Hickok, Gregory

    2016-02-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.

  1. Timing in Audiovisual Speech Perception: A Mini Review and New Psychophysical Data

    PubMed Central

    Venezia, Jonathan H.; Thurman, Steven M.; Matchin, William; George, Sahara E.; Hickok, Gregory

    2015-01-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually-relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (∼35% identification of /apa/ compared to ∼5% in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually-relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (∼130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content. PMID:26669309

  2. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    PubMed Central

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  3. Influences of selective adaptation on perception of audiovisual speech

    PubMed Central

    Dias, James W.; Cook, Theresa C.; Rosenblum, Lawrence D.

    2016-01-01

    Research suggests that selective adaptation in speech is a low-level process dependent on sensory-specific information shared between the adaptor and test-stimuli. However, previous research has only examined how adaptors shift perception of unimodal test stimuli, either auditory or visual. In the current series of experiments, we investigated whether adaptation to cross-sensory phonetic information can influence perception of integrated audio-visual phonetic information. We examined how selective adaptation to audio and visual adaptors shift perception of speech along an audiovisual test continuum. This test-continuum consisted of nine audio-/ba/-visual-/va/ stimuli, ranging in visual clarity of the mouth. When the mouth was clearly visible, perceivers “heard” the audio-visual stimulus as an integrated “va” percept 93.7% of the time (e.g., McGurk & MacDonald, 1976). As visibility of the mouth became less clear across the nine-item continuum, the audio-visual “va” percept weakened, resulting in a continuum ranging in audio-visual percepts from /va/ to /ba/. Perception of the test-stimuli was tested before and after adaptation. Changes in audiovisual speech perception were observed following adaptation to visual-/va/ and audiovisual-/va/, but not following adaptation to auditory-/va/, auditory-/ba/, or visual-/ba/. Adaptation modulates perception of integrated audio-visual speech by modulating the processing of sensory-specific information. The results suggest that auditory and visual speech information are not completely integrated at the level of selective adaptation. PMID:27041781

  4. Auditory Processing, Speech Perception and Phonological Ability in Pre-School Children at High-Risk for Dyslexia: A Longitudinal Study of the Auditory Temporal Processing Theory

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2007-01-01

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school…

  5. Effect of signal to noise ratio on the speech perception ability of older adults

    PubMed Central

    Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh

    2016-01-01

    Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712

  6. Multiple benefits of personal FM system use by children with auditory processing disorder (APD).

    PubMed

    Johnston, Kristin N; John, Andrew B; Kreisman, Nicole V; Hall, James W; Crandell, Carl C

    2009-01-01

    Children with auditory processing disorders (APD) were fitted with Phonak EduLink FM devices for home and classroom use. Baseline measures of the children with APD, prior to FM use, documented significantly lower speech-perception scores, evidence of decreased academic performance, and psychosocial problems in comparison to an age- and gender-matched control group. Repeated measures during the school year demonstrated speech-perception improvement in noisy classroom environments as well as significant academic and psychosocial benefits. Compared with the control group, the children with APD showed greater speech-perception advantage with FM technology. Notably, after prolonged FM use, even unaided (no FM device) speech-perception performance was improved in the children with APD, suggesting the possibility of fundamentally enhanced auditory system function.

  7. Review of Visual Speech Perception by Hearing and Hearing-Impaired People: Clinical Implications

    ERIC Educational Resources Information Center

    Woodhouse, Lynn; Hickson, Louise; Dodd, Barbara

    2009-01-01

    Background: Speech perception is often considered specific to the auditory modality, despite convincing evidence that speech processing is bimodal. The theoretical and clinical roles of speech-reading for speech perception, however, have received little attention in speech-language therapy. Aims: The role of speech-read information for speech…

  8. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    PubMed

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

  9. Stimulus Expectancy Modulates Inferior Frontal Gyrus and Premotor Cortex Activity in Auditory Perception

    ERIC Educational Resources Information Center

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-01-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…

  10. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    PubMed

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  11. Speech perception of young children using nucleus 22-channel or CLARION cochlear implants.

    PubMed

    Young, N M; Grohne, K M; Carrasco, V N; Brown, C

    1999-04-01

    This study compares the auditory perceptual skill development of 23 congenitally deaf children who received the Nucleus 22-channel cochlear implant with the SPEAK speech coding strategy, and 20 children who received the CLARION Multi-Strategy Cochlear Implant with the Continuous Interleaved Sampler (CIS) speech coding strategy. All were under 5 years old at implantation. Preimplantation, there were no significant differences between the groups in age, length of hearing aid use, or communication mode. Auditory skills were assessed at 6 months and 12 months after implantation. Postimplantation, the mean scores on all speech perception tests were higher for the Clarion group. These differences were statistically significant for the pattern perception and monosyllable subtests of the Early Speech Perception battery at 6 months, and for the Glendonald Auditory Screening Procedure at 12 months. Multiple regression analysis revealed that device type accounted for the greatest variance in performance after 12 months of implant use. We conclude that children using the CIS strategy implemented in the Clarion implant may develop better auditory perceptual skills during the first year postimplantation than children using the SPEAK strategy with the Nucleus device.

  12. Auditory Verbal Working Memory as a Predictor of Speech Perception in Modulated Maskers in Listeners with Normal Hearing

    ERIC Educational Resources Information Center

    Millman, Rebecca E.; Mattys, Sven L.

    2017-01-01

    Purpose: Background noise can interfere with our ability to understand speech. Working memory capacity (WMC) has been shown to contribute to the perception of speech in modulated noise maskers. WMC has been assessed with a variety of auditory and visual tests, often pertaining to different components of working memory. This study assessed the…

  13. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: a longitudinal study of the auditory temporal processing theory.

    PubMed

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol

    2007-04-09

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.

  14. The relationship of phonological ability, speech perception, and auditory perception in adults with dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquiere, Pol; Wouters, Jan

    2014-01-01

    This study investigated whether auditory, speech perception, and phonological skills are tightly interrelated or independently contributing to reading. We assessed each of these three skills in 36 adults with a past diagnosis of dyslexia and 54 matched normal reading adults. Phonological skills were tested by the typical threefold tasks, i.e., rapid automatic naming, verbal short-term memory and phonological awareness. Dynamic auditory processing skills were assessed by means of a frequency modulation (FM) and an amplitude rise time (RT); an intensity discrimination task (ID) was included as a non-dynamic control task. Speech perception was assessed by means of sentences and words-in-noise tasks. Group analyses revealed significant group differences in auditory tasks (i.e., RT and ID) and in phonological processing measures, yet no differences were found for speech perception. In addition, performance on RT discrimination correlated with reading but this relation was mediated by phonological processing and not by speech-in-noise. Finally, inspection of the individual scores revealed that the dyslexic readers showed an increased proportion of deviant subjects on the slow-dynamic auditory and phonological tasks, yet each individual dyslexic reader does not display a clear pattern of deficiencies across the processing skills. Although our results support phonological and slow-rate dynamic auditory deficits which relate to literacy, they suggest that at the individual level, problems in reading and writing cannot be explained by the cascading auditory theory. Instead, dyslexic adults seem to vary considerably in the extent to which each of the auditory and phonological factors are expressed and interact with environmental and higher-order cognitive influences. PMID:25071512

  15. Prediction and constraint in audiovisual speech perception.

    PubMed

    Peelle, Jonathan E; Sommers, Mitchell S

    2015-07-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electrophysiological evidence for a self-processing advantage during audiovisual speech integration.

    PubMed

    Treille, Avril; Vilain, Coriandre; Kandel, Sonia; Sato, Marc

    2017-09-01

    Previous electrophysiological studies have provided strong evidence for early multisensory integrative mechanisms during audiovisual speech perception. From these studies, one unanswered issue is whether hearing our own voice and seeing our own articulatory gestures facilitate speech perception, possibly through a better processing and integration of sensory inputs with our own sensory-motor knowledge. The present EEG study examined the impact of self-knowledge during the perception of auditory (A), visual (V) and audiovisual (AV) speech stimuli that were previously recorded from the participant or from a speaker he/she had never met. Audiovisual interactions were estimated by comparing N1 and P2 auditory evoked potentials during the bimodal condition (AV) with the sum of those observed in the unimodal conditions (A + V). In line with previous EEG studies, our results revealed an amplitude decrease of P2 auditory evoked potentials in AV compared to A + V conditions. Crucially, a temporal facilitation of N1 responses was observed during the visual perception of self speech movements compared to those of another speaker. This facilitation was negatively correlated with the saliency of visual stimuli. These results provide evidence for a temporal facilitation of the integration of auditory and visual speech signals when the visual situation involves our own speech gestures.

  17. Speech perception in individuals with auditory dys-synchrony: effect of lengthening of voice onset time and burst duration of speech segments.

    PubMed

    Kumar, U A; Jayaram, M

    2013-07-01

    The purpose of this study was to evaluate the effect of lengthening of voice onset time and burst duration of selected speech stimuli on perception by individuals with auditory dys-synchrony. This is the second of a series of articles reporting the effect of signal enhancing strategies on speech perception by such individuals. Two experiments were conducted: (1) assessment of the 'just-noticeable difference' for voice onset time and burst duration of speech sounds; and (2) assessment of speech identification scores when speech sounds were modified by lengthening the voice onset time and the burst duration in units of one just-noticeable difference, both in isolation and in combination with each other plus transition duration modification. Lengthening of voice onset time as well as burst duration improved perception of voicing. However, the effect of voice onset time modification was greater than that of burst duration modification. Although combined lengthening of voice onset time, burst duration and transition duration resulted in improved speech perception, the improvement was less than that due to lengthening of transition duration alone. These results suggest that innovative speech processing strategies that enhance temporal cues may benefit individuals with auditory dys-synchrony.

  18. Auditory-Visual Speech Integration by Adults with and without Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Norrix, Linda W.; Plante, Elena; Vance, Rebecca

    2006-01-01

    Auditory and auditory-visual (AV) speech perception skills were examined in adults with and without language-learning disabilities (LLD). The AV stimuli consisted of congruent consonant-vowel syllables (auditory and visual syllables matched in terms of syllable being produced) and incongruent McGurk syllables (auditory syllable differed from…

  19. Auditory perception bias in speech imitation

    PubMed Central

    Postma-Nilsenová, Marie; Postma, Eric

    2013-01-01

    In an experimental study, we explored the role of auditory perception bias in vocal pitch imitation. Psychoacoustic tasks involving a missing fundamental indicate that some listeners are attuned to the relationship between all the higher harmonics present in the signal, which supports their perception of the fundamental frequency (the primary acoustic correlate of pitch). Other listeners focus on the lowest harmonic constituents of the complex sound signal which may hamper the perception of the fundamental. These two listener types are referred to as fundamental and spectral listeners, respectively. We hypothesized that the individual differences in speakers' capacity to imitate F0 found in earlier studies, may at least partly be due to the capacity to extract information about F0 from the speech signal. Participants' auditory perception bias was determined with a standard missing fundamental perceptual test. Subsequently, speech data were collected in a shadowing task with two conditions, one with a full speech signal and one with high-pass filtered speech above 300 Hz. The results showed that perception bias toward fundamental frequency was related to the degree of F0 imitation. The effect was stronger in the condition with high-pass filtered speech. The experimental outcomes suggest advantages for fundamental listeners in communicative situations where F0 imitation is used as a behavioral cue. Future research needs to determine to what extent auditory perception bias may be related to other individual properties known to improve imitation, such as phonetic talent. PMID:24204361

  20. Audiovisual integration in children listening to spectrally degraded speech.

    PubMed

    Maidment, David W; Kang, Hi Jee; Stewart, Hannah J; Amitay, Sygal

    2015-02-01

    The study explored whether visual information improves speech identification in typically developing children with normal hearing when the auditory signal is spectrally degraded. Children (n=69) and adults (n=15) were presented with noise-vocoded sentences from the Children's Co-ordinate Response Measure (Rosen, 2011) in auditory-only or audiovisual conditions. The number of bands was adaptively varied to modulate the degradation of the auditory signal, with the number of bands required for approximately 79% correct identification calculated as the threshold. The youngest children (4- to 5-year-olds) did not benefit from accompanying visual information, in comparison to 6- to 11-year-old children and adults. Audiovisual gain also increased with age in the child sample. The current data suggest that children younger than 6 years of age do not fully utilize visual speech cues to enhance speech perception when the auditory signal is degraded. This evidence not only has implications for understanding the development of speech perception skills in children with normal hearing but may also inform the development of new treatment and intervention strategies that aim to remediate speech perception difficulties in pediatric cochlear implant users.

  1. Modeling the Development of Audiovisual Cue Integration in Speech Perception

    PubMed Central

    Getz, Laura M.; Nordeen, Elke R.; Vrabic, Sarah C.; Toscano, Joseph C.

    2017-01-01

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues. PMID:28335558

  2. Modeling the Development of Audiovisual Cue Integration in Speech Perception.

    PubMed

    Getz, Laura M; Nordeen, Elke R; Vrabic, Sarah C; Toscano, Joseph C

    2017-03-21

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues.

  3. The relationship of speech intelligibility with hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech perception tests

    PubMed Central

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A.

    2015-01-01

    Listeners vary in their ability to understand speech in noisy environments. Hearing sensitivity, as measured by pure-tone audiometry, can only partly explain these results, and cognition has emerged as another key concept. Although cognition relates to speech perception, the exact nature of the relationship remains to be fully understood. This study investigates how different aspects of cognition, particularly working memory and attention, relate to speech intelligibility for various tests. Perceptual accuracy of speech perception represents just one aspect of functioning in a listening environment. Activity and participation limits imposed by hearing loss, in addition to the demands of a listening environment, are also important and may be better captured by self-report questionnaires. Understanding how speech perception relates to self-reported aspects of listening forms the second focus of the study. Forty-four listeners aged between 50 and 74 years with mild sensorineural hearing loss were tested on speech perception tests differing in complexity from low (phoneme discrimination in quiet), to medium (digit triplet perception in speech-shaped noise) to high (sentence perception in modulated noise); cognitive tests of attention, memory, and non-verbal intelligence quotient; and self-report questionnaires of general health-related and hearing-specific quality of life. Hearing sensitivity and cognition related to intelligibility differently depending on the speech test: neither was important for phoneme discrimination, hearing sensitivity alone was important for digit triplet perception, and hearing and cognition together played a role in sentence perception. Self-reported aspects of auditory functioning were correlated with speech intelligibility to different degrees, with digit triplets in noise showing the richest pattern. The results suggest that intelligibility tests can vary in their auditory and cognitive demands and their sensitivity to the challenges that auditory environments pose on functioning. PMID:26136699

  4. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system

    PubMed Central

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory

    2013-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313

  5. Auditory Event-Related Potentials (ERPs) in Audiovisual Speech Perception

    ERIC Educational Resources Information Center

    Pilling, Michael

    2009-01-01

    Purpose: It has recently been reported (e.g., V. van Wassenhove, K. W. Grant, & D. Poeppel, 2005) that audiovisual (AV) presented speech is associated with an N1/P2 auditory event-related potential (ERP) response that is lower in peak amplitude compared with the responses associated with auditory only (AO) speech. This effect was replicated.…

  6. How auditory discontinuities and linguistic experience affect the perception of speech and non-speech in English- and Spanish-speaking listeners

    NASA Astrophysics Data System (ADS)

    Hay, Jessica F.; Holt, Lori L.; Lotto, Andrew J.; Diehl, Randy L.

    2005-04-01

    The present study was designed to investigate the effects of long-term linguistic experience on the perception of non-speech sounds in English and Spanish speakers. Research using tone-onset-time (TOT) stimuli, a type of non-speech analogue of voice-onset-time (VOT) stimuli, has suggested that there is an underlying auditory basis for the perception of stop consonants based on a threshold for detecting onset asynchronies in the vicinity of +20 ms. For English listeners, stop consonant labeling boundaries are congruent with the positive auditory discontinuity, while Spanish speakers place their VOT labeling boundaries and discrimination peaks in the vicinity of 0 ms VOT. The present study addresses the question of whether long-term linguistic experience with different VOT categories affects the perception of non-speech stimuli that are analogous in their acoustic timing characteristics. A series of synthetic VOT stimuli and TOT stimuli were created for this study. Using language appropriate labeling and ABX discrimination tasks, labeling boundaries (VOT) and discrimination peaks (VOT and TOT) are assessed for 24 monolingual English speakers and 24 monolingual Spanish speakers. The interplay between language experience and auditory biases are discussed. [Work supported by NIDCD.

  7. Audiovisual speech perception in infancy: The influence of vowel identity and infants' productive abilities on sensitivity to (mis)matches between auditory and visual speech cues.

    PubMed

    Altvater-Mackensen, Nicole; Mani, Nivedita; Grossmann, Tobias

    2016-02-01

    Recent studies suggest that infants' audiovisual speech perception is influenced by articulatory experience (Mugitani et al., 2008; Yeung & Werker, 2013). The current study extends these findings by testing if infants' emerging ability to produce native sounds in babbling impacts their audiovisual speech perception. We tested 44 6-month-olds on their ability to detect mismatches between concurrently presented auditory and visual vowels and related their performance to their productive abilities and later vocabulary size. Results show that infants' ability to detect mismatches between auditory and visually presented vowels differs depending on the vowels involved. Furthermore, infants' sensitivity to mismatches is modulated by their current articulatory knowledge and correlates with their vocabulary size at 12 months of age. This suggests that-aside from infants' ability to match nonnative audiovisual cues (Pons et al., 2009)-their ability to match native auditory and visual cues continues to develop during the first year of life. Our findings point to a potential role of salient vowel cues and productive abilities in the development of audiovisual speech perception, and further indicate a relation between infants' early sensitivity to audiovisual speech cues and their later language development. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  8. How may the basal ganglia contribute to auditory categorization and speech perception?

    PubMed Central

    Lim, Sung-Joo; Fiez, Julie A.; Holt, Lori L.

    2014-01-01

    Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood. PMID:25136291

  9. Neurophysiological aspects of brainstem processing of speech stimuli in audiometric-normal geriatric population.

    PubMed

    Ansari, M S; Rangasayee, R; Ansari, M A H

    2017-03-01

    Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.

  10. Hallucination- and speech-specific hypercoupling in frontotemporal auditory and language networks in schizophrenia using combined task-based fMRI data: An fBIRN study.

    PubMed

    Lavigne, Katie M; Woodward, Todd S

    2018-04-01

    Hypercoupling of activity in speech-perception-specific brain networks has been proposed to play a role in the generation of auditory-verbal hallucinations (AVHs) in schizophrenia; however, it is unclear whether this hypercoupling extends to nonverbal auditory perception. We investigated this by comparing schizophrenia patients with and without AVHs, and healthy controls, on task-based functional magnetic resonance imaging (fMRI) data combining verbal speech perception (SP), inner verbal thought generation (VTG), and nonverbal auditory oddball detection (AO). Data from two previously published fMRI studies were simultaneously analyzed using group constrained principal component analysis for fMRI (group fMRI-CPCA), which allowed for comparison of task-related functional brain networks across groups and tasks while holding the brain networks under study constant, leading to determination of the degree to which networks are common to verbal and nonverbal perception conditions, and which show coordinated hyperactivity in hallucinations. Three functional brain networks emerged: (a) auditory-motor, (b) language processing, and (c) default-mode (DMN) networks. Combining the AO and sentence tasks allowed the auditory-motor and language networks to separately emerge, whereas they were aggregated when individual tasks were analyzed. AVH patients showed greater coordinated activity (deactivity for DMN regions) than non-AVH patients during SP in all networks, but this did not extend to VTG or AO. This suggests that the hypercoupling in AVH patients in speech-perception-related brain networks is specific to perceived speech, and does not extend to perceived nonspeech or inner verbal thought generation. © 2017 Wiley Periodicals, Inc.

  11. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    PubMed

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory.

    PubMed

    Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P

    2002-04-01

    The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.

  13. Temporal factors affecting somatosensory–auditory interactions in speech processing

    PubMed Central

    Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.

    2014-01-01

    Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733

  14. General Auditory Processing, Speech Perception and Phonological Awareness Skills in Chinese-English Biliteracy

    ERIC Educational Resources Information Center

    Chung, Kevin K. H.; McBride-Chang, Catherine; Cheung, Him; Wong, Simpson W. L.

    2013-01-01

    This study focused on the associations of general auditory processing, speech perception, phonological awareness and word reading in Cantonese-speaking children from Hong Kong learning to read both Chinese (first language [L1]) and English (second language [L2]). Children in Grades 2--4 ("N" = 133) participated and were administered…

  15. Audiovisual Perception of Noise Vocoded Speech in Dyslexic and Non-Dyslexic Adults: The Role of Low-Frequency Visual Modulations

    ERIC Educational Resources Information Center

    Megnin-Viggars, Odette; Goswami, Usha

    2013-01-01

    Visual speech inputs can enhance auditory speech information, particularly in noisy or degraded conditions. The natural statistics of audiovisual speech highlight the temporal correspondence between visual and auditory prosody, with lip, jaw, cheek and head movements conveying information about the speech envelope. Low-frequency spatial and…

  16. Auditory-visual speech integration by prelinguistic infants: perception of an emergent consonant in the McGurk effect.

    PubMed

    Burnham, Denis; Dodd, Barbara

    2004-12-01

    The McGurk effect, in which auditory [ba] dubbed onto [ga] lip movements is perceived as "da" or "tha," was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4 1/2-month-olds were tested in a habituation-test paradigm, in which an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [(delta)a] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [(delta)a], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [(delta)a] were no more familiar than [ba]. These results are consistent with infants' perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. Copyright 2004 Wiley Periodicals, Inc.

  17. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.

    PubMed

    Scheperle, Rachel A; Abbas, Paul J

    2015-01-01

    The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.

  18. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  19. Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions.

    PubMed

    Correia, Joao M; Jansma, Bernadette M B; Bonte, Milene

    2015-11-11

    The brain's circuitry for perceiving and producing speech may show a notable level of overlap that is crucial for normal development and behavior. The extent to which sensorimotor integration plays a role in speech perception remains highly controversial, however. Methodological constraints related to experimental designs and analysis methods have so far prevented the disentanglement of neural responses to acoustic versus articulatory speech features. Using a passive listening paradigm and multivariate decoding of single-trial fMRI responses to spoken syllables, we investigated brain-based generalization of articulatory features (place and manner of articulation, and voicing) beyond their acoustic (surface) form in adult human listeners. For example, we trained a classifier to discriminate place of articulation within stop syllables (e.g., /pa/ vs /ta/) and tested whether this training generalizes to fricatives (e.g., /fa/ vs /sa/). This novel approach revealed generalization of place and manner of articulation at multiple cortical levels within the dorsal auditory pathway, including auditory, sensorimotor, motor, and somatosensory regions, suggesting the representation of sensorimotor information. Additionally, generalization of voicing included the right anterior superior temporal sulcus associated with the perception of human voices as well as somatosensory regions bilaterally. Our findings highlight the close connection between brain systems for speech perception and production, and in particular, indicate the availability of articulatory codes during passive speech perception. Sensorimotor integration is central to verbal communication and provides a link between auditory signals of speech perception and motor programs of speech production. It remains highly controversial, however, to what extent the brain's speech perception system actively uses articulatory (motor), in addition to acoustic/phonetic, representations. In this study, we examine the role of articulatory representations during passive listening using carefully controlled stimuli (spoken syllables) in combination with multivariate fMRI decoding. Our approach enabled us to disentangle brain responses to acoustic and articulatory speech properties. In particular, it revealed articulatory-specific brain responses of speech at multiple cortical levels, including auditory, sensorimotor, and motor regions, suggesting the representation of sensorimotor information during passive speech perception. Copyright © 2015 the authors 0270-6474/15/3515015-11$15.00/0.

  20. Systematic review of compound action potentials as predictors for cochlear implant performance.

    PubMed

    van Eijl, Ruben H M; Buitenhuis, Patrick J; Stegeman, Inge; Klis, Sjaak F L; Grolman, Wilko

    2017-02-01

    The variability in speech perception between cochlear implant users is thought to result from the degeneration of the auditory nerve. Degeneration of the auditory nerve, histologically assessed, correlates with electrophysiologically acquired measures, such as electrically evoked compound action potentials (eCAPs) in experimental animals. To predict degeneration of the auditory nerve in humans, where histology is impossible, this paper reviews the correlation between speech perception and eCAP recordings in cochlear implant patients. PubMed and Embase. We performed a systematic search for articles containing the following major themes: cochlear implants, evoked potentials, and speech perception. Two investigators independently conducted title-abstract screening, full-text screening, and critical appraisal. Data were extracted from the remaining articles. Twenty-five of 1,429 identified articles described a correlation between speech perception and eCAP attributes. Due to study heterogeneity, a meta-analysis was not feasible, and studies were descriptively analyzed. Several studies investigating presence of the eCAP, recovery time constant, slope of the amplitude growth function, and spatial selectivity showed significant correlations with speech perception. In contrast, neural adaptation, eCAP threshold, and change with varying interphase gap did not significantly correlate with speech perception in any of the identified studies. Significant correlations between speech perception and parameters obtained through eCAP recordings have been documented in literature; however, reporting was ambiguous. There is insufficient evidence for eCAPs as a predictive factor for speech perception. More research is needed to further investigate this relation. Laryngoscope, 2016 127:476-487, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Neural dynamics of audiovisual speech integration under variable listening conditions: an individual participant analysis

    PubMed Central

    Altieri, Nicholas; Wenger, Michael J.

    2013-01-01

    Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend and Nozawa, 1995), a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of −12 dB, and S/N ratio of −18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude compared to the unisensory signals for lower auditory S/N ratios (higher capacity/efficiency) compared to the high S/N ratio (low capacity/inefficient integration). The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity. PMID:24058358

  2. Neural dynamics of audiovisual speech integration under variable listening conditions: an individual participant analysis.

    PubMed

    Altieri, Nicholas; Wenger, Michael J

    2013-01-01

    Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend and Nozawa, 1995), a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of -12 dB, and S/N ratio of -18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude compared to the unisensory signals for lower auditory S/N ratios (higher capacity/efficiency) compared to the high S/N ratio (low capacity/inefficient integration). The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity.

  3. How musical expertise shapes speech perception: evidence from auditory classification images.

    PubMed

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-09-24

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.

  4. Assessing the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception

    PubMed Central

    Vatakis, Argiro; Maragos, Petros; Rodomagoulakis, Isidoros; Spence, Charles

    2012-01-01

    We investigated how the physical differences associated with the articulation of speech affect the temporal aspects of audiovisual speech perception. Video clips of consonants and vowels uttered by three different speakers were presented. The video clips were analyzed using an auditory-visual signal saliency model in order to compare signal saliency and behavioral data. Participants made temporal order judgments (TOJs) regarding which speech-stream (auditory or visual) had been presented first. The sensitivity of participants' TOJs and the point of subjective simultaneity (PSS) were analyzed as a function of the place, manner of articulation, and voicing for consonants, and the height/backness of the tongue and lip-roundedness for vowels. We expected that in the case of the place of articulation and roundedness, where the visual-speech signal is more salient, temporal perception of speech would be modulated by the visual-speech signal. No such effect was expected for the manner of articulation or height. The results demonstrate that for place and manner of articulation, participants' temporal percept was affected (although not always significantly) by highly-salient speech-signals with the visual-signals requiring smaller visual-leads at the PSS. This was not the case when height was evaluated. These findings suggest that in the case of audiovisual speech perception, a highly salient visual-speech signal may lead to higher probabilities regarding the identity of the auditory-signal that modulate the temporal window of multisensory integration of the speech-stimulus. PMID:23060756

  5. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID:24672438

  6. Auditory Speech Perception Development in Relation to Patient's Age with Cochlear Implant

    PubMed Central

    Ciscare, Grace Kelly Seixas; Mantello, Erika Barioni; Fortunato-Queiroz, Carla Aparecida Urzedo; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa dos

    2017-01-01

    Introduction  A cochlear implant in adolescent patients with pre-lingual deafness is still a debatable issue. Objective  The objective of this study is to analyze and compare the development of auditory speech perception in children with pre-lingual auditory impairment submitted to cochlear implant, in different age groups in the first year after implantation. Method  This is a retrospective study, documentary research, in which we analyzed 78 reports of children with severe bilateral sensorineural hearing loss, unilateral cochlear implant users of both sexes. They were divided into three groups: G1, 22 infants aged less than 42 months; G2, 28 infants aged between 43 to 83 months; and G3, 28 older than 84 months. We collected medical record data to characterize the patients, auditory thresholds with cochlear implants, assessment of speech perception, and auditory skills. Results  There was no statistical difference in the association of the results among groups G1, G2, and G3 with sex, caregiver education level, city of residence, and speech perception level. There was a moderate correlation between age and hearing aid use time, age and cochlear implants use time. There was a strong correlation between age and the age cochlear implants was performed, hearing aid use time and age CI was performed. Conclusion  There was no statistical difference in the speech perception in relation to the patient's age when cochlear implant was performed. There were statistically significant differences for the variables of auditory deprivation time between G3 - G1 and G2 - G1 and hearing aid use time between G3 - G2 and G3 - G1. PMID:28680487

  7. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  9. Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    This collection on speech research presents a number of reports of experiments conducted on neurological, physiological, and phonological questions, using electronic equipment for analysis. The neurological experiments cover auditory and phonetic processes in speech perception, auditory storage, ear asymmetry in dichotic listening, auditory…

  10. Musical training sharpens and bonds ears and tongue to hear speech better.

    PubMed

    Du, Yi; Zatorre, Robert J

    2017-12-19

    The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.

  11. Musical training sharpens and bonds ears and tongue to hear speech better

    PubMed Central

    Du, Yi; Zatorre, Robert J.

    2017-01-01

    The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively. PMID:29203648

  12. Audiovisual speech perception development at varying levels of perceptual processing

    PubMed Central

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318

  13. Audiovisual speech perception development at varying levels of perceptual processing.

    PubMed

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  14. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    PubMed

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in various configurations of masking speech, and in which the target speakers and test materials were unrelated to the training materials; (2) the Children's Auditory Performance Scale that assesses listening skills, completed by the children's teachers; and (3) the Clinical Evaluation of Language Fundamental-4 pragmatic profile that assesses pragmatic language use, completed by parents. All outcome measures significantly improved at immediate postintervention in the intervention group only, with effect sizes ranging from 0.76 to 1.7. Improvements in speech-in-noise performance correlated with improved scores in the Children's Auditory Performance Scale questionnaire in the trained group only. Baseline language and cognitive assessments did not predict better training outcome. Improvements in speech-in-noise performance were sustained 3 months postintervention. Broad speech-based auditory training led to improved auditory processing skills as reflected in speech-in-noise test performance and in better functional listening in real life. The observed correlation between improved functional listening with improved speech-in-noise perception in the trained group suggests that improved listening was a direct generalization of the auditory training.

  15. Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.

    PubMed

    Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu

    2016-10-01

    The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.

  16. Factors contributing to speech perception scores in long-term pediatric cochlear implant users.

    PubMed

    Davidson, Lisa S; Geers, Ann E; Blamey, Peter J; Tobey, Emily A; Brenner, Christine A

    2011-02-01

    The objectives of this report are to (1) describe the speech perception abilities of long-term pediatric cochlear implant (CI) recipients by comparing scores obtained at elementary school (CI-E, 8 to 9 yrs) with scores obtained at high school (CI-HS, 15 to 18 yrs); (2) evaluate speech perception abilities in demanding listening conditions (i.e., noise and lower intensity levels) at adolescence; and (3) examine the relation of speech perception scores to speech and language development over this longitudinal timeframe. All 112 teenagers were part of a previous nationwide study of 8- and 9-yr-olds (N = 181) who received a CI between 2 and 5 yrs of age. The test battery included (1) the Lexical Neighborhood Test (LNT; hard and easy word lists); (2) the Bamford Kowal Bench sentence test; (3) the Children's Auditory-Visual Enhancement Test; (4) the Test of Auditory Comprehension of Language at CI-E; (5) the Peabody Picture Vocabulary Test at CI-HS; and (6) the McGarr sentences (consonants correct) at CI-E and CI-HS. CI-HS speech perception was measured in both optimal and demanding listening conditions (i.e., background noise and low-intensity level). Speech perception scores were compared based on age at test, lexical difficulty of stimuli, listening environment (optimal and demanding), input mode (visual and auditory-visual), and language age. All group mean scores significantly increased with age across the two test sessions. Scores of adolescents significantly decreased in demanding listening conditions. The effect of lexical difficulty on the LNT scores, as evidenced by the difference in performance between easy versus hard lists, increased with age and decreased for adolescents in challenging listening conditions. Calculated curves for percent correct speech perception scores (LNT and Bamford Kowal Bench) and consonants correct on the McGarr sentences plotted against age-equivalent language scores on the Test of Auditory Comprehension of Language and Peabody Picture Vocabulary Test achieved asymptote at similar ages, around 10 to 11 yrs. On average, children receiving CIs between 2 and 5 yrs of age exhibited significant improvement on tests of speech perception, lipreading, speech production, and language skills measured between primary grades and adolescence. Evidence suggests that improvement in speech perception scores with age reflects increased spoken language level up to a language age of about 10 yrs. Speech perception performance significantly decreased with softer stimulus intensity level and with introduction of background noise. Upgrades to newer speech processing strategies and greater use of frequency-modulated systems may be beneficial for ameliorating performance under these demanding listening conditions.

  17. School performance and wellbeing of children with CI in different communicative-educational environments.

    PubMed

    Langereis, Margreet; Vermeulen, Anneke

    2015-06-01

    This study aimed to evaluate the long term effects of CI on auditory, language, educational and social-emotional development of deaf children in different educational-communicative settings. The outcomes of 58 children with profound hearing loss and normal non-verbal cognition, after 60 months of CI use have been analyzed. At testing the children were enrolled in three different educational settings; in mainstream education, where spoken language is used or in hard-of-hearing education where sign supported spoken language is used and in bilingual deaf education, with Sign Language of the Netherlands and Sign Supported Dutch. Children were assessed on auditory speech perception, receptive language, educational attainment and wellbeing. Auditory speech perception of children with CI in mainstream education enable them to acquire language and educational levels that are comparable to those of their normal hearing peers. Although the children in mainstream and hard-of-hearing settings show similar speech perception abilities, language development in children in hard-of-hearing settings lags significantly behind. Speech perception, language and educational attainments of children in deaf education remained extremely poor. Furthermore more children in mainstream and hard-of-hearing environments are resilient than in deaf educational settings. Regression analyses showed an important influence of educational setting. Children with CI who are placed in early intervention environments that facilitate auditory development are able to achieve good auditory speech perception, language and educational levels on the long term. Most parents of these children report no social-emotional concerns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Basic to Applied Research: The Benefits of Audio-Visual Speech Perception Research in Teaching Foreign Languages

    ERIC Educational Resources Information Center

    Erdener, Dogu

    2016-01-01

    Traditionally, second language (L2) instruction has emphasised auditory-based instruction methods. However, this approach is restrictive in the sense that speech perception by humans is not just an auditory phenomenon but a multimodal one, and specifically, a visual one as well. In the past decade, experimental studies have shown that the…

  19. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography

    PubMed Central

    Ozker, Muge; Schepers, Inga M.; Magnotti, John F.; Yoshor, Daniel; Beauchamp, Michael S.

    2017-01-01

    Human speech can be comprehended using only auditory information from the talker’s voice. However, comprehension is improved if the talker’s face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl’s gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. PMID:28253074

  20. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration.

    PubMed

    Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo

    2015-05-01

    The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.

  1. Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing

    PubMed Central

    Edwards, Erik; Chang, Edward F.

    2013-01-01

    Given recent interest in syllabic rates (~2-5 Hz) for speech processing, we review the perception of “fluctuation” range (~1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (~2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. PMID:24035819

  2. Laterality and unilateral deafness: Patients with congenital right ear deafness do not develop atypical language dominance.

    PubMed

    Van der Haegen, Lise; Acke, Frederic; Vingerhoets, Guy; Dhooge, Ingeborg; De Leenheer, Els; Cai, Qing; Brysbaert, Marc

    2016-12-01

    Auditory speech perception, speech production and reading lateralize to the left hemisphere in the majority of healthy right-handers. In this study, we investigated to what extent sensory input underlies the side of language dominance. We measured the lateralization of the three core subprocesses of language in patients who had profound hearing loss in the right ear from birth and in matched control subjects. They took part in a semantic decision listening task involving speech and sound stimuli (auditory perception), a word generation task (speech production) and a passive reading task (reading). The results show that a lack of sensory auditory input on the right side, which is strongly connected to the contralateral left hemisphere, does not lead to atypical lateralization of speech perception. Speech production and reading were also typically left lateralized in all but one patient, contradicting previous small scale studies. Other factors such as genetic constraints presumably overrule the role of sensory input in the development of (a)typical language lateralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Benefit and predictive factors for speech perception outcomes in pediatric bilateral cochlear implant recipients.

    PubMed

    Chang, Young-Soo; Hong, Sung Hwa; Kim, Eun Yeon; Choi, Ji Eun; Chung, Won-Ho; Cho, Yang-Sun; Moon, Il Joon

    2018-05-18

    Despite recent advancement in the prediction of cochlear implant outcome, the benefit of bilateral procedures compared to bimodal stimulation and how we predict speech perception outcomes of sequential bilateral cochlear implant based on bimodal auditory performance in children remain unclear. This investigation was performed: (1) to determine the benefit of sequential bilateral cochlear implant and (2) to identify the associated factors for the outcome of sequential bilateral cochlear implant. Observational and retrospective study. We retrospectively analyzed 29 patients with sequential cochlear implant following bimodal-fitting condition. Audiological evaluations were performed; the categories of auditory performance scores, speech perception with monosyllable and disyllables words, and the Korean version of Ling. Audiological evaluations were performed before sequential cochlear implant with the bimodal fitting condition (CI1+HA) and one year after the sequential cochlear implant with bilateral cochlear implant condition (CI1+CI2). The good Performance Group (GP) was defined as follows; 90% or higher in monosyllable and bisyllable tests with auditory-only condition or 20% or higher improvement of the scores with CI1+CI2. Age at first implantation, inter-implant interval, categories of auditory performance score, and various comorbidities were analyzed by logistic regression analysis. Compared to the CI1+HA, CI1+CI2 provided significant benefit in categories of auditory performance, speech perception, and Korean version of Ling results. Preoperative categories of auditory performance scores were the only associated factor for being GP (odds ratio=4.38, 95% confidence interval - 95%=1.07-17.93, p=0.04). The children with limited language development in bimodal condition should be considered as the sequential bilateral cochlear implant and preoperative categories of auditory performance score could be used as the predictor in speech perception after sequential cochlear implant. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Some Behavioral and Neurobiological Constraints on Theories of Audiovisual Speech Integration: A Review and Suggestions for New Directions

    PubMed Central

    Altieri, Nicholas; Pisoni, David B.; Townsend, James T.

    2012-01-01

    Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield’s feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration. PMID:21968081

  5. Some behavioral and neurobiological constraints on theories of audiovisual speech integration: a review and suggestions for new directions.

    PubMed

    Altieri, Nicholas; Pisoni, David B; Townsend, James T

    2011-01-01

    Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield's feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration.

  6. Hemispheric Differences in the Effects of Context on Vowel Perception

    ERIC Educational Resources Information Center

    Sjerps, Matthias J.; Mitterer, Holger; McQueen, James M.

    2012-01-01

    Listeners perceive speech sounds relative to context. Contextual influences might differ over hemispheres if different types of auditory processing are lateralized. Hemispheric differences in contextual influences on vowel perception were investigated by presenting speech targets and both speech and non-speech contexts to listeners' right or left…

  7. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.

  8. Relationship between Speech Production and Perception in People Who Stutter.

    PubMed

    Lu, Chunming; Long, Yuhang; Zheng, Lifen; Shi, Guang; Liu, Li; Ding, Guosheng; Howell, Peter

    2016-01-01

    Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl's gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS.

  9. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  10. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users

    ERIC Educational Resources Information Center

    Jaekel, Brittany N.; Newman, Rochelle S.; Goupell, Matthew J.

    2017-01-01

    Purpose: Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate…

  11. Auditory, Visual, and Auditory-Visual Speech Perception by Individuals with Cochlear Implants versus Individuals with Hearing Aids

    ERIC Educational Resources Information Center

    Most, Tova; Rothem, Hilla; Luntz, Michal

    2009-01-01

    The researchers evaluated the contribution of cochlear implants (CIs) to speech perception by a sample of prelingually deaf individuals implanted after age 8 years. This group was compared with a group with profound hearing impairment (HA-P), and with a group with severe hearing impairment (HA-S), both of which used hearing aids. Words and…

  12. Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise

    PubMed Central

    Parbery-Clark, Alexandra; Strait, Dana L.; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  13. The influence of selective attention to auditory and visual speech on the integration of audiovisual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2011-01-01

    Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.

  14. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    PubMed

    Parbery-Clark, Alexandra; Strait, Dana L; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-05-11

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  15. Auditory and language development in Mandarin-speaking children after cochlear implantation.

    PubMed

    Lu, Xing; Qin, Zhaobing

    2018-04-01

    To evaluate early auditory performance, speech perception and language skills in Mandarin-speaking prelingual deaf children in the first two years after they received a cochlear implant (CI) and analyse the effects of possible associated factors. The Infant-Toddler Meaningful Auditory Integration Scale (ITMAIS)/Meaningful Auditory Integration Scale (MAIS), Mandarin Early Speech Perception (MESP) test and Putonghua Communicative Development Inventory (PCDI) were used to assess auditory and language outcomes in 132 Mandarin-speaking children pre- and post-implantation. Children with CIs exhibited an ITMAIS/MAIS and PCDI developmental trajectory similar to that of children with normal hearing. The increased number of participants who achieved MESP categories 1-6 at each test interval showed a significant improvement in speech perception by paediatric CI recipients. Age at implantation and socioeconomic status were consistently associated with both auditory and language outcomes in the first two years post-implantation. Mandarin-speaking children with CIs exhibit significant improvements in early auditory and language development. Though these improvements followed the normative developmental trajectories, they still exhibited a gap compared with normative values. Earlier implantation and higher socioeconomic status are consistent predictors of greater auditory and language skills in the early stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Audiovisual Speech Perception in Infancy: The Influence of Vowel Identity and Infants' Productive Abilities on Sensitivity to (Mis)Matches between Auditory and Visual Speech Cues

    ERIC Educational Resources Information Center

    Altvater-Mackensen, Nicole; Mani, Nivedita; Grossmann, Tobias

    2016-01-01

    Recent studies suggest that infants' audiovisual speech perception is influenced by articulatory experience (Mugitani et al., 2008; Yeung & Werker, 2013). The current study extends these findings by testing if infants' emerging ability to produce native sounds in babbling impacts their audiovisual speech perception. We tested 44 6-month-olds…

  17. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    PubMed

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  18. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520

  19. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    PubMed

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Biological impact of preschool music classes on processing speech in noise

    PubMed Central

    Strait, Dana L.; Parbery-Clark, Alexandra; O’Connell, Samantha; Kraus, Nina

    2013-01-01

    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. PMID:23872199

  1. Biological impact of preschool music classes on processing speech in noise.

    PubMed

    Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina

    2013-10-01

    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  3. Audio-visual speech perception: a developmental ERP investigation

    PubMed Central

    Knowland, Victoria CP; Mercure, Evelyne; Karmiloff-Smith, Annette; Dick, Fred; Thomas, Michael SC

    2014-01-01

    Being able to see a talking face confers a considerable advantage for speech perception in adulthood. However, behavioural data currently suggest that children fail to make full use of these available visual speech cues until age 8 or 9. This is particularly surprising given the potential utility of multiple informational cues during language learning. We therefore explored this at the neural level. The event-related potential (ERP) technique has been used to assess the mechanisms of audio-visual speech perception in adults, with visual cues reliably modulating auditory ERP responses to speech. Previous work has shown congruence-dependent shortening of auditory N1/P2 latency and congruence-independent attenuation of amplitude in the presence of auditory and visual speech signals, compared to auditory alone. The aim of this study was to chart the development of these well-established modulatory effects over mid-to-late childhood. Experiment 1 employed an adult sample to validate a child-friendly stimulus set and paradigm by replicating previously observed effects of N1/P2 amplitude and latency modulation by visual speech cues; it also revealed greater attenuation of component amplitude given incongruent audio-visual stimuli, pointing to a new interpretation of the amplitude modulation effect. Experiment 2 used the same paradigm to map cross-sectional developmental change in these ERP responses between 6 and 11 years of age. The effect of amplitude modulation by visual cues emerged over development, while the effect of latency modulation was stable over the child sample. These data suggest that auditory ERP modulation by visual speech represents separable underlying cognitive processes, some of which show earlier maturation than others over the course of development. PMID:24176002

  4. Low-level information and high-level perception: the case of speech in noise.

    PubMed

    Nahum, Mor; Nelken, Israel; Ahissar, Merav

    2008-05-20

    Auditory information is processed in a fine-to-crude hierarchical scheme, from low-level acoustic information to high-level abstract representations, such as phonological labels. We now ask whether fine acoustic information, which is not retained at high levels, can still be used to extract speech from noise. Previous theories suggested either full availability of low-level information or availability that is limited by task difficulty. We propose a third alternative, based on the Reverse Hierarchy Theory (RHT), originally derived to describe the relations between the processing hierarchy and visual perception. RHT asserts that only the higher levels of the hierarchy are immediately available for perception. Direct access to low-level information requires specific conditions, and can be achieved only at the cost of concurrent comprehension. We tested the predictions of these three views in a series of experiments in which we measured the benefits from utilizing low-level binaural information for speech perception, and compared it to that predicted from a model of the early auditory system. Only auditory RHT could account for the full pattern of the results, suggesting that similar defaults and tradeoffs underlie the relations between hierarchical processing and perception in the visual and auditory modalities.

  5. Clinical Use of AEVP- and AERP-Measures in Childhood Speech Disorders

    ERIC Educational Resources Information Center

    Maassen, Ben; Pasman, Jaco; Nijland, Lian; Rotteveel, Jan

    2006-01-01

    It has long been recognized that from the first months of life auditory perception plays a crucial role in speech and language development. Only in recent years, however, is the precise mechanism of auditory development and its interaction with the acquisition of speech and language beginning to be systematically revealed. This paper presents the…

  6. Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production.

    PubMed

    Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S

    2010-08-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.

  7. Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production

    PubMed Central

    Zheng, Zane Z.; Munhall, Kevin G; Johnsrude, Ingrid S

    2009-01-01

    The fluency and reliability of speech production suggests a mechanism that links motor commands and sensory feedback. Here, we examine the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not, and examining the overlap with the network recruited during passive listening to speech sounds. We use real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word (‘Ted’) and either heard this clearly, or heard voice-gated masking noise. We compare this to when they listened to yoked stimuli (identical recordings of ‘Ted’ or noise) without speaking. Activity along the superior temporal sulcus (STS) and superior temporal gyrus (STG) bilaterally was significantly greater if the auditory stimulus was a) processed as the auditory concomitant of speaking and b) did not match the predicted outcome (noise). The network exhibiting this Feedback type by Production/Perception interaction includes an STG/MTG region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts, and that processes an error signal in speech-sensitive regions when this and the sensory data do not match. PMID:19642886

  8. Relationship between Speech Production and Perception in People Who Stutter

    PubMed Central

    Lu, Chunming; Long, Yuhang; Zheng, Lifen; Shi, Guang; Liu, Li; Ding, Guosheng; Howell, Peter

    2016-01-01

    Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl’s gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS. PMID:27242487

  9. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. The importance of laughing in your face: influences of visual laughter on auditory laughter perception.

    PubMed

    Jordan, Timothy R; Abedipour, Lily

    2010-01-01

    Hearing the sound of laughter is important for social communication, but processes contributing to the audibility of laughter remain to be determined. Production of laughter resembles production of speech in that both involve visible facial movements accompanying socially significant auditory signals. However, while it is known that speech is more audible when the facial movements producing the speech sound can be seen, similar visual enhancement of the audibility of laughter remains unknown. To address this issue, spontaneously occurring laughter was edited to produce stimuli comprising visual laughter, auditory laughter, visual and auditory laughter combined, and no laughter at all (either visual or auditory), all presented in four levels of background noise. Visual laughter and no-laughter stimuli produced very few reports of auditory laughter. However, visual laughter consistently made auditory laughter more audible, compared to the same auditory signal presented without visual laughter, resembling findings reported previously for speech.

  11. Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception

    PubMed Central

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  12. Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study.

    PubMed

    Woodruff, P W; Wright, I C; Bullmore, E T; Brammer, M; Howard, R J; Williams, S C; Shapleske, J; Rossell, S; David, A S; McGuire, P K; Murray, R M

    1997-12-01

    The authors explored whether abnormal functional lateralization of temporal cortical language areas in schizophrenia was associated with a predisposition to auditory hallucinations and whether the auditory hallucinatory state would reduce the temporal cortical response to external speech. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level-dependent signal induced by auditory perception of speech in three groups of male subjects: eight schizophrenic patients with a history of auditory hallucinations (trait-positive), none of whom was currently hallucinating; seven schizophrenic patients without such a history (trait-negative); and eight healthy volunteers. Seven schizophrenic patients were also examined while they were actually experiencing severe auditory verbal hallucinations and again after their hallucinations had diminished. Voxel-by-voxel comparison of the median power of subjects' responses to periodic external speech revealed that this measure was reduced in the left superior temporal gyrus but increased in the right middle temporal gyrus in the combined schizophrenic groups relative to the healthy comparison group. Comparison of the trait-positive and trait-negative patients revealed no clear difference in the power of temporal cortical activation. Comparison of patients when experiencing severe hallucinations and when hallucinations were mild revealed reduced responsivity of the temporal cortex, especially the right middle temporal gyrus, to external speech during the former state. These results suggest that schizophrenia is associated with a reduced left and increased right temporal cortical response to auditory perception of speech, with little distinction between patients who differ in their vulnerability to hallucinations. The auditory hallucinatory state is associated with reduced activity in temporal cortical regions that overlap with those that normally process external speech, possibly because of competition for common neurophysiological resources.

  13. Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review

    PubMed Central

    Anderson, Samira; Kraus, Nina

    2011-01-01

    Background Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker’s voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system’s transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training. PMID:21241645

  14. Multistage audiovisual integration of speech: dissociating identification and detection.

    PubMed

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias S

    2011-02-01

    Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech signal. Here, we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers, the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multistage account of audiovisual integration of speech in which the many attributes of the audiovisual speech signal are integrated by separate integration processes.

  15. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746

  16. Beat Gestures Modulate Auditory Integration in Speech Perception

    ERIC Educational Resources Information Center

    Biau, Emmanuel; Soto-Faraco, Salvador

    2013-01-01

    Spontaneous beat gestures are an integral part of the paralinguistic context during face-to-face conversations. Here we investigated the time course of beat-speech integration in speech perception by measuring ERPs evoked by words pronounced with or without an accompanying beat gesture, while participants watched a spoken discourse. Words…

  17. Speech Recognition and Parent Ratings From Auditory Development Questionnaires in Children Who Are Hard of Hearing.

    PubMed

    McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use, and better language abilities generally had higher parent ratings of auditory skills and better speech-recognition abilities in quiet and in noise than peers with less audibility, more limited HA use, or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Children who are hard of hearing continue to experience delays in auditory skill development and speech-recognition abilities compared with peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported before the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech-recognition abilities and also may enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children's speech recognition.

  18. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  19. Audiovisual Temporal Recalibration for Speech in Synchrony Perception and Speech Identification

    NASA Astrophysics Data System (ADS)

    Asakawa, Kaori; Tanaka, Akihiro; Imai, Hisato

    We investigated whether audiovisual synchrony perception for speech could change after observation of the audiovisual temporal mismatch. Previous studies have revealed that audiovisual synchrony perception is re-calibrated after exposure to a constant timing difference between auditory and visual signals in non-speech. In the present study, we examined whether this audiovisual temporal recalibration occurs at the perceptual level even for speech (monosyllables). In Experiment 1, participants performed an audiovisual simultaneity judgment task (i.e., a direct measurement of the audiovisual synchrony perception) in terms of the speech signal after observation of the speech stimuli which had a constant audiovisual lag. The results showed that the “simultaneous” responses (i.e., proportion of responses for which participants judged the auditory and visual stimuli to be synchronous) at least partly depended on exposure lag. In Experiment 2, we adopted the McGurk identification task (i.e., an indirect measurement of the audiovisual synchrony perception) to exclude the possibility that this modulation of synchrony perception was solely attributable to the response strategy using stimuli identical to those of Experiment 1. The characteristics of the McGurk effect reported by participants depended on exposure lag. Thus, it was shown that audiovisual synchrony perception for speech could be modulated following exposure to constant lag both in direct and indirect measurement. Our results suggest that temporal recalibration occurs not only in non-speech signals but also in monosyllabic speech at the perceptual level.

  20. Atypical audio-visual speech perception and McGurk effects in children with specific language impairment

    PubMed Central

    Leybaert, Jacqueline; Macchi, Lucie; Huyse, Aurélie; Champoux, François; Bayard, Clémence; Colin, Cécile; Berthommier, Frédéric

    2014-01-01

    Audiovisual speech perception of children with specific language impairment (SLI) and children with typical language development (TLD) was compared in two experiments using /aCa/ syllables presented in the context of a masking release paradigm. Children had to repeat syllables presented in auditory alone, visual alone (speechreading), audiovisual congruent and incongruent (McGurk) conditions. Stimuli were masked by either stationary (ST) or amplitude modulated (AM) noise. Although children with SLI were less accurate in auditory and audiovisual speech perception, they showed similar auditory masking release effect than children with TLD. Children with SLI also had less correct responses in speechreading than children with TLD, indicating impairment in phonemic processing of visual speech information. In response to McGurk stimuli, children with TLD showed more fusions in AM noise than in ST noise, a consequence of the auditory masking release effect and of the influence of visual information. Children with SLI did not show this effect systematically, suggesting they were less influenced by visual speech. However, when the visual cues were easily identified, the profile of responses to McGurk stimuli was similar in both groups, suggesting that children with SLI do not suffer from an impairment of audiovisual integration. An analysis of percent of information transmitted revealed a deficit in the children with SLI, particularly for the place of articulation feature. Taken together, the data support the hypothesis of an intact peripheral processing of auditory speech information, coupled with a supra modal deficit of phonemic categorization in children with SLI. Clinical implications are discussed. PMID:24904454

  1. Atypical audio-visual speech perception and McGurk effects in children with specific language impairment.

    PubMed

    Leybaert, Jacqueline; Macchi, Lucie; Huyse, Aurélie; Champoux, François; Bayard, Clémence; Colin, Cécile; Berthommier, Frédéric

    2014-01-01

    Audiovisual speech perception of children with specific language impairment (SLI) and children with typical language development (TLD) was compared in two experiments using /aCa/ syllables presented in the context of a masking release paradigm. Children had to repeat syllables presented in auditory alone, visual alone (speechreading), audiovisual congruent and incongruent (McGurk) conditions. Stimuli were masked by either stationary (ST) or amplitude modulated (AM) noise. Although children with SLI were less accurate in auditory and audiovisual speech perception, they showed similar auditory masking release effect than children with TLD. Children with SLI also had less correct responses in speechreading than children with TLD, indicating impairment in phonemic processing of visual speech information. In response to McGurk stimuli, children with TLD showed more fusions in AM noise than in ST noise, a consequence of the auditory masking release effect and of the influence of visual information. Children with SLI did not show this effect systematically, suggesting they were less influenced by visual speech. However, when the visual cues were easily identified, the profile of responses to McGurk stimuli was similar in both groups, suggesting that children with SLI do not suffer from an impairment of audiovisual integration. An analysis of percent of information transmitted revealed a deficit in the children with SLI, particularly for the place of articulation feature. Taken together, the data support the hypothesis of an intact peripheral processing of auditory speech information, coupled with a supra modal deficit of phonemic categorization in children with SLI. Clinical implications are discussed.

  2. A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception

    PubMed Central

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E.; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z.

    2015-01-01

    In the last decade, the debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. However, the exact role of the motor system in auditory speech processing remains elusive. Here we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. The patient’s spontaneous speech was marked by frequent phonological/articulatory errors, and those errors were caused, at least in part, by motor-level impairments with speech production. We found that the patient showed a normal phonemic categorical boundary when discriminating two nonwords that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the nonword stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labeling impairment. These data suggest that the identification (i.e. labeling) of nonword speech sounds may involve the speech motor system, but that the perception of speech sounds (i.e., discrimination) does not require the motor system. This means that motor processes are not causally involved in perception of the speech signal, and suggest that the motor system may be used when other cues (e.g., meaning, context) are not available. PMID:25951749

  3. The Effect of Conventional and Transparent Surgical Masks on Speech Understanding in Individuals with and without Hearing Loss.

    PubMed

    Atcherson, Samuel R; Mendel, Lisa Lucks; Baltimore, Wesley J; Patro, Chhayakanta; Lee, Sungmin; Pousson, Monique; Spann, M Joshua

    2017-01-01

    It is generally well known that speech perception is often improved with integrated audiovisual input whether in quiet or in noise. In many health-care environments, however, conventional surgical masks block visual access to the mouth and obscure other potential facial cues. In addition, these environments can be noisy. Although these masks may not alter the acoustic properties, the presence of noise in addition to the lack of visual input can have a deleterious effect on speech understanding. A transparent ("see-through") surgical mask may help to overcome this issue. To compare the effect of noise and various visual input conditions on speech understanding for listeners with normal hearing (NH) and hearing impairment using different surgical masks. Participants were assigned to one of three groups based on hearing sensitivity in this quasi-experimental, cross-sectional study. A total of 31 adults participated in this study: one talker, ten listeners with NH, ten listeners with moderate sensorineural hearing loss, and ten listeners with severe-to-profound hearing loss. Selected lists from the Connected Speech Test were digitally recorded with and without surgical masks and then presented to the listeners at 65 dB HL in five conditions against a background of four-talker babble (+10 dB SNR): without a mask (auditory only), without a mask (auditory and visual), with a transparent mask (auditory only), with a transparent mask (auditory and visual), and with a paper mask (auditory only). A significant difference was found in the spectral analyses of the speech stimuli with and without the masks; however, no more than ∼2 dB root mean square. Listeners with NH performed consistently well across all conditions. Both groups of listeners with hearing impairment benefitted from visual input from the transparent mask. The magnitude of improvement in speech perception in noise was greatest for the severe-to-profound group. Findings confirm improved speech perception performance in noise for listeners with hearing impairment when visual input is provided using a transparent surgical mask. Most importantly, the use of the transparent mask did not negatively affect speech perception performance in noise. American Academy of Audiology

  4. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726

  5. Role of contextual cues on the perception of spectrally reduced interrupted speech.

    PubMed

    Patro, Chhayakanta; Mendel, Lisa Lucks

    2016-08-01

    Understanding speech within an auditory scene is constantly challenged by interfering noise in suboptimal listening environments when noise hinders the continuity of the speech stream. In such instances, a typical auditory-cognitive system perceptually integrates available speech information and "fills in" missing information in the light of semantic context. However, individuals with cochlear implants (CIs) find it difficult and effortful to understand interrupted speech compared to their normal hearing counterparts. This inefficiency in perceptual integration of speech could be attributed to further degradations in the spectral-temporal domain imposed by CIs making it difficult to utilize the contextual evidence effectively. To address these issues, 20 normal hearing adults listened to speech that was spectrally reduced and spectrally reduced interrupted in a manner similar to CI processing. The Revised Speech Perception in Noise test, which includes contextually rich and contextually poor sentences, was used to evaluate the influence of semantic context on speech perception. Results indicated that listeners benefited more from semantic context when they listened to spectrally reduced speech alone. For the spectrally reduced interrupted speech, contextual information was not as helpful under significant spectral reductions, but became beneficial as the spectral resolution improved. These results suggest top-down processing facilitates speech perception up to a point, and it fails to facilitate speech understanding when the speech signals are significantly degraded.

  6. Mechanisms Mediating the Perception of Complex Acoustic Patterns

    DTIC Science & Technology

    1990-11-09

    units stimulated by the louder sound include the units stimulated by the fainter sound. Thus, auditory induction corresponds to a rather sophisticated...FIELD GRU - auditory perception, complex sounds I. I 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Five studies were...show how auditory mechanisms employed for the processing of complex nonverbal patterns have been modified for the perception of speech. 2 Richard M

  7. Cued Speech for Enhancing Speech Perception and First Language Development of Children With Cochlear Implants

    PubMed Central

    Leybaert, Jacqueline; LaSasso, Carol J.

    2010-01-01

    Nearly 300 million people worldwide have moderate to profound hearing loss. Hearing impairment, if not adequately managed, has strong socioeconomic and affective impact on individuals. Cochlear implants have become the most effective vehicle for helping profoundly deaf children and adults to understand spoken language, to be sensitive to environmental sounds, and, to some extent, to listen to music. The auditory information delivered by the cochlear implant remains non-optimal for speech perception because it delivers a spectrally degraded signal and lacks some of the fine temporal acoustic structure. In this article, we discuss research revealing the multimodal nature of speech perception in normally-hearing individuals, with important inter-subject variability in the weighting of auditory or visual information. We also discuss how audio-visual training, via Cued Speech, can improve speech perception in cochlear implantees, particularly in noisy contexts. Cued Speech is a system that makes use of visual information from speechreading combined with hand shapes positioned in different places around the face in order to deliver completely unambiguous information about the syllables and the phonemes of spoken language. We support our view that exposure to Cued Speech before or after the implantation could be important in the aural rehabilitation process of cochlear implantees. We describe five lines of research that are converging to support the view that Cued Speech can enhance speech perception in individuals with cochlear implants. PMID:20724357

  8. Cross-Modal Facilitation in Speech Prosody

    ERIC Educational Resources Information Center

    Foxton, Jessica M.; Riviere, Louis-David; Barone, Pascal

    2010-01-01

    Speech prosody has traditionally been considered solely in terms of its auditory features, yet correlated visual features exist, such as head and eyebrow movements. This study investigated the extent to which visual prosodic features are able to affect the perception of the auditory features. Participants were presented with videos of a speaker…

  9. The Neural Substrates of Infant Speech Perception

    ERIC Educational Resources Information Center

    Homae, Fumitaka; Watanabe, Hama; Taga, Gentaro

    2014-01-01

    Infants often pay special attention to speech sounds, and they appear to detect key features of these sounds. To investigate the neural foundation of speech perception in infants, we measured cortical activation using near-infrared spectroscopy. We presented the following three types of auditory stimuli while 3-month-old infants watched a silent…

  10. Speaker-independent factors affecting the perception of foreign accent in a second languagea)

    PubMed Central

    Levi, Susannah V.; Winters, Stephen J.; Pisoni, David B.

    2012-01-01

    Previous research on foreign accent perception has largely focused on speaker-dependent factors such as age of learning and length of residence. Factors that are independent of a speaker’s language learning history have also been shown to affect perception of second language speech. The present study examined the effects of two such factors—listening context and lexical frequency—on the perception of foreign-accented speech. Listeners rated foreign accent in two listening contexts: auditory-only, where listeners only heard the target stimuli, and auditory+orthography, where listeners were presented with both an auditory signal and an orthographic display of the target word. Results revealed that higher frequency words were consistently rated as less accented than lower frequency words. The effect of the listening context emerged in two interactions: the auditory +orthography context reduced the effects of lexical frequency, but increased the perceived differences between native and non-native speakers. Acoustic measurements revealed some production differences for words of different levels of lexical frequency, though these differences could not account for all of the observed interactions from the perceptual experiment. These results suggest that factors independent of the speakers’ actual speech articulations can influence the perception of degree of foreign accent. PMID:17471745

  11. Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications, 1 April - 30 June 1973.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    This document, containing 15 articles and 2 abstracts, is a report on the current status and progress of speech research. The following topics are investigated: phonological fusion, phonetic prerequisites for first-language learning, auditory and phonetic levels of processing, auditory short-term memory in vowel perception, hemispheric…

  12. Perceptual, auditory and acoustic vocal analysis of speech and singing in choir conductors.

    PubMed

    Rehder, Maria Inês Beltrati Cornacchioni; Behlau, Mara

    2008-01-01

    the voice of choir conductors. to evaluate the vocal quality of choir conductors based on the production of a sustained vowel during singing and when speaking in order to observe auditory and acoustic differences. participants of this study were 100 choir conductors, with an equal distribution between genders. Participants were asked to produce the sustained vowel "é" using a singing and speaking voice. Speech samples were analyzed based on auditory-perceptive and acoustic parameters. The auditory-perceptive analysis was carried out by two speech-language pathologist, specialists in this field of knowledge. The acoustic analysis was carried out with the support of the computer software Doctor Speech (Tiger Electronics, SRD, USA, version 4.0), using the Real Analysis module. the auditory-perceptive analysis of the vocal quality indicated that most conductors have adapted voices, presenting more alterations in their speaking voice. The acoustic analysis indicated different values between genders and between the different production modalities. The fundamental frequency was higher in the singing voice, as well as the values for the first formant; the second formant presented lower values in the singing voice, with statistically significant results only for women. the voice of choir conductors is adapted, presenting fewer deviations in the singing voice when compared to the speaking voice. Productions differ based the voice modality, singing or speaking.

  13. Effect of 24 hours of sleep deprivation on auditory and linguistic perception: a comparison among young controls, sleep-deprived participants, dyslexic readers, and aging adults.

    PubMed

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-06-01

    To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Fifty-five sleep-deprived young adults were compared with 29 aging adults (older than 60 years) and with 18 young controls on auditory temporal order judgment (TOJ) and on speech perception tasks (Experiment 1). The sleep deprived were also compared with 51 dyslexic readers and with the young controls on TOJ and phonological awareness tasks (One-Minute Test for Pseudowords, Phoneme Deletion, Pig Latin, and Spoonerism; Experiment 2). Sleep deprivation resulted in longer TOJ thresholds, poorer speech perception, and poorer nonword reading compared with controls. The TOJ thresholds of the sleep deprived were comparable to those of the aging adults, but their pattern of speech performance differed. They also performed better on TOJ and phonological awareness than dyslexic readers. A variety of linguistic skills are affected by sleep deprivation. The comparison of sleep-deprived individuals with other groups with known difficulties in these linguistic skills might suggest that different groups exhibit common difficulties.

  14. Mapping the Developmental Trajectory and Correlates of Enhanced Pitch Perception on Speech Processing in Adults with ASD

    ERIC Educational Resources Information Center

    Mayer, Jennifer L.; Hannent, Ian; Heaton, Pamela F.

    2016-01-01

    Whilst enhanced perception has been widely reported in individuals with Autism Spectrum Disorders (ASDs), relatively little is known about the developmental trajectory and impact of atypical auditory processing on speech perception in intellectually high-functioning adults with ASD. This paper presents data on perception of complex tones and…

  15. Speech recognition and parent-ratings from auditory development questionnaires in children who are hard of hearing

    PubMed Central

    McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Objectives Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HA) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children’s auditory experience on parent-report auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Design Parent ratings on auditory development questionnaires and children’s speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years of age. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children Rating Scale, and an adaptation of the Speech, Spatial and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open and Closed set task, Early Speech Perception Test, Lexical Neighborhood Test, and Phonetically-balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared to peers with normal hearing matched for age, maternal educational level and nonverbal intelligence. The effects of aided audibility, HA use and language ability on parent responses to auditory development questionnaires and on children’s speech recognition were also examined. Results Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use and better language abilities generally had higher parent ratings of auditory skills and better speech recognition abilities in quiet and in noise than peers with less audibility, more limited HA use or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Conclusions Children who are hard of hearing continue to experience delays in auditory skill development and speech recognition abilities compared to peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported prior to the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech recognition abilities, and may also enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children’s speech recognition. PMID:26731160

  16. The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude envelope cues.

    PubMed

    Chuen, Lorraine; Schutz, Michael

    2016-07-01

    An observer's inference that multimodal signals originate from a common underlying source facilitates cross-modal binding. This 'unity assumption' causes asynchronous auditory and visual speech streams to seem simultaneous (Vatakis & Spence, Perception & Psychophysics, 69(5), 744-756, 2007). Subsequent tests of non-speech stimuli such as musical and impact events found no evidence for the unity assumption, suggesting the effect is speech-specific (Vatakis & Spence, Acta Psychologica, 127(1), 12-23, 2008). However, the role of amplitude envelope (the changes in energy of a sound over time) was not previously appreciated within this paradigm. Here, we explore whether previous findings suggesting speech-specificity of the unity assumption were confounded by similarities in the amplitude envelopes of the contrasted auditory stimuli. Experiment 1 used natural events with clearly differentiated envelopes: single notes played on either a cello (bowing motion) or marimba (striking motion). Participants performed an un-speeded temporal order judgments task; viewing audio-visually matched (e.g., marimba auditory with marimba video) and mismatched (e.g., cello auditory with marimba video) versions of stimuli at various stimulus onset asynchronies, and were required to indicate which modality was presented first. As predicted, participants were less sensitive to temporal order in matched conditions, demonstrating that the unity assumption can facilitate the perception of synchrony outside of speech stimuli. Results from Experiments 2 and 3 revealed that when spectral information was removed from the original auditory stimuli, amplitude envelope alone could not facilitate the influence of audiovisual unity. We propose that both amplitude envelope and spectral acoustic cues affect the percept of audiovisual unity, working in concert to help an observer determine when to integrate across modalities.

  17. The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations?

    PubMed Central

    Fuller, Christina D.; Galvin, John J.; Maat, Bert; Free, Rolien H.; Başkent, Deniz

    2014-01-01

    Cochlear implants (CIs) are auditory prostheses that restore hearing via electrical stimulation of the auditory nerve. Compared to normal acoustic hearing, sounds transmitted through the CI are spectro-temporally degraded, causing difficulties in challenging listening tasks such as speech intelligibility in noise and perception of music. In normal hearing (NH), musicians have been shown to better perform than non-musicians in auditory processing and perception, especially for challenging listening tasks. This “musician effect” was attributed to better processing of pitch cues, as well as better overall auditory cognitive functioning in musicians. Does the musician effect persist when pitch cues are degraded, as it would be in signals transmitted through a CI? To answer this question, NH musicians and non-musicians were tested while listening to unprocessed signals or to signals processed by an acoustic CI simulation. The task increasingly depended on pitch perception: (1) speech intelligibility (words and sentences) in quiet or in noise, (2) vocal emotion identification, and (3) melodic contour identification (MCI). For speech perception, there was no musician effect with the unprocessed stimuli, and a small musician effect only for word identification in one noise condition, in the CI simulation. For emotion identification, there was a small musician effect for both. For MCI, there was a large musician effect for both. Overall, the effect was stronger as the importance of pitch in the listening task increased. This suggests that the musician effect may be more rooted in pitch perception, rather than in a global advantage in cognitive processing (in which musicians would have performed better in all tasks). The results further suggest that musical training before (and possibly after) implantation might offer some advantage in pitch processing that could partially benefit speech perception, and more strongly emotion and music perception. PMID:25071428

  18. Visual contribution to the multistable perception of speech.

    PubMed

    Sato, Marc; Basirat, Anahita; Schwartz, Jean-Luc

    2007-11-01

    The multistable perception of speech, or verbal transformation effect, refers to perceptual changes experienced while listening to a speech form that is repeated rapidly and continuously. In order to test whether visual information from the speaker's articulatory gestures may modify the emergence and stability of verbal auditory percepts, subjects were instructed to report any perceptual changes during unimodal, audiovisual, and incongruent audiovisual presentations of distinct repeated syllables. In a first experiment, the perceptual stability of reported auditory percepts was significantly modulated by the modality of presentation. In a second experiment, when audiovisual stimuli consisting of a stable audio track dubbed with a video track that alternated between congruent and incongruent stimuli were presented, a strong correlation between the timing of perceptual transitions and the timing of video switches was found. Finally, a third experiment showed that the vocal tract opening onset event provided by the visual input could play the role of a bootstrap mechanism in the search for transformations. Altogether, these results demonstrate the capacity of visual information to control the multistable perception of speech in its phonetic content and temporal course. The verbal transformation effect thus provides a useful experimental paradigm to explore audiovisual interactions in speech perception.

  19. Neuronal basis of speech comprehension.

    PubMed

    Specht, Karsten

    2014-01-01

    Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Ira Hirsh and oral deaf education: The role of audition in language development

    NASA Astrophysics Data System (ADS)

    Geers, Ann

    2002-05-01

    Prior to the 1960s, the teaching of speech to deaf children consisted primarily of instruction in lip reading and tactile perception accompanied by imitative exercises in speech sound production. Hirsh came to Central Institute for the Deaf with an interest in discovering the auditory capabilities of normal-hearing listeners. This interest led him to speculate that more normal speech development could be encouraged in deaf children by maximizing use of their limited residual hearing. Following the tradition of Max Goldstein, Edith Whetnall, and Dennis Fry, Hirsh gave scientific validity to the use of amplified speech as the primary avenue to oral language development in prelingually deaf children. This ``auditory approach,'' combined with an emphasis on early intervention, formed the basis for auditory-oral education as we know it today. This presentation will examine how the speech perception, language, and reading skills of prelingually deaf children have changed as a result of improvements in auditory technology that have occurred over the past 30 years. Current data from children using cochlear implants will be compared with data collected earlier from children with profound hearing loss who used hearing aids. [Work supported by NIH.

  1. Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Scott, S.K.

    2012-01-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557

  2. Auditory function in children with Charcot-Marie-Tooth disease.

    PubMed

    Rance, Gary; Ryan, Monique M; Bayliss, Kristen; Gill, Kathryn; O'Sullivan, Caitlin; Whitechurch, Marny

    2012-05-01

    The peripheral manifestations of the inherited neuropathies are increasingly well characterized, but their effects upon cranial nerve function are not well understood. Hearing loss is recognized in a minority of children with this condition, but has not previously been systemically studied. A clear understanding of the prevalence and degree of auditory difficulties in this population is important as hearing impairment can impact upon speech/language development, social interaction ability and educational progress. The aim of this study was to investigate auditory pathway function, speech perception ability and everyday listening and communication in a group of school-aged children with inherited neuropathies. Twenty-six children with Charcot-Marie-Tooth disease confirmed by genetic testing and physical examination participated. Eighteen had demyelinating neuropathies (Charcot-Marie-Tooth type 1) and eight had the axonal form (Charcot-Marie-Tooth type 2). While each subject had normal or near-normal sound detection, individuals in both disease groups showed electrophysiological evidence of auditory neuropathy with delayed or low amplitude auditory brainstem responses. Auditory perception was also affected, with >60% of subjects with Charcot-Marie-Tooth type 1 and >85% of Charcot-Marie-Tooth type 2 suffering impaired processing of auditory temporal (timing) cues and/or abnormal speech understanding in everyday listening conditions.

  3. Tone Discrimination as a Window into Acoustic Perceptual Deficits in Parkinson's Disease

    ERIC Educational Resources Information Center

    Troche, Joshua; Troche, Michelle S.; Berkowitz, Rebecca; Grossman, Murray; Reilly, Jamie

    2012-01-01

    Purpose: Deficits in auditory perception compromise a range of linguistic processes in persons with Parkinson's disease (PD), including speech perception and sensitivity to affective and linguistic prosody. An unanswered question is whether this deficit exists not only at the level of speech perception, but also at a more pervasive level of…

  4. Compensation for Coarticulation: Disentangling Auditory and Gestural Theories of Perception of Coarticulatory Effects in Speech

    ERIC Educational Resources Information Center

    Viswanathan, Navin; Magnuson, James S.; Fowler, Carol A.

    2010-01-01

    According to one approach to speech perception, listeners perceive speech by applying general pattern matching mechanisms to the acoustic signal (e.g., Diehl, Lotto, & Holt, 2004). An alternative is that listeners perceive the phonetic gestures that structured the acoustic signal (e.g., Fowler, 1986). The two accounts have offered different…

  5. Unattended Exposure to Components of Speech Sounds Yields Same Benefits as Explicit Auditory Training

    ERIC Educational Resources Information Center

    Seitz, Aaron R.; Protopapas, Athanassios; Tsushima, Yoshiaki; Vlahou, Eleni L.; Gori, Simone; Grossberg, Stephen; Watanabe, Takeo

    2010-01-01

    Learning a second language as an adult is particularly effortful when new phonetic representations must be formed. Therefore the processes that allow learning of speech sounds are of great theoretical and practical interest. Here we examined whether perception of single formant transitions, that is, sound components critical in speech perception,…

  6. Cross-Modal Interactions during Perception of Audiovisual Speech and Nonspeech Signals: An fMRI Study

    ERIC Educational Resources Information Center

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich,…

  7. An EMG Study of the Lip Muscles during Covert Auditory Verbal Hallucinations in Schizophrenia

    ERIC Educational Resources Information Center

    Rapin, Lucile; Dohen, Marion; Polosan, Mircea; Perrier, Pascal; Loevenbruck, Hélène

    2013-01-01

    Purpose: "Auditory verbal hallucinations" (AVHs) are speech perceptions in the absence of external stimulation. According to an influential theoretical account of AVHs in schizophrenia, a deficit in inner-speech monitoring may cause the patients' verbal thoughts to be perceived as external voices. The account is based on a…

  8. Electrophysiological Evidence for a Multisensory Speech-Specific Mode of Perception

    ERIC Educational Resources Information Center

    Stekelenburg, Jeroen J.; Vroomen, Jean

    2012-01-01

    We investigated whether the interpretation of auditory stimuli as speech or non-speech affects audiovisual (AV) speech integration at the neural level. Perceptually ambiguous sine-wave replicas (SWS) of natural speech were presented to listeners who were either in "speech mode" or "non-speech mode". At the behavioral level, incongruent lipread…

  9. Accounting for rate-dependent category boundary shifts in speech perception.

    PubMed

    Bosker, Hans Rutger

    2017-01-01

    The perception of temporal contrasts in speech is known to be influenced by the speech rate in the surrounding context. This rate-dependent perception is suggested to involve general auditory processes because it is also elicited by nonspeech contexts, such as pure tone sequences. Two general auditory mechanisms have been proposed to underlie rate-dependent perception: durational contrast and neural entrainment. This study compares the predictions of these two accounts of rate-dependent speech perception by means of four experiments, in which participants heard tone sequences followed by Dutch target words ambiguous between /ɑs/ "ash" and /a:s/ "bait". Tone sequences varied in the duration of tones (short vs. long) and in the presentation rate of the tones (fast vs. slow). Results show that the duration of preceding tones did not influence target perception in any of the experiments, thus challenging durational contrast as explanatory mechanism behind rate-dependent perception. Instead, the presentation rate consistently elicited a category boundary shift, with faster presentation rates inducing more /a:s/ responses, but only if the tone sequence was isochronous. Therefore, this study proposes an alternative, neurobiologically plausible account of rate-dependent perception involving neural entrainment of endogenous oscillations to the rate of a rhythmic stimulus.

  10. Air traffic controllers' long-term speech-in-noise training effects: A control group study.

    PubMed

    Zaballos, Maria T P; Plasencia, Daniel P; González, María L Z; de Miguel, Angel R; Macías, Ángel R

    2016-01-01

    Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and -5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=-5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions.

  11. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  12. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  13. Early and late beta-band power reflect audiovisual perception in the McGurk illusion

    PubMed Central

    Senkowski, Daniel; Keil, Julian

    2015-01-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13–30 Hz) at short (0–500 ms) and long (500–800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. PMID:25568160

  14. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    PubMed

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  15. Giving speech a hand: gesture modulates activity in auditory cortex during speech perception.

    PubMed

    Hubbard, Amy L; Wilson, Stephen M; Callan, Daniel E; Dapretto, Mirella

    2009-03-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture-a fundamental type of hand gesture that marks speech prosody-might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions.

  16. Giving Speech a Hand: Gesture Modulates Activity in Auditory Cortex During Speech Perception

    PubMed Central

    Hubbard, Amy L.; Wilson, Stephen M.; Callan, Daniel E.; Dapretto, Mirella

    2008-01-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture – a fundamental type of hand gesture that marks speech prosody – might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions. PMID:18412134

  17. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  18. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  19. The shadow of a doubt? Evidence for perceptuo-motor linkage during auditory and audiovisual close-shadowing

    PubMed Central

    Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc

    2014-01-01

    One classical argument in favor of a functional role of the motor system in speech perception comes from the close-shadowing task in which a subject has to identify and to repeat as quickly as possible an auditory speech stimulus. The fact that close-shadowing can occur very rapidly and much faster than manual identification of the speech target is taken to suggest that perceptually induced speech representations are already shaped in a motor-compatible format. Another argument is provided by audiovisual interactions often interpreted as referring to a multisensory-motor framework. In this study, we attempted to combine these two paradigms by testing whether the visual modality could speed motor response in a close-shadowing task. To this aim, both oral and manual responses were evaluated during the perception of auditory and audiovisual speech stimuli, clear or embedded in white noise. Overall, oral responses were faster than manual ones, but it also appeared that they were less accurate in noise, which suggests that motor representations evoked by the speech input could be rough at a first processing stage. In the presence of acoustic noise, the audiovisual modality led to both faster and more accurate responses than the auditory modality. No interaction was however, observed between modality and response. Altogether, these results are interpreted within a two-stage sensory-motor framework, in which the auditory and visual streams are integrated together and with internally generated motor representations before a final decision may be available. PMID:25009512

  20. Brain activity in patients with unilateral sensorineural hearing loss during auditory perception in noisy environments.

    PubMed

    Yamamoto, Katsura; Tabei, Kenichi; Katsuyama, Narumi; Taira, Masato; Kitamura, Ken

    2017-01-01

    Patients with unilateral sensorineural hearing loss (UHL) often complain of hearing difficulties in noisy environments. To clarify this, we compared brain activation in patients with UHL with that of healthy participants during speech perception in a noisy environment, using functional magnetic resonance imaging (fMRI). A pure tone of 1 kHz, or 14 monosyllabic speech sounds at 65‒70 dB accompanied by MRI scan noise at 75 dB, were presented to both ears for 1 second each and participants were instructed to press a button when they could hear the pure tone or speech sound. Based on the activation areas of healthy participants, the primary auditory cortex, the anterior auditory association areas, and the posterior auditory association areas were set as regions of interest (ROI). In each of these regions, we compared brain activity between healthy participants and patients with UHL. The results revealed that patients with right-side UHL showed different brain activity in the right posterior auditory area during perception of pure tones versus monosyllables. Clinically, left-side and right-side UHL are not presently differentiated and are similarly diagnosed and treated; however, the results of this study suggest that a lateralityspecific treatment should be chosen.

  1. The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.

    PubMed

    Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L

    2018-04-05

    The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.

  2. Tinnitus and Auditory Perception After a History of Noise Exposure: Relationship to Auditory Brainstem Response Measures.

    PubMed

    Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P

    2018-01-15

    To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.

  3. Perceptual Learning and Auditory Training in Cochlear Implant Recipients

    PubMed Central

    Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant (CI) recipients. Recent studies have shown that most implant recipients at least partially adapt to these new patterns via passive, daily-listening experiences. Gradually introducing a speech processor parameter (eg, the degree of spectral mismatch) may provide for more complete and less stressful adaptation. Although the implant device restores hearing sensation and the continued use of the implant provides some degree of adaptation, active auditory rehabilitation may be necessary to maximize the benefit of implantation for CI recipients. Currently, there are scant resources for auditory rehabilitation for adult, postlingually deafened CI recipients. We recently developed a computer-assisted speech-training program to provide the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts among speech stimuli, provides auditory and visual feedback, and incorporates progressive training techniques, thereby maintaining recipients’ interest during the auditory training exercises. Our recent studies demonstrate the effectiveness of targeted auditory training in improving CI recipients’ speech and music perception. Provided with an inexpensive and effective auditory training program, CI recipients may find the motivation and momentum to get the most from the implant device. PMID:17709574

  4. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  5. Auditory Outcomes with Hearing Rehabilitation in Children with Unilateral Hearing Loss: A Systematic Review.

    PubMed

    Appachi, Swathi; Specht, Jessica L; Raol, Nikhila; Lieu, Judith E C; Cohen, Michael S; Dedhia, Kavita; Anne, Samantha

    2017-10-01

    Objective Options for management of unilateral hearing loss (UHL) in children include conventional hearing aids, bone-conduction hearing devices, contralateral routing of signal (CROS) aids, and frequency-modulating (FM) systems. The objective of this study was to systematically review the current literature to characterize auditory outcomes of hearing rehabilitation options in UHL. Data Sources PubMed, EMBASE, Medline, CINAHL, and Cochrane Library were searched from inception to January 2016. Manual searches of bibliographies were also performed. Review Methods Studies analyzing auditory outcomes of hearing amplification in children with UHL were included. Outcome measures included functional and objective auditory results. Two independent reviewers evaluated each abstract and article. Results Of the 249 articles identified, 12 met inclusion criteria. Seven articles solely focused on outcomes with bone-conduction hearing devices. Outcomes favored improved pure-tone averages, speech recognition thresholds, and sound localization in implanted patients. Five studies focused on FM systems, conventional hearing aids, or CROS hearing aids. Limited data are available but suggest a trend toward improvement in speech perception with hearing aids. FM systems were shown to have the most benefit for speech recognition in noise. Studies evaluating CROS hearing aids demonstrated variable outcomes. Conclusions Data evaluating functional and objective auditory measures following hearing amplification in children with UHL are limited. Most studies do suggest improvement in speech perception, speech recognition in noise, and sound localization with a hearing rehabilitation device.

  6. Hemispheric asymmetry of auditory steady-state responses to monaural and diotic stimulation.

    PubMed

    Poelmans, Hanne; Luts, Heleen; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2012-12-01

    Amplitude modulations in the speech envelope are crucial elements for speech perception. These modulations comprise the processing rate at which syllabic (~3-7 Hz), and phonemic transitions occur in speech. Theories about speech perception hypothesize that each hemisphere in the auditory cortex is specialized in analyzing modulations at different timescales, and that phonemic-rate modulations of the speech envelope lateralize to the left hemisphere, whereas right lateralization occurs for slow, syllabic-rate modulations. In the present study, neural processing of phonemic- and syllabic-rate modulations was investigated with auditory steady-state responses (ASSRs). ASSRs to speech-weighted noise stimuli, amplitude modulated at 4, 20, and 80 Hz, were recorded in 30 normal-hearing adults. The 80 Hz ASSR is primarily generated by the brainstem, whereas 20 and 4 Hz ASSRs are mainly cortically evoked and relate to speech perception. Stimuli were presented diotically (same signal to both ears) and monaurally (one signal to the left or right ear). For 80 Hz, diotic ASSRs were larger than monaural responses. This binaural advantage decreased with decreasing modulation frequency. For 20 Hz, diotic ASSRs were equal to monaural responses, while for 4 Hz, diotic responses were smaller than monaural responses. Comparison of left and right ear stimulation demonstrated that, with decreasing modulation rate, a gradual change from ipsilateral to right lateralization occurred. Together, these results (1) suggest that ASSR enhancement to binaural stimulation decreases in the ascending auditory system and (2) indicate that right lateralization is more prominent for low-frequency ASSRs. These findings may have important consequences for electrode placement in clinical settings, as well as for the understanding of low-frequency ASSR generation.

  7. Neural Processing of Congruent and Incongruent Audiovisual Speech in School-Age Children and Adults

    ERIC Educational Resources Information Center

    Heikkilä, Jenni; Tiippana, Kaisa; Loberg, Otto; Leppänen, Paavo H. T.

    2018-01-01

    Seeing articulatory gestures enhances speech perception. Perception of auditory speech can even be changed by incongruent visual gestures, which is known as the McGurk effect (e.g., dubbing a voice saying /mi/ onto a face articulating /ni/, observers often hear /ni/). In children, the McGurk effect is weaker than in adults, but no previous…

  8. Hearing Aid-Induced Plasticity in the Auditory System of Older Adults: Evidence from Speech Perception

    ERIC Educational Resources Information Center

    Lavie, Limor; Banai, Karen; Karni, Avi; Attias, Joseph

    2015-01-01

    Purpose: We tested whether using hearing aids can improve unaided performance in speech perception tasks in older adults with hearing impairment. Method: Unaided performance was evaluated in dichotic listening and speech-­in-­noise tests in 47 older adults with hearing impairment; 36 participants in 3 study groups were tested before hearing aid…

  9. Exploring consequences of short- and long-term deafness on speech production: a lip-tube perturbation study.

    PubMed

    Turgeon, Christine; Prémont, Amélie; Trudeau-Fisette, Paméla; Ménard, Lucie

    2015-05-01

    Studies have reported strong links between speech production and perception. We aimed to evaluate the role of long- and short-term auditory feedback alteration on speech production. Eleven adults with normal hearing (controls) and 17 cochlear implant (CI) users (7 pre-lingually deaf and 10 post-lingually deaf adults) were recruited. Short-term auditory feedback deprivation was induced by turning off the CI or by providing masking noise. Acoustic and articulatory measures were obtained during the production of /u/, with and without a tube inserted between the lips (perturbation), and with and without auditory feedback. F1 values were significantly different between the implant OFF and ON conditions for the pre-lingually deaf participants. In the absence of auditory feedback, the pre-lingually deaf participants moved the tongue more forward. Thus, a lack of normal auditory experience of speech may affect the internal representation of a vowel.

  10. Suggested Outline for Auditory Perception Training.

    ERIC Educational Resources Information Center

    Kelley, Clare A.

    Presented are suggestions for speech therapists to use in auditory perception training and screening of language handicapped children in kindergarten through grade 3. Directions are given for using the program, which is based on games. Each component is presented in terms of purpose, materials, a description of the game, and directions for…

  11. What You See Isn’t Always What You Get: Auditory Word Signals Trump Consciously Perceived Words in Lexical Access

    PubMed Central

    Ostrand, Rachel; Blumstein, Sheila E.; Ferreira, Victor S.; Morgan, James L.

    2016-01-01

    Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021

  12. Mandarin Visual Speech Information

    ERIC Educational Resources Information Center

    Chen, Trevor H.

    2010-01-01

    While the auditory-only aspects of Mandarin speech are heavily-researched and well-known in the field, this dissertation addresses its lesser-known aspects: The visual and audio-visual perception of Mandarin segmental information and lexical-tone information. Chapter II of this dissertation focuses on the audiovisual perception of Mandarin…

  13. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    PubMed

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech-perception performance showed larger EACC thresholds in this study. These results demonstrate the feasibility of recording eERPs from implanted children with ANSD, using direct electrical stimulation. Temporal-processing deficits, as demonstrated by large EACC thresholds for gap detection, might account in part for the poor speech-perception performances observed in a subgroup of implanted subjects with ANSD. This finding suggests that the EACC elicited by changes in temporal continuity (i.e., gap) holds promise as a predictor of speech-perception ability among implanted children with ANSD.

  15. Multisensory integration of speech sounds with letters vs. visual speech: only visual speech induces the mismatch negativity.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean

    2018-05-01

    Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  17. Children perceive speech onsets by ear and eye*

    PubMed Central

    JERGER, SUSAN; DAMIAN, MARKUS F.; TYE-MURRAY, NANCY; ABDI, HERVÉ

    2016-01-01

    Adults use vision to perceive low-fidelity speech; yet how children acquire this ability is not well understood. The literature indicates that children show reduced sensitivity to visual speech from kindergarten to adolescence. We hypothesized that this pattern reflects the effects of complex tasks and a growth period with harder-to-utilize cognitive resources, not lack of sensitivity. We investigated sensitivity to visual speech in children via the phonological priming produced by low-fidelity (non-intact onset) auditory speech presented audiovisually (see dynamic face articulate consonant/rhyme b/ag; hear non-intact onset/rhyme: −b/ag) vs. auditorily (see still face; hear exactly same auditory input). Audiovisual speech produced greater priming from four to fourteen years, indicating that visual speech filled in the non-intact auditory onsets. The influence of visual speech depended uniquely on phonology and speechreading. Children – like adults – perceive speech onsets multimodally. Findings are critical for incorporating visual speech into developmental theories of speech perception. PMID:26752548

  18. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  19. A comparative analysis of auditory perception in humans and songbirds: a modular approach.

    PubMed

    Weisman, Ronald; Hoeschele, Marisa; Sturdy, Christopher B

    2014-05-01

    We propose that a relatively small number of perceptual skills underlie human perception of music and speech. Humans and songbirds share a number of features in the development of their auditory communication systems. These similarities invite comparisons between species in their auditory perceptual skills. Here, we summarized our experimental comparisons between humans (and other mammals) and songbirds (and other birds) in their use of pitch height and pitch chroma perception and discuss similarities and differences in other auditory perceptual abilities of these species. Specifically, we introduced a functional modular view, using pitch chroma and pitch height perception as examples, as a theoretical framework for the comparative study of auditory perception and perhaps all of the study of comparative cognition. We also contrasted phylogeny and adaptation as causal mechanisms in comparative cognition using examples from auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Noise on, voicing off: Speech perception deficits in children with specific language impairment.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Lorenzi, Christian

    2011-11-01

    Speech perception of four phonetic categories (voicing, place, manner, and nasality) was investigated in children with specific language impairment (SLI) (n=20) and age-matched controls (n=19) in quiet and various noise conditions using an AXB two-alternative forced-choice paradigm. Children with SLI exhibited robust speech perception deficits in silence, stationary noise, and amplitude-modulated noise. Comparable deficits were obtained for fast, intermediate, and slow modulation rates, and this speaks against the various temporal processing accounts of SLI. Children with SLI exhibited normal "masking release" effects (i.e., better performance in fluctuating noise than in stationary noise), again suggesting relatively spared spectral and temporal auditory resolution. In terms of phonetic categories, voicing was more affected than place, manner, or nasality. The specific nature of this voicing deficit is hard to explain with general processing impairments in attention or memory. Finally, speech perception in noise correlated with an oral language component but not with either a memory or IQ component, and it accounted for unique variance beyond IQ and low-level auditory perception. In sum, poor speech perception seems to be one of the primary deficits in children with SLI that might explain poor phonological development, impaired word production, and poor word comprehension. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    PubMed

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Multisensory Speech Perception in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Woynaroski, Tiffany G.; Kwakye, Leslie D.; Foss-Feig, Jennifer H.; Stevenson, Ryan A.; Stone, Wendy L.; Wallace, Mark T.

    2013-01-01

    This study examined unisensory and multisensory speech perception in 8-17 year old children with autism spectrum disorders (ASD) and typically developing controls matched on chronological age, sex, and IQ. Consonant-vowel syllables were presented in visual only, auditory only, matched audiovisual, and mismatched audiovisual ("McGurk")…

  3. What Does the Right Hemisphere Know about Phoneme Categories?

    ERIC Educational Resources Information Center

    Wolmetz, Michael; Poeppel, David; Rapp, Brenda

    2011-01-01

    Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…

  4. High visual resolution matters in audiovisual speech perception, but only for some.

    PubMed

    Alsius, Agnès; Wayne, Rachel V; Paré, Martin; Munhall, Kevin G

    2016-07-01

    The basis for individual differences in the degree to which visual speech input enhances comprehension of acoustically degraded speech is largely unknown. Previous research indicates that fine facial detail is not critical for visual enhancement when auditory information is available; however, these studies did not examine individual differences in ability to make use of fine facial detail in relation to audiovisual speech perception ability. Here, we compare participants based on their ability to benefit from visual speech information in the presence of an auditory signal degraded with noise, modulating the resolution of the visual signal through low-pass spatial frequency filtering and monitoring gaze behavior. Participants who benefited most from the addition of visual information (high visual gain) were more adversely affected by the removal of high spatial frequency information, compared to participants with low visual gain, for materials with both poor and rich contextual cues (i.e., words and sentences, respectively). Differences as a function of gaze behavior between participants with the highest and lowest visual gains were observed only for words, with participants with the highest visual gain fixating longer on the mouth region. Our results indicate that the individual variance in audiovisual speech in noise performance can be accounted for, in part, by better use of fine facial detail information extracted from the visual signal and increased fixation on mouth regions for short stimuli. Thus, for some, audiovisual speech perception may suffer when the visual input (in addition to the auditory signal) is less than perfect.

  5. Neurophysiological Influence of Musical Training on Speech Perception

    PubMed Central

    Shahin, Antoine J.

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL. PMID:21716639

  6. Neurophysiological influence of musical training on speech perception.

    PubMed

    Shahin, Antoine J

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL.

  7. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children with Normal Hearing: A Replication and Extension of Eisenberg et al., 2002

    PubMed Central

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.; Faulkner, Kathleen F.

    2016-01-01

    Objectives Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral-degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by Eisenberg et al. (2002) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention and response set, talker discrimination and verbal and nonverbal short-term working memory. Design Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (PPVT-4 and EVT-2) and measures of auditory attention (NEPSY Auditory Attention (AA) and Response Set (RS) and a talker discrimination task (TD)) and short-term memory (visual digit and symbol spans). Results Consistent with the findings reported in the original Eisenberg et al. (2002) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the PPVT-4 using language quotients to control for age effects. However, children who scored higher on the EVT-2 recognized lexically easy words better than lexically hard words in sentences. Older children perceived noise-vocoded speech better than younger children. Finally, we found that measures of auditory attention and short-term memory capacity were significantly correlated with a child’s ability to perceive noise-vocoded isolated words and sentences. Conclusions First, we successfully replicated the major findings from the Eisenberg et al. (2002) study. Because familiarity, phonological distinctiveness and lexical competition affect word recognition, these findings provide additional support for the proposal that several foundational elementary neurocognitive processes underlie the perception of spectrally-degraded speech. Second, we found strong and significant correlations between performance on neurocognitive measures and children’s ability to recognize words and sentences noise-vocoded to four spectral channels. These findings extend earlier research suggesting that perception of spectrally-degraded speech reflects early peripheral auditory processes as well as additional contributions of executive function, specifically, selective attention and short-term memory processes in spoken word recognition. The present findings suggest that auditory attention and short-term memory support robust spoken word recognition in children with NH even under compromised and challenging listening conditions. These results are relevant to research carried out with listeners who have hearing loss, since they are routinely required to encode, process and understand spectrally-degraded acoustic signals. PMID:28045787

  8. The effect of psychological stress and expectation on auditory perception: A signal detection analysis.

    PubMed

    Hoskin, Robert; Hunter, Mike D; Woodruff, Peter W R

    2014-11-01

    Both psychological stress and predictive signals relating to expected sensory input are believed to influence perception, an influence which, when disrupted, may contribute to the generation of auditory hallucinations. The effect of stress and semantic expectation on auditory perception was therefore examined in healthy participants using an auditory signal detection task requiring the detection of speech from within white noise. Trait anxiety was found to predict the extent to which stress influenced response bias, resulting in more anxious participants adopting a more liberal criterion, and therefore experiencing more false positives, when under stress. While semantic expectation was found to increase sensitivity, its presence also generated a shift in response bias towards reporting a signal, suggesting that the erroneous perception of speech became more likely. These findings provide a potential cognitive mechanism that may explain the impact of stress on hallucination-proneness, by suggesting that stress has the tendency to alter response bias in highly anxious individuals. These results also provide support for the idea that top-down processes such as those relating to semantic expectation may contribute to the generation of auditory hallucinations. © 2013 The British Psychological Society.

  9. Brainstem Correlates of Speech-in-Noise Perception in Children

    PubMed Central

    Anderson, Samira; Skoe, Erika; Chandrasekaran, Bharath; Zecker, Steven; Kraus, Nina

    2010-01-01

    Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an important factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is an important factor in determining success with speech perception in noise. PMID:20708671

  10. Neural Correlates of Selective Attention With Hearing Aid Use Followed by ReadMyQuips Auditory Training Program.

    PubMed

    Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey

    The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective attention task. RMQ training led to gains in speech perception in noise and improved listener confidence in the auditory selective attention task.

  11. The Development of the Orthographic Consistency Effect in Speech Recognition: From Sublexical to Lexical Involvement

    ERIC Educational Resources Information Center

    Ventura, Paulo; Morais, Jose; Kolinsky, Regine

    2007-01-01

    The influence of orthography on children's on-line auditory word recognition was studied from the end of Grade 2 to the end of Grade 4, by examining the orthographic consistency effect [Ziegler, J. C., & Ferrand, L. (1998). Orthography shapes the perception of speech: The consistency effect in auditory recognition. "Psychonomic Bulletin & Review",…

  12. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    PubMed

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  13. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    PubMed

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  14. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks

    PubMed Central

    Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  15. The contribution of dynamic visual cues to audiovisual speech perception.

    PubMed

    Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador

    2015-08-01

    Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  17. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    PubMed Central

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  18. Cortical activation patterns correlate with speech understanding after cochlear implantation

    PubMed Central

    Olds, Cristen; Pollonini, Luca; Abaya, Homer; Larky, Jannine; Loy, Megan; Bortfeld, Heather; Beauchamp, Michael S.; Oghalai, John S.

    2015-01-01

    Objectives Cochlear implants are a standard therapy for deafness, yet the ability of implanted patients to understand speech varies widely. To better understand this variability in outcomes, we used functional near-infrared spectroscopy (fNIRS) to image activity within regions of the auditory cortex and compare the results to behavioral measures of speech perception. Design We studied 32 deaf adults hearing through cochlear implants and 35 normal-hearing controls. We used fNIRS to measure responses within the lateral temporal lobe and the superior temporal gyrus to speech stimuli of varying intelligibility. The speech stimuli included normal speech, channelized speech (vocoded into 20 frequency bands), and scrambled speech (the 20 frequency bands were shuffled in random order). We also used environmental sounds as a control stimulus. Behavioral measures consisted of the Speech Reception Threshold, CNC words, and AzBio Sentence tests measured in quiet. Results Both control and implanted participants with good speech perception exhibited greater cortical activations to natural speech than to unintelligible speech. In contrast, implanted participants with poor speech perception had large, indistinguishable cortical activations to all stimuli. The ratio of cortical activation to normal speech to that of scrambled speech directly correlated with the CNC Words and AzBio Sentences scores. This pattern of cortical activation was not correlated with auditory threshold, age, side of implantation, or time after implantation. Turning off the implant reduced cortical activations in all implanted participants. Conclusions Together, these data indicate that the responses we measured within the lateral temporal lobe and the superior temporal gyrus correlate with behavioral measures of speech perception, demonstrating a neural basis for the variability in speech understanding outcomes after cochlear implantation. PMID:26709749

  19. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus

    PubMed Central

    2017-01-01

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. PMID:28179553

  20. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.

    PubMed

    Zhu, Lin L; Beauchamp, Michael S

    2017-03-08

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. Copyright © 2017 the authors 0270-6474/17/372697-12$15.00/0.

  1. Individual Differences in Language Ability Are Related to Variation in Word Recognition, Not Speech Perception: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    McMurray, Bob; Munson, Cheyenne; Tomblin, J. Bruce

    2014-01-01

    Purpose: The authors examined speech perception deficits associated with individual differences in language ability, contrasting auditory, phonological, or lexical accounts by asking whether lexical competition is differentially sensitive to fine-grained acoustic variation. Method: Adolescents with a range of language abilities (N = 74, including…

  2. Modelling Relations between Sensory Processing, Speech Perception, Orthographic and Phonological Ability, and Literacy Achievement

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; De Smedt, Bert; Ghesquiere, Pol

    2008-01-01

    The general magnocellular theory postulates that dyslexia is the consequence of a multimodal deficit in the processing of transient and dynamic stimuli. In the auditory modality, this deficit has been hypothesized to interfere with accurate speech perception, and subsequently disrupt the development of phonological and later reading and spelling…

  3. Vocabulary Facilitates Speech Perception in Children with Hearing Aids

    ERIC Educational Resources Information Center

    Klein, Kelsey E.; Walker, Elizabeth A.; Kirby, Benjamin; McCreery, Ryan W.

    2017-01-01

    Purpose: We examined the effects of vocabulary, lexical characteristics (age of acquisition and phonotactic probability), and auditory access (aided audibility and daily hearing aid [HA] use) on speech perception skills in children with HAs. Method: Participants included 24 children with HAs and 25 children with normal hearing (NH), ages 5-12…

  4. Vocabulary Facilitates Speech Perception in Children With Hearing Aids

    PubMed Central

    Walker, Elizabeth A.; Kirby, Benjamin; McCreery, Ryan W.

    2017-01-01

    Purpose We examined the effects of vocabulary, lexical characteristics (age of acquisition and phonotactic probability), and auditory access (aided audibility and daily hearing aid [HA] use) on speech perception skills in children with HAs. Method Participants included 24 children with HAs and 25 children with normal hearing (NH), ages 5–12 years. Groups were matched on age, expressive and receptive vocabulary, articulation, and nonverbal working memory. Participants repeated monosyllabic words and nonwords in noise. Stimuli varied on age of acquisition, lexical frequency, and phonotactic probability. Performance in each condition was measured by the signal-to-noise ratio at which the child could accurately repeat 50% of the stimuli. Results Children from both groups with larger vocabularies showed better performance than children with smaller vocabularies on nonwords and late-acquired words but not early-acquired words. Overall, children with HAs showed poorer performance than children with NH. Auditory access was not associated with speech perception for the children with HAs. Conclusions Children with HAs show deficits in sensitivity to phonological structure but appear to take advantage of vocabulary skills to support speech perception in the same way as children with NH. Further investigation is needed to understand the causes of the gap that exists between the overall speech perception abilities of children with HAs and children with NH. PMID:28738138

  5. Normal Adult Aging and the Contextual Influences Affecting Speech and Meaningful Sound Perception

    PubMed Central

    Aydelott, Jennifer; Leech, Robert; Crinion, Jennifer

    2010-01-01

    It is widely accepted that hearing loss increases markedly with age, beginning in the fourth decade ISO 7029 (2000). Age-related hearing loss is typified by high-frequency threshold elevation and associated reductions in speech perception because speech sounds, especially consonants, become inaudible. Nevertheless, older adults often report additional and progressive difficulties in the perception and comprehension of speech, often highlighted in adverse listening conditions that exceed those reported by younger adults with a similar degree of high-frequency hearing loss (Dubno, Dirks, & Morgan) leading to communication difficulties and social isolation (Weinstein & Ventry). Some of the age-related decline in speech perception can be accounted for by peripheral sensory problems but cognitive aging can also be a contributing factor. In this article, we review findings from the psycholinguistic literature predominantly over the last four years and present a pilot study illustrating how normal age-related changes in cognition and the linguistic context can influence speech-processing difficulties in older adults. For significant progress in understanding and improving the auditory performance of aging listeners to be made, we discuss how future research will have to be much more specific not only about which interactions between auditory and cognitive abilities are critical but also how they are modulated in the brain. PMID:21307006

  6. Neural networks supporting audiovisual integration for speech: A large-scale lesion study.

    PubMed

    Hickok, Gregory; Rogalsky, Corianne; Matchin, William; Basilakos, Alexandra; Cai, Julia; Pillay, Sara; Ferrill, Michelle; Mickelsen, Soren; Anderson, Steven W; Love, Tracy; Binder, Jeffrey; Fridriksson, Julius

    2018-06-01

    Auditory and visual speech information are often strongly integrated resulting in perceptual enhancements for audiovisual (AV) speech over audio alone and sometimes yielding compelling illusory fusion percepts when AV cues are mismatched, the McGurk-MacDonald effect. Previous research has identified three candidate regions thought to be critical for AV speech integration: the posterior superior temporal sulcus (STS), early auditory cortex, and the posterior inferior frontal gyrus. We assess the causal involvement of these regions (and others) in the first large-scale (N = 100) lesion-based study of AV speech integration. Two primary findings emerged. First, behavioral performance and lesion maps for AV enhancement and illusory fusion measures indicate that classic metrics of AV speech integration are not necessarily measuring the same process. Second, lesions involving superior temporal auditory, lateral occipital visual, and multisensory zones in the STS are the most disruptive to AV speech integration. Further, when AV speech integration fails, the nature of the failure-auditory vs visual capture-can be predicted from the location of the lesions. These findings show that AV speech processing is supported by unimodal auditory and visual cortices as well as multimodal regions such as the STS at their boundary. Motor related frontal regions do not appear to play a role in AV speech integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Multisensory speech perception without the left superior temporal sulcus.

    PubMed

    Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S

    2012-09-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Multisensory Speech Perception Without the Left Superior Temporal Sulcus

    PubMed Central

    Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.

    2012-01-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292

  9. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity.

    PubMed

    Jansson-Verkasalo, Eira; Eggers, Kurt; Järvenpää, Anu; Suominen, Kalervo; Van den Bergh, Bea; De Nil, Luc; Kujala, Teija

    2014-09-01

    Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Putative mechanisms mediating tolerance for audiovisual stimulus onset asynchrony.

    PubMed

    Bhat, Jyoti; Miller, Lee M; Pitt, Mark A; Shahin, Antoine J

    2015-03-01

    Audiovisual (AV) speech perception is robust to temporal asynchronies between visual and auditory stimuli. We investigated the neural mechanisms that facilitate tolerance for audiovisual stimulus onset asynchrony (AVOA) with EEG. Individuals were presented with AV words that were asynchronous in onsets of voice and mouth movement and judged whether they were synchronous or not. Behaviorally, individuals tolerated (perceived as synchronous) longer AVOAs when mouth movement preceded the speech (V-A) stimuli than when the speech preceded mouth movement (A-V). Neurophysiologically, the P1-N1-P2 auditory evoked potentials (AEPs), time-locked to sound onsets and known to arise in and surrounding the primary auditory cortex (PAC), were smaller for the in-sync than the out-of-sync percepts. Spectral power of oscillatory activity in the beta band (14-30 Hz) following the AEPs was larger during the in-sync than out-of-sync perception for both A-V and V-A conditions. However, alpha power (8-14 Hz), also following AEPs, was larger for the in-sync than out-of-sync percepts only in the V-A condition. These results demonstrate that AVOA tolerance is enhanced by inhibiting low-level auditory activity (e.g., AEPs representing generators in and surrounding PAC) that code for acoustic onsets. By reducing sensitivity to acoustic onsets, visual-to-auditory onset mapping is weakened, allowing for greater AVOA tolerance. In contrast, beta and alpha results suggest the involvement of higher-level neural processes that may code for language cues (phonetic, lexical), selective attention, and binding of AV percepts, allowing for wider neural windows of temporal integration, i.e., greater AVOA tolerance. Copyright © 2015 the American Physiological Society.

  11. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    PubMed Central

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  12. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  13. Speech-in-noise perception deficit in adults with dyslexia: effects of background type and listening configuration.

    PubMed

    Dole, Marjorie; Hoen, Michel; Meunier, Fanny

    2012-06-01

    Developmental dyslexia is associated with impaired speech-in-noise perception. The goal of the present research was to further characterize this deficit in dyslexic adults. In order to specify the mechanisms and processing strategies used by adults with dyslexia during speech-in-noise perception, we explored the influence of background type, presenting single target-words against backgrounds made of cocktail party sounds, modulated speech-derived noise or stationary noise. We also evaluated the effect of three listening configurations differing in terms of the amount of spatial processing required. In a monaural condition, signal and noise were presented to the same ear while in a dichotic situation, target and concurrent sound were presented to two different ears, finally in a spatialised configuration, target and competing signals were presented as if they originated from slightly differing positions in the auditory scene. Our results confirm the presence of a speech-in-noise perception deficit in dyslexic adults, in particular when the competing signal is also speech, and when both signals are presented to the same ear, an observation potentially relating to phonological accounts of dyslexia. However, adult dyslexics demonstrated better levels of spatial release of masking than normal reading controls when the background was speech, suggesting that they are well able to rely on denoising strategies based on spatial auditory scene analysis strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The neural processing of foreign-accented speech and its relationship to listener bias

    PubMed Central

    Yi, Han-Gyol; Smiljanic, Rajka; Chandrasekaran, Bharath

    2014-01-01

    Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners' perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013). Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI) study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants' Asian-foreign association was measured using an implicit association test (IAT), conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1) foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2) face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3) implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing. PMID:25339883

  15. Degradation of labial information modifies audiovisual speech perception in cochlear-implanted children.

    PubMed

    Huyse, Aurélie; Berthommier, Frédéric; Leybaert, Jacqueline

    2013-01-01

    The aim of the present study was to examine audiovisual speech integration in cochlear-implanted children and in normally hearing children exposed to degraded auditory stimuli. Previous studies have shown that speech perception in cochlear-implanted users is biased toward the visual modality when audition and vision provide conflicting information. Our main question was whether an experimentally designed degradation of the visual speech cue would increase the importance of audition in the response pattern. The impact of auditory proficiency was also investigated. A group of 31 children with cochlear implants and a group of 31 normally hearing children matched for chronological age were recruited. All children with cochlear implants had profound congenital deafness and had used their implants for at least 2 years. Participants had to perform an /aCa/ consonant-identification task in which stimuli were presented randomly in three conditions: auditory only, visual only, and audiovisual (congruent and incongruent McGurk stimuli). In half of the experiment, the visual speech cue was normal; in the other half (visual reduction) a degraded visual signal was presented, aimed at preventing lipreading of good quality. The normally hearing children received a spectrally reduced speech signal (simulating the input delivered by the cochlear implant). First, performance in visual-only and in congruent audiovisual modalities were decreased, showing that the visual reduction technique used here was efficient at degrading lipreading. Second, in the incongruent audiovisual trials, visual reduction led to a major increase in the number of auditory based responses in both groups. Differences between proficient and nonproficient children were found in both groups, with nonproficient children's responses being more visual and less auditory than those of proficient children. Further analysis revealed that differences between visually clear and visually reduced conditions and between groups were not only because of differences in unisensory perception but also because of differences in the process of audiovisual integration per se. Visual reduction led to an increase in the weight of audition, even in cochlear-implanted children, whose perception is generally dominated by vision. This result suggests that the natural bias in favor of vision is not immutable. Audiovisual speech integration partly depends on the experimental situation, which modulates the informational content of the sensory channels and the weight that is awarded to each of them. Consequently, participants, whether deaf with cochlear implants or having normal hearing, not only base their perception on the most reliable modality but also award it an additional weight.

  16. The Interaction of Temporal and Spectral Acoustic Information with Word Predictability on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Shahsavarani, Somayeh Bahar

    High-level, top-down information such as linguistic knowledge is a salient cortical resource that influences speech perception under most listening conditions. But, are all listeners able to exploit these resources for speech facilitation to the same extent? It was found that children with cochlear implants showed different patterns of benefit from contextual information in speech perception compared with their normal-haring peers. Previous studies have discussed the role of non-acoustic factors such as linguistic and cognitive capabilities to account for this discrepancy. Given the fact that the amount of acoustic information encoded and processed by auditory nerves of listeners with cochlear implants differs from normal-hearing listeners and even varies across individuals with cochlear implants, it is important to study the interaction of specific acoustic properties of the speech signal with contextual cues. This relationship has been mostly neglected in previous research. In this dissertation, we aimed to explore how different acoustic dimensions interact to affect listeners' abilities to combine top-down information with bottom-up information in speech perception beyond the known effects of linguistic and cognitive capacities shown previously. Specifically, the present study investigated whether there were any distinct context effects based on the resolution of spectral versus slowly-varying temporal information in perception of spectrally impoverished speech. To that end, two experiments were conducted. In both experiments, a noise-vocoded technique was adopted to generate spectrally-degraded speech to approximate acoustic cues delivered to listeners with cochlear implants. The frequency resolution was manipulated by varying the number of frequency channels. The temporal resolution was manipulated by low-pass filtering of amplitude envelope with varying low-pass cutoff frequencies. The stimuli were presented to normal-hearing native speakers of American English. Our results revealed a significant interaction effect between spectral, temporal, and contextual information in the perception of spectrally-degraded speech. This suggests that specific types and degradation of bottom-up information combine differently to utilize contextual resources. These findings emphasize the importance of taking the listener's specific auditory abilities into consideration while studying context effects. These results also introduce a novel perspective for designing interventions for listeners with cochlear implants or other auditory prostheses.

  17. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    PubMed

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.

  18. The influence of visual and auditory information on the perception of speech and non-speech oral movements in patients with left hemisphere lesions.

    PubMed

    Schmid, Gabriele; Thielmann, Anke; Ziegler, Wolfram

    2009-03-01

    Patients with lesions of the left hemisphere often suffer from oral-facial apraxia, apraxia of speech, and aphasia. In these patients, visual features often play a critical role in speech and language therapy, when pictured lip shapes or the therapist's visible mouth movements are used to facilitate speech production and articulation. This demands audiovisual processing both in speech and language treatment and in the diagnosis of oral-facial apraxia. The purpose of this study was to investigate differences in audiovisual perception of speech as compared to non-speech oral gestures. Bimodal and unimodal speech and non-speech items were used and additionally discordant stimuli constructed, which were presented for imitation. This study examined a group of healthy volunteers and a group of patients with lesions of the left hemisphere. Patients made substantially more errors than controls, but the factors influencing imitation accuracy were more or less the same in both groups. Error analyses in both groups suggested different types of representations for speech as compared to the non-speech domain, with speech having a stronger weight on the auditory modality and non-speech processing on the visual modality. Additionally, this study was able to show that the McGurk effect is not limited to speech.

  19. Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    PubMed Central

    Yoncheva, Yuliya N.; Zevin, Jason D.; Maurer, Urs

    2010-01-01

    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level–dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers. PMID:19571269

  20. Echoes of the spoken past: how auditory cortex hears context during speech perception

    PubMed Central

    Skipper, Jeremy I.

    2014-01-01

    What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds. PMID:25092665

  1. Benefits of Music Training for Perception of Emotional Speech Prosody in Deaf Children With Cochlear Implants

    PubMed Central

    Gordon, Karen A.; Papsin, Blake C.; Nespoli, Gabe; Hopyan, Talar; Peretz, Isabelle; Russo, Frank A.

    2017-01-01

    Objectives: Children who use cochlear implants (CIs) have characteristic pitch processing deficits leading to impairments in music perception and in understanding emotional intention in spoken language. Music training for normal-hearing children has previously been shown to benefit perception of emotional prosody. The purpose of the present study was to assess whether deaf children who use CIs obtain similar benefits from music training. We hypothesized that music training would lead to gains in auditory processing and that these gains would transfer to emotional speech prosody perception. Design: Study participants were 18 child CI users (ages 6 to 15). Participants received either 6 months of music training (i.e., individualized piano lessons) or 6 months of visual art training (i.e., individualized painting lessons). Measures of music perception and emotional speech prosody perception were obtained pre-, mid-, and post-training. The Montreal Battery for Evaluation of Musical Abilities was used to measure five different aspects of music perception (scale, contour, interval, rhythm, and incidental memory). The emotional speech prosody task required participants to identify the emotional intention of a semantically neutral sentence under audio-only and audiovisual conditions. Results: Music training led to improved performance on tasks requiring the discrimination of melodic contour and rhythm, as well as incidental memory for melodies. These improvements were predominantly found from mid- to post-training. Critically, music training also improved emotional speech prosody perception. Music training was most advantageous in audio-only conditions. Art training did not lead to the same improvements. Conclusions: Music training can lead to improvements in perception of music and emotional speech prosody, and thus may be an effective supplementary technique for supporting auditory rehabilitation following cochlear implantation. PMID:28085739

  2. Benefits of Music Training for Perception of Emotional Speech Prosody in Deaf Children With Cochlear Implants.

    PubMed

    Good, Arla; Gordon, Karen A; Papsin, Blake C; Nespoli, Gabe; Hopyan, Talar; Peretz, Isabelle; Russo, Frank A

    Children who use cochlear implants (CIs) have characteristic pitch processing deficits leading to impairments in music perception and in understanding emotional intention in spoken language. Music training for normal-hearing children has previously been shown to benefit perception of emotional prosody. The purpose of the present study was to assess whether deaf children who use CIs obtain similar benefits from music training. We hypothesized that music training would lead to gains in auditory processing and that these gains would transfer to emotional speech prosody perception. Study participants were 18 child CI users (ages 6 to 15). Participants received either 6 months of music training (i.e., individualized piano lessons) or 6 months of visual art training (i.e., individualized painting lessons). Measures of music perception and emotional speech prosody perception were obtained pre-, mid-, and post-training. The Montreal Battery for Evaluation of Musical Abilities was used to measure five different aspects of music perception (scale, contour, interval, rhythm, and incidental memory). The emotional speech prosody task required participants to identify the emotional intention of a semantically neutral sentence under audio-only and audiovisual conditions. Music training led to improved performance on tasks requiring the discrimination of melodic contour and rhythm, as well as incidental memory for melodies. These improvements were predominantly found from mid- to post-training. Critically, music training also improved emotional speech prosody perception. Music training was most advantageous in audio-only conditions. Art training did not lead to the same improvements. Music training can lead to improvements in perception of music and emotional speech prosody, and thus may be an effective supplementary technique for supporting auditory rehabilitation following cochlear implantation.

  3. Single-Sided Deafness: Impact of Cochlear Implantation on Speech Perception in Complex Noise and on Auditory Localization Accuracy.

    PubMed

    Döge, Julia; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias

    2017-12-01

    To assess auditory localization accuracy and speech reception threshold (SRT) in complex noise conditions in adult patients with acquired single-sided deafness, after intervention with a cochlear implant (CI) in the deaf ear. Nonrandomized, open, prospective patient series. Tertiary referral university hospital. Eleven patients with late-onset single-sided deafness (SSD) and normal hearing in the unaffected ear, who received a CI. All patients were experienced CI users. Unilateral cochlear implantation. Speech perception was tested in a complex multitalker equivalent noise field consisting of multiple sound sources. Speech reception thresholds in noise were determined in aided (with CI) and unaided conditions. Localization accuracy was assessed in complete darkness. Acoustic stimuli were radiated by multiple loudspeakers distributed in the frontal horizontal plane between -60 and +60 degrees. In the aided condition, results show slightly improved speech reception scores compared with the unaided condition in most of the patients. For 8 of the 11 subjects, SRT was improved between 0.37 and 1.70 dB. Three of the 11 subjects showed deteriorations between 1.22 and 3.24 dB SRT. Median localization error decreased significantly by 12.9 degrees compared with the unaided condition. CI in single-sided deafness is an effective treatment to improve the auditory localization accuracy. Speech reception in complex noise conditions is improved to a lesser extent in 73% of the participating CI SSD patients. However, the absence of true binaural interaction effects (summation, squelch) impedes further improvements. The development of speech processing strategies that respect binaural interaction seems to be mandatory to advance speech perception in demanding listening situations in SSD patients.

  4. Speech Perception Ability in Individuals with Friedreich Ataxia

    ERIC Educational Resources Information Center

    Rance, Gary; Fava, Rosanne; Baldock, Heath; Chong, April; Barker, Elizabeth; Corben, Louise; Delatycki

    2008-01-01

    The aim of this study was to investigate auditory pathway function and speech perception ability in individuals with Friedreich ataxia (FRDA). Ten subjects confirmed by genetic testing as being homozygous for a GAA expansion in intron 1 of the FXN gene were included. While each of the subjects demonstrated normal, or near normal sound detection, 3…

  5. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    PubMed

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. The speech naturalness of people who stutter speaking under delayed auditory feedback as perceived by different groups of listeners.

    PubMed

    Van Borsel, John; Eeckhout, Hannelore

    2008-09-01

    This study investigated listeners' perception of the speech naturalness of people who stutter (PWS) speaking under delayed auditory feedback (DAF) with particular attention for possible listener differences. Three panels of judges consisting of 14 stuttering individuals, 14 speech language pathologists, and 14 naive listeners rated the naturalness of speech samples of stuttering and non-stuttering individuals using a 9-point interval scale. Results clearly indicate that these three groups evaluate naturalness differently. Naive listeners appear to be more severe in their judgements than speech language pathologists and stuttering listeners, and speech language pathologists are apparently more severe than PWS. The three listener groups showed similar trends with respect to the relationship between speech naturalness and speech rate. Results of all three indicated that for PWS, the slower a speaker's rate was, the less natural speech was judged to sound. The three listener groups also showed similar trends with regard to naturalness of the stuttering versus the non-stuttering individuals. All three panels considered the speech of the non-stuttering participants more natural. The reader will be able to: (1) discuss the speech naturalness of people who stutter speaking under delayed auditory feedback, (2) discuss listener differences about the naturalness of people who stutter speaking under delayed auditory feedback, and (3) discuss the importance of speech rate for the naturalness of speech.

  7. Effect of 24 Hours of Sleep Deprivation on Auditory and Linguistic Perception: A Comparison among Young Controls, Sleep-Deprived Participants, Dyslexic Readers, and Aging Adults

    ERIC Educational Resources Information Center

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-01-01

    Purpose: To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Method: Fifty-five sleep-deprived young adults were compared with 29…

  8. Auditory Temporal Structure Processing in Dyslexia: Processing of Prosodic Phrase Boundaries Is Not Impaired in Children with Dyslexia

    ERIC Educational Resources Information Center

    Geiser, Eveline; Kjelgaard, Margaret; Christodoulou, Joanna A.; Cyr, Abigail; Gabrieli, John D. E.

    2014-01-01

    Reading disability in children with dyslexia has been proposed to reflect impairment in auditory timing perception. We investigated one aspect of timing perception--"temporal grouping"--as present in prosodic phrase boundaries of natural speech, in age-matched groups of children, ages 6-8 years, with and without dyslexia. Prosodic phrase…

  9. Near-Term Fetuses Process Temporal Features of Speech

    ERIC Educational Resources Information Center

    Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie

    2011-01-01

    The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…

  10. Audio-Visual Speech in Noise Perception in Dyslexia

    ERIC Educational Resources Information Center

    van Laarhoven, Thijs; Keetels, Mirjam; Schakel, Lemmy; Vroomen, Jean

    2018-01-01

    Individuals with developmental dyslexia (DD) may experience, besides reading problems, other speech-related processing deficits. Here, we examined the influence of visual articulatory information (lip-read speech) at various levels of background noise on auditory word recognition in children and adults with DD. We found that children with a…

  11. Status Report on Speech Research, July 1994-December 1995.

    ERIC Educational Resources Information Center

    Fowler, Carol A., Ed.

    This publication (one of a series) contains 19 articles which report the status and progress of studies on the nature of speech, instruments for its investigation, and practical applications. Articles are: "Speech Perception Deficits in Poor Readers: Auditory Processing or Phonological Coding?" (Maria Mody and others); "Auditory…

  12. Neuromodulatory Effects of Auditory Training and Hearing Aid Use on Audiovisual Speech Perception in Elderly Individuals

    PubMed Central

    Yu, Luodi; Rao, Aparna; Zhang, Yang; Burton, Philip C.; Rishiq, Dania; Abrams, Harvey

    2017-01-01

    Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuipsTM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population. PMID:28270763

  13. Neuromodulatory Effects of Auditory Training and Hearing Aid Use on Audiovisual Speech Perception in Elderly Individuals.

    PubMed

    Yu, Luodi; Rao, Aparna; Zhang, Yang; Burton, Philip C; Rishiq, Dania; Abrams, Harvey

    2017-01-01

    Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuips TM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population.

  14. Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    PubMed Central

    Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.

    2012-01-01

    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857

  15. Temporal plasticity in auditory cortex improves neural discrimination of speech sounds

    PubMed Central

    Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.

    2017-01-01

    Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520

  16. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    PubMed

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory. Copyright © 2017 the authors 0270-6474/17/3710324-11$15.00/0.

  17. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Musical training during early childhood enhances the neural encoding of speech in noise

    PubMed Central

    Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina

    2012-01-01

    For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child’s access to a target signal in noise. Given adult musicians’ perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and subcortical processing of speech in noise and related cognitive abilities in musician and nonmusician children that were matched for a variety of overarching factors. Outcomes reveal that musicians’ advantages for processing speech in noise are present during pivotal developmental years. Supported by correlations between auditory working memory and attention and auditory brainstem response properties, we propose that musicians’ perceptual and neural enhancements are driven in a top-down manner by strengthened cognitive abilities with training. Our results may be considered by professionals involved in the remediation of language-based learning deficits, which are often characterized by poor speech perception in noise. PMID:23102977

  19. Speech Perception, Word Recognition and the Structure of the Lexicon. Research on Speech Perception Progress Report No. 10.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    The results of three projects concerned with auditory word recognition and the structure of the lexicon are reported in this paper. The first project described was designed to test experimentally several specific predictions derived from MACS, a simulation model of the Cohort Theory of word recognition. The second project description provides the…

  20. Crossmodal and Incremental Perception of Audiovisual Cues to Emotional Speech

    ERIC Educational Resources Information Center

    Barkhuysen, Pashiera; Krahmer, Emiel; Swerts, Marc

    2010-01-01

    In this article we report on two experiments about the perception of audiovisual cues to emotional speech. The article addresses two questions: (1) how do visual cues from a speaker's face to emotion relate to auditory cues, and (2) what is the recognition speed for various facial cues to emotion? Both experiments reported below are based on tests…

  1. Auditory midbrain implant: a review.

    PubMed

    Lim, Hubert H; Lenarz, Minoo; Lenarz, Thomas

    2009-09-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented.

  2. Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets.

    PubMed

    Stilp, Christian E; Alexander, Joshua M; Kiefte, Michael; Kluender, Keith R

    2010-02-01

    Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds-extensively edited samples produced by a French horn and a tenor saxophone-following either resynthesized speech or a short passage of music. Preceding contexts were "colored" by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color.

  3. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients.

    PubMed

    Feng, Gangyi; Ingvalson, Erin M; Grieco-Calub, Tina M; Roberts, Megan Y; Ryan, Maura E; Birmingham, Patrick; Burrowes, Delilah; Young, Nancy M; Wong, Patrick C M

    2018-01-30

    Although cochlear implantation enables some children to attain age-appropriate speech and language development, communicative delays persist in others, and outcomes are quite variable and difficult to predict, even for children implanted early in life. To understand the neurobiological basis of this variability, we used presurgical neural morphological data obtained from MRI of individual pediatric cochlear implant (CI) candidates implanted younger than 3.5 years to predict variability of their speech-perception improvement after surgery. We first compared neuroanatomical density and spatial pattern similarity of CI candidates to that of age-matched children with normal hearing, which allowed us to detail neuroanatomical networks that were either affected or unaffected by auditory deprivation. This information enables us to build machine-learning models to predict the individual children's speech development following CI. We found that regions of the brain that were unaffected by auditory deprivation, in particular the auditory association and cognitive brain regions, produced the highest accuracy, specificity, and sensitivity in patient classification and the most precise prediction results. These findings suggest that brain areas unaffected by auditory deprivation are critical to developing closer to typical speech outcomes. Moreover, the findings suggest that determination of the type of neural reorganization caused by auditory deprivation before implantation is valuable for predicting post-CI language outcomes for young children.

  4. A causal test of the motor theory of speech perception: a case of impaired speech production and spared speech perception.

    PubMed

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z

    2015-01-01

    The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available.

  5. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis

    PubMed Central

    Evans, Samuel; Davis, Matthew H.

    2015-01-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. PMID:26157026

  6. Audiovisual sentence recognition not predicted by susceptibility to the McGurk effect.

    PubMed

    Van Engen, Kristin J; Xie, Zilong; Chandrasekaran, Bharath

    2017-02-01

    In noisy situations, visual information plays a critical role in the success of speech communication: listeners are better able to understand speech when they can see the speaker. Visual influence on auditory speech perception is also observed in the McGurk effect, in which discrepant visual information alters listeners' auditory perception of a spoken syllable. When hearing /ba/ while seeing a person saying /ga/, for example, listeners may report hearing /da/. Because these two phenomena have been assumed to arise from a common integration mechanism, the McGurk effect has often been used as a measure of audiovisual integration in speech perception. In this study, we test whether this assumed relationship exists within individual listeners. We measured participants' susceptibility to the McGurk illusion as well as their ability to identify sentences in noise across a range of signal-to-noise ratios in audio-only and audiovisual modalities. Our results do not show a relationship between listeners' McGurk susceptibility and their ability to use visual cues to understand spoken sentences in noise, suggesting that McGurk susceptibility may not be a valid measure of audiovisual integration in everyday speech processing.

  7. Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke

    2013-01-01

    Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110

  8. Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs.

    PubMed

    Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke

    2013-01-01

    Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.

  9. Visual cortex entrains to sign language.

    PubMed

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  10. Functional Overlap between Regions Involved in Speech Perception and in Monitoring One's Own Voice during Speech Production

    ERIC Educational Resources Information Center

    Zheng, Zane Z.; Munhall, Kevin G.; Johnsrude, Ingrid S.

    2010-01-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or…

  11. Revisiting the "enigma" of musicians with dyslexia: Auditory sequencing and speech abilities.

    PubMed

    Zuk, Jennifer; Bishop-Liebler, Paula; Ozernov-Palchik, Ola; Moore, Emma; Overy, Katie; Welch, Graham; Gaab, Nadine

    2017-04-01

    Previous research has suggested a link between musical training and auditory processing skills. Musicians have shown enhanced perception of auditory features critical to both music and speech, suggesting that this link extends beyond basic auditory processing. It remains unclear to what extent musicians who also have dyslexia show these specialized abilities, considering often-observed persistent deficits that coincide with reading impairments. The present study evaluated auditory sequencing and speech discrimination in 52 adults comprised of musicians with dyslexia, nonmusicians with dyslexia, and typical musicians. An auditory sequencing task measuring perceptual acuity for tone sequences of increasing length was administered. Furthermore, subjects were asked to discriminate synthesized syllable continua varying in acoustic components of speech necessary for intraphonemic discrimination, which included spectral (formant frequency) and temporal (voice onset time [VOT] and amplitude envelope) features. Results indicate that musicians with dyslexia did not significantly differ from typical musicians and performed better than nonmusicians with dyslexia for auditory sequencing as well as discrimination of spectral and VOT cues within syllable continua. However, typical musicians demonstrated superior performance relative to both groups with dyslexia for discrimination of syllables varying in amplitude information. These findings suggest a distinct profile of speech processing abilities in musicians with dyslexia, with specific weaknesses in discerning amplitude cues within speech. Because these difficulties seem to remain persistent in adults with dyslexia despite musical training, this study only partly supports the potential for musical training to enhance the auditory processing skills known to be crucial for literacy in individuals with dyslexia. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Brainstem Transcription of Speech Is Disrupted in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or…

  13. The Functional Neuroanatomy of Prelexical Processing in Speech Perception

    ERIC Educational Resources Information Center

    Scott, Sophie K.; Wise, Richard J. S.

    2004-01-01

    In this paper we attempt to relate the prelexical processing of speech, with particular emphasis on functional neuroimaging studies, to the study of auditory perceptual systems by disciplines in the speech and hearing sciences. The elaboration of the sound-to-meaning pathways in the human brain enables their integration into models of the human…

  14. Visemic Processing in Audiovisual Discrimination of Natural Speech: A Simultaneous fMRI-EEG Study

    ERIC Educational Resources Information Center

    Dubois, Cyril; Otzenberger, Helene; Gounot, Daniel; Sock, Rudolph; Metz-Lutz, Marie-Noelle

    2012-01-01

    In a noisy environment, visual perception of articulatory movements improves natural speech intelligibility. Parallel to phonemic processing based on auditory signal, visemic processing constitutes a counterpart based on "visemes", the distinctive visual units of speech. Aiming at investigating the neural substrates of visemic processing in a…

  15. Teaching Elements of English RP Connected Speech and Call: Phonemic Assimilation

    ERIC Educational Resources Information Center

    Veselovska, Ganna

    2016-01-01

    Phonology represents an important part of the English language; however, in the course of English language acquisition, it is rarely treated with proper attention. Connected speech is one of the aspects essential for successful communication, which comprises effective auditory perception and speech production. In this paper I explored phonemic…

  16. Speech Perception in Complex Acoustic Environments: Developmental Effects

    ERIC Educational Resources Information Center

    Leibold, Lori J.

    2017-01-01

    Purpose: The ability to hear and understand speech in complex acoustic environments follows a prolonged time course of development. The purpose of this article is to provide a general overview of the literature describing age effects in susceptibility to auditory masking in the context of speech recognition, including a summary of findings related…

  17. Impact of language on development of auditory-visual speech perception.

    PubMed

    Sekiyama, Kaoru; Burnham, Denis

    2008-03-01

    The McGurk effect paradigm was used to examine the developmental onset of inter-language differences between Japanese and English in auditory-visual speech perception. Participants were asked to identify syllables in audiovisual (with congruent or discrepant auditory and visual components), audio-only, and video-only presentations at various signal-to-noise levels. In Experiment 1 with two groups of adults, native speakers of Japanese and native speakers of English, the results on both percent visually influenced responses and reaction time supported previous reports of a weaker visual influence for Japanese participants. In Experiment 2, an additional three age groups (6, 8, and 11 years) in each language group were tested. The results showed that the degree of visual influence was low and equivalent for Japanese and English language 6-year-olds, and increased over age for English language participants, especially between 6 and 8 years, but remained the same for Japanese participants. This may be related to the fact that English language adults and older children processed visual speech information relatively faster than auditory information whereas no such inter-modal differences were found in the Japanese participants' reaction times.

  18. Differential cognitive and perceptual correlates of print reading versus braille reading.

    PubMed

    Veispak, Anneli; Boets, Bart; Ghesquière, Pol

    2013-01-01

    The relations between reading, auditory, speech, phonological and tactile spatial processing are investigated in a Dutch speaking sample of blind braille readers as compared to sighted print readers. Performance is assessed in blind and sighted children and adults. Regarding phonological ability, braille readers perform equally well compared to print readers on phonological awareness, better on verbal short-term memory and significantly worse on lexical retrieval. The groups do not differ on speech perception or auditory processing. Braille readers, however, have more sensitive fingers than print readers. Investigation of the relations between these cognitive and perceptual skills and reading performance indicates that in the group of braille readers auditory temporal processing has a longer lasting and stronger impact not only on phonological abilities, which have to satisfy the high processing demands of the strictly serial language input, but also directly on the reading ability itself. Print readers switch between grapho-phonological and lexical reading modes depending on the familiarity of the items. Furthermore, the auditory temporal processing and speech perception, which were substantially interrelated with phonological processing, had no direct associations with print reading measures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cognitive abilities relate to self-reported hearing disability.

    PubMed

    Zekveld, Adriana A; George, Erwin L J; Houtgast, Tammo; Kramer, Sophia E

    2013-10-01

    In this explorative study, the authors investigated the relationship between auditory and cognitive abilities and self-reported hearing disability. Thirty-two adults with mild to moderate hearing loss completed the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1996) and performed the Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) test as well as tests of spatial working memory (SWM) and visual sustained attention. Regression analyses examined the predictive value of age, hearing thresholds (pure-tone averages [PTAs]), speech perception in noise (speech reception thresholds in noise [SRTNs]), and the cognitive tests for the 5 AIADH factors. Besides the variance explained by age, PTA, and SRTN, cognitive abilities were related to each hearing factor. The reported difficulties with sound detection and speech perception in quiet were less severe for participants with higher age, lower PTAs, and better TRTs. Fewer sound localization and speech perception in noise problems were reported by participants with better SRTNs and smaller SWM. Fewer sound discrimination difficulties were reported by subjects with better SRTNs and TRTs and smaller SWM. The results suggest a general role of the ability to read partly masked text in subjective hearing. Large working memory was associated with more reported hearing difficulties. This study shows that besides auditory variables and age, cognitive abilities are related to self-reported hearing disability.

  20. The McGurk effect in children with autism and Asperger syndrome.

    PubMed

    Bebko, James M; Schroeder, Jessica H; Weiss, Jonathan A

    2014-02-01

    Children with autism may have difficulties in audiovisual speech perception, which has been linked to speech perception and language development. However, little has been done to examine children with Asperger syndrome as a group on tasks assessing audiovisual speech perception, despite this group's often greater language skills. Samples of children with autism, Asperger syndrome, and Down syndrome, as well as a typically developing sample, were presented with an auditory-only condition, a speech-reading condition, and an audiovisual condition designed to elicit the McGurk effect. Children with autism demonstrated unimodal performance at the same level as the other groups, yet showed a lower rate of the McGurk effect compared with the Asperger, Down and typical samples. These results suggest that children with autism may have unique intermodal speech perception difficulties linked to their representations of speech sounds. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    PubMed

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  2. The effect of tinnitus on some psychoacoustical abilities in individuals with normal hearing sensitivity.

    PubMed

    Jain, Chandni; Sahoo, Jitesh Prasad

    Tinnitus is the perception of a sound without an external source. It can affect auditory perception abilities in individuals with normal hearing sensitivity. The aim of the study was to determine the effect of tinnitus on psychoacoustic abilities in individuals with normal hearing sensitivity. The study was conducted on twenty subjects with tinnitus and twenty subjects without tinnitus. Tinnitus group was again divided into mild and moderate tinnitus based on the tinnitus handicap inventory. Differential limen of intensity, differential limen of frequency, gap detection test, modulation detection thresholds were done through the mlp toolbox in Matlab and speech in noise test was done with the help of Quick SIN in Kannada. RESULTS of the study showed that the clinical group performed poorly in all the tests except for differential limen of intensity. Tinnitus affects aspects of auditory perception like temporal resolution, speech perception in noise and frequency discrimination in individuals with normal hearing. This could be due to subtle changes in the central auditory system which is not reflected in the pure tone audiogram.

  3. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    PubMed

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  4. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia

    PubMed Central

    Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.

    2013-01-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097

  5. Central Presbycusis: A Review and Evaluation of the Evidence

    PubMed Central

    Humes, Larry E.; Dubno, Judy R.; Gordon-Salant, Sandra; Lister, Jennifer J.; Cacace, Anthony T.; Cruickshanks, Karen J.; Gates, George A.; Wilson, Richard H.; Wingfield, Arthur

    2018-01-01

    Background The authors reviewed the evidence regarding the existence of age-related declines in central auditory processes and the consequences of any such declines for everyday communication. Purpose This report summarizes the review process and presents its findings. Data Collection and Analysis The authors reviewed 165 articles germane to central presbycusis. Of the 165 articles, 132 articles with a focus on human behavioral measures for either speech or nonspeech stimuli were selected for further analysis. Results For 76 smaller-scale studies of speech understanding in older adults reviewed, the following findings emerged: (1) the three most commonly studied behavioral measures were speech in competition, temporally distorted speech, and binaural speech perception (especially dichotic listening); (2) for speech in competition and temporally degraded speech, hearing loss proved to have a significant negative effect on performance in most of the laboratory studies; (3) significant negative effects of age, unconfounded by hearing loss, were observed in most of the studies of speech in competing speech, time-compressed speech, and binaural speech perception; and (4) the influence of cognitive processing on speech understanding has been examined much less frequently, but when included, significant positive associations with speech understanding were observed. For 36 smaller-scale studies of the perception of nonspeech stimuli by older adults reviewed, the following findings emerged: (1) the three most frequently studied behavioral measures were gap detection, temporal discrimination, and temporal-order discrimination or identification; (2) hearing loss was seldom a significant factor; and (3) negative effects of age were almost always observed. For 18 studies reviewed that made use of test batteries and medium-to-large sample sizes, the following findings emerged: (1) all studies included speech-based measures of auditory processing; (2) 4 of the 18 studies included nonspeech stimuli; (3) for the speech-based measures, monaural speech in a competing-speech background, dichotic speech, and monaural time-compressed speech were investigated most frequently; (4) the most frequently used tests were the Synthetic Sentence Identification (SSI) test with Ipsilateral Competing Message (ICM), the Dichotic Sentence Identification (DSI) test, and time-compressed speech; (5) many of these studies using speech-based measures reported significant effects of age, but most of these studies were confounded by declines in hearing, cognition, or both; (6) for nonspeech auditory-processing measures, the focus was on measures of temporal processing in all four studies; (7) effects of cognition on nonspeech measures of auditory processing have been studied less frequently, with mixed results, whereas the effects of hearing loss on performance were minimal due to judicious selection of stimuli; and (8) there is a paucity of observational studies using test batteries and longitudinal designs. Conclusions Based on this review of the scientific literature, there is insufficient evidence to confirm the existence of central presbycusis as an isolated entity. On the other hand, recent evidence has been accumulating in support of the existence of central presbycusis as a multifactorial condition that involves age- and/or disease-related changes in the auditory system and in the brain. Moreover, there is a clear need for additional research in this area. PMID:22967738

  6. The Influence of Visual and Auditory Information on the Perception of Speech and Non-Speech Oral Movements in Patients with Left Hemisphere Lesions

    ERIC Educational Resources Information Center

    Schmid, Gabriele; Thielmann, Anke; Ziegler, Wolfram

    2009-01-01

    Patients with lesions of the left hemisphere often suffer from oral-facial apraxia, apraxia of speech, and aphasia. In these patients, visual features often play a critical role in speech and language therapy, when pictured lip shapes or the therapist's visible mouth movements are used to facilitate speech production and articulation. This demands…

  7. Perception of environmental sounds by experienced cochlear implant patients.

    PubMed

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries, or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds, and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Seventeen experienced postlingually deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern, and temporal order for tones tests), and a backward digit recall test. The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants, and r = 0.48 for vowels. HINT and CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialling out the variance due to other variables. Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectrotemproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations and might also be predictive of speech performance for prelingually deafened patients with cochlear implants.

  8. Hearing disability and communication handicap for compensation purposes based on self-assessment and audiometric testing.

    PubMed

    Salomon, G; Parving, A

    1985-01-01

    It is reasoned that for compensation or epidemiological studies an evaluation of hearing disability and the concomitant handicap must include the ability to perceive visual cues. A scaling procedure for hearing- and audiovisual communication handicap is presented. The procedure deviates in two ways from previous handicap assessments: (1) It is based on individual self-assessment of semantic speech perception but can be implemented by means of professional audiological test procedures. (2) The system does not make use of pure-tone auditory thresholds as a predominant audiological principle, but is based on speech perception. The interrelationship between auditory and audiovisual handicap is evaluated. A total score including audio- and audiovisual perception handicap is proposed and a suggestion for disability percentages is presented.

  9. Hearing Faces: How the Infant Brain Matches the Face It Sees with the Speech It Hears

    ERIC Educational Resources Information Center

    Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-Francois

    2009-01-01

    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the…

  10. Effects of Phonological Contrast on Auditory Word Discrimination in Children with and without Reading Disability: A Magnetoencephalography (MEG) Study

    ERIC Educational Resources Information Center

    Wehner, Daniel T.; Ahlfors, Seppo P.; Mody, Maria

    2007-01-01

    Poor readers perform worse than their normal reading peers on a variety of speech perception tasks, which may be linked to their phonological processing abilities. The purpose of the study was to compare the brain activation patterns of normal and impaired readers on speech perception to better understand the phonological basis in reading…

  11. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  12. Status Report on Speech Research. A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    DTIC Science & Technology

    1983-12-31

    perception as much as binaural back- ward maskin6. Dichotic backward masking effects have also been found with more complex stimuli, such as CV syllables...the basis of these results and of binaur - al masking effects, it has been suggested that an auditory input produces a preperceptual auditory image that...four, in two sessions separated by at least 48 hours. In the "speech" session, subjects were first presented binaurally with the series of [bal and [gal

  13. Lip-read me now, hear me better later: cross-modal transfer of talker-familiarity effects.

    PubMed

    Rosenblum, Lawrence D; Miller, Rachel M; Sanchez, Kauyumari

    2007-05-01

    There is evidence that for both auditory and visual speech perception, familiarity with the talker facilitates speech recognition. Explanations of these effects have concentrated on the retention of talker information specific to each of these modalities. It could be, however, that some amodal, talker-specific articulatory-style information facilitates speech perception in both modalities. If this is true, then experience with a talker in one modality should facilitate perception of speech from that talker in the other modality. In a test of this prediction, subjects were given about 1 hr of experience lipreading a talker and were then asked to recover speech in noise from either this same talker or a different talker. Results revealed that subjects who lip-read and heard speech from the same talker performed better on the speech-in-noise task than did subjects who lip-read from one talker and then heard speech from a different talker.

  14. Speech Research

    NASA Astrophysics Data System (ADS)

    Several articles addressing topics in speech research are presented. The topics include: exploring the functional significance of physiological tremor: A biospectroscopic approach; differences between experienced and inexperienced listeners to deaf speech; a language-oriented view of reading and its disabilities; Phonetic factors in letter detection; categorical perception; Short-term recall by deaf signers of American sign language; a common basis for auditory sensory storage in perception and immediate memory; phonological awareness and verbal short-term memory; initiation versus execution time during manual and oral counting by stutterers; trading relations in the perception of speech by five-year-old children; the role of the strap muscles in pitch lowering; phonetic validation of distinctive features; consonants and syllable boundaires; and vowel information in postvocalic frictions.

  15. Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation

    PubMed Central

    Lopez-Poveda, Enrique A.; Barrios, Pablo

    2013-01-01

    Auditory deafferentation, or permanent loss of auditory nerve afferent terminals, occurs after noise overexposure and aging and may accompany many forms of hearing loss. It could cause significant auditory impairment but is undetected by regular clinical tests and so its effects on perception are poorly understood. Here, we hypothesize and test a neural mechanism by which deafferentation could deteriorate perception. The basic idea is that the spike train produced by each auditory afferent resembles a stochastically digitized version of the sound waveform and that the quality of the waveform representation in the whole nerve depends on the number of aggregated spike trains or auditory afferents. We reason that because spikes occur stochastically in time with a higher probability for high- than for low-intensity sounds, more afferents would be required for the nerve to faithfully encode high-frequency or low-intensity waveform features than low-frequency or high-intensity features. Deafferentation would thus degrade the encoding of these features. We further reason that due to the stochastic nature of nerve firing, the degradation would be greater in noise than in quiet. This hypothesis is tested using a vocoder. Sounds were filtered through ten adjacent frequency bands. For the signal in each band, multiple stochastically subsampled copies were obtained to roughly mimic different stochastic representations of that signal conveyed by different auditory afferents innervating a given cochlear region. These copies were then aggregated to obtain an acoustic stimulus. Tone detection and speech identification tests were performed by young, normal-hearing listeners using different numbers of stochastic samplers per frequency band in the vocoder. Results support the hypothesis that stochastic undersampling of the sound waveform, inspired by deafferentation, impairs speech perception in noise more than in quiet, consistent with auditory aging effects. PMID:23882176

  16. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users.

    PubMed

    Jaekel, Brittany N; Newman, Rochelle S; Goupell, Matthew J

    2017-05-24

    Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal.

  17. Audio-visual integration during speech perception in prelingually deafened Japanese children revealed by the McGurk effect.

    PubMed

    Tona, Risa; Naito, Yasushi; Moroto, Saburo; Yamamoto, Rinko; Fujiwara, Keizo; Yamazaki, Hiroshi; Shinohara, Shogo; Kikuchi, Masahiro

    2015-12-01

    To investigate the McGurk effect in profoundly deafened Japanese children with cochlear implants (CI) and in normal-hearing children. This was done to identify how children with profound deafness using CI established audiovisual integration during the speech acquisition period. Twenty-four prelingually deafened children with CI and 12 age-matched normal-hearing children participated in this study. Responses to audiovisual stimuli were compared between deafened and normal-hearing controls. Additionally, responses of the children with CI younger than 6 years of age were compared with those of the children with CI at least 6 years of age at the time of the test. Responses to stimuli combining auditory labials and visual non-labials were significantly different between deafened children with CI and normal-hearing controls (p<0.05). Additionally, the McGurk effect tended to be more induced in deafened children older than 6 years of age than in their younger counterparts. The McGurk effect was more significantly induced in prelingually deafened Japanese children with CI than in normal-hearing, age-matched Japanese children. Despite having good speech-perception skills and auditory input through their CI, from early childhood, deafened children may use more visual information in speech perception than normal-hearing children. As children using CI need to communicate based on insufficient speech signals coded by CI, additional activities of higher-order brain function may be necessary to compensate for the incomplete auditory input. This study provided information on the influence of deafness on the development of audiovisual integration related to speech, which could contribute to our further understanding of the strategies used in spoken language communication by prelingually deafened children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Cochlear implant rehabilitation outcomes in Waardenburg syndrome children.

    PubMed

    de Sousa Andrade, Susana Margarida; Monteiro, Ana Rita Tomé; Martins, Jorge Humberto Ferreira; Alves, Marisa Costa; Santos Silva, Luis Filipe; Quadros, Jorge Manuel Cardoso; Ribeiro, Carlos Alberto Reis

    2012-09-01

    The purpose of this study was to review the outcomes of children with documented Waardenburg syndrome implanted in the ENT Department of Centro Hospitalar de Coimbra, concerning postoperative speech perception and production, in comparison to the rest of non-syndromic implanted children. A retrospective chart review was performed for children congenitally deaf who had undergone cochlear implantation with multichannel implants, diagnosed as having Waardenburg syndrome, between 1992 and 2011. Postoperative performance outcomes were assessed and confronted with results obtained by children with non-syndromic congenital deafness also implanted in our department. Open-set auditory perception skills were evaluated by using European Portuguese speech discrimination tests (vowels test, monosyllabic word test, number word test and words in sentence test). Meaningful auditory integration scales (MAIS) and categories of auditory performance (CAP) were also measured. Speech production was further assessed and included results on meaningful use of speech Scale (MUSS) and speech intelligibility rating (SIR). To date, 6 implanted children were clinically identified as having WS type I, and one met the diagnosis of type II. All WS children received multichannel cochlear implants, with a mean age at implantation of 30.6±9.7months (ranging from 19 to 42months). Postoperative outcomes in WS children were similar to other nonsyndromic children. In addition, in number word and vowels discrimination test WS group showed slightly better performances, as well as in MUSS and MAIS assessment. Our study has shown that cochlear implantation should be considered a rehabilitative option for Waardenburg syndrome children with profound deafness, enabling the development and improvement of speech perception and production abilities in this group of patients, reinforcing their candidacy for this audio-oral rehabilitation method. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Evidence of a visual-to-auditory cross-modal sensory gating phenomenon as reflected by the human P50 event-related brain potential modulation.

    PubMed

    Lebib, Riadh; Papo, David; de Bode, Stella; Baudonnière, Pierre Marie

    2003-05-08

    We investigated the existence of a cross-modal sensory gating reflected by the modulation of an early electrophysiological index, the P50 component. We analyzed event-related brain potentials elicited by audiovisual speech stimuli manipulated along two dimensions: congruency and discriminability. The results showed that the P50 was attenuated when visual and auditory speech information were redundant (i.e. congruent), in comparison with this same event-related potential component elicited with discrepant audiovisual dubbing. When hard to discriminate, however, bimodal incongruent speech stimuli elicited a similar pattern of P50 attenuation. We concluded to the existence of a visual-to-auditory cross-modal sensory gating phenomenon. These results corroborate previous findings revealing a very early audiovisual interaction during speech perception. Finally, we postulated that the sensory gating system included a cross-modal dimension.

  20. Effects of Audio-Visual Integration on the Detection of Masked Speech and Non-Speech Sounds

    ERIC Educational Resources Information Center

    Eramudugolla, Ranmalee; Henderson, Rachel; Mattingley, Jason B.

    2011-01-01

    Integration of simultaneous auditory and visual information about an event can enhance our ability to detect that event. This is particularly evident in the perception of speech, where the articulatory gestures of the speaker's lips and face can significantly improve the listener's detection and identification of the message, especially when that…

  1. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    PubMed

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.

  2. Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization

    PubMed Central

    Winn, Matthew B.; Won, Jong Ho; Moon, Il Joon

    2016-01-01

    Objectives This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). We hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. We further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Design Nineteen CI listeners and 10 listeners with normal hearing (NH) participated in a suite of tasks that included spectral ripple discrimination (SRD), temporal modulation detection (TMD), and syllable categorization, which was split into a spectral-cue-based task (targeting the /ba/-/da/ contrast) and a timing-cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated in order to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression in order to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for CI listeners. Results CI users were generally less successful at utilizing both spectral and temporal cues for categorization compared to listeners with normal hearing. For the CI listener group, SRD was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. TMD using 100 Hz and 10 Hz modulated noise was not correlated with the CI subjects’ categorization of VOT, nor with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. Conclusions When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart non-linguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (VOT) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language. PMID:27438871

  3. Audiovisual integration of speech in a patient with Broca's Aphasia

    PubMed Central

    Andersen, Tobias S.; Starrfelt, Randi

    2015-01-01

    Lesions to Broca's area cause aphasia characterized by a severe impairment of the ability to speak, with comparatively intact speech perception. However, some studies have found effects on speech perception under adverse listening conditions, indicating that Broca's area is also involved in speech perception. While these studies have focused on auditory speech perception other studies have shown that Broca's area is activated by visual speech perception. Furthermore, one preliminary report found that a patient with Broca's aphasia did not experience the McGurk illusion suggesting that an intact Broca's area is necessary for audiovisual integration of speech. Here we describe a patient with Broca's aphasia who experienced the McGurk illusion. This indicates that an intact Broca's area is not necessary for audiovisual integration of speech. The McGurk illusions this patient experienced were atypical, which could be due to Broca's area having a more subtle role in audiovisual integration of speech. The McGurk illusions of a control subject with Wernicke's aphasia were, however, also atypical. This indicates that the atypical McGurk illusions were due to deficits in speech processing that are not specific to Broca's aphasia. PMID:25972819

  4. [Multidimensionality of inner speech and its relationship with abnormal perceptions].

    PubMed

    Tamayo-Agudelo, William; Vélez-Urrego, Juan David; Gaviria-Castaño, Gilberto; Perona-Garcelán, Salvador

    Inner speech is a common human experience. Recently, there have been studies linking this experience with cognitive functions, such as problem solving, reading, writing, autobiographical memory, and some disorders, such as anxiety and depression. In addition, inner speech is recognised as the main source of auditory hallucinations. The main purpose of this study is to establish the factor structure of Varieties of Inner Speech Questionnaire (VISQ) in a sample of the Colombian population. Furthermore, it aims at establishing a link between VISQ and abnormal perceptions. This was a cross-sectional study in which 232 college students were assessed using the VISQ and the Cardiff Anomalous Perceptions Scale (CAPS). Through an exploratory factor analysis, a structure of three factors was found: Other Voices in the Internal Speech, Condensed Inner speech, and Dialogical/Evaluative Inner speech, all of them with acceptable levels of reliability. Gender differences were found in the second and third factor, with higher averages for women. Positive correlations were found among the three VISQ and the two CAPS factors: Multimodal Perceptual Alterations and Experiences Associated with the Temporal Lobe. The results are consistent with previous findings linking the factors of inner speech with the propensity to auditory hallucination, a phenomenon widely associated with temporal lobe abnormalities. The hallucinations associated with other perceptual systems, however, are still weakly explained. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    PubMed

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  6. Influence of signal processing strategy in auditory abilities.

    PubMed

    Melo, Tatiana Mendes de; Bevilacqua, Maria Cecília; Costa, Orozimbo Alves; Moret, Adriane Lima Mortari

    2013-01-01

    The signal processing strategy is a parameter that may influence the auditory performance of cochlear implant and is important to optimize this parameter to provide better speech perception, especially in difficult listening situations. To evaluate the individual's auditory performance using two different signal processing strategy. Prospective study with 11 prelingually deafened children with open-set speech recognition. A within-subjects design was used to compare performance with standard HiRes and HiRes 120 in three different moments. During test sessions, subject's performance was evaluated by warble-tone sound-field thresholds, speech perception evaluation, in quiet and in noise. In the silence, children S1, S4, S5, S7 showed better performance with the HiRes 120 strategy and children S2, S9, S11 showed better performance with the HiRes strategy. In the noise was also observed that some children performed better using the HiRes 120 strategy and other with HiRes. Not all children presented the same pattern of response to the different strategies used in this study, which reinforces the need to look at optimizing cochlear implant clinical programming.

  7. Sensorimotor Integration in Speech Processing: Computational Basis and Neural Organization

    PubMed Central

    Hickok, Gregory; Houde, John; Rong, Feng

    2011-01-01

    Sensorimotor integration is an active domain of speech research and is characterized by two main ideas, that the auditory system is critically involved in speech production, and that the motor system is critically involved in speech perception. Despite the complementarity of these ideas, there is little crosstalk between these literatures. We propose an integrative model of the speech-related “dorsal stream” in which sensorimotor interaction primarily supports speech production, in the form of a state feedback control architecture. A critical component of this control system is forward sensory prediction, which affords a natural mechanism for limited motor influence on perception, as recent perceptual research has suggested. Evidence shows that this influence is modulatory but not necessary for speech perception. The neuroanatomy of the proposed circuit is discussed as well as some probable clinical correlates including conduction aphasia, stuttering, and aspects of schizophrenia. PMID:21315253

  8. Auditory Processing Disorders: Acquisition and Treatment

    ERIC Educational Resources Information Center

    Moore, David R.

    2007-01-01

    Auditory processing disorder (APD) describes a mixed and poorly understood listening problem characterised by poor speech perception, especially in challenging environments. APD may include an inherited component, and this may be major, but studies reviewed here of children with long-term otitis media with effusion (OME) provide strong evidence…

  9. Early speech perception in Mandarin-speaking children at one-year post cochlear implantation.

    PubMed

    Chen, Yuan; Wong, Lena L N; Zhu, Shufeng; Xi, Xin

    2016-01-01

    The aim in this study was to examine early speech perception outcomes in Mandarin-speaking children during the first year of cochlear implant (CI) use. A hierarchical early speech perception battery was administered to 80 children before and 3, 6, and 12 months after implantation. Demographic information was obtained to evaluate its relationship with these outcomes. Regardless of dialect exposure and whether a hearing aid was trialed before implantation, implant recipients were able to attain similar pre-lingual auditory skills after 12 months of CI use. Children speaking Mandarin developed early Mandarin speech perception faster than those with greater exposure to other Chinese dialects. In addition, children with better pre-implant hearing levels and younger age at implantation attained significantly better speech perception scores after 12 months of CI use. Better pre-implant hearing levels and higher maternal education level were also associated with a significantly steeper growth in early speech perception ability. Mandarin-speaking children with CIs are able to attain early speech perception results comparable to those of their English-speaking counterparts. In addition, consistent single language input via CI probably enhances early speech perception development at least during the first-year of CI use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multisensory speech perception in autism spectrum disorder: From phoneme to whole-word perception.

    PubMed

    Stevenson, Ryan A; Baum, Sarah H; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Wallace, Mark T

    2017-07-01

    Speech perception in noisy environments is boosted when a listener can see the speaker's mouth and integrate the auditory and visual speech information. Autistic children have a diminished capacity to integrate sensory information across modalities, which contributes to core symptoms of autism, such as impairments in social communication. We investigated the abilities of autistic and typically-developing (TD) children to integrate auditory and visual speech stimuli in various signal-to-noise ratios (SNR). Measurements of both whole-word and phoneme recognition were recorded. At the level of whole-word recognition, autistic children exhibited reduced performance in both the auditory and audiovisual modalities. Importantly, autistic children showed reduced behavioral benefit from multisensory integration with whole-word recognition, specifically at low SNRs. At the level of phoneme recognition, autistic children exhibited reduced performance relative to their TD peers in auditory, visual, and audiovisual modalities. However, and in contrast to their performance at the level of whole-word recognition, both autistic and TD children showed benefits from multisensory integration for phoneme recognition. In accordance with the principle of inverse effectiveness, both groups exhibited greater benefit at low SNRs relative to high SNRs. Thus, while autistic children showed typical multisensory benefits during phoneme recognition, these benefits did not translate to typical multisensory benefit of whole-word recognition in noisy environments. We hypothesize that sensory impairments in autistic children raise the SNR threshold needed to extract meaningful information from a given sensory input, resulting in subsequent failure to exhibit behavioral benefits from additional sensory information at the level of whole-word recognition. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1280-1290. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  11. No, There Is No 150 ms Lead of Visual Speech on Auditory Speech, but a Range of Audiovisual Asynchronies Varying from Small Audio Lead to Large Audio Lag

    PubMed Central

    Schwartz, Jean-Luc; Savariaux, Christophe

    2014-01-01

    An increasing number of neuroscience papers capitalize on the assumption published in this journal that visual speech would be typically 150 ms ahead of auditory speech. It happens that the estimation of audiovisual asynchrony in the reference paper is valid only in very specific cases, for isolated consonant-vowel syllables or at the beginning of a speech utterance, in what we call “preparatory gestures”. However, when syllables are chained in sequences, as they are typically in most parts of a natural speech utterance, asynchrony should be defined in a different way. This is what we call “comodulatory gestures” providing auditory and visual events more or less in synchrony. We provide audiovisual data on sequences of plosive-vowel syllables (pa, ta, ka, ba, da, ga, ma, na) showing that audiovisual synchrony is actually rather precise, varying between 20 ms audio lead and 70 ms audio lag. We show how more complex speech material should result in a range typically varying between 40 ms audio lead and 200 ms audio lag, and we discuss how this natural coordination is reflected in the so-called temporal integration window for audiovisual speech perception. Finally we present a toy model of auditory and audiovisual predictive coding, showing that visual lead is actually not necessary for visual prediction. PMID:25079216

  12. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    PubMed

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. © The Author 2015. Published by Oxford University Press.

  13. Hear here: children with hearing loss learn words by listening.

    PubMed

    Lew, Joyce; Purcell, Alison A; Doble, Maree; Lim, Lynne H

    2014-10-01

    Early use of hearing devices and family participation in auditory-verbal therapy has been associated with age-appropriate verbal communication outcomes for children with hearing loss. However, there continues to be great variability in outcomes across different oral intervention programmes and little consensus on how therapists should prioritise goals at each therapy session for positive clinical outcomes. This pilot intervention study aimed to determine whether therapy goals that concentrate on teaching preschool children with hearing loss how to distinguish between words in a structured listening programme is effective, and whether gains in speech perception skills impact on vocabulary and speech development without them having to be worked on directly in therapy. A multiple baseline across subjects design was used in this within-subject controlled study. 3 children aged between 2:6 and 3:1 with moderate-severe to severe-profound hearing loss were recruited for a 6-week intervention programme. Each participant commenced at different stages of the 10-staged listening programme depending on their individual listening skills at recruitment. Speech development and vocabulary assessments were conducted before and after the training programme in addition to speech perception assessments and probes conducted throughout the intervention programme. All participants made gains in speech perception skills as well as vocabulary and speech development. Speech perception skills acquired were noted to be maintained a week after intervention. In addition, all participants were able to generalise speech perception skills learnt to words that had not been used in the intervention programme. This pilot study found that therapy directed at listening alone is promising and that it may have positive impact on speech and vocabulary development without these goals having to be incorporated into a therapy programme. Although a larger study is necessary for more conclusive findings, the results from this preliminary study are promising in support of emphasise on listening skills within auditory-verbal therapy programmes. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    PubMed

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  15. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion

    PubMed Central

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J.

    2006-01-01

    Seeing a speaker’s facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the “McGurk illusion”, where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at ~290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350–400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process. PMID:16757004

  16. Text as a Supplement to Speech in Young and Older Adults a)

    PubMed Central

    Krull, Vidya; Humes, Larry E.

    2015-01-01

    Objective The purpose of this experiment was to quantify the contribution of visual text to auditory speech recognition in background noise. Specifically, we tested the hypothesis that partially accurate visual text from an automatic speech recognizer could be used successfully to supplement speech understanding in difficult listening conditions in older adults, with normal or impaired hearing. Our working hypotheses were based on what is known regarding audiovisual speech perception in the elderly from speechreading literature. We hypothesized that: 1) combining auditory and visual text information will result in improved recognition accuracy compared to auditory or visual text information alone; 2) benefit from supplementing speech with visual text (auditory and visual enhancement) in young adults will be greater than that in older adults; and 3) individual differences in performance on perceptual measures would be associated with cognitive abilities. Design Fifteen young adults with normal hearing, fifteen older adults with normal hearing, and fifteen older adults with hearing loss participated in this study. All participants completed sentence recognition tasks in auditory-only, text-only, and combined auditory-text conditions. The auditory sentence stimuli were spectrally shaped to restore audibility for the older participants with impaired hearing. All participants also completed various cognitive measures, including measures of working memory, processing speed, verbal comprehension, perceptual and cognitive speed, processing efficiency, inhibition, and the ability to form wholes from parts. Group effects were examined for each of the perceptual and cognitive measures. Audiovisual benefit was calculated relative to performance on auditory-only and visual-text only conditions. Finally, the relationship between perceptual measures and other independent measures were examined using principal-component factor analyses, followed by regression analyses. Results Both young and older adults performed similarly on nine out of ten perceptual measures (auditory, visual, and combined measures). Combining degraded speech with partially correct text from an automatic speech recognizer improved the understanding of speech in both young and older adults, relative to both auditory- and text-only performance. In all subjects, cognition emerged as a key predictor for a general speech-text integration ability. Conclusions These results suggest that neither age nor hearing loss affected the ability of subjects to benefit from text when used to support speech, after ensuring audibility through spectral shaping. These results also suggest that the benefit obtained by supplementing auditory input with partially accurate text is modulated by cognitive ability, specifically lexical and verbal skills. PMID:26458131

  17. Audio-visual speech perception in infants and toddlers with Down syndrome, fragile X syndrome, and Williams syndrome.

    PubMed

    D'Souza, Dean; D'Souza, Hana; Johnson, Mark H; Karmiloff-Smith, Annette

    2016-08-01

    Typically-developing (TD) infants can construct unified cross-modal percepts, such as a speaking face, by integrating auditory-visual (AV) information. This skill is a key building block upon which higher-level skills, such as word learning, are built. Because word learning is seriously delayed in most children with neurodevelopmental disorders, we assessed the hypothesis that this delay partly results from a deficit in integrating AV speech cues. AV speech integration has rarely been investigated in neurodevelopmental disorders, and never previously in infants. We probed for the McGurk effect, which occurs when the auditory component of one sound (/ba/) is paired with the visual component of another sound (/ga/), leading to the perception of an illusory third sound (/da/ or /tha/). We measured AV integration in 95 infants/toddlers with Down, fragile X, or Williams syndrome, whom we matched on Chronological and Mental Age to 25 TD infants. We also assessed a more basic AV perceptual ability: sensitivity to matching vs. mismatching AV speech stimuli. Infants with Williams syndrome failed to demonstrate a McGurk effect, indicating poor AV speech integration. Moreover, while the TD children discriminated between matching and mismatching AV stimuli, none of the other groups did, hinting at a basic deficit or delay in AV speech processing, which is likely to constrain subsequent language development. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Are you surprised to hear this? Longitudinal spectral speech exposure in older compared to middle-aged normal hearing adults.

    PubMed

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Bauer, Julia; Widmer, Susann; Meyer, Martin

    2018-01-01

    Cognitive abilities such as attention or working memory can support older adults during speech perception. However, cognitive abilities as well as speech perception decline with age, leading to the expenditure of effort during speech processing. This longitudinal study therefore investigated age-related differences in electrophysiological processes during speech discrimination and assessed the extent of enhancement to such cognitive auditory processes through repeated auditory exposure. For that purpose, accuracy and reaction time were compared between 13 older adults (62-76 years) and 15 middle-aged (28-52 years) controls in an active oddball paradigm which was administered at three consecutive measurement time points at an interval of 2 wk, while EEG was recorded. As a standard stimulus, the nonsense syllable /'a:ʃa/was used, while the nonsense syllable /'a:sa/ and a morphing between /'a:ʃa/ and /'a:sa/ served as deviants. N2b and P3b ERP responses were evaluated as a function of age, deviant, and measurement time point using a data-driven topographical microstate analysis. From middle age to old age, age-related decline in attentive perception (as reflected in the N2b-related microstates) and in memory updating and attentional processes (as reflected in the P3b-related microstates) was found, as indicated by both lower neural responses and later onsets of the respective cortical networks, and in age-related changes in frontal activation during attentional stimulus processing. Importantly, N2b- and P3b-related microstates changed as a function of repeated stimulus exposure in both groups. This research therefore suggests that experience with auditory stimuli can support auditory neurocognitive processes in normal hearing adults into advanced age. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. An Assessment of Behavioral Dynamic Information Processing Measures in Audiovisual Speech Perception

    PubMed Central

    Altieri, Nicholas; Townsend, James T.

    2011-01-01

    Research has shown that visual speech perception can assist accuracy in identification of spoken words. However, little is known about the dynamics of the processing mechanisms involved in audiovisual integration. In particular, architecture and capacity, measured using response time methodologies, have not been investigated. An issue related to architecture concerns whether the auditory and visual sources of the speech signal are integrated “early” or “late.” We propose that “early” integration most naturally corresponds to coactive processing whereas “late” integration corresponds to separate decisions parallel processing. We implemented the double factorial paradigm in two studies. First, we carried out a pilot study using a two-alternative forced-choice discrimination task to assess architecture, decision rule, and provide a preliminary assessment of capacity (integration efficiency). Next, Experiment 1 was designed to specifically assess audiovisual integration efficiency in an ecologically valid way by including lower auditory S/N ratios and a larger response set size. Results from the pilot study support a separate decisions parallel, late integration model. Results from both studies showed that capacity was severely limited for high auditory signal-to-noise ratios. However, Experiment 1 demonstrated that capacity improved as the auditory signal became more degraded. This evidence strongly suggests that integration efficiency is vitally affected by the S/N ratio. PMID:21980314

  20. Musical background not associated with self-perceived hearing performance or speech perception in postlingual cochlear-implant users.

    PubMed

    Fuller, Christina; Free, Rolien; Maat, Bert; Başkent, Deniz

    2012-08-01

    In normal-hearing listeners, musical background has been observed to change the sound representation in the auditory system and produce enhanced performance in some speech perception tests. Based on these observations, it has been hypothesized that musical background can influence sound and speech perception, and as an extension also the quality of life, by cochlear-implant users. To test this hypothesis, this study explored musical background [using the Dutch Musical Background Questionnaire (DMBQ)], and self-perceived sound and speech perception and quality of life [using the Nijmegen Cochlear Implant Questionnaire (NCIQ) and the Speech Spatial and Qualities of Hearing Scale (SSQ)] in 98 postlingually deafened adult cochlear-implant recipients. In addition to self-perceived measures, speech perception scores (percentage of phonemes recognized in words presented in quiet) were obtained from patient records. The self-perceived hearing performance was associated with the objective speech perception. Forty-one respondents (44% of 94 respondents) indicated some form of formal musical training. Fifteen respondents (18% of 83 respondents) judged themselves as having musical training, experience, and knowledge. No association was observed between musical background (quantified by DMBQ), and self-perceived hearing-related performance or quality of life (quantified by NCIQ and SSQ), or speech perception in quiet.

  1. Only Behavioral But Not Self-Report Measures of Speech Perception Correlate with Cognitive Abilities.

    PubMed

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A

    2016-01-01

    Good speech perception and communication skills in everyday life are crucial for participation and well-being, and are therefore an overarching aim of auditory rehabilitation. Both behavioral and self-report measures can be used to assess these skills. However, correlations between behavioral and self-report speech perception measures are often low. One possible explanation is that there is a mismatch between the specific situations used in the assessment of these skills in each method, and a more careful matching across situations might improve consistency of results. The role that cognition plays in specific speech situations may also be important for understanding communication, as speech perception tests vary in their cognitive demands. In this study, the role of executive function, working memory (WM) and attention in behavioral and self-report measures of speech perception was investigated. Thirty existing hearing aid users with mild-to-moderate hearing loss aged between 50 and 74 years completed a behavioral test battery with speech perception tests ranging from phoneme discrimination in modulated noise (easy) to words in multi-talker babble (medium) and keyword perception in a carrier sentence against a distractor voice (difficult). In addition, a self-report measure of aided communication, residual disability from the Glasgow Hearing Aid Benefit Profile, was obtained. Correlations between speech perception tests and self-report measures were higher when specific speech situations across both were matched. Cognition correlated with behavioral speech perception test results but not with self-report. Only the most difficult speech perception test, keyword perception in a carrier sentence with a competing distractor voice, engaged executive functions in addition to WM. In conclusion, any relationship between behavioral and self-report speech perception is not mediated by a shared correlation with cognition.

  2. Only Behavioral But Not Self-Report Measures of Speech Perception Correlate with Cognitive Abilities

    PubMed Central

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A.

    2016-01-01

    Good speech perception and communication skills in everyday life are crucial for participation and well-being, and are therefore an overarching aim of auditory rehabilitation. Both behavioral and self-report measures can be used to assess these skills. However, correlations between behavioral and self-report speech perception measures are often low. One possible explanation is that there is a mismatch between the specific situations used in the assessment of these skills in each method, and a more careful matching across situations might improve consistency of results. The role that cognition plays in specific speech situations may also be important for understanding communication, as speech perception tests vary in their cognitive demands. In this study, the role of executive function, working memory (WM) and attention in behavioral and self-report measures of speech perception was investigated. Thirty existing hearing aid users with mild-to-moderate hearing loss aged between 50 and 74 years completed a behavioral test battery with speech perception tests ranging from phoneme discrimination in modulated noise (easy) to words in multi-talker babble (medium) and keyword perception in a carrier sentence against a distractor voice (difficult). In addition, a self-report measure of aided communication, residual disability from the Glasgow Hearing Aid Benefit Profile, was obtained. Correlations between speech perception tests and self-report measures were higher when specific speech situations across both were matched. Cognition correlated with behavioral speech perception test results but not with self-report. Only the most difficult speech perception test, keyword perception in a carrier sentence with a competing distractor voice, engaged executive functions in addition to WM. In conclusion, any relationship between behavioral and self-report speech perception is not mediated by a shared correlation with cognition. PMID:27242564

  3. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  4. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.

    PubMed

    Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger

    2016-05-01

    A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.

  5. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641

  6. Processing of speech temporal and spectral information by users of auditory brainstem implants and cochlear implants.

    PubMed

    Azadpour, Mahan; McKay, Colette M

    2014-01-01

    Auditory brainstem implants (ABI) use the same processing strategy as was developed for cochlear implants (CI). However, the cochlear nucleus (CN), the stimulation site of ABIs, is anatomically and physiologically more complex than the auditory nerve and consists of neurons with differing roles in auditory processing. The aim of this study was to evaluate the hypotheses that ABI users are less able than CI users to access speech spectro-temporal information delivered by the existing strategies and that the sites stimulated by different locations of CI and ABI electrode arrays differ in encoding of temporal patterns in the stimulation. Six CI users and four ABI users of Nucleus implants with ACE processing strategy participated in this study. Closed-set perception of aCa syllables (16 consonants) and bVd words (11 vowels) was evaluated via experimental processing strategies that activated one, two, or four of the electrodes of the array in a CIS manner as well as subjects' clinical strategies. Three single-channel strategies presented the overall temporal envelope variations of the signal on a single-implant electrode located at the high-, medium-, and low-frequency regions of the array. Implantees' ability to discriminate within electrode temporal patterns of stimulation for phoneme perception and their ability to make use of spectral information presented by increased number of active electrodes were assessed in the single- and multiple-channel strategies, respectively. Overall percentages and information transmission of phonetic features were obtained for each experimental program. Phoneme perception performance of three ABI users was within the range of CI users in most of the experimental strategies and improved as the number of active electrodes increased. One ABI user performed close to chance with all the single and multiple electrode strategies. There was no significant difference between apical, basal, and middle CI electrodes in transmitting speech temporal information, except a trend that the voicing feature was the least transmitted by the basal electrode. A similar electrode-location pattern could be observed in most ABI subjects. Although the number of tested ABI subjects was small, their wide range of phoneme perception performance was consistent with previous reports of overall speech perception in ABI patients. The better-performing ABI user participants had access to speech temporal and spectral information that was comparable to that of average CI user. The poor-performing ABI user did not have access to within-channel speech temporal information and did not benefit from an increased number of spectral channels. The within-subject variability between different ABI electrodes was less than the variability across users in transmission of speech temporal information. The difference in the performance of ABI users could be related to the location of their electrode array on the CN, anatomy, and physiology of their CN or the damage to their auditory brainstem due to tumor or surgery.

  7. Brief Report: Arrested Development of Audiovisual Speech Perception in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Stevenson, Ryan A.; Siemann, Justin K.; Woynaroski, Tiffany G.; Schneider, Brittany C.; Eberly, Haley E.; Camarata, Stephen M.; Wallace, Mark T.

    2014-01-01

    Atypical communicative abilities are a core marker of Autism Spectrum Disorders (ASD). A number of studies have shown that, in addition to auditory comprehension differences, individuals with autism frequently show atypical responses to audiovisual speech, suggesting a multisensory contribution to these communicative differences from their…

  8. The Influence of Phonetic Dimensions on Aphasic Speech Perception

    ERIC Educational Resources Information Center

    Hessler, Dorte; Jonkers, Roel; Bastiaanse, Roelien

    2010-01-01

    Individuals with aphasia have more problems detecting small differences between speech sounds than larger ones. This paper reports how phonemic processing is impaired and how this is influenced by speechreading. A non-word discrimination task was carried out with "audiovisual", "auditory only" and "visual only" stimulus display. Subjects had to…

  9. Decoding spectrotemporal features of overt and covert speech from the human cortex

    PubMed Central

    Martin, Stéphanie; Brunner, Peter; Holdgraf, Chris; Heinze, Hans-Jochen; Crone, Nathan E.; Rieger, Jochem; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.

    2014-01-01

    Auditory perception and auditory imagery have been shown to activate overlapping brain regions. We hypothesized that these phenomena also share a common underlying neural representation. To assess this, we used electrocorticography intracranial recordings from epileptic patients performing an out loud or a silent reading task. In these tasks, short stories scrolled across a video screen in two conditions: subjects read the same stories both aloud (overt) and silently (covert). In a control condition the subject remained in a resting state. We first built a high gamma (70–150 Hz) neural decoding model to reconstruct spectrotemporal auditory features of self-generated overt speech. We then evaluated whether this same model could reconstruct auditory speech features in the covert speech condition. Two speech models were tested: a spectrogram and a modulation-based feature space. For the overt condition, reconstruction accuracy was evaluated as the correlation between original and predicted speech features, and was significant in each subject (p < 10−5; paired two-sample t-test). For the covert speech condition, dynamic time warping was first used to realign the covert speech reconstruction with the corresponding original speech from the overt condition. Reconstruction accuracy was then evaluated as the correlation between original and reconstructed speech features. Covert reconstruction accuracy was compared to the accuracy obtained from reconstructions in the baseline control condition. Reconstruction accuracy for the covert condition was significantly better than for the control condition (p < 0.005; paired two-sample t-test). The superior temporal gyrus, pre- and post-central gyrus provided the highest reconstruction information. The relationship between overt and covert speech reconstruction depended on anatomy. These results provide evidence that auditory representations of covert speech can be reconstructed from models that are built from an overt speech data set, supporting a partially shared neural substrate. PMID:24904404

  10. Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury.

    PubMed

    Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J

    2017-04-01

    Auditory complaints following mild traumatic brain injury (MTBI) are common, but few studies have addressed the role of auditory temporal processing in speech recognition complaints. In this study, deficits understanding speech in a background of speech noise following MTBI were evaluated with the goal of comparing the relative contributions of auditory and nonauditory factors. A matched-groups design was used in which a group of listeners with a history of MTBI were compared to a group matched in age and pure-tone thresholds, as well as a control group of young listeners with normal hearing (YNH). Of the 33 listeners who participated in the study, 13 were included in the MTBI group (mean age = 46.7 yr), 11 in the Matched group (mean age = 49 yr), and 9 in the YNH group (mean age = 20.8 yr). Speech-in-noise deficits were evaluated using subjective measures as well as monaural word (Words-in-Noise test) and sentence (Quick Speech-in-Noise test) tasks, and a binaural spatial release task. Performance on these measures was compared to psychophysical tasks that evaluate monaural and binaural temporal fine-structure tasks and spectral resolution. Cognitive measures of attention, processing speed, and working memory were evaluated as possible causes of differences between MTBI and Matched groups that might contribute to speech-in-noise perception deficits. A high proportion of listeners in the MTBI group reported difficulty understanding speech in noise (84%) compared to the Matched group (9.1%), and listeners who reported difficulty were more likely to have abnormal results on objective measures of speech in noise. No significant group differences were found between the MTBI and Matched listeners on any of the measures reported, but the number of abnormal tests differed across groups. Regression analysis revealed that a combination of auditory and auditory processing factors contributed to monaural speech-in-noise scores, but the benefit of spatial separation was related to a combination of working memory and peripheral auditory factors across all listeners in the study. The results of this study are consistent with previous findings that a subset of listeners with MTBI has objective auditory deficits. Speech-in-noise performance was related to a combination of auditory and nonauditory factors, confirming the important role of audiology in MTBI rehabilitation. Further research is needed to evaluate the prevalence and causal relationship of auditory deficits following MTBI. American Academy of Audiology

  11. Executives' speech expressiveness: analysis of perceptive and acoustic aspects of vocal dynamics.

    PubMed

    Marquezin, Daniela Maria Santos Serrano; Viola, Izabel; Ghirardi, Ana Carolina de Assis Moura; Madureira, Sandra; Ferreira, Léslie Piccolotto

    2015-01-01

    To analyze speech expressiveness in a group of executives based on perceptive and acoustic aspects of vocal dynamics. Four male subjects participated in the research study (S1, S2, S3, and S4). The assessments included the Kingdomality test to obtain the keywords of communicative attitudes; perceptive-auditory assessment to characterize vocal quality and dynamics, performed by three judges who are speech language pathologists; perceptiveauditory assessment to judge the chosen keywords; speech acoustics to assess prosodic elements (Praat software); and a statistical analysis. According to the perceptive-auditory analysis of vocal dynamics, S1, S2, S3, and S4 did not show vocal alterations and all of them were considered with lowered habitual pitch. S1: pointed out as insecure, nonobjective, nonempathetic, and unconvincing with inappropriate use of pauses that are mainly formed by hesitations; inadequate separation of prosodic groups with breaking of syntagmatic constituents. S2: regular use of pauses for respiratory reload, organization of sentences, and emphasis, which is considered secure, little objective, empathetic, and convincing. S3: pointed out as secure, objective, empathetic, and convincing with regular use of pauses for respiratory reload and organization of sentences and hesitations. S4: the most secure, objective, empathetic, and convincing, with proper use of pauses for respiratory reload, planning, and emphasis; prosodic groups agreed with the statement, without separating the syntagmatic constituents. The speech characteristics and communicative attitudes were highlighted in two subjects in a different manner, in such a way that the slow rate of speech and breaks of the prosodic groups transmitted insecurity, little objectivity, and nonpersuasion.

  12. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users

    PubMed Central

    Newman, Rochelle S.; Goupell, Matthew J.

    2017-01-01

    Purpose Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Method Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. Results CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. Conclusion CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal. PMID:28395319

  13. Visual speech influences speech perception immediately but not automatically.

    PubMed

    Mitterer, Holger; Reinisch, Eva

    2017-02-01

    Two experiments examined the time course of the use of auditory and visual speech cues to spoken word recognition using an eye-tracking paradigm. Results of the first experiment showed that the use of visual speech cues from lipreading is reduced if concurrently presented pictures require a division of attentional resources. This reduction was evident even when listeners' eye gaze was on the speaker rather than the (static) pictures. Experiment 2 used a deictic hand gesture to foster attention to the speaker. At the same time, the visual processing load was reduced by keeping the visual display constant over a fixed number of successive trials. Under these conditions, the visual speech cues from lipreading were used. Moreover, the eye-tracking data indicated that visual information was used immediately and even earlier than auditory information. In combination, these data indicate that visual speech cues are not used automatically, but if they are used, they are used immediately.

  14. Learning to match auditory and visual speech cues: social influences on acquisition of phonological categories.

    PubMed

    Altvater-Mackensen, Nicole; Grossmann, Tobias

    2015-01-01

    Infants' language exposure largely involves face-to-face interactions providing acoustic and visual speech cues but also social cues that might foster language learning. Yet, both audiovisual speech information and social information have so far received little attention in research on infants' early language development. Using a preferential looking paradigm, 44 German 6-month olds' ability to detect mismatches between concurrently presented auditory and visual native vowels was tested. Outcomes were related to mothers' speech style and interactive behavior assessed during free play with their infant, and to infant-specific factors assessed through a questionnaire. Results show that mothers' and infants' social behavior modulated infants' preference for matching audiovisual speech. Moreover, infants' audiovisual speech perception correlated with later vocabulary size, suggesting a lasting effect on language development. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  15. Early experience shapes vocal neural coding and perception in songbirds

    PubMed Central

    Woolley, Sarah M. N.

    2012-01-01

    Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657

  16. [In Process Citation

    PubMed

    Ackermann; Mathiak

    1999-11-01

    Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.

  17. Relationship between auditory perception and vocal production in cochlear implantees: a systematic review.

    PubMed

    Cysneiros, Helena Renata Silva; Leal, Mariana de Carvalho; Lucena, Jonia Alves; Muniz, Lilian Ferreira

    To conduct a systematic review of the scientific literature studying the relationship between vocal production and auditory perception in cochlear implant users. This is an integrative systematic review. The plattforms/databases Bireme, SciELO, Cochrane, Scopus and Web of Science were consulted and the descriptors used were voice, cochlear implant and auditory perception. Original papers published in English, French, Spanish or Portuguese involving the study of vocal production and auditory perception in cochlear implant users were selected and there was no restriction about year of publication of the articles. The studies selected were analyzed according to the author, location, year and publication of the article, as well as for their sample size, type of vocal production and auditory perception assessment and for its major findings and recommendation grade/level of scientific evidence. The results suggest the existence of positive relationship between vocal production and auditory perception in cochlear implant users, and indicate that the deployment time has a positive influence in this relationship. None of the selected studies were rated at level 1 of scientific evidence or grade A of recommendation, which is related to the methodological approach that can go with this subject matter. There is great lack of publications relating auditory perception and speech production in cochlear implant users. This gap is even greater when it comes to the adult population.

  18. The case for earlier cochlear implantation in postlingually deaf adults.

    PubMed

    Dowell, Richard C

    2016-01-01

    This paper aimed to estimate the difference in speech perception outcomes that may occur due to timing of cochlear implantation in relation to the progression of hearing loss. Data from a large population-based sample of adults with acquired hearing loss using cochlear implants (CIs) was used to estimate the effects of duration of hearing loss, age, and pre-implant auditory skills on outcomes for a hypothetical standard patient. A total of 310 adults with acquired severe/profound bilateral hearing loss who received a CI in Melbourne, Australia between 1994 and 2006 provided the speech perception data and demographic information to derive regression equations for estimating CI outcomes. For a hypothetical CI candidate with progressive sensorineural hearing loss, the estimates of speech perception scores following cochlear implantation are significantly better if implantation occurs relatively soon after onset of severe hearing loss and before the loss of all functional auditory skills. Improved CI outcomes and quality of life benefit may be achieved for adults with progressive severe hearing loss if they are implanted earlier in the progression of the pathology.

  19. A Role for the Right Superior Temporal Sulcus in Categorical Perception of Musical Chords

    ERIC Educational Resources Information Center

    Klein, Mike E.; Zatorre, Robert J.

    2011-01-01

    Categorical perception (CP) is a mechanism whereby non-identical stimuli that have the same underlying meaning become invariantly represented in the brain. Through behavioral identification and discrimination tasks, CP has been demonstrated to occur broadly across the auditory modality, including in perception of speech (e.g. phonemes) and music…

  20. Audiovisual Perception of Congruent and Incongruent Dutch Front Vowels

    ERIC Educational Resources Information Center

    Valkenier, Bea; Duyne, Jurriaan Y.; Andringa, Tjeerd C.; Baskent, Deniz

    2012-01-01

    Purpose: Auditory perception of vowels in background noise is enhanced when combined with visually perceived speech features. The objective of this study was to investigate whether the influence of visual cues on vowel perception extends to incongruent vowels, in a manner similar to the McGurk effect observed with consonants. Method:…

  1. Similar frequency of the McGurk effect in large samples of native Mandarin Chinese and American English speakers.

    PubMed

    Magnotti, John F; Basu Mallick, Debshila; Feng, Guo; Zhou, Bin; Zhou, Wen; Beauchamp, Michael S

    2015-09-01

    Humans combine visual information from mouth movements with auditory information from the voice to recognize speech. A common method for assessing multisensory speech perception is the McGurk effect: When presented with particular pairings of incongruent auditory and visual speech syllables (e.g., the auditory speech sounds for "ba" dubbed onto the visual mouth movements for "ga"), individuals perceive a third syllable, distinct from the auditory and visual components. Chinese and American cultures differ in the prevalence of direct facial gaze and in the auditory structure of their languages, raising the possibility of cultural- and language-related group differences in the McGurk effect. There is no consensus in the literature about the existence of these group differences, with some studies reporting less McGurk effect in native Mandarin Chinese speakers than in English speakers and others reporting no difference. However, these studies sampled small numbers of participants tested with a small number of stimuli. Therefore, we collected data on the McGurk effect from large samples of Mandarin-speaking individuals from China and English-speaking individuals from the USA (total n = 307) viewing nine different stimuli. Averaged across participants and stimuli, we found similar frequencies of the McGurk effect between Chinese and American participants (48 vs. 44 %). In both groups, we observed a large range of frequencies both across participants (range from 0 to 100 %) and stimuli (15 to 83 %) with the main effect of culture and language accounting for only 0.3 % of the variance in the data. High individual variability in perception of the McGurk effect necessitates the use of large sample sizes to accurately estimate group differences.

  2. A Review of Behavioural and Electrophysiological Studies on Auditory Processing and Speech Perception in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Haesen, Birgitt; Boets, Bart; Wagemans, Johan

    2011-01-01

    This literature review aims to interpret behavioural and electrophysiological studies addressing auditory processing in children and adults with autism spectrum disorder (ASD). Data have been organised according to the applied methodology (behavioural versus electrophysiological studies) and according to stimulus complexity (pure versus complex…

  3. Song and speech: brain regions involved with perception and covert production.

    PubMed

    Callan, Daniel E; Tsytsarev, Vassiliy; Hanakawa, Takashi; Callan, Akiko M; Katsuhara, Maya; Fukuyama, Hidenao; Turner, Robert

    2006-07-01

    This 3-T fMRI study investigates brain regions similarly and differentially involved with listening and covert production of singing relative to speech. Given the greater use of auditory-motor self-monitoring and imagery with respect to consonance in singing, brain regions involved with these processes are predicted to be differentially active for singing more than for speech. The stimuli consisted of six Japanese songs. A block design was employed in which the tasks for the subject were to listen passively to singing of the song lyrics, passively listen to speaking of the song lyrics, covertly sing the song lyrics visually presented, covertly speak the song lyrics visually presented, and to rest. The conjunction of passive listening and covert production tasks used in this study allow for general neural processes underlying both perception and production to be discerned that are not exclusively a result of stimulus induced auditory processing nor to low level articulatory motor control. Brain regions involved with both perception and production for singing as well as speech were found to include the left planum temporale/superior temporal parietal region, as well as left and right premotor cortex, lateral aspect of the VI lobule of posterior cerebellum, anterior superior temporal gyrus, and planum polare. Greater activity for the singing over the speech condition for both the listening and covert production tasks was found in the right planum temporale. Greater activity in brain regions involved with consonance, orbitofrontal cortex (listening task), subcallosal cingulate (covert production task) were also present for singing over speech. The results are consistent with the PT mediating representational transformation across auditory and motor domains in response to consonance for singing over that of speech. Hemispheric laterality was assessed by paired t tests between active voxels in the contrast of interest relative to the left-right flipped contrast of interest calculated from images normalized to the left-right reflected template. Consistent with some hypotheses regarding hemispheric specialization, a pattern of differential laterality for speech over singing (both covert production and listening tasks) occurs in the left temporal lobe, whereas, singing over speech (listening task only) occurs in right temporal lobe.

  4. Experience with speech sounds is not necessary for cue trading by budgerigars (Melopsittacus undulatus)

    PubMed Central

    Flaherty, Mary; Dent, Micheal L.; Sawusch, James R.

    2017-01-01

    The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with “d” or “t” and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal. PMID:28562597

  5. Experience with speech sounds is not necessary for cue trading by budgerigars (Melopsittacus undulatus).

    PubMed

    Flaherty, Mary; Dent, Micheal L; Sawusch, James R

    2017-01-01

    The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with "d" or "t" and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal.

  6. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    PubMed Central

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  7. Hearing loss and the central auditory system: Implications for hearing aids

    NASA Astrophysics Data System (ADS)

    Frisina, Robert D.

    2003-04-01

    Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.

  8. Language/Culture Modulates Brain and Gaze Processes in Audiovisual Speech Perception.

    PubMed

    Hisanaga, Satoko; Sekiyama, Kaoru; Igasaki, Tomohiko; Murayama, Nobuki

    2016-10-13

    Several behavioural studies have shown that the interplay between voice and face information in audiovisual speech perception is not universal. Native English speakers (ESs) are influenced by visual mouth movement to a greater degree than native Japanese speakers (JSs) when listening to speech. However, the biological basis of these group differences is unknown. Here, we demonstrate the time-varying processes of group differences in terms of event-related brain potentials (ERP) and eye gaze for audiovisual and audio-only speech perception. On a behavioural level, while congruent mouth movement shortened the ESs' response time for speech perception, the opposite effect was observed in JSs. Eye-tracking data revealed a gaze bias to the mouth for the ESs but not the JSs, especially before the audio onset. Additionally, the ERP P2 amplitude indicated that ESs processed multisensory speech more efficiently than auditory-only speech; however, the JSs exhibited the opposite pattern. Taken together, the ESs' early visual attention to the mouth was likely to promote phonetic anticipation, which was not the case for the JSs. These results clearly indicate the impact of language and/or culture on multisensory speech processing, suggesting that linguistic/cultural experiences lead to the development of unique neural systems for audiovisual speech perception.

  9. Hearing Lips and Seeing Voices: How Cortical Areas Supporting Speech Production Mediate Audiovisual Speech Perception

    PubMed Central

    Skipper, Jeremy I.; van Wassenhove, Virginie; Nusbaum, Howard C.; Small, Steven L.

    2009-01-01

    Observing a speaker’s mouth profoundly influences speech perception. For example, listeners perceive an “illusory” “ta” when the video of a face producing /ka/ is dubbed onto an audio /pa/. Here, we show how cortical areas supporting speech production mediate this illusory percept and audiovisual (AV) speech perception more generally. Specifically, cortical activity during AV speech perception occurs in many of the same areas that are active during speech production. We find that different perceptions of the same syllable and the perception of different syllables are associated with different distributions of activity in frontal motor areas involved in speech production. Activity patterns in these frontal motor areas resulting from the illusory “ta” percept are more similar to the activity patterns evoked by AV/ta/ than they are to patterns evoked by AV/pa/ or AV/ka/. In contrast to the activity in frontal motor areas, stimulus-evoked activity for the illusory “ta” in auditory and somatosensory areas and visual areas initially resembles activity evoked by AV/pa/ and AV/ka/, respectively. Ultimately, though, activity in these regions comes to resemble activity evoked by AV/ta/. Together, these results suggest that AV speech elicits in the listener a motor plan for the production of the phoneme that the speaker might have been attempting to produce, and that feedback in the form of efference copy from the motor system ultimately influences the phonetic interpretation. PMID:17218482

  10. Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach

    NASA Astrophysics Data System (ADS)

    Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan

    2005-12-01

    Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.

  11. Electrophysiologic Assessment of Auditory Training Benefits in Older Adults

    PubMed Central

    Anderson, Samira; Jenkins, Kimberly

    2015-01-01

    Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912

  12. Brain dynamics that correlate with effects of learning on auditory distance perception.

    PubMed

    Wisniewski, Matthew G; Mercado, Eduardo; Church, Barbara A; Gramann, Klaus; Makeig, Scott

    2014-01-01

    Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m) and far (30-m) distances. Listeners' accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC) processes identified in electroencephalographic (EEG) data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS) that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD) were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS). The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  13. Auditory Learning in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Mishra, Srikanta K.; Boddupally, Shiva P.; Rayapati, Deeksha

    2015-01-01

    Purpose: The purpose of this study was to examine and characterize the training-induced changes in speech-in-noise perception in children with congenital deafness who have cochlear implants (CIs). Method: Twenty-seven children with congenital deafness who have CIs were studied. Eleven children with CIs were trained on a speech-in-noise task,…

  14. Cortical Mechanisms of Speech Perception in Noise

    ERIC Educational Resources Information Center

    Wong, Patrick C. M.; Uppunda, Ajith K.; Parrish, Todd B.; Dhar, Sumitrajit

    2008-01-01

    Purpose: The present study examines the brain basis of listening to spoken words in noise, which is a ubiquitous characteristic of communication, with the focus on the dorsal auditory pathway. Method: English-speaking young adults identified single words in 3 listening conditions while their hemodynamic response was measured using fMRI: speech in…

  15. The Influence of Environmental Sound Training on the Perception of Spectrally Degraded Speech and Environmental Sounds

    PubMed Central

    Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N.

    2012-01-01

    Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients. PMID:22891070

  16. Perception drives production across sensory modalities: A network for sensorimotor integration of visual speech.

    PubMed

    Venezia, Jonathan H; Fillmore, Paul; Matchin, William; Isenberg, A Lisette; Hickok, Gregory; Fridriksson, Julius

    2016-02-01

    Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Perception drives production across sensory modalities: A network for sensorimotor integration of visual speech

    PubMed Central

    Venezia, Jonathan H.; Fillmore, Paul; Matchin, William; Isenberg, A. Lisette; Hickok, Gregory; Fridriksson, Julius

    2015-01-01

    Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. PMID:26608242

  18. Incorporating Auditory Models in Speech/Audio Applications

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, Harish

    2011-12-01

    Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.

  19. Comparing the effect of auditory-only and auditory-visual modes in two groups of Persian children using cochlear implants: a randomized clinical trial.

    PubMed

    Oryadi Zanjani, Mohammad Majid; Hasanzadeh, Saeid; Rahgozar, Mehdi; Shemshadi, Hashem; Purdy, Suzanne C; Mahmudi Bakhtiari, Behrooz; Vahab, Maryam

    2013-09-01

    Since the introduction of cochlear implantation, researchers have considered children's communication and educational success before and after implantation. Therefore, the present study aimed to compare auditory, speech, and language development scores following one-sided cochlear implantation between two groups of prelingual deaf children educated through either auditory-only (unisensory) or auditory-visual (bisensory) modes. A randomized controlled trial with a single-factor experimental design was used. The study was conducted in the Instruction and Rehabilitation Private Centre of Hearing Impaired Children and their Family, called Soroosh in Shiraz, Iran. We assessed 30 Persian deaf children for eligibility and 22 children qualified to enter the study. They were aged between 27 and 66 months old and had been implanted between the ages of 15 and 63 months. The sample of 22 children was randomly assigned to two groups: auditory-only mode and auditory-visual mode; 11 participants in each group were analyzed. In both groups, the development of auditory perception, receptive language, expressive language, speech, and speech intelligibility was assessed pre- and post-intervention by means of instruments which were validated and standardized in the Persian population. No significant differences were found between the two groups. The children with cochlear implants who had been instructed using either the auditory-only or auditory-visual modes acquired auditory, receptive language, expressive language, and speech skills at the same rate. Overall, spoken language significantly developed in both the unisensory group and the bisensory group. Thus, both the auditory-only mode and the auditory-visual mode were effective. Therefore, it is not essential to limit access to the visual modality and to rely solely on the auditory modality when instructing hearing, language, and speech in children with cochlear implants who are exposed to spoken language both at home and at school when communicating with their parents and educators prior to and after implantation. The trial has been registered at IRCT.ir, number IRCT201109267637N1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Auditory development in early amplified children: factors influencing auditory-based communication outcomes in children with hearing loss.

    PubMed

    Sininger, Yvonne S; Grimes, Alison; Christensen, Elizabeth

    2010-04-01

    The purpose of this study was to determine the influence of selected predictive factors, primarily age at fitting of amplification and degree of hearing loss, on auditory-based outcomes in young children with bilateral sensorineural hearing loss. Forty-four infants and toddlers, first identified with mild to profound bilateral hearing loss, who were being fitted with amplification were enrolled in the study and followed longitudinally. Subjects were otherwise typically developing with no evidence of cognitive, motor, or visual impairment. A variety of subject factors were measured or documented and used as predictor variables, including age at fitting of amplification, degree of hearing loss in the better hearing ear, cochlear implant status, intensity of oral education, parent-child interaction, and the number of languages spoken in the home. These factors were used in a linear multiple regression analysis to assess their contribution to auditory-based communication outcomes. Five outcome measures, evaluated at regular intervals in children starting at age 3, included measures of speech perception (Pediatric Speech Intelligibility and Online Imitative Test of Speech Pattern Contrast Perception), speech production (Arizona-3), and spoken language (Reynell Expressive and Receptive Language). The age at fitting of amplification ranged from 1 to 72 mo, and the degree of hearing loss ranged from mild to profound. Age at fitting of amplification showed the largest influence and was a significant factor in all outcome models. The degree of hearing loss was an important factor in the modeling of speech production and spoken language outcomes. Cochlear implant use was the other factor that contributed significantly to speech perception, speech production, and language outcomes. Other factors contributed sparsely to the models. Prospective longitudinal studies of children are important to establish relationships between subject factors and outcomes. This study clearly demonstrated the importance of early amplification on communication outcomes. This demonstration required a participant pool that included children who have been fit at very early ages and who represent all degrees of hearing loss. Limitations of longitudinal studies include selection biases. Families who enroll tend to have high levels of education and rate highly on cooperation and compliance measures. Although valuable information can be extracted from prospective studies, not all factors can be evaluated because of enrollment constraints.

  1. Emerging technologies with potential for objectively evaluating speech recognition skills.

    PubMed

    Rawool, Vishakha Waman

    2016-01-01

    Work-related exposure to noise and other ototoxins can cause damage to the cochlea, synapses between the inner hair cells, the auditory nerve fibers, and higher auditory pathways, leading to difficulties in recognizing speech. Procedures designed to determine speech recognition scores (SRS) in an objective manner can be helpful in disability compensation cases where the worker claims to have poor speech perception due to exposure to noise or ototoxins. Such measures can also be helpful in determining SRS in individuals who cannot provide reliable responses to speech stimuli, including patients with Alzheimer's disease, traumatic brain injuries, and infants with and without hearing loss. Cost-effective neural monitoring hardware and software is being rapidly refined due to the high demand for neurogaming (games involving the use of brain-computer interfaces), health, and other applications. More specifically, two related advances in neuro-technology include relative ease in recording neural activity and availability of sophisticated analysing techniques. These techniques are reviewed in the current article and their applications for developing objective SRS procedures are proposed. Issues related to neuroaudioethics (ethics related to collection of neural data evoked by auditory stimuli including speech) and neurosecurity (preservation of a person's neural mechanisms and free will) are also discussed.

  2. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers.

    PubMed

    Thompson, Elaine C; Woodruff Carr, Kali; White-Schwoch, Travis; Otto-Meyer, Sebastian; Kraus, Nina

    2017-02-01

    From bustling classrooms to unruly lunchrooms, school settings are noisy. To learn effectively in the unwelcome company of numerous distractions, children must clearly perceive speech in noise. In older children and adults, speech-in-noise perception is supported by sensory and cognitive processes, but the correlates underlying this critical listening skill in young children (3-5 year olds) remain undetermined. Employing a longitudinal design (two evaluations separated by ∼12 months), we followed a cohort of 59 preschoolers, ages 3.0-4.9, assessing word-in-noise perception, cognitive abilities (intelligence, short-term memory, attention), and neural responses to speech. Results reveal changes in word-in-noise perception parallel changes in processing of the fundamental frequency (F0), an acoustic cue known for playing a role central to speaker identification and auditory scene analysis. Four unique developmental trajectories (speech-in-noise perception groups) confirm this relationship, in that improvements and declines in word-in-noise perception couple with enhancements and diminishments of F0 encoding, respectively. Improvements in word-in-noise perception also pair with gains in attention. Word-in-noise perception does not relate to strength of neural harmonic representation or short-term memory. These findings reinforce previously-reported roles of F0 and attention in hearing speech in noise in older children and adults, and extend this relationship to preschool children. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers

    PubMed Central

    Thompson, Elaine C.; Carr, Kali Woodruff; White-Schwoch, Travis; Otto-Meyer, Sebastian; Kraus, Nina

    2016-01-01

    From bustling classrooms to unruly lunchrooms, school settings are noisy. To learn effectively in the unwelcome company of numerous distractions, children must clearly perceive speech in noise. In older children and adults, speech-in-noise perception is supported by sensory and cognitive processes, but the correlates underlying this critical listening skill in young children (3–5 year olds) remain undetermined. Employing a longitudinal design (two evaluations separated by ~12 months), we followed a cohort of 59 preschoolers, ages 3.0–4.9, assessing word-in-noise perception, cognitive abilities (intelligence, short-term memory, attention), and neural responses to speech. Results reveal changes in word-in-noise perception parallel changes in processing of the fundamental frequency (F0), an acoustic cue known for playing a role central to speaker identification and auditory scene analysis. Four unique developmental trajectories (speech-in-noise perception groups) confirm this relationship, in that improvements and declines in word-in-noise perception couple with enhancements and diminishments of F0 encoding, respectively. Improvements in word-in-noise perception also pair with gains in attention. Word-in-noise perception does not relate to strength of neural harmonic representation or short-term memory. These findings reinforce previously-reported roles of F0 and attention in hearing speech in noise in older children and adults, and extend this relationship to preschool children. PMID:27864051

  4. Rapid tuning shifts in human auditory cortex enhance speech intelligibility

    PubMed Central

    Holdgraf, Christopher R.; de Heer, Wendy; Pasley, Brian; Rieger, Jochem; Crone, Nathan; Lin, Jack J.; Knight, Robert T.; Theunissen, Frédéric E.

    2016-01-01

    Experience shapes our perception of the world on a moment-to-moment basis. This robust perceptual effect of experience parallels a change in the neural representation of stimulus features, though the nature of this representation and its plasticity are not well-understood. Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic features, and has been used to study contextual effects on auditory receptive fields in animal models. We performed a STRF plasticity analysis on electrophysiological data from recordings obtained directly from the human auditory cortex. Here, we report rapid, automatic plasticity of the spectrotemporal response of recorded neural ensembles, driven by previous experience with acoustic and linguistic information, and with a neurophysiological effect in the sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of more speech-like features from a degraded stimulus and providing the physiological basis for the observed ‘perceptual enhancement' in understanding speech. PMID:27996965

  5. Does seeing an Asian face make speech sound more accented?

    PubMed

    Zheng, Yi; Samuel, Arthur G

    2017-08-01

    Prior studies have reported that seeing an Asian face makes American English sound more accented. The current study investigates whether this effect is perceptual, or if it instead occurs at a later decision stage. We first replicated the finding that showing static Asian and Caucasian faces can shift people's reports about the accentedness of speech accompanying the pictures. When we changed the static pictures to dubbed videos, reducing the demand characteristics, the shift in reported accentedness largely disappeared. By including unambiguous items along with the original ambiguous items, we introduced a contrast bias and actually reversed the shift, with the Asian-face videos yielding lower judgments of accentedness than the Caucasian-face videos. By changing to a mixed rather than blocked design, so that the ethnicity of the videos varied from trial to trial, we eliminated the difference in accentedness rating. Finally, we tested participants' perception of accented speech using the selective adaptation paradigm. After establishing that an auditory-only accented adaptor shifted the perception of how accented test words are, we found that no such adaptation effect occurred when the adapting sounds relied on visual information (Asian vs. Caucasian videos) to influence the accentedness of an ambiguous auditory adaptor. Collectively, the results demonstrate that visual information can affect the interpretation, but not the perception, of accented speech.

  6. Gated Auditory Speech Perception in Elderly Hearing Aid Users and Elderly Normal-Hearing Individuals: Effects of Hearing Impairment and Cognitive Capacity

    PubMed Central

    Lidestam, Björn; Hällgren, Mathias; Rönnberg, Jerker

    2014-01-01

    This study compared elderly hearing aid (EHA) users and elderly normal-hearing (ENH) individuals on identification of auditory speech stimuli (consonants, words, and final word in sentences) that were different when considering their linguistic properties. We measured the accuracy with which the target speech stimuli were identified, as well as the isolation points (IPs: the shortest duration, from onset, required to correctly identify the speech target). The relationships between working memory capacity, the IPs, and speech accuracy were also measured. Twenty-four EHA users (with mild to moderate hearing impairment) and 24 ENH individuals participated in the present study. Despite the use of their regular hearing aids, the EHA users had delayed IPs and were less accurate in identifying consonants and words compared with the ENH individuals. The EHA users also had delayed IPs for final word identification in sentences with lower predictability; however, no significant between-group difference in accuracy was observed. Finally, there were no significant between-group differences in terms of IPs or accuracy for final word identification in highly predictable sentences. Our results also showed that, among EHA users, greater working memory capacity was associated with earlier IPs and improved accuracy in consonant and word identification. Together, our findings demonstrate that the gated speech perception ability of EHA users was not at the level of ENH individuals, in terms of IPs and accuracy. In addition, gated speech perception was more cognitively demanding for EHA users than for ENH individuals in the absence of semantic context. PMID:25085610

  7. Psychophysics of Complex Auditory and Speech Stimuli

    DTIC Science & Technology

    1993-10-31

    unexpected, and does not seem to l:a ý a dice-ct counterpart in the extensive research on pitch perception. Experiment 2 was designed to quantify our...project is to use of different procedures to provide converging evidence on the natuge of perceptual spaces for speech categories. Completed research ...prior speech research on classification procedures may have led to errors. Thus, the opposite (falling F2 & F3) transitions lead somewhat ambiguous

  8. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis

    PubMed Central

    Cumming, Ruth; Wilson, Angela; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech (“ba”) and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the “prosodic phrasing” hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration. PMID:26217286

  9. It's about time: Presentation in honor of Ira Hirsh

    NASA Astrophysics Data System (ADS)

    Grant, Ken

    2002-05-01

    Over his long and illustrious career, Ira Hirsh has returned time and time again to his interest in the temporal aspects of pattern perception. Although Hirsh has studied and published articles and books pertaining to many aspects of the auditory system, such as sound conduction in the ear, cochlear mechanics, masking, auditory localization, psychoacoustic behavior in animals, speech perception, medical and audiological applications, coupling between psychophysics and physiology, and ecological acoustics, it is his work on auditory timing of simple and complex rhythmic patterns, the backbone of speech and music, that are at the heart of his more recent work. Here, we will focus on several aspects of temporal processing of simple and complex signals, both within and across sensory systems. Data will be reviewed on temporal order judgments of simple tones, and simultaneity judgments and intelligibility of unimodal and bimodal complex stimuli where stimulus components are presented either synchronously or asynchronously. Differences in the symmetry and shape of ``temporal windows'' derived from these data sets will be highlighted.

  10. Auditory Processing in Specific Language Impairment (SLI): Relations with the Perception of Lexical and Phrasal Stress

    ERIC Educational Resources Information Center

    Richards, Susan; Goswami, Usha

    2015-01-01

    Purpose: We investigated whether impaired acoustic processing is a factor in developmental language disorders. The amplitude envelope of the speech signal is known to be important in language processing. We examined whether impaired perception of amplitude envelope rise time is related to impaired perception of lexical and phrasal stress in…

  11. Musicians and non-musicians are equally adept at perceiving masked speech

    PubMed Central

    Boebinger, Dana; Evans, Samuel; Scott, Sophie K.; Rosen, Stuart; Lima, César F.; Manly, Tom

    2015-01-01

    There is much interest in the idea that musicians perform better than non-musicians in understanding speech in background noise. Research in this area has often used energetic maskers, which have their effects primarily at the auditory periphery. However, masking interference can also occur at more central auditory levels, known as informational masking. This experiment extends existing research by using multiple maskers that vary in their informational content and similarity to speech, in order to examine differences in perception of masked speech between trained musicians (n = 25) and non-musicians (n = 25). Although musicians outperformed non-musicians on a measure of frequency discrimination, they showed no advantage in perceiving masked speech. Further analysis revealed that nonverbal IQ, rather than musicianship, significantly predicted speech reception thresholds in noise. The results strongly suggest that the contribution of general cognitive abilities needs to be taken into account in any investigations of individual variability for perceiving speech in noise. PMID:25618067

  12. Influence of Syllable Structure on L2 Auditory Word Learning

    ERIC Educational Resources Information Center

    Hamada, Megumi; Goya, Hideki

    2015-01-01

    This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a…

  13. Linguistic Profiles of Children with CI as Compared with Children with Hearing or Specific Language Impairment

    ERIC Educational Resources Information Center

    Hoog, Brigitte E.; Langereis, Margreet C.; Weerdenburg, Marjolijn; Knoors, Harry E. T.; Verhoeven, Ludo

    2016-01-01

    Background: The spoken language difficulties of children with moderate or severe to profound hearing loss are mainly related to limited auditory speech perception. However, degraded or filtered auditory input as evidenced in children with cochlear implants (CIs) may result in less efficient or slower language processing as well. To provide insight…

  14. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed. PMID:28588524

  15. Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals.

    PubMed

    Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L

    2015-09-01

    A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Evidence of degraded representation of speech in noise, in the aging midbrain and cortex

    PubMed Central

    Simon, Jonathan Z.; Anderson, Samira

    2016-01-01

    Humans have a remarkable ability to track and understand speech in unfavorable conditions, such as in background noise, but speech understanding in noise does deteriorate with age. Results from several studies have shown that in younger adults, low-frequency auditory cortical activity reliably synchronizes to the speech envelope, even when the background noise is considerably louder than the speech signal. However, cortical speech processing may be limited by age-related decreases in the precision of neural synchronization in the midbrain. To understand better the neural mechanisms contributing to impaired speech perception in older adults, we investigated how aging affects midbrain and cortical encoding of speech when presented in quiet and in the presence of a single-competing talker. Our results suggest that central auditory temporal processing deficits in older adults manifest in both the midbrain and in the cortex. Specifically, midbrain frequency following responses to a speech syllable are more degraded in noise in older adults than in younger adults. This suggests a failure of the midbrain auditory mechanisms needed to compensate for the presence of a competing talker. Similarly, in cortical responses, older adults show larger reductions than younger adults in their ability to encode the speech envelope when a competing talker is added. Interestingly, older adults showed an exaggerated cortical representation of speech in both quiet and noise conditions, suggesting a possible imbalance between inhibitory and excitatory processes, or diminished network connectivity that may impair their ability to encode speech efficiently. PMID:27535374

  17. Children's weighting strategies for word-final stop voicing are not explained by auditory sensitivities.

    PubMed

    Nittrouer, Susan; Lowenstein, Joanna H

    2007-02-01

    It has been reported that children and adults weight differently the various acoustic properties of the speech signal that support phonetic decisions. This finding is generally attributed to the fact that the amount of weight assigned to various acoustic properties by adults varies across languages, and that children have not yet discovered the mature weighting strategies of their own native languages. But an alternative explanation exists: Perhaps children's auditory sensitivities for some acoustic properties of speech are poorer than those of adults, and children cannot categorize stimuli based on properties to which they are not keenly sensitive. The purpose of the current study was to test that hypothesis. Edited-natural, synthetic-formant, and sine wave stimuli were all used, and all were modeled after words with voiced and voiceless final stops. Adults and children (5 and 7 years of age) listened to pairs of stimuli in 5 conditions: 2 involving a temporal property (1 with speech and 1 with nonspeech stimuli) and 3 involving a spectral property (1 with speech and 2 with nonspeech stimuli). An AX discrimination task was used in which a standard stimulus (A) was compared with all other stimuli (X) equal numbers of times (method of constant stimuli). Adults and children had similar difference thresholds (i.e., 50% point on the discrimination function) for 2 of the 3 sets of nonspeech stimuli (1 temporal and 1 spectral), but children's thresholds were greater for both sets of speech stimuli. Results are interpreted as evidence that children's auditory sensitivities are adequate to support weighting strategies similar to those of adults, and so observed differences between children and adults in speech perception cannot be explained by differences in auditory perception. Furthermore, it is concluded that listeners bring expectations to the listening task about the nature of the signals they are hearing based on their experiences with those signals.

  18. Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.

    PubMed

    Stothart, George; Kazanina, Nina

    2016-11-01

    Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Switching of auditory attention in "cocktail-party" listening: ERP evidence of cueing effects in younger and older adults.

    PubMed

    Getzmann, Stephan; Jasny, Julian; Falkenstein, Michael

    2017-02-01

    Verbal communication in a "cocktail-party situation" is a major challenge for the auditory system. In particular, changes in target speaker usually result in declined speech perception. Here, we investigated whether speech cues indicating a subsequent change in target speaker reduce the costs of switching in younger and older adults. We employed event-related potential (ERP) measures and a speech perception task, in which sequences of short words were simultaneously presented by four speakers. Changes in target speaker were either unpredictable or semantically cued by a word within the target stream. Cued changes resulted in a less decreased performance than uncued changes in both age groups. The ERP analysis revealed shorter latencies in the change-related N400 and late positive complex (LPC) after cued changes, suggesting an acceleration in context updating and attention switching. Thus, both younger and older listeners used semantic cues to prepare changes in speaker setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Auditory scene analysis in school-aged children with developmental language disorders

    PubMed Central

    Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.

    2014-01-01

    Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430

  2. Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.

    PubMed

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-02-01

    To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.

  3. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  4. Processing of audiovisually congruent and incongruent speech in school-age children with a history of Specific Language Impairment: a behavioral and event-related potentials study

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer; Macias, Danielle; Gustafson, Dana

    2014-01-01

    Previous studies indicate that at least some aspects of audiovisual speech perception are impaired in children with specific language impairment (SLI). However, whether audiovisual processing difficulties are also present in older children with a history of this disorder is unknown. By combining electrophysiological and behavioral measures, we examined perception of both audiovisually congruent and audiovisually incongruent speech in school-age children with a history of SLI (H-SLI), their typically developing (TD) peers, and adults. In the first experiment, all participants watched videos of a talker articulating syllables ‘ba,’ ‘da,’ and ‘ga’ under three conditions – audiovisual (AV), auditory only (A), and visual only (V). The amplitude of the N1 (but not of the P2) event-related component elicited in the AV condition was significantly reduced compared to the N1 amplitude measured from the sum of the A and V conditions in all groups of participants. Because N1 attenuation to AV speech is thought to index the degree to which facial movements predict the onset of the auditory signal, our findings suggest that this aspect of audiovisual speech perception is mature by mid-childhood and is normal in the H-SLI children. In the second experiment, participants watched videos of audivisually incongruent syllables created to elicit the so-called McGurk illusion (with an auditory ‘pa’ dubbed onto a visual articulation of ‘ka,’ and the expectant perception being that of 'ta' if audiovisual integration took place). As a group, H-SLI children were significantly more likely than either TD children or adults to hear the McGurk syllable as ‘pa’ (in agreement with its auditory component) than as ‘ka’ (in agreement with its visual component), suggesting that susceptibility to the McGurk illusion is reduced in at least some children with a history of SLI. Taken together, the results of the two experiments argue against global audiovisual integration impairment in children with a history of SLI and suggest that, when present, audiovisual integration difficulties in this population likely stem from a later (non-sensory) stage of processing. PMID:25440407

  5. Activity in the left auditory cortex is associated with individual impulsivity in time discounting.

    PubMed

    Han, Ruokang; Takahashi, Taiki; Miyazaki, Akane; Kadoya, Tomoka; Kato, Shinya; Yokosawa, Koichi

    2015-01-01

    Impulsivity dictates individual decision-making behavior. Therefore, it can reflect consumption behavior and risk of addiction and thus underlies social activities as well. Neuroscience has been applied to explain social activities; however, the brain function controlling impulsivity has remained unclear. It is known that impulsivity is related to individual time perception, i.e., a person who perceives a certain physical time as being longer is impulsive. Here we show that activity of the left auditory cortex is related to individual impulsivity. Individual impulsivity was evaluated by a self-answered questionnaire in twelve healthy right-handed adults, and activities of the auditory cortices of bilateral hemispheres when listening to continuous tones were recorded by magnetoencephalography. Sustained activity of the left auditory cortex was significantly correlated to impulsivity, that is, larger sustained activity indicated stronger impulsivity. The results suggest that the left auditory cortex represent time perception, probably because the area is involved in speech perception, and that it represents impulsivity indirectly.

  6. Relationship between individual differences in speech processing and cognitive functions.

    PubMed

    Ou, Jinghua; Law, Sam-Po; Fung, Roxana

    2015-12-01

    A growing body of research has suggested that cognitive abilities may play a role in individual differences in speech processing. The present study took advantage of a widespread linguistic phenomenon of sound change to systematically assess the relationships between speech processing and various components of attention and working memory in the auditory and visual modalities among typically developed Cantonese-speaking individuals. The individual variations in speech processing are captured in an ongoing sound change-tone merging in Hong Kong Cantonese, in which typically developed native speakers are reported to lose the distinctions between some tonal contrasts in perception and/or production. Three groups of participants were recruited, with a first group of good perception and production, a second group of good perception but poor production, and a third group of good production but poor perception. Our findings revealed that modality-independent abilities of attentional switching/control and working memory might contribute to individual differences in patterns of speech perception and production as well as discrimination latencies among typically developed speakers. The findings not only have the potential to generalize to speech processing in other languages, but also broaden our understanding of the omnipresent phenomenon of language change in all languages.

  7. Result on speech perception after conversion from Spectra® to Freedom®.

    PubMed

    Magalhães, Ana Tereza de Matos; Goffi-Gomez, Maria Valéria Schmidt; Hoshino, Ana Cristina; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; Brito, Rubens

    2012-04-01

    New technology in the Freedom® speech processor for cochlear implants was developed to improve how incoming acoustic sound is processed; this applies not only for new users, but also for previous generations of cochlear implants. To identify the contribution of this technology-- the Nucleus 22®--on speech perception tests in silence and in noise, and on audiometric thresholds. A cross-sectional cohort study was undertaken. Seventeen patients were selected. The last map based on the Spectra® was revised and optimized before starting the tests. Troubleshooting was used to identify malfunction. To identify the contribution of the Freedom® technology for the Nucleus22®, auditory thresholds and speech perception tests were performed in free field in sound-proof booths. Recorded monosyllables and sentences in silence and in noise (SNR = 0dB) were presented at 60 dBSPL. The nonparametric Wilcoxon test for paired data was used to compare groups. Freedom® applied for the Nucleus22® showed a statistically significant difference in all speech perception tests and audiometric thresholds. The Freedom® technology improved the performance of speech perception and audiometric thresholds of patients with Nucleus 22®.

  8. On the Use of the Distortion-Sensitivity Approach in Examining the Role of Linguistic Abilities in Speech Understanding in Noise

    ERIC Educational Resources Information Center

    Goverts, S. Theo; Huysmans, Elke; Kramer, Sophia E.; de Groot, Annette M. B.; Houtgast, Tammo

    2011-01-01

    Purpose: Researchers have used the distortion-sensitivity approach in the psychoacoustical domain to investigate the role of auditory processing abilities in speech perception in noise (van Schijndel, Houtgast, & Festen, 2001; Goverts & Houtgast, 2010). In this study, the authors examined the potential applicability of the…

  9. Patterns of language and auditory dysfunction in 6-year-old children with epilepsy.

    PubMed

    Selassie, Gunilla Rejnö-Habte; Olsson, Ingrid; Jennische, Margareta

    2009-01-01

    In a previous study we reported difficulty with expressive language and visuoperceptual ability in preschool children with epilepsy and otherwise normal development. The present study analysed speech and language dysfunction for each individual in relation to epilepsy variables, ear preference, and intelligence in these children and described their auditory function. Twenty 6-year-old children with epilepsy (14 females, 6 males; mean age 6:5 y, range 6 y-6 y 11 mo) and 30 reference children without epilepsy (18 females, 12 males; mean age 6:5 y, range 6 y-6 y 11 mo) were assessed for language and auditory ability. Low scores for the children with epilepsy were analysed with respect to speech-language domains, type of epilepsy, site of epileptiform activity, intelligence, and language laterality. Auditory attention, perception, discrimination, and ear preference were measured with a dichotic listening test, and group comparisons were performed. Children with left-sided partial epilepsy had extensive language dysfunction. Most children with partial epilepsy had phonological dysfunction. Language dysfunction was also found in children with generalized and unclassified epilepsies. The children with epilepsy performed significantly worse than the reference children in auditory attention, perception of vowels and discrimination of consonants for the right ear and had more left ear advantage for vowels, indicating undeveloped language laterality.

  10. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment.

    PubMed

    Rosemann, Stephanie; Thiel, Christiane M

    2018-07-15

    Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Impact of socioeconomic factors on paediatric cochlear implant outcomes.

    PubMed

    Sharma, Shalabh; Bhatia, Khyati; Singh, Satinder; Lahiri, Asish Kumar; Aggarwal, Asha

    2017-11-01

    The study was aimed at evaluating the impact of certain socioeconomic factors such as family income, level of parents' education, distance between the child's home and auditory verbal therapy clinic, and age of the child at implantation on postoperative cochlear implant outcomes. Children suffering from congenital bilateral profound sensorineural hearing loss and a chronologic age of 4 years or younger at the time of implantation were included in the study. Children who were able to complete a prescribed period of a 1-year follow-up were included in the study. These children underwent cochlear implantation surgery, and their postoperative outcomes were measured and documented using categories of auditory perception (CAP), meaningful auditory integration (MAIS), and speech intelligibility rating (SIR) scores. Children were divided into three groups based on the level of parental education, family income, and distance of their home from the rehabilitation-- auditory verbal therapy clinic. A total of 180 children were studied. The age at implantation had a significant impact on the postoperative outcomes, with an inverse correlation. The younger the child's age at the time of implantation, the better were the postoperative outcomes. However, there were no significant differences among the CAP, MAIS, and SIR scores and each of the three subgroups. Children from families with an annual income of less than $7,500, between $7,500 and $15,000, and more than $15,000 performed equally well, except for significantly higher SIR scores in children with family incomes more than $15,000. Children with of parents who had attended high school or possessed a bachelor's or Master's master's degree had similar scores, with no significant difference. Also, distance from the auditory verbal therapy clinic failed to have any significantimpact on a child's performance. These results have been variable, similar to those of previously published studies. A few of the earlier studies concurred with our results, but most of the studies had suggested that children in families of higher socioeconomic status had have better speech and language acquisition. Cochlear implantation significantly improves auditory perception and speech intelligibility of children suffering from profound sensorineural hearing loss. Younger The younger the age at implantation, the better are the results. Hence, early implantation should be promoted and encouraged. Our study suggests that children who followed the designated program of postoperative mapping and auditory verbal therapy for a minimum period of 1 year seemed to do equally well in terms of hearing perception and speech intelligibility, irrespective of the socioeconomic status of the family. Further studies are essential to assess the impact of these factors on long-term speech acquisition andlanguage development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of Short- and Long-Term Changes in Auditory Feedback on Vowel and Sibilant Contrasts

    ERIC Educational Resources Information Center

    Lane, Harlan; Matthies, Melanie L.; Guenther, Frank H.; Denny, Margaret; Perkell, Joseph S.; Stockmann, Ellen; Tiede, Mark; Vick, Jennell; Zandipour, Majid

    2007-01-01

    Purpose: To assess the effects of short- and long-term changes in auditory feedback on vowel and sibilant contrasts and to evaluate hypotheses arising from a model of speech motor planning. Method: The perception and production of vowel and sibilant contrasts were measured in 8 postlingually deafened adults prior to activation of their cochlear…

  13. Chimaeric sounds reveal dichotomies in auditory perception

    PubMed Central

    Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.

    2008-01-01

    By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898

  14. Mapping the Speech Code: Cortical Responses Linking the Perception and Production of Vowels

    PubMed Central

    Schuerman, William L.; Meyer, Antje S.; McQueen, James M.

    2017-01-01

    The acoustic realization of speech is constrained by the physical mechanisms by which it is produced. Yet for speech perception, the degree to which listeners utilize experience derived from speech production has long been debated. In the present study, we examined how sensorimotor adaptation during production may affect perception, and how this relationship may be reflected in early vs. late electrophysiological responses. Participants first performed a baseline speech production task, followed by a vowel categorization task during which EEG responses were recorded. In a subsequent speech production task, half the participants received shifted auditory feedback, leading most to alter their articulations. This was followed by a second, post-training vowel categorization task. We compared changes in vowel production to both behavioral and electrophysiological changes in vowel perception. No differences in phonetic categorization were observed between groups receiving altered or unaltered feedback. However, exploratory analyses revealed correlations between vocal motor behavior and phonetic categorization. EEG analyses revealed correlations between vocal motor behavior and cortical responses in both early and late time windows. These results suggest that participants' recent production behavior influenced subsequent vowel perception. We suggest that the change in perception can be best characterized as a mapping of acoustics onto articulation. PMID:28439232

  15. Comprehensive evaluation of a child with an auditory brainstem implant.

    PubMed

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  16. Auditory/Verbal hallucinations, speech perception neurocircuitry, and the social deafferentation hypothesis.

    PubMed

    Hoffman, Ralph E

    2008-04-01

    Auditory/verbal hallucinations (AVHs) are comprised of spoken conversational speech seeming to arise from specific, nonself speakers. One hertz repetitive transcranial magnetic stimulation (rTMS) reduces excitability in the brain region stimulated. Studies utilizing 1-Hz rTMS delivered to the left temporoparietal cortex, a brain area critical to speech perception, have demonstrated statistically significant improvements in AVHs relative to sham simulation. A novel mechanism of AVHs is proposed whereby dramatic pre-psychotic social withdrawal prompts neuroplastic reorganization by the "social brain" to produce spurious social meaning via hallucinations of conversational speech. Preliminary evidence supporting this hypothesis includes a very high rate of social withdrawal emerging prior to the onset of frank psychosis in patients who develop schizophrenia and AVHs. Moreover, reduced AVHs elicited by temporoparietal 1-Hz rTMS are likely to reflect enhanced long-term depression. Some evidence suggests a loss of long-term depression following experimentally-induced deafferentation. Finally, abnormal cortico-cortical coupling is associated with AVHs and also is a common outcome of deafferentation. Auditory/verbal hallucinations (AVHs) of spoken speech or "voices" are reported by 60-80% of persons with schizophrenia at various times during the course of illness. AVHs are associated with high levels of distress, functional disability, and can lead to violent acts. Among patients with AVHs, these symptoms remain poorly or incompletely responsive to currently available treatments in approximately 25% of cases. For patients with AVHs who do respond to antipsychotic drugs, there is a very high likelihood that these experiences will recur in subsequent episodes. A more precise characterization of underlying pathophysiology may lead to more efficacious treatments.

  17. The use of listening devices to ameliorate auditory deficit in children with autism.

    PubMed

    Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna

    2014-02-01

    To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P < .001 [11.6% to 21.7%]). Furthermore, both participant and teacher questionnaire data revealed device-related benefits across a range of evaluation categories including Effect of Background Noise (P = .036 [-60.7% to -2.8%]) and Ease of Communication (P = .019 [-40.1% to -5.0%]). Eight of the 10 participants who undertook the 6-week device trial remained consistent FM users at study completion. Sustained use of FM listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.

  18. Children with Auditory Neuropathy Spectrum Disorder Fitted with Hearing Aids Applying the American Academy of Audiology Pediatric Amplification Guideline: Current Practice and Outcomes.

    PubMed

    Walker, Elizabeth; McCreery, Ryan; Spratford, Meredith; Roush, Patricia

    2016-03-01

    Up to 15% of children with permanent hearing loss (HL) have auditory neuropathy spectrum disorder (ANSD), which involves normal outer hair cell function and disordered afferent neural activity in the auditory nerve or brainstem. Given the varying presentations of ANSD in children, there is a need for more evidence-based research on appropriate clinical interventions for this population. This study compared the speech production, speech perception, and language outcomes of children with ANSD, who are hard of hearing, to children with similar degrees of mild-to-moderately severe sensorineural hearing loss (SNHL), all of whom were fitted with bilateral hearing aids (HAs) based on the American Academy of Audiology pediatric amplification guidelines. Speech perception and communication outcomes data were gathered in a prospective accelerated longitudinal design, with entry into the study between six mo and seven yr of age. Three sites were involved in participant recruitment: Boys Town National Research Hospital, the University of North Carolina at Chapel Hill, and the University of Iowa. The sample consisted of 12 children with ANSD and 22 children with SNHL. The groups were matched based on better-ear pure-tone average, better-ear aided speech intelligibility index, gender, maternal education level, and newborn hearing screening result (i.e., pass or refer). Children and their families participated in an initial baseline visit, followed by visits twice a year for children <2 yr of age and once a yr for children >2 yr of age. Paired-sample t-tests were used to compare children with ANSD to children with SNHL. Paired t-tests indicated no significant differences between the ANSD and SNHL groups on language and articulation measures. Children with ANSD displayed functional speech perception skills in quiet. Although the number of participants was too small to conduct statistical analyses for speech perception testing, there appeared to be a trend in which the ANSD group performed more poorly in background noise with HAs, compared to the SNHL group. The American Academy of Audiology Pediatric Amplification Guidelines recommend that children with ANSD receive an HA trial if their behavioral thresholds are sufficiently high enough to impede speech perception at conversational levels. For children with ANSD in the mild-to-severe HL range, the current results support this recommendation, as children with ANSD can achieve functional outcomes similar to peers with SNHL. American Academy of Audiology.

  19. Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit.

    PubMed

    Arnold, Denis; Tomaschek, Fabian; Sering, Konstantin; Lopez, Florence; Baayen, R Harald

    2017-01-01

    Sound units play a pivotal role in cognitive models of auditory comprehension. The general consensus is that during perception listeners break down speech into auditory words and subsequently phones. Indeed, cognitive speech recognition is typically taken to be computationally intractable without phones. Here we present a computational model trained on 20 hours of conversational speech that recognizes word meanings within the range of human performance (model 25%, native speakers 20-44%), without making use of phone or word form representations. Our model also generates successfully predictions about the speed and accuracy of human auditory comprehension. At the heart of the model is a 'wide' yet sparse two-layer artificial neural network with some hundred thousand input units representing summaries of changes in acoustic frequency bands, and proxies for lexical meanings as output units. We believe that our model holds promise for resolving longstanding theoretical problems surrounding the notion of the phone in linguistic theory.

  20. Masked speech perception across the adult lifespan: Impact of age and hearing impairment.

    PubMed

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2017-02-01

    As people grow older, speech perception difficulties become highly prevalent, especially in noisy listening situations. Moreover, it is assumed that speech intelligibility is more affected in the event of background noises that induce a higher cognitive load, i.e., noises that result in informational versus energetic masking. There is ample evidence showing that speech perception problems in aging persons are partly due to hearing impairment and partly due to age-related declines in cognition and suprathreshold auditory processing. In order to develop effective rehabilitation strategies, it is indispensable to know how these different degrading factors act upon speech perception. This implies disentangling effects of hearing impairment versus age and examining the interplay between both factors in different background noises of everyday settings. To that end, we investigated open-set sentence identification in six participant groups: a young (20-30 years), middle-aged (50-60 years), and older cohort (70-80 years), each including persons who had normal audiometric thresholds up to at least 4 kHz, on the one hand, and persons who were diagnosed with elevated audiometric thresholds, on the other hand. All participants were screened for (mild) cognitive impairment. We applied stationary and amplitude modulated speech-weighted noise, which are two types of energetic maskers, and unintelligible speech, which causes informational masking in addition to energetic masking. By means of these different background noises, we could look into speech perception performance in listening situations with a low and high cognitive load, respectively. Our results indicate that, even when audiometric thresholds are within normal limits up to 4 kHz, irrespective of threshold elevations at higher frequencies, and there is no indication of even mild cognitive impairment, masked speech perception declines by middle age and decreases further on to older age. The impact of hearing impairment is as detrimental for young and middle-aged as it is for older adults. When the background noise becomes cognitively more demanding, there is a larger decline in speech perception, due to age or hearing impairment. Hearing impairment seems to be the main factor underlying speech perception problems in background noises that cause energetic masking. However, in the event of informational masking, which induces a higher cognitive load, age appears to explain a significant part of the communicative impairment as well. We suggest that the degrading effect of age is mediated by deficiencies in temporal processing and central executive functions. This study may contribute to the improvement of auditory rehabilitation programs aiming to prevent aging persons from missing out on conversations, which, in turn, will improve their quality of life. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.

    PubMed

    Brown, Carolyn J; Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue A; Turner, Christopher W; Abbas, Paul J

    2015-01-01

    Nucleus Hybrid Cochlear Implant (CI) users hear low-frequency sounds via acoustic stimulation and high-frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine whether (1) the evoked potential measures could predict which programming strategy resulted in better outcome on the speech perception task or was preferred by the listener, and (2) CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental processor programs (MAPs) that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal-to-noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise. Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 "onset" response and the auditory "change" response (also known as the auditory change complex [ACC]). Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the ACC was not found to be sensitive enough to accurately predict the programming strategy that resulted in the best performance on either measure of speech perception. All 10 Hybrid CI users had residual low-frequency acoustic hearing. For all 10 subjects, allowing them to use both the acoustic and electrical signals provided by the implant improved performance on the consonant recognition task. For most subjects, it also resulted in slightly larger cortical change responses. However, the impact that listening mode had on the cortical change responses was small, and again, the correlation between the evoked potential and speech perception results was not significant. CAEPs can be successfully measured from Hybrid CI users. The responses that are recorded are similar to those recorded from normal-hearing listeners. The goal of this study was to see if CAEPs might play a role either in identifying the experimental program that resulted in best performance on a consonant recognition task or in documenting benefit from the use of the electrical signal provided by the Hybrid CI. At least for the stimuli and specific methods used in this study, no such predictive relationship was found.

  3. Speech Discrimination Difficulties in High-Functioning Autism Spectrum Disorder Are Likely Independent of Auditory Hypersensitivity

    PubMed Central

    Dunlop, William A.; Enticott, Peter G.; Rajan, Ramesh

    2016-01-01

    Autism Spectrum Disorder (ASD), characterized by impaired communication skills and repetitive behaviors, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD) individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants. PMID:27555814

  4. Speech comprehension aided by multiple modalities: behavioural and neural interactions

    PubMed Central

    McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K.

    2014-01-01

    Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources – e.g. voice, face, gesture, linguistic context – to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. PMID:22266262

  5. Speech comprehension aided by multiple modalities: behavioural and neural interactions.

    PubMed

    McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K

    2012-04-01

    Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources - e.g. voice, face, gesture, linguistic context - to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. EXPERIMENTAL ANALYSIS OF THE CONTROL OF SPEECH PRODUCTION AND PERCEPTION. PROGRESS REPORT NO. I, FEBRUARY 1--SEPTEMBER 1, 1961.

    ERIC Educational Resources Information Center

    LANE, HARLAN; AND OTHERS

    THIS DOCUMENT IS THE FIRST IN A SERIES REPORTING ON PROGRESS OF AN EXPERIMENTAL RESEARCH PROGRAM IN SPEECH CONTROL. THE TOPICS DISCUSSED ARE--(1) THE DISCONTINUITY OF AUDITORY DISCRIMINATION LEARNING IN HUMAN ADULTS, (2) DISCRIMINATIVE CONTROL OF CONCURRENT RESPONSES--THE RELATIONS AMONG RESPONSE FREQUENCY, LATENCY, AND TOPOGRAPHY IN AUDITORY…

  7. Accuracy of Consonant-Vowel Syllables in Young Cochlear Implant Recipients and Hearing Children in the Single-Word Period

    ERIC Educational Resources Information Center

    Warner-Czyz, Andrea D.; Davis, Barbara L.; MacNeilage, Peter F.

    2010-01-01

    Purpose: Attaining speech accuracy requires that children perceive and attach meanings to vocal output on the basis of production system capacities. Because auditory perception underlies speech accuracy, profiles for children with hearing loss (HL) differ from those of children with normal hearing (NH). Method: To understand the impact of auditory…

  8. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    PubMed Central

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470

  9. Outcomes of cochlear implantation in deaf children of deaf parents: comparative study.

    PubMed

    Hassanzadeh, S

    2012-10-01

    This retrospective study compared the cochlear implantation outcomes of first- and second-generation deaf children. The study group consisted of seven deaf, cochlear-implanted children with deaf parents. An equal number of deaf children with normal-hearing parents were selected by matched sampling as a reference group. Participants were matched based on onset and severity of deafness, duration of deafness, age at cochlear implantation, duration of cochlear implantation, gender, and cochlear implant model. We used the Persian Auditory Perception Test for the Hearing Impaired, the Speech Intelligibility Rating scale, and the Sentence Imitation Test, in order to measure participants' speech perception, speech production and language development, respectively. Both groups of children showed auditory and speech development. However, the second-generation deaf children (i.e. deaf children of deaf parents) exceeded the cochlear implantation performance of the deaf children with hearing parents. This study confirms that second-generation deaf children exceed deaf children of hearing parents in terms of cochlear implantation performance. Encouraging deaf children to communicate in sign language from a very early age, before cochlear implantation, appears to improve their ability to learn spoken language after cochlear implantation.

  10. Isolating the Energetic Component of Speech-on-Speech Masking With Ideal Time-Frequency Segregation

    DTIC Science & Technology

    2006-12-01

    Auditory Scene Analysis MIT Press, Cambridge, MA. Bronkhorst, A., and Plomp, R. 1992. “Effects of multiple speechlike maskers on binaural speech...C. J. 1994. “Perception and computational sepa- ration of simultaneous vowels: Cues arising from low frequency beating ,” J. Acoust. Soc. Am. 95...Litovsky, R., and Culling, J. 2004. “The benefit of binaural hearing in a cocktail party: Effects of location and type of interferer,” J. Acoust. Soc

  11. A Dual-Stream Neuroanatomy of Singing

    PubMed Central

    Loui, Psyche

    2015-01-01

    Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment. PMID:26120242

  12. A Dual-Stream Neuroanatomy of Singing.

    PubMed

    Loui, Psyche

    2015-02-01

    Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment.

  13. Auditory processing deficits in individuals with primary open-angle glaucoma.

    PubMed

    Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan

    2012-01-01

    The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.

  14. [FMRI-study of speech perception impairment in post-stroke patients with sensory aphasia].

    PubMed

    Maĭorova, L A; Martynova, O V; Fedina, O N; Petrushevskiĭ, A G

    2013-01-01

    The aim of the study was to find neurophysiological correlates of the primary stage impairment of speech perception, namely phonemic discrimination, in patients with sensory aphasia after acute ischemic stroke in the left hemisphere by noninvasive method of fMRI. For this purpose we registered the fMRI-equivalent of mismatch negativity (MMN) in response to the speech phonemes--syllables "ba" and "pa" in odd-ball paradigm in 20 healthy subjects and 23 patients with post-stroke sensory aphasia. In healthy subjects active brain areas depending from the MMN contrast were observed in the superior temporal and inferior frontal gyri in the right and left hemispheres. In the group of patients there was a significant activation of the auditory cortex in the right hemisphere only, and this activation was less in a volume and intensity than in healthy subjects and correlated to the degree of preservation of speech. Thus, the method of recording fMRI equivalent of MMN is sensitive to study the speech perception impairment.

  15. Auditory stream segregation in children with Asperger syndrome

    PubMed Central

    Lepistö, T.; Kuitunen, A.; Sussman, E.; Saalasti, S.; Jansson-Verkasalo, E.; Nieminen-von Wendt, T.; Kujala, T.

    2009-01-01

    Individuals with Asperger syndrome (AS) often have difficulties in perceiving speech in noisy environments. The present study investigated whether this might be explained by deficient auditory stream segregation ability, that is, by a more basic difficulty in separating simultaneous sound sources from each other. To this end, auditory event-related brain potentials were recorded from a group of school-aged children with AS and a group of age-matched controls using a paradigm specifically developed for studying stream segregation. Differences in the amplitudes of ERP components were found between groups only in the stream segregation conditions and not for simple feature discrimination. The results indicated that children with AS have difficulties in segregating concurrent sound streams, which ultimately may contribute to the difficulties in speech-in-noise perception. PMID:19751798

  16. Rise time and formant transition duration in the discrimination of speech sounds: the Ba-Wa distinction in developmental dyslexia.

    PubMed

    Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Dénes

    2011-01-01

    Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami et al., 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes et al., 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.

  17. Hearing faces: how the infant brain matches the face it sees with the speech it hears.

    PubMed

    Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-François

    2009-05-01

    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the auditory stimulus and of the facial cues (McGurk effect). To understand how infants initially match the articulatory movements they see with the sounds they hear, we recorded high-density ERPs in response to auditory vowels that followed a congruent or incongruent silently articulating face in 10-week-old infants. In a first experiment, we determined that auditory-visual integration occurs during the early stages of perception as in adults. The mismatch response was similar in timing and in topography whether the preceding vowels were presented visually or aurally. In the second experiment, we studied audiovisual integration in the linguistic (vowel perception) and nonlinguistic (gender perception) domain. We observed a mismatch response for both types of change at similar latencies. Their topographies were significantly different demonstrating that cross-modal integration of these features is computed in parallel by two different networks. Indeed, brain source modeling revealed that phoneme and gender computations were lateralized toward the left and toward the right hemisphere, respectively, suggesting that each hemisphere possesses an early processing bias. We also observed repetition suppression in temporal regions and repetition enhancement in frontal regions. These results underscore how complex and structured is the human cortical organization which sustains communication from the first weeks of life on.

  18. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    PubMed Central

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of speech perception, with particular attention to accounts that include an explanatory role for mirror neurons. PMID:21664275

  19. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  20. Representations of Pitch and Timbre Variation in Human Auditory Cortex

    PubMed Central

    2017-01-01

    Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness—an aspect of timbre or sound quality—allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions. PMID:28025255

  1. Auditory brainstem response to complex sounds: a tutorial

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2010-01-01

    This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007

  2. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.

  3. Computational validation of the motor contribution to speech perception.

    PubMed

    Badino, Leonardo; D'Ausilio, Alessandro; Fadiga, Luciano; Metta, Giorgio

    2014-07-01

    Action perception and recognition are core abilities fundamental for human social interaction. A parieto-frontal network (the mirror neuron system) matches visually presented biological motion information onto observers' motor representations. This process of matching the actions of others onto our own sensorimotor repertoire is thought to be important for action recognition, providing a non-mediated "motor perception" based on a bidirectional flow of information along the mirror parieto-frontal circuits. State-of-the-art machine learning strategies for hand action identification have shown better performances when sensorimotor data, as opposed to visual information only, are available during learning. As speech is a particular type of action (with acoustic targets), it is expected to activate a mirror neuron mechanism. Indeed, in speech perception, motor centers have been shown to be causally involved in the discrimination of speech sounds. In this paper, we review recent neurophysiological and machine learning-based studies showing (a) the specific contribution of the motor system to speech perception and (b) that automatic phone recognition is significantly improved when motor data are used during training of classifiers (as opposed to learning from purely auditory data). Copyright © 2014 Cognitive Science Society, Inc.

  4. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  5. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    PubMed

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  6. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.

    PubMed

    Robson, Holly; Cloutman, Lauren; Keidel, James L; Sage, Karen; Drakesmith, Mark; Welbourne, Stephen

    2014-10-01

    Auditory discrimination is significantly impaired in Wernicke's aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Behavioural auditory discrimination thresholds of consonant-vowel-consonant (CVC) syllables and pure tones (PTs) were measured in WA (n = 7) and control (n = 7) participants. Threshold results were used to develop multiple deviant MMN oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed a relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.

  8. Processing of speech and non-speech stimuli in children with specific language impairment

    NASA Astrophysics Data System (ADS)

    Basu, Madhavi L.; Surprenant, Aimee M.

    2003-10-01

    Specific Language Impairment (SLI) is a developmental language disorder in which children demonstrate varying degrees of difficulties in acquiring a spoken language. One possible underlying cause is that children with SLI have deficits in processing sounds that are of short duration or when they are presented rapidly. Studies so far have compared their performance on speech and nonspeech sounds of unequal complexity. Hence, it is still unclear whether the deficit is specific to the perception of speech sounds or whether it more generally affects the auditory function. The current study aims to answer this question by comparing the performance of children with SLI on speech and nonspeech sounds synthesized from sine-wave stimuli. The children will be tested using the classic categorical perception paradigm that includes both the identification and discrimination of stimuli along a continuum. If there is a deficit in the performance on both speech and nonspeech tasks, it will show that these children have a deficit in processing complex sounds. Poor performance on only the speech sounds will indicate that the deficit is more related to language. The findings will offer insights into the exact nature of the speech perception deficits in children with SLI. [Work supported by ASHF.

  9. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems.

    PubMed

    Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva

    2017-03-01

    Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the speech signal by 90° compared with unaided listening. Personal FM systems are feasible in stroke patients, and may be of benefit in just under 20% of this population, who are not eligible for conventional hearing aids.

  10. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  11. Learning to Recognize Speakers of a Non-Native Language: Implications for the Functional Organization of Human Auditory Cortex

    ERIC Educational Resources Information Center

    Perrachione, Tyler K.; Wong, Patrick C. M.

    2007-01-01

    Brain imaging studies of voice perception often contrast activation from vocal and verbal tasks to identify regions uniquely involved in processing voice. However, such a strategy precludes detection of the functional relationship between speech and voice perception. In a pair of experiments involving identifying voices from native and foreign…

  12. Brainstem transcription of speech is disrupted in children with autism spectrum disorders

    PubMed Central

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083

  13. Human-like brain hemispheric dominance in birdsong learning.

    PubMed

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  14. Comparing speech and nonspeech context effects across timescales in coarticulatory contexts.

    PubMed

    Viswanathan, Navin; Kelty-Stephen, Damian G

    2018-02-01

    Context effects are ubiquitous in speech perception and reflect the ability of human listeners to successfully perceive highly variable speech signals. In the study of how listeners compensate for coarticulatory variability, past studies have used similar effects speech and tone analogues of speech as strong support for speech-neutral, general auditory mechanisms for compensation for coarticulation. In this manuscript, we revisit compensation for coarticulation by replacing standard button-press responses with mouse-tracking responses and examining both standard geometric measures of uncertainty as well as newer information-theoretic measures that separate fast from slow mouse movements. We found that when our analyses were restricted to end-state responses, tones and speech contexts appeared to produce similar effects. However, a more detailed time-course analysis revealed systematic differences between speech and tone contexts such that listeners' responses to speech contexts, but not to tone contexts, changed across the experimental session. Analyses of the time course of effects within trials using mouse tracking indicated that speech contexts elicited fewer x-position flips but more area under the curve (AUC) and maximum deviation (MD), and they did so in the slower portions of mouse-tracking movements. Our results indicate critical differences between the time course of speech and nonspeech context effects and that general auditory explanations, motivated by their apparent similarity, be reexamined.

  15. Speech research: Studies on the nature of speech, instrumentation for its investigation, and practical applications

    NASA Astrophysics Data System (ADS)

    Liberman, A. M.

    1982-03-01

    This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation and practical applications. Manuscripts cover the following topics: Speech perception and memory coding in relation to reading ability; The use of orthographic structure by deaf adults: Recognition of finger-spelled letters; Exploring the information support for speech; The stream of speech; Using the acoustic signal to make inferences about place and duration of tongue-palate contact. Patterns of human interlimb coordination emerge from the the properties of nonlinear limit cycle oscillatory processes: Theory and data; Motor control: Which themes do we orchestrate? Exploring the nature of motor control in Down's syndrome; Periodicity and auditory memory: A pilot study; Reading skill and language skill: On the role of sign order and morphological structure in memory for American Sign Language sentences; Perception of nasal consonants with special reference to Catalan; and Speech production Characteristics of the hearing impaired.

  16. Aging affects neural precision of speech encoding

    PubMed Central

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-01-01

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485

  17. Rapid recalibration of speech perception after experiencing the McGurk illusion.

    PubMed

    Lüttke, Claudia S; Pérez-Bellido, Alexis; de Lange, Floris P

    2018-03-01

    The human brain can quickly adapt to changes in the environment. One example is phonetic recalibration: a speech sound is interpreted differently depending on the visual speech and this interpretation persists in the absence of visual information. Here, we examined the mechanisms of phonetic recalibration. Participants categorized the auditory syllables /aba/ and /ada/, which were sometimes preceded by the so-called McGurk stimuli (in which an /aba/ sound, due to visual /aga/ input, is often perceived as 'ada'). We found that only one trial of exposure to the McGurk illusion was sufficient to induce a recalibration effect, i.e. an auditory /aba/ stimulus was subsequently more often perceived as 'ada'. Furthermore, phonetic recalibration took place only when auditory and visual inputs were integrated to 'ada' (McGurk illusion). Moreover, this recalibration depended on the sensory similarity between the preceding and current auditory stimulus. Finally, signal detection theoretical analysis showed that McGurk-induced phonetic recalibration resulted in both a criterion shift towards /ada/ and a reduced sensitivity to distinguish between /aba/ and /ada/ sounds. The current study shows that phonetic recalibration is dependent on the perceptual integration of audiovisual information and leads to a perceptual shift in phoneme categorization.

  18. Low-level neural auditory discrimination dysfunctions in specific language impairment-A review on mismatch negativity findings.

    PubMed

    Kujala, Teija; Leminen, Miika

    2017-12-01

    In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.

  19. On the accuracy of adults' auditory perception of normophonic and dysphonic children's personality.

    PubMed

    Verduyckt, Ingrid; Remacle, Marc; Morsomme, Dominique

    2015-10-01

    We investigated the accuracy of auditory inferences of personality of Belgian children with vocal fold nodules (VFN). External judges (n = 57) were asked to infer the personality of normophonic (NP) children and children with VFN (n = 10) on the basis of vowels and sentences. The auditory inferred profiles were compared to the actual personality of NP and VFN children. Positive and partly accurate inferences of VFN children's personality were made on the basis of connected speech, while sustained vowels yielded negative and inaccurate inferences of personality traits of children with VFN. Dysphonic voice quality, as defined by the overall severity of vocal abnormality, conveyed inaccurate and low degrees of extraversion. This effect was counterbalanced in connected speech by faster speaking rate that accurately conveyed higher degrees of extraversion, a characteristic trait of VFN children's actual personality.

  20. The effect of auditory verbal imagery on signal detection in hallucination-prone individuals

    PubMed Central

    Moseley, Peter; Smailes, David; Ellison, Amanda; Fernyhough, Charles

    2016-01-01

    Cognitive models have suggested that auditory hallucinations occur when internal mental events, such as inner speech or auditory verbal imagery (AVI), are misattributed to an external source. This has been supported by numerous studies indicating that individuals who experience hallucinations tend to perform in a biased manner on tasks that require them to distinguish self-generated from non-self-generated perceptions. However, these tasks have typically been of limited relevance to inner speech models of hallucinations, because they have not manipulated the AVI that participants used during the task. Here, a new paradigm was employed to investigate the interaction between imagery and perception, in which a healthy, non-clinical sample of participants were instructed to use AVI whilst completing an auditory signal detection task. It was hypothesized that AVI-usage would cause participants to perform in a biased manner, therefore falsely detecting more voices in bursts of noise. In Experiment 1, when cued to generate AVI, highly hallucination-prone participants showed a lower response bias than when performing a standard signal detection task, being more willing to report the presence of a voice in the noise. Participants not prone to hallucinations performed no differently between the two conditions. In Experiment 2, participants were not specifically instructed to use AVI, but retrospectively reported how often they engaged in AVI during the task. Highly hallucination-prone participants who retrospectively reported using imagery showed a lower response bias than did participants with lower proneness who also reported using AVI. Results are discussed in relation to prominent inner speech models of hallucinations. PMID:26435050

  1. Speech perception enhancement in elderly hearing aid users using an auditory training program for mobile devices.

    PubMed

    Yu, Jyaehyoung; Jeon, Hanjae; Song, Changgeun; Han, Woojae

    2017-01-01

    The goal of the present study was to develop an auditory training program using a mobile device and to test its efficacy by applying it to older adults suffering from moderate-to-severe sensorineural hearing loss. Among the 20 elderly hearing-impaired listeners who participated, 10 were randomly assigned to a training group (TG) and 10 were assigned to a non-training group (NTG) as a control. As a baseline, all participants were measured by vowel, consonant and sentence tests. In the experiment, the TG had been trained for 4 weeks using a mobile program, which had four levels and consisted of 10 Korean nonsense syllables, with each level completed in 1 week. In contrast, traditional auditory training had been provided for the NTG during the same period. To evaluate whether a training effect was achieved, the two groups also carried out the same tests as the baseline after completing the experiment. The results showed that performance on the consonant and sentence tests in the TG was significantly increased compared with that of the NTG. Also, improved scores of speech perception were retained at 2 weeks after the training was completed. However, vowel scores were not changed after the 4-week training in both the TG and the NTG. This result pattern suggests that a moderate amount of auditory training using the mobile device with cost-effective and minimal supervision is useful when it is used to improve the speech understanding of older adults with hearing loss. Geriatr Gerontol Int 2017; 17: 61-68. © 2015 Japan Geriatrics Society.

  2. A preliminary report of music-based training for adult cochlear implant users: Rationales and development.

    PubMed

    Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J

    2015-09-01

    This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for CI recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This informed the development of a computer-based music training program designed specifically for adult CI users. Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users is required.

  3. Evaluation of central auditory processing in children with Specific Language Impairment.

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Piłka, Adam; Skarżyński, Henryk

    2015-01-01

    Specific Language Impairment (SLI) affects about 7-15 % of children of school age and according to the currently accepted diagnostic criteria, it is presumed that these children do not suffer from hearing impairment. The goal of this work was to assess anomalies of central auditory processes in a group of children diagnosed with specific language impairment. Material consisted of 200 children aged 7-10 years (100 children in the study group and 100 hundred in the control group). Selected psychoacoustic tests (Frequency Pattern Test - FPT, Duration Pattern Test - DPT, Dichotic Digit Test - DDT, Time Compressed Sentence Test - CST, Gap Detection Test - GDT) were performed in all children. Results were subject to statistical analysis. It was observed that mean results obtained in individual age groups in the study group are significantly lower than in the control group. Based on the conducted studies we may conclude that children with SLI suffer from disorders of some higher auditory functions, which substantiates the diagnosis of hearing disorders according to the AHSA (American Hearing and Speech Association) guidelines. Use of sound-based, not verbal tests, eliminates the probability that observed problems with perception involve only perception of speech, therefore do not signify central hearing disorders, but problems with understanding of speech. Lack of literature data on the significance of FPT, DPT, DDT, CST and GDT tests in children with specific language impairment precludes comparison of acquired results and makes them unique.

  4. A preliminary report of music-based training for adult cochlear implant users: rationales and development

    PubMed Central

    Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J.

    2015-01-01

    Objective This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Methods Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for cochlear implant recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This information formed the development of a computer-based music training program designed specifically for adult CI users. Results Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Conclusions Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users are required. PMID:26561884

  5. Perception of speech in noise: neural correlates.

    PubMed

    Song, Judy H; Skoe, Erika; Banai, Karen; Kraus, Nina

    2011-09-01

    The presence of irrelevant auditory information (other talkers, environmental noises) presents a major challenge to listening to speech. The fundamental frequency (F(0)) of the target speaker is thought to provide an important cue for the extraction of the speaker's voice from background noise, but little is known about the relationship between speech-in-noise (SIN) perceptual ability and neural encoding of the F(0). Motivated by recent findings that music and language experience enhance brainstem representation of sound, we examined the hypothesis that brainstem encoding of the F(0) is diminished to a greater degree by background noise in people with poorer perceptual abilities in noise. To this end, we measured speech-evoked auditory brainstem responses to /da/ in quiet and two multitalker babble conditions (two-talker and six-talker) in native English-speaking young adults who ranged in their ability to perceive and recall SIN. Listeners who were poorer performers on a standardized SIN measure demonstrated greater susceptibility to the degradative effects of noise on the neural encoding of the F(0). Particularly diminished was their phase-locked activity to the fundamental frequency in the portion of the syllable known to be most vulnerable to perceptual disruption (i.e., the formant transition period). Our findings suggest that the subcortical representation of the F(0) in noise contributes to the perception of speech in noisy conditions.

  6. Bilateral capacity for speech sound processing in auditory comprehension: evidence from Wada procedures.

    PubMed

    Hickok, G; Okada, K; Barr, W; Pa, J; Rogalsky, C; Donnelly, K; Barde, L; Grant, A

    2008-12-01

    Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.

  7. The role of hearing ability and speech distortion in the facilitation of articulatory motor cortex.

    PubMed

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Devlin, Joseph T; Adank, Patti

    2017-01-08

    Excitability of articulatory motor cortex is facilitated when listening to speech in challenging conditions. Beyond this, however, we have little knowledge of what listener-specific and speech-specific factors engage articulatory facilitation during speech perception. For example, it is unknown whether speech motor activity is independent or dependent on the form of distortion in the speech signal. It is also unknown if speech motor facilitation is moderated by hearing ability. We investigated these questions in two experiments. We applied transcranial magnetic stimulation (TMS) to the lip area of primary motor cortex (M1) in young, normally hearing participants to test if lip M1 is sensitive to the quality (Experiment 1) or quantity (Experiment 2) of distortion in the speech signal, and if lip M1 facilitation relates to the hearing ability of the listener. Experiment 1 found that lip motor evoked potentials (MEPs) were larger during perception of motor-distorted speech that had been produced using a tongue depressor, and during perception of speech presented in background noise, relative to natural speech in quiet. Experiment 2 did not find evidence of motor system facilitation when speech was presented in noise at signal-to-noise ratios where speech intelligibility was at 50% or 75%, which were significantly less severe noise levels than used in Experiment 1. However, there was a significant interaction between noise condition and hearing ability, which indicated that when speech stimuli were correctly classified at 50%, speech motor facilitation was observed in individuals with better hearing, whereas individuals with relatively worse but still normal hearing showed more activation during perception of clear speech. These findings indicate that the motor system may be sensitive to the quantity, but not quality, of degradation in the speech signal. Data support the notion that motor cortex complements auditory cortex during speech perception, and point to a role for the motor cortex in compensating for differences in hearing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Role of Auditory and Visual Speech in Word Learning at 18 Months and in Adulthood

    ERIC Educational Resources Information Center

    Havy, Mélanie; Foroud, Afra; Fais, Laurel; Werker, Janet F.

    2017-01-01

    Visual information influences speech perception in both infants and adults. It is still unknown whether lexical representations are multisensory. To address this question, we exposed 18-month-old infants (n = 32) and adults (n = 32) to new word-object pairings: Participants either heard the acoustic form of the words or saw the talking face in…

  9. Subliminal Speech Perception and Auditory Streaming

    ERIC Educational Resources Information Center

    Dupoux, Emmanuel; de Gardelle, Vincent; Kouider, Sid

    2008-01-01

    Current theories of consciousness assume a qualitative dissociation between conscious and unconscious processing: while subliminal stimuli only elicit a transient activity, supraliminal stimuli have long-lasting influences. Nevertheless, the existence of this qualitative distinction remains controversial, as past studies confounded awareness and…

  10. A link between individual differences in multisensory speech perception and eye movements

    PubMed Central

    Gurler, Demet; Doyle, Nathan; Walker, Edgar; Magnotti, John; Beauchamp, Michael

    2015-01-01

    The McGurk effect is an illusion in which visual speech information dramatically alters the perception of auditory speech. However, there is a high degree of individual variability in how frequently the illusion is perceived: some individuals almost always perceive the McGurk effect, while others rarely do. Another axis of individual variability is the pattern of eye movements make while viewing a talking face: some individuals often fixate the mouth of the talker, while others rarely do. Since the talker's mouth carries the visual speech necessary information to induce the McGurk effect, we hypothesized that individuals who frequently perceive the McGurk effect should spend more time fixating the talker's mouth. We used infrared eye tracking to study eye movements as 40 participants viewed audiovisual speech. Frequent perceivers of the McGurk effect were more likely to fixate the mouth of the talker, and there was a significant correlation between McGurk frequency and mouth looking time. The noisy encoding of disparity model of McGurk perception showed that individuals who frequently fixated the mouth had lower sensory noise and higher disparity thresholds than those who rarely fixated the mouth. Differences in eye movements when viewing the talker's face may be an important contributor to interindividual differences in multisensory speech perception. PMID:25810157

  11. The impact of cochlear implantation on speech understanding, subjective hearing performance, and tinnitus perception in patients with unilateral severe to profound hearing loss.

    PubMed

    Távora-Vieira, Dayse; Marino, Roberta; Acharya, Aanand; Rajan, Gunesh P

    2015-03-01

    This study aimed to determine the impact of cochlear implantation on speech understanding in noise, subjective perception of hearing, and tinnitus perception of adult patients with unilateral severe to profound hearing loss and to investigate whether duration of deafness and age at implantation would influence the outcomes. In addition, this article describes the auditory training protocol used for unilaterally deaf patients. This is a prospective study of subjects undergoing cochlear implantation for unilateral deafness with or without associated tinnitus. Speech perception in noise was tested using the Bamford-Kowal-Bench speech-in-noise test presented at 65 dB SPL. The Speech, Spatial, and Qualities of Hearing Scale and the Abbreviated Profile of Hearing Aid Benefit were used to evaluate the subjective perception of hearing with a cochlear implant and quality of life. Tinnitus disturbance was measured using the Tinnitus Reaction Questionnaire. Data were collected before cochlear implantation and 3, 6, 12, and 24 months after implantation. Twenty-eight postlingual unilaterally deaf adults with or without tinnitus were implanted. There was a significant improvement in speech perception in noise across time in all spatial configurations. There was an overall significant improvement on the subjective perception of hearing and quality of life. Tinnitus disturbance reduced significantly across time. Age at implantation and duration of deafness did not influence the outcomes significantly. Cochlear implantation provided significant improvement in speech understanding in challenging situations, subjective perception of hearing performance, and quality of life. Cochlear implantation also resulted in reduced tinnitus disturbance. Age at implantation and duration of deafness did not seem to influence the outcomes.

  12. Selective entrainment of brain oscillations drives auditory perceptual organization.

    PubMed

    Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles

    2017-10-01

    Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cross-Modal Matching of Audio-Visual German and French Fluent Speech in Infancy

    PubMed Central

    Kubicek, Claudia; Hillairet de Boisferon, Anne; Dupierrix, Eve; Pascalis, Olivier; Lœvenbruck, Hélène; Gervain, Judit; Schwarzer, Gudrun

    2014-01-01

    The present study examined when and how the ability to cross-modally match audio-visual fluent speech develops in 4.5-, 6- and 12-month-old German-learning infants. In Experiment 1, 4.5- and 6-month-old infants’ audio-visual matching ability of native (German) and non-native (French) fluent speech was assessed by presenting auditory and visual speech information sequentially, that is, in the absence of temporal synchrony cues. The results showed that 4.5-month-old infants were capable of matching native as well as non-native audio and visual speech stimuli, whereas 6-month-olds perceived the audio-visual correspondence of native language stimuli only. This suggests that intersensory matching narrows for fluent speech between 4.5 and 6 months of age. In Experiment 2, auditory and visual speech information was presented simultaneously, therefore, providing temporal synchrony cues. Here, 6-month-olds were found to match native as well as non-native speech indicating facilitation of temporal synchrony cues on the intersensory perception of non-native fluent speech. Intriguingly, despite the fact that audio and visual stimuli cohered temporally, 12-month-olds matched the non-native language only. Results were discussed with regard to multisensory perceptual narrowing during the first year of life. PMID:24586651

  14. Toward a dual-learning systems model of speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Koslov, Seth R.; Maddox, W. T.

    2014-01-01

    More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions. PMID:25132827

  15. The role of left inferior frontal cortex during audiovisual speech perception in infants.

    PubMed

    Altvater-Mackensen, Nicole; Grossmann, Tobias

    2016-06-01

    In the first year of life, infants' speech perception attunes to their native language. While the behavioral changes associated with native language attunement are fairly well mapped, the underlying mechanisms and neural processes are still only poorly understood. Using fNIRS and eye tracking, the current study investigated 6-month-old infants' processing of audiovisual speech that contained matching or mismatching auditory and visual speech cues. Our results revealed that infants' speech-sensitive brain responses in inferior frontal brain regions were lateralized to the left hemisphere. Critically, our results further revealed that speech-sensitive left inferior frontal regions showed enhanced responses to matching when compared to mismatching audiovisual speech, and that infants with a preference to look at the speaker's mouth showed an enhanced left inferior frontal response to speech compared to infants with a preference to look at the speaker's eyes. These results suggest that left inferior frontal regions play a crucial role in associating information from different modalities during native language attunement, fostering the formation of multimodal phonological categories. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Audiovisual spoken word recognition as a clinical criterion for sensory aids efficiency in Persian-language children with hearing loss.

    PubMed

    Oryadi-Zanjani, Mohammad Majid; Vahab, Maryam; Bazrafkan, Mozhdeh; Haghjoo, Asghar

    2015-12-01

    The aim of this study was to examine the role of audiovisual speech recognition as a clinical criterion of cochlear implant or hearing aid efficiency in Persian-language children with severe-to-profound hearing loss. This research was administered as a cross-sectional study. The sample size was 60 Persian 5-7 year old children. The assessment tool was one of subtests of Persian version of the Test of Language Development-Primary 3. The study included two experiments: auditory-only and audiovisual presentation conditions. The test was a closed-set including 30 words which were orally presented by a speech-language pathologist. The scores of audiovisual word perception were significantly higher than auditory-only condition in the children with normal hearing (P<0.01) and cochlear implant (P<0.05); however, in the children with hearing aid, there was no significant difference between word perception score in auditory-only and audiovisual presentation conditions (P>0.05). The audiovisual spoken word recognition can be applied as a clinical criterion to assess the children with severe to profound hearing loss in order to find whether cochlear implant or hearing aid has been efficient for them or not; i.e. if a child with hearing impairment who using CI or HA can obtain higher scores in audiovisual spoken word recognition than auditory-only condition, his/her auditory skills have appropriately developed due to effective CI or HA as one of the main factors of auditory habilitation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Auditory Signal Processing in Communication: Perception and Performance of Vocal Sounds

    PubMed Central

    Prather, Jonathan F.

    2013-01-01

    Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. PMID:23827717

  18. Musical expertise and second language learning.

    PubMed

    Chobert, Julie; Besson, Mireille

    2013-06-06

    Increasing evidence suggests that musical expertise influences brain organization and brain functions. Moreover, results at the behavioral and neurophysiological levels reveal that musical expertise positively influences several aspects of speech processing, from auditory perception to speech production. In this review, we focus on the main results of the literature that led to the idea that musical expertise may benefit second language acquisition. We discuss several interpretations that may account for the influence of musical expertise on speech processing in native and foreign languages, and we propose new directions for future research.

  19. Musical Expertise and Second Language Learning

    PubMed Central

    Chobert, Julie; Besson, Mireille

    2013-01-01

    Increasing evidence suggests that musical expertise influences brain organization and brain functions. Moreover, results at the behavioral and neurophysiological levels reveal that musical expertise positively influences several aspects of speech processing, from auditory perception to speech production. In this review, we focus on the main results of the literature that led to the idea that musical expertise may benefit second language acquisition. We discuss several interpretations that may account for the influence of musical expertise on speech processing in native and foreign languages, and we propose new directions for future research. PMID:24961431

  20. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    PubMed

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. JND measurements of the speech formants parameters and its implication in the LPC pole quantization

    NASA Astrophysics Data System (ADS)

    Orgad, Yaakov

    1988-08-01

    The inherent sensitivity of auditory perception is explicitly used with the objective of designing an efficient speech encoder. Speech can be modelled by a filter representing the vocal tract shape that is driven by an excitation signal representing glottal air flow. This work concentrates on the filter encoding problem, assuming that excitation signal encoding is optimal. Linear predictive coding (LPC) techniques were used to model a short speech segment by an all-pole filter; each pole was directly related to the speech formants. Measurements were made of the auditory just noticeable difference (JND) corresponding to the natural speech formants, with the LPC filter poles as the best candidates to represent the speech spectral envelope. The JND is the maximum precision required in speech quantization; it was defined on the basis of the shift of one pole parameter of a single frame of a speech segment, necessary to induce subjective perception of the distortion, with .75 probability. The average JND in LPC filter poles in natural speech was found to increase with increasing pole bandwidth and, to a lesser extent, frequency. The JND measurements showed a large spread of the residuals around the average values, indicating that inter-formant coupling and, perhaps, other, not yet fully understood, factors were not taken into account at this stage of the research. A future treatment should consider these factors. The average JNDs obtained in this work were used to design pole quantization tables for speech coding and provided a better bit-rate than the standard quantizer of reflection coefficient; a 30-bits-per-frame pole quantizer yielded a speech quality similar to that obtained with a standard 41-bits-per-frame reflection coefficient quantizer. Owing to the complexity of the numerical root extraction system, the practical implementation of the pole quantization approach remains to be proved.

  2. Acoustic Processing of Temporally Modulated Sounds in Infants: Evidence from a Combined Near-Infrared Spectroscopy and EEG Study

    PubMed Central

    Telkemeyer, Silke; Rossi, Sonja; Nierhaus, Till; Steinbrink, Jens; Obrig, Hellmuth; Wartenburger, Isabell

    2010-01-01

    Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition. PMID:21716574

  3. Auditory Training: Evidence for Neural Plasticity in Older Adults

    PubMed Central

    Anderson, Samira; Kraus, Nina

    2014-01-01

    Improvements in digital amplification, cochlear implants, and other innovations have extended the potential for improving hearing function; yet, there remains a need for further hearing improvement in challenging listening situations, such as when trying to understand speech in noise or when listening to music. Here, we review evidence from animal and human models of plasticity in the brain’s ability to process speech and other meaningful stimuli. We considered studies targeting populations of younger through older adults, emphasizing studies that have employed randomized controlled designs and have made connections between neural and behavioral changes. Overall results indicate that the brain remains malleable through older adulthood, provided that treatment algorithms have been modified to allow for changes in learning with age. Improvements in speech-in-noise perception and cognition function accompany neural changes in auditory processing. The training-related improvements noted across studies support the need to consider auditory training strategies in the management of individuals who express concerns about hearing in difficult listening situations. Given evidence from studies engaging the brain’s reward centers, future research should consider how these centers can be naturally activated during training. PMID:25485037

  4. Speech, language, and cognitive dysfunction in children with focal epileptiform activity: A follow-up study.

    PubMed

    Rejnö-Habte Selassie, Gunilla; Hedström, Anders; Viggedal, Gerd; Jennische, Margareta; Kyllerman, Mårten

    2010-07-01

    We reviewed the medical history, EEG recordings, and developmental milestones of 19 children with speech and language dysfunction and focal epileptiform activity. Speech, language, and neuropsychological assessments and EEG recordings were performed at follow-up, and prognostic indicators were analyzed. Three patterns of language development were observed: late start and slow development, late start and deterioration/regression, and normal start and later regression/deterioration. No differences in test results among these groups were seen, indicating a spectrum of related conditions including Landau-Kleffner syndrome and epileptic language disorder. More than half of the participants had speech and language dysfunction at follow-up. IQ levels, working memory, and processing speed were also affected. Dysfunction of auditory perception in noise was found in more than half of the participants, and dysfunction of auditory attention in all. Dysfunction of communication, oral motor ability, and stuttering were noted in a few. Family history of seizures and abundant epileptiform activity indicated a worse prognosis. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Enhanced perception of pitch changes in speech and music in early blind adults.

    PubMed

    Arnaud, Laureline; Gracco, Vincent; Ménard, Lucie

    2018-06-12

    It is well known that congenitally blind adults have enhanced auditory processing for some tasks. For instance, they show supra-normal capacity to perceive accelerated speech. However, only a few studies have investigated basic auditory processing in this population. In this study, we investigated if pitch processing enhancement in the blind is a domain-general or domain-specific phenomenon, and if pitch processing shares the same properties as in the sighted regarding how scores from different domains are associated. Fifteen congenitally blind adults and fifteen sighted adults participated in the study. We first created a set of personalized native and non-native vowel stimuli using an identification and rating task. Then, an adaptive discrimination paradigm was used to determine the frequency difference limen for pitch direction identification of speech (native and non-native vowels) and non-speech stimuli (musical instruments and pure tones). The results show that the blind participants had better discrimination thresholds than controls for native vowels, music stimuli, and pure tones. Whereas within the blind group, the discrimination thresholds were smaller for musical stimuli than speech stimuli, replicating previous findings in sighted participants, we did not find this effect in the current control group. Further analyses indicate that older sighted participants show higher thresholds for instrument sounds compared to speech sounds. This effect of age was not found in the blind group. Moreover, the scores across domains were not associated to the same extent in the blind as they were in the sighted. In conclusion, in addition to providing further evidence of compensatory auditory mechanisms in early blind individuals, our results point to differences in how auditory processing is modulated in this population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.

    PubMed

    Shahin, Antoine J; Backer, Kristina C; Rosenblum, Lawrence D; Kerlin, Jess R

    2018-02-14

    Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ ( illusion-fa ), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ ( illusion-ba ), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba , and a reduced N1 when they perceived illusion-fa , mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex. SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show that visual context primes phonetic representations at the auditory cortex, altering the auditory percept, evidenced by changes in the N1 auditory evoked potential. This finding reinforces the theory that audiovisual integration occurs via visual networks influencing phonetic representations in the auditory cortex. We believe that this will lead to the generation of new hypotheses regarding cross-modal mapping, particularly whether it occurs via direct or indirect routes (e.g., via a multisensory mediator). Copyright © 2018 the authors 0270-6474/18/381835-15$15.00/0.

  7. Effects of central nervous system residua on cochlear implant results in children deafened by meningitis.

    PubMed

    Francis, Howard W; Pulsifer, Margaret B; Chinnici, Jill; Nutt, Robert; Venick, Holly S; Yeagle, Jennifer D; Niparko, John K

    2004-05-01

    This study explored factors associated with speech recognition outcomes in postmeningitic deafness (PMD). The results of cochlear implantation may vary in children with PMD because of sequelae that extend beyond the auditory periphery. To determine which factors might be most determinative of outcome of cochlear implantation in children with PMD. Retrospective chart review. A referral center for pediatric cochlear implantation and rehabilitation. Thirty children with cochlear implants who were deafened by meningitis were matched with subjects who were deafened by other causes based on the age at diagnosis, age at cochlear implantation, age at which hearing aids were first used, and method of communication used at home or in the classroom. Speech perception performance within the first 2 years after cochlear implantation and its relationship with presurgical cognitive measures and medical history. There was no difference in the overall cognitive or postoperative speech perception performance between the children with PMD and those deafened by other causes. The presence of postmeningitic hydrocephalus, however, posed greater challenges to the rehabilitation process, as indicated by significantly smaller gains in speech perception and a predilection for behavioral problems. By comparison, cochlear scarring and incomplete electrode insertion had no impact on speech perception results. Although the results demonstrated no significant delay in cognitive or speech perception performance in the PMD group, central nervous system residua, when present, can impede the acquisition of speech perception with a cochlear implant. Central effects associated with PMD may thus impact language learning potential; cognitive and behavioral therapy should be considered in rehabilitative planning and in establishing expectations of outcome.

  8. Perceptual learning of degraded speech by minimizing prediction error.

    PubMed

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  9. Perceptual learning of degraded speech by minimizing prediction error

    PubMed Central

    Sohoglu, Ediz

    2016-01-01

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech. PMID:26957596

  10. Binding and unbinding the auditory and visual streams in the McGurk effect.

    PubMed

    Nahorna, Olha; Berthommier, Frédéric; Schwartz, Jean-Luc

    2012-08-01

    Subjects presented with coherent auditory and visual streams generally fuse them into a single percept. This results in enhanced intelligibility in noise, or in visual modification of the auditory percept in the McGurk effect. It is classically considered that processing is done independently in the auditory and visual systems before interaction occurs at a certain representational stage, resulting in an integrated percept. However, some behavioral and neurophysiological data suggest the existence of a two-stage process. A first stage would involve binding together the appropriate pieces of audio and video information before fusion per se in a second stage. Then it should be possible to design experiments leading to unbinding. It is shown here that if a given McGurk stimulus is preceded by an incoherent audiovisual context, the amount of McGurk effect is largely reduced. Various kinds of incoherent contexts (acoustic syllables dubbed on video sentences or phonetic or temporal modifications of the acoustic content of a regular sequence of audiovisual syllables) can significantly reduce the McGurk effect even when they are short (less than 4 s). The data are interpreted in the framework of a two-stage "binding and fusion" model for audiovisual speech perception.

  11. Understanding response proclivity and the limits of sensory capability: What do we hear and what can we hear?

    NASA Astrophysics Data System (ADS)

    Leek, Marjorie R.; Neff, Donna L.

    2004-05-01

    Charles Watson's studies of informational masking and the effects of stimulus uncertainty on auditory perception have had a profound impact on auditory research. His series of seminal studies in the mid-1970s on the detection and discrimination of target sounds in sequences of brief tones with uncertain properties addresses the fundamental problem of extracting target signals from background sounds. As conceptualized by Chuck and others, informational masking results from more central (even ``cogneetive'') processes as a consequence of stimulus uncertainty, and can be distinguished from ``energetic'' masking, which primarily arises from the auditory periphery. Informational masking techniques are now in common use to study the detection, discrimination, and recognition of complex sounds, the capacity of auditory memory and aspects of auditory selective attention, the often large effects of training to reduce detrimental effects of uncertainty, and the perceptual segregation of target sounds from irrelevant context sounds. This paper will present an overview of past and current research on informational masking, and show how Chuck's work has been expanded in several directions by other scientists to include the effects of informational masking on speech perception and on perception by listeners with hearing impairment. [Work supported by NIDCD.

  12. Should visual speech cues (speechreading) be considered when fitting hearing aids?

    NASA Astrophysics Data System (ADS)

    Grant, Ken

    2002-05-01

    When talker and listener are face-to-face, visual speech cues become an important part of the communication environment, and yet, these cues are seldom considered when designing hearing aids. Models of auditory-visual speech recognition highlight the importance of complementary versus redundant speech information for predicting auditory-visual recognition performance. Thus, for hearing aids to work optimally when visual speech cues are present, it is important to know whether the cues provided by amplification and the cues provided by speechreading complement each other. In this talk, data will be reviewed that show nonmonotonicity between auditory-alone speech recognition and auditory-visual speech recognition, suggesting that efforts designed solely to improve auditory-alone recognition may not always result in improved auditory-visual recognition. Data will also be presented showing that one of the most important speech cues for enhancing auditory-visual speech recognition performance, voicing, is often the cue that benefits least from amplification.

  13. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  14. A white matter tract mediating awareness of speech.

    PubMed

    Koubeissi, Mohamad Z; Fernandez-Baca Vaca, Guadalupe; Maciunas, Robert; Stephani, Caspar

    2016-01-12

    To investigate the effects of extraoperative electrical stimulation of fiber tracts connecting the language territories. We describe results of extraoperative electrical stimulation of stereotactic electrodes in 3 patients with epilepsy who underwent presurgical evaluation for epilepsy surgery. Contacts of these electrodes sampled, among other structures, the suprainsular white matter of the left hemisphere. Aside from speech disturbance and speech arrest, subcortical electrical stimulation of white matter tracts directly superior to the insula representing the anterior part of the arcuate fascicle, reproducibly induced complex verbal auditory phenomena including (1) hearing one's own voice in the absence of overt speech, and (2) lack of perception of arrest or alteration in ongoing repetition of words. These results represent direct evidence that the anterior part of the arcuate fascicle is part of a network that is important in the mediation of speech planning and awareness likely by linking the language areas of the inferior parietal and posterior inferior frontal cortices. More specifically, our observations suggest that this structure may be relevant to the pathophysiology of thought disorders and auditory verbal hallucinations. © 2015 American Academy of Neurology.

  15. Human-like brain hemispheric dominance in birdsong learning

    PubMed Central

    Moorman, Sanne; Gobes, Sharon M. H.; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2012-01-01

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms. PMID:22802637

  16. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  17. Cortical Tracking of Global and Local Variations of Speech Rhythm during Connected Natural Speech Perception.

    PubMed

    Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta

    2018-06-19

    During natural speech perception, listeners must track the global speaking rate, that is, the overall rate of incoming linguistic information, as well as transient, local speaking rate variations occurring within the global speaking rate. Here, we address the hypothesis that this tracking mechanism is achieved through coupling of cortical signals to the amplitude envelope of the perceived acoustic speech signals. Cortical signals were recorded with magnetoencephalography (MEG) while participants perceived spontaneously produced speech stimuli at three global speaking rates (slow, normal/habitual, and fast). Inherently to spontaneously produced speech, these stimuli also featured local variations in speaking rate. The coupling between cortical and acoustic speech signals was evaluated using audio-MEG coherence. Modulations in audio-MEG coherence spatially differentiated between tracking of global speaking rate, highlighting the temporal cortex bilaterally and the right parietal cortex, and sensitivity to local speaking rate variations, emphasizing the left parietal cortex. Cortical tuning to the temporal structure of natural connected speech thus seems to require the joint contribution of both auditory and parietal regions. These findings suggest that cortical tuning to speech rhythm operates on two functionally distinct levels: one encoding the global rhythmic structure of speech and the other associated with online, rapidly evolving temporal predictions. Thus, it may be proposed that speech perception is shaped by evolutionary tuning, a preference for certain speaking rates, and predictive tuning, associated with cortical tracking of the constantly changing rate of linguistic information in a speech stream.

  18. Deficits of congenital amusia beyond pitch: Evidence from impaired categorical perception of vowels in Cantonese-speaking congenital amusics

    PubMed Central

    Shao, Jing; Huang, Xunan

    2017-01-01

    Congenital amusia is a lifelong disorder of fine-grained pitch processing in music and speech. However, it remains unclear whether amusia is a pitch-specific deficit, or whether it affects frequency/spectral processing more broadly, such as the perception of formant frequency in vowels, apart from pitch. In this study, in order to illuminate the scope of the deficits, we compared the performance of 15 Cantonese-speaking amusics and 15 matched controls on the categorical perception of sound continua in four stimulus contexts: lexical tone, pure tone, vowel, and voice onset time (VOT). Whereas lexical tone, pure tone and vowel continua rely on frequency/spectral processing, the VOT continuum depends on duration/temporal processing. We found that the amusic participants performed similarly to controls in all stimulus contexts in the identification, in terms of the across-category boundary location and boundary width. However, the amusic participants performed systematically worse than controls in discriminating stimuli in those three contexts that depended on frequency/spectral processing (lexical tone, pure tone and vowel), whereas they performed normally when discriminating duration differences (VOT). These findings suggest that the deficit of amusia is probably not pitch specific, but affects frequency/spectral processing more broadly. Furthermore, there appeared to be differences in the impairment of frequency/spectral discrimination in speech and nonspeech contexts. The amusic participants exhibited less benefit in between-category discriminations than controls in speech contexts (lexical tone and vowel), suggesting reduced categorical perception; on the other hand, they performed inferiorly compared to controls across the board regardless of between- and within-category discriminations in nonspeech contexts (pure tone), suggesting impaired general auditory processing. These differences imply that the frequency/spectral-processing deficit might be manifested differentially in speech and nonspeech contexts in amusics—it is manifested as a deficit of higher-level phonological processing in speech sounds, and as a deficit of lower-level auditory processing in nonspeech sounds. PMID:28829808

  19. Is there a best side for cochlear implants in post-lingual patients?

    PubMed

    Amaral, Maria Stella Arantes do; Damico, Thiago A; Gonçales, Alina S; Reis, Ana C M B; Isaac, Myriam de Lima; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2017-07-29

    Cochlear Implant is a sensory prosthesis capable of restoring hearing in patients with severe or profound bilateral sensorineural hearing loss. To evaluate if there is a better side to be implanted in post-lingual patients. Retrospective longitudinal study. Participants were 40 subjects, of both sex, mean age of 47 years, with post-lingual hearing loss, users of unilateral cochlear implant for more than 12 months and less than 24 months, with asymmetric auditor reserve between the ears (difference of 10dBNA, In at least one of the frequencies with a response, between the ears), divided into two groups. Group A was composed of individuals with cochlear implant in the ear with better auditory reserve and Group B with auditory reserve lower in relation to the contralateral side. There was no statistical difference for the tonal auditory threshold before and after cochlear implant. A better speech perception in pre-cochlear implant tests was present in B (20%), but the final results are similar in both groups. The cochlear implant in the ear with the worst auditory residue favors a bimodal hearing, which would allow the binaural summation, without compromising the improvement of the audiometric threshold and the speech perception. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Perception of Hearing Aid-Processed Speech in Individuals with Late-Onset Auditory Neuropathy Spectrum Disorder.

    PubMed

    Mathai, Jijo Pottackal; Appu, Sabarish

    2015-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a form of sensorineural hearing loss, causing severe deficits in speech perception. The perceptual problems of individuals with ANSD were attributed to their temporal processing impairment rather than to reduced audibility. This rendered their rehabilitation difficult using hearing aids. Although hearing aids can restore audibility, compression circuits in a hearing aid might distort the temporal modulations of speech, causing poor aided performance. Therefore, hearing aid settings that preserve the temporal modulations of speech might be an effective way to improve speech perception in ANSD. The purpose of the study was to investigate the perception of hearing aid-processed speech in individuals with late-onset ANSD. A repeated measures design was used to study the effect of various compression time settings on speech perception and perceived quality. Seventeen individuals with late-onset ANSD within the age range of 20-35 yr participated in the study. The word recognition scores (WRSs) and quality judgment of phonemically balanced words, processed using four different compression settings of a hearing aid (slow, medium, fast, and linear), were evaluated. The modulation spectra of hearing aid-processed stimuli were estimated to probe the effect of amplification on the temporal envelope of speech. Repeated measures analysis of variance and post hoc Bonferroni's pairwise comparisons were used to analyze the word recognition performance and quality judgment. The comparison between unprocessed and all four hearing aid-processed stimuli showed significantly higher perception using the former stimuli. Even though perception of words processed using slow compression time settings of the hearing aids were significantly higher than the fast one, their difference was only 4%. In addition, there were no significant differences in perception between any other hearing aid-processed stimuli. Analysis of the temporal envelope of hearing aid-processed stimuli revealed minimal changes in the temporal envelope across the four hearing aid settings. In terms of quality, the highest number of individuals preferred stimuli processed using slow compression time settings. Individuals who preferred medium ones followed this. However, none of the individuals preferred fast compression time settings. Analysis of quality judgment showed that slow, medium, and linear settings presented significantly higher preference scores than the fast compression setting. Individuals with ANSD showed no marked difference in perception of speech that was processed using the four different hearing aid settings. However, significantly higher preference, in terms of quality, was found for stimuli processed using slow, medium, and linear settings over the fast one. Therefore, whenever hearing aids are recommended for ANSD, those having slow compression time settings or linear amplification may be chosen over the fast (syllabic compression) one. In addition, WRSs obtained using hearing aid-processed stimuli were remarkably poorer than unprocessed stimuli. This shows that processing of speech through hearing aids might have caused a large reduction of performance in individuals with ANSD. However, further evaluation is needed using individually programmed hearing aids rather than hearing aid-processed stimuli. American Academy of Audiology.

  1. Common and distinct neural substrates for the perception of speech rhythm and intonation.

    PubMed

    Zhang, Linjun; Shu, Hua; Zhou, Fengying; Wang, Xiaoyi; Li, Ping

    2010-07-01

    The present study examines the neural substrates for the perception of speech rhythm and intonation. Subjects listened passively to synthesized speech stimuli that contained no semantic and phonological information, in three conditions: (1) continuous speech stimuli with fixed syllable duration and fundamental frequency in the standard condition, (2) stimuli with varying vocalic durations of syllables in the speech rhythm condition, and (3) stimuli with varying fundamental frequency in the intonation condition. Compared to the standard condition, speech rhythm activated the right middle superior temporal gyrus (mSTG), whereas intonation activated the bilateral superior temporal gyrus and sulcus (STG/STS) and the right posterior STS. Conjunction analysis further revealed that rhythm and intonation activated a common area in the right mSTG but compared to speech rhythm, intonation elicited additional activations in the right anterior STS. Findings from the current study reveal that the right mSTG plays an important role in prosodic processing. Implications of our findings are discussed with respect to neurocognitive theories of auditory processing. (c) 2009 Wiley-Liss, Inc.

  2. Rapid recalibration of speech perception after experiencing the McGurk illusion

    PubMed Central

    Pérez-Bellido, Alexis; de Lange, Floris P.

    2018-01-01

    The human brain can quickly adapt to changes in the environment. One example is phonetic recalibration: a speech sound is interpreted differently depending on the visual speech and this interpretation persists in the absence of visual information. Here, we examined the mechanisms of phonetic recalibration. Participants categorized the auditory syllables /aba/ and /ada/, which were sometimes preceded by the so-called McGurk stimuli (in which an /aba/ sound, due to visual /aga/ input, is often perceived as ‘ada’). We found that only one trial of exposure to the McGurk illusion was sufficient to induce a recalibration effect, i.e. an auditory /aba/ stimulus was subsequently more often perceived as ‘ada’. Furthermore, phonetic recalibration took place only when auditory and visual inputs were integrated to ‘ada’ (McGurk illusion). Moreover, this recalibration depended on the sensory similarity between the preceding and current auditory stimulus. Finally, signal detection theoretical analysis showed that McGurk-induced phonetic recalibration resulted in both a criterion shift towards /ada/ and a reduced sensitivity to distinguish between /aba/ and /ada/ sounds. The current study shows that phonetic recalibration is dependent on the perceptual integration of audiovisual information and leads to a perceptual shift in phoneme categorization. PMID:29657743

  3. Learning-induced neural plasticity of speech processing before birth

    PubMed Central

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-01-01

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations. PMID:23980148

  4. Real-time classification of auditory sentences using evoked cortical activity in humans

    NASA Astrophysics Data System (ADS)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  5. Getting the cocktail party started: masking effects in speech perception

    PubMed Central

    Evans, S; McGettigan, C; Agnew, ZK; Rosen, S; Scott, SK

    2016-01-01

    Spoken conversations typically take place in noisy environments and different kinds of masking sounds place differing demands on cognitive resources. Previous studies, examining the modulation of neural activity associated with the properties of competing sounds, have shown that additional speech streams engage the superior temporal gyrus. However, the absence of a condition in which target speech was heard without additional masking made it difficult to identify brain networks specific to masking and to ascertain the extent to which competing speech was processed equivalently to target speech. In this study, we scanned young healthy adults with continuous functional Magnetic Resonance Imaging (fMRI), whilst they listened to stories masked by sounds that differed in their similarity to speech. We show that auditory attention and control networks are activated during attentive listening to masked speech in the absence of an overt behavioural task. We demonstrate that competing speech is processed predominantly in the left hemisphere within the same pathway as target speech but is not treated equivalently within that stream, and that individuals who perform better in speech in noise tasks activate the left mid-posterior superior temporal gyrus more. Finally, we identify neural responses associated with the onset of sounds in the auditory environment, activity was found within right lateralised frontal regions consistent with a phasic alerting response. Taken together, these results provide a comprehensive account of the neural processes involved in listening in noise. PMID:26696297

  6. The Development of Auditory Perception in Children Following Auditory Brainstem Implantation

    PubMed Central

    Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio

    2014-01-01

    Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987

  7. Cortical activity patterns predict speech discrimination ability

    PubMed Central

    Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P

    2010-01-01

    Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123

  8. Listening effort in younger and older adults: A comparison of auditory-only and auditory-visual presentations

    PubMed Central

    Sommers, Mitchell S.; Phelps, Damian

    2016-01-01

    One goal of the present study was to establish whether providing younger and older adults with visual speech information (both seeing and hearing a talker compared with listening alone) would reduce listening effort for understanding speech in noise. In addition, we used an individual differences approach to assess whether changes in listening effort were related to changes in visual enhancement – the improvement in speech understanding in going from an auditory-only (A-only) to an auditory-visual condition (AV) condition. To compare word recognition in A-only and AV modalities, younger and older adults identified words in both A-only and AV conditions in the presence of six-talker babble. Listening effort was assessed using a modified version of a serial recall task. Participants heard (A-only) or saw and heard (AV) a talker producing individual words without background noise. List presentation was stopped randomly and participants were then asked to repeat the last 3 words that were presented. Listening effort was assessed using recall performance in the 2-back and 3-back positions. Younger, but not older, adults exhibited reduced listening effort as indexed by greater recall in the 2- and 3-back positions for the AV compared with the A-only presentations. For younger, but not older adults, changes in performance from the A-only to the AV condition were moderately correlated with visual enhancement. Results are discussed within a limited-resource model of both A-only and AV speech perception. PMID:27355772

  9. A dynamic auditory-cognitive system supports speech-in-noise perception in older adults

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of the auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we use structural equation modeling to evaluate interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55 to 79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. PMID:23541911

  10. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure

    PubMed Central

    Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.

    2017-01-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  11. Speech perception and quality of life of open-fit hearing aid users

    PubMed Central

    GARCIA, Tatiana Manfrini; JACOB, Regina Tangerino de Souza; MONDELLI, Maria Fernanda Capoani Garcia

    2016-01-01

    ABSTRACT Objective To relate the performance of individuals with hearing loss at high frequencies in speech perception with the quality of life before and after the fitting of an open-fit hearing aid (HA). Methods The WHOQOL-BREF had been used before the fitting and 90 days after the use of HA. The Hearing in Noise Test (HINT) had been conducted in two phases: (1) at the time of fitting without an HA (situation A) and with an HA (situation B); (2) with an HA 90 days after fitting (situation C). Study Sample Thirty subjects with sensorineural hearing loss at high frequencies. Results By using an analysis of variance and the Tukey’s test comparing the three HINT situations in quiet and noisy environments, an improvement has been observed after the HA fitting. The results of the WHOQOL-BREF have showed an improvement in the quality of life after the HA fitting (paired t-test). The relationship between speech perception and quality of life before the HA fitting indicated a significant relationship between speech recognition in noisy environments and in the domain of social relations after the HA fitting (Pearson’s correlation coefficient). Conclusions The auditory stimulation has improved speech perception and the quality of life of individuals. PMID:27383708

  12. Auditory-Acoustic Basis of Consonant Perception. Attachments A thru I

    DTIC Science & Technology

    1991-01-22

    250- 93. Potter, R.K., and Kopp, G.A., and Green, Harriet , C., Visible Speech. New York, Van Nostrand, 1947. 94. Potter, R.K. and Peterson, G.E...performance. Speech Communication, 3(l): 101-106, April 1984. [48] Ralph K. Potter, George A. Kopp, and Harriet C. Green. Visible Spech. D. Van...Carterette and M. Friedman (Academic, New York), pp. 187-242. ( Martinus Nijhoff, Dordrecht, The Netherlands), pp. 28-45. Shepard, R. N. (1972). "Psychological

  13. Melodic Contour Identification and Music Perception by Cochlear Implant Users

    PubMed Central

    Galvin, John J.; Fu, Qian-Jie; Shannon, Robert V.

    2013-01-01

    Research and outcomes with cochlear implants (CIs) have revealed a dichotomy in the cues necessary for speech and music recognition. CI devices typically transmit 16–22 spectral channels, each modulated slowly in time. This coarse representation provides enough information to support speech understanding in quiet and rhythmic perception in music, but not enough to support speech understanding in noise or melody recognition. Melody recognition requires some capacity for complex pitch perception, which in turn depends strongly on access to spectral fine structure cues. Thus, temporal envelope cues are adequate for speech perception under optimal listening conditions, while spectral fine structure cues are needed for music perception. In this paper, we present recent experiments that directly measure CI users’ melodic pitch perception using a melodic contour identification (MCI) task. While normal-hearing (NH) listeners’ performance was consistently high across experiments, MCI performance was highly variable across CI users. CI users’ MCI performance was significantly affected by instrument timbre, as well as by the presence of a competing instrument. In general, CI users had great difficulty extracting melodic pitch from complex stimuli. However, musically-experienced CI users often performed as well as NH listeners, and MCI training in less experienced subjects greatly improved performance. With fixed constraints on spectral resolution, such as it occurs with hearing loss or an auditory prosthesis, training and experience can provide a considerable improvements in music perception and appreciation. PMID:19673835

  14. Research Forum on Changes in Sensory Perception in Middle-Aged Adults: A Summary of a Special Session at Hearing Across the Lifespan (HEAL) 2014.

    PubMed

    Humes, Larry E

    2015-06-01

    The purpose of this article is to introduce the special research forum on sensory-processing changes in middle-aged adults. This is a brief written introduction to the special session, which included five presentations, each emphasizing a slightly different aspect of sensory perception. The effects of aging on sensory processing, including auditory processing and speech perception, are not confined to older adults but begin in middle age in many cases.

  15. Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial.

    PubMed

    Woodhead, Zoe Vj; Crinion, Jennifer; Teki, Sundeep; Penny, Will; Price, Cathy J; Leff, Alexander P

    2017-07-01

    Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https:// eudract .ema.europa.eu/) and ISRCTN (68939136, http://www.isrctn.com/). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech

    PubMed Central

    Alcalá-Quintana, Rocío

    2015-01-01

    Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361

  17. Relationship between Auditory and Cognitive Abilities in Older Adults

    PubMed Central

    Sheft, Stanley

    2015-01-01

    Objective The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults. Methods Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities. Results Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance. Conclusions For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials. PMID:26237423

  18. A centralized audio presentation manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, A.L. III; Blattner, M.M.

    1994-05-16

    The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in themore » most perceptible manner through the use of a theoretically and empirically designed rule set.« less

  19. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  20. Auditory perception in the child.

    PubMed

    Nicolay-Pirmolin, M

    2003-01-01

    The development of auditory perception in the infant starts in utero and continues up to the age of 9-10 years. We shall examine the various stages, the various acoustic parameters and the segmental level. Three stages are important: from 7 months onwards: first perceptual reorganization; between 7 and 12 months: second perceptual reorganization; from 10 to 24 months: segmentation of the spoken word. We will note the evolution between 2 and 6 years and between 6 and 9 years: 9 years being the critical age--switching from global treatment to analytic treatment of utterances. We will then examine musical perception and we note that at the prelinguistic level it is the same perceptive units that handle verbal sequences and musical sequences. The stages of musical perception are parallel to those for speech. Bigand posed the question: "should we see in these hierarchies, and in their importance to perception, the manifestation of an overall cognitive constraint restricting the handling of long sequences of acoustic events (including language) and why not even for all processes dealing with symbolic information".

Top